On sets $\mathcal{W} \subseteq \mathbb{N}$ whose infinitude follows from the existence in \mathcal{W} of an element which is greater than a threshold number computed for \mathcal{W}

Abstract

We define computable functions $f, g: \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$. For a positive integer n, let Θ_n denote the following statement: if a system $S \subseteq \{x_i! = x_k : i, k \in \{1, ..., n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$ has only finitely many solutions in integers $x_1, ..., x_n$ greater than 1, then each such solution $(x_1, ..., x_n)$ satisfies $\min(x_1, ..., x_n) \leq f(n)$. The statement Θ_9 proves that if there exists an integer x > f(9) such that $x^2 + 1$ (alternatively, x! + 1) is prime, then there are infinitely many primes of the form $n^2 + 1$ (respectively, n! + 1). The statement Θ_{16} proves that if there exists a twin prime greater than f(16) + 3, then there are infinitely many twin primes. We formulate a statement which proves that if $2^{2^n} + 1$ is composite for some integer n > g(13), then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, composite Fermat numbers, composite numbers of the form $2^{2^n} + 1$, prime numbers of the form $n^2 + 1$, prime numbers of the form n! + 1, Richert's lemma, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

Euclid indirectly proved that there are infinitely many prime numbers. A stronger theorem states that for every integer n > 1 there exists a prime number p such that $n , see [19, p. 145]. This theorem is a <math>\Pi_1$ statement.

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [14, p. 39]. The following Π_1 statement (A)

(A) "For every non-negative integer *n* there exists a twin prime which belongs to the interval $(10^n, 10^{n+1})$ "

strengthens the twin prime conjecture, cf. [3, p. 43]. The validity of the statement (A) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_1 statements, see [1].

In this article, we study sets $W \subseteq \mathbb{N}$ whose infinitude follows from the existence in W of an element that exceeds a threshold number computed for W. If W is computable, then this property implies that the infinity of W is equivalent to the halting of a Turing machine. If $n \in \mathbb{N}$ and $W \subseteq \{0, ..., n\}$, then any integer $m \ge n$ is a threshold number for W. If $W \subseteq \mathbb{N}$ and W is empty or infinite, then any non-negative integer m is a threshold number for W.

We define the set $\mathcal{U} \subseteq \mathbb{N}$ by declaring that a non-negative integer *n* belongs to \mathcal{U} if and only if $\sin\left(10^{10^{10}}\right) > 0$. This inequality is practically undecidable, see [9].

Corollary 1. The set \mathcal{U} equals \emptyset or \mathbb{N} . The statement " $\mathcal{U} = \emptyset$ " remains unproven and the statement " $\mathcal{U} = \mathbb{N}$ " remains unproven. Every non-negative integer m is a threshold number for \mathcal{U} . For every non-negative integer k, the sentence " $k \in \mathcal{U}$ " is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: ~ and =, respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-order sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers *n* such that there is a graph on *n* vertices satisfying Λ . By a graph on *n* vertices we understand a set of *n* elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([17, p. 171]). If a sentence Λ in the language of graph theory has the form $\exists x_1 \dots x_k \forall y_1 \dots y_l \Upsilon(x_1, \dots, x_k, y_1, \dots, y_l)$, where $\Upsilon(x_1, \dots, x_k, y_1, \dots, y_l)$ is quantifier-free, then either Spectrum(Λ) \subseteq [1, (2^k · 4^l) – 1] or Spectrum(Λ) \supseteq [k + l, ∞) $\cap \mathbb{N}$.

Corollary 2. The number $(2^k \cdot 4^l) - 1$ is a threshold number for Spectrum(A).

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [15, p. 234].

Corollary 3. If an algorithm Al_1 for every recursive set $W \subseteq \mathbb{N}$ finds a non-negative integer $Al_1(W)$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap [Al_1(\mathcal{M}) + 1, \infty) \neq \emptyset$.

Corollary 4. If an algorithm Al_2 for every recursively enumerable set $W \subseteq \mathbb{N}$ finds a nonnegative integer $Al_2(W)$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap [Al_2(\mathcal{M})+1, \infty) \neq \emptyset$.

Let $K = \{j \in \mathbb{N} : 2^{\aleph_j} = \aleph_{j+1}\}.$

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"*n* is a threshold number for K"

is not provable in ZFC.

Proof. There exists a model \mathcal{E} of ZFC such that

$$\forall i \in \{0, \dots, n+1\} \mathcal{E} \models 2^{\aleph_i} = \aleph_{i+1}$$

and

$$\forall i \in \{n+2, n+3, n+4, \ldots\} \mathcal{E} \models 2^{\aleph_i} = \aleph_{i+2}$$

see [7] and [10, p. 232]. In the model \mathcal{E} , $K = \{0, \dots, n+1\}$ and n is not a threshold number for K.

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

"*n* is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [10, p. 188] and [10, p. 190]. GCH implies that $K = \mathbb{N}$. Consequently, GCH implies that every non-negative integer *n* is a threshold number for *K*.

Theorem 4. ([4, p. 35]). There exists a polynomial $D(x_1, ..., x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences

"The equation $D(x_1, \ldots, x_m) = 0$ is solvable in non-negative integers" and

"The equation $D(x_1, ..., x_m) = 0$ is not solvable in non-negative integers" *are not provable in ZFC.*

Let Δ denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $\{0, \ldots, k\}^m$. Since the set $\{0, \ldots, k\}^m$ is finite, the set Δ is computable. Theorem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sentences

"*n* is a threshold number for Δ "

and

"*n* is not a threshold number for Δ "

are not provable in ZFC.

Let $\sigma \colon \mathbb{N}^{m+1} \to \mathbb{N}$ be a computable bijection. Let $\mathcal{H} \subseteq \mathbb{N}^{m+1}$ be the solution set of the equation $D(x_1, \ldots, x_m) + 0 \cdot x_{m+1} = 0$.

Theorem 5. We can write a single computer program which for every non-negative integer x decides whether or not $x \in \sigma(\mathcal{H})$. The set $\sigma(\mathcal{H})$ is empty or infinite. In both cases, every non-negative integer n is a threshold number for $\sigma(\mathcal{H})$. If ZFC is arithmetically consistent, then the sentences " $\sigma(\mathcal{H}) = \emptyset$ ", " $\sigma(\mathcal{H}) \neq \emptyset$ ", " $\sigma(\mathcal{H})$ is finite", and " $\sigma(\mathcal{W})$ is infinite" are not provable in ZFC.

Proof. We leave the proof to the reader.

Let g(1) = 1, and let $g(n + 1) = 2^{2^{g(n)}}$ for every positive integer *n*.

Hypothesis 1. ([22]). If a system

$$S \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{x_i + 1 = x_k : i, k \in \{1, \dots, n\}\}$$

has only finitely many solutions in non-negative integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq g(2n)$.

Theorem 6. ([22]). Hypothesis 1 implies that for every $W(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$ we can compute a threshold number $b \in \mathbb{N} \setminus \{0\}$ such that any non-negative integers $a_1, ..., a_n$ which satisfy

$$(W(a_1,\ldots,a_n)=0) \land (\max(a_1,\ldots,a_n) > b)$$

guarantee that the equation $W(x_1, ..., x_n) = 0$ has infinitely many solutions in non-negative integers.

2 Basic lemmas

Let f(1) = 2, f(2) = 4, and let f(n + 1) = f(n)! for every integer $n \ge 2$. Let \mathcal{V}_1 denote the system of equations $\{x_1! = x_1\}$, and let \mathcal{V}_2 denote the system of equations $\{x_1! = x_1, x_1 \cdot x_1 = x_2\}$. For an integer $n \ge 3$, let \mathcal{V}_n denote the following system of equations:

$$\begin{cases} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \\ \forall i \in \{2, \dots, n-1\} x_i! = x_{i+1} \end{cases}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_n .

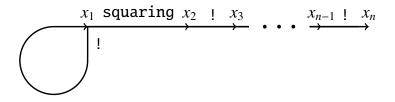


Fig. 1 Construction of the system \mathcal{V}_n

Lemma 1. For every positive integer n, the system \mathcal{V}_n has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let

$$H_n = \{x_i! = x_k: i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k: i, j, k \in \{1, \dots, n\}\}$$

For a positive integer *n*, let Θ_n denote the following statement: if a system $S \subseteq H_n$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq f(n)$. The assumption $\min(x_1, \ldots, x_n) \leq f(n)$ is weaker than the assumption $\max(x_1, \ldots, x_n) \leq f(n)$ suggested by Lemma 1.

Lemma 2. For every positive integer n, the system H_n has a finite number of subsystems.

Theorem 7. Every statement Θ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2.

Lemma 3. For every integers x and y greater than 1, $x! \cdot y = y!$ if and only if x + 1 = y.

Lemma 4. If $x \ge 4$, then $\frac{(x-1)!+1}{x} > 1$.

Lemma 5. (Wilson's theorem, [8, p. 89]). For every integer $x \ge 2$, x is prime if and only if x divides (x - 1)! + 1.

3 Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x! + 1 = y^2$, see [16]. It is conjectured that x! + 1 is a square only for $x \in \{4, 5, 7\}$, see [23, p. 297].

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

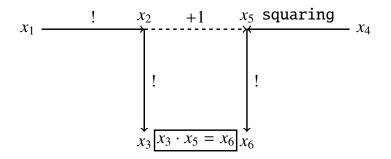


Fig. 2 Construction of the system \mathcal{A}

Lemma 6. For every integers x_1 and x_4 greater than 1, the system \mathcal{A} is solvable in integers x_2, x_3, x_5, x_6 greater than 1 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$x_{2} = x_{1}!$$

$$x_{3} = (x_{1}!)!$$

$$x_{5} = x_{1}! + 1$$

$$x_{6} = (x_{1}! + 1)!$$

and $x_1 = \min(x_1, \ldots, x_6)$.

Proof. It follows from Lemma 3.

Theorem 8. The statement Θ_6 proves the following implication: if the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then each such solution (x_1, x_4) satisfies $x_1 \le f(6)$.

Proof. Let positive integers x_1 and x_4 satisfy $x_1!+1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 6, there exists a unique tuple $(x_2, x_3, x_5, x_6) \in (\mathbb{N} \setminus \{0, 1\})^4$ such that the tuple (x_1, \ldots, x_6) solves the system \mathcal{A} . Lemma 6 guarantees that $x_1 = \min(x_1, \ldots, x_6)$. By the antecedent and Lemma 6, the system \mathcal{A} has only finitely many solutions in integers x_1, \ldots, x_6 greater than 1. Therefore, the statement Θ_6 implies that $x_1 = \min(x_1, \ldots, x_6) \leq f(6)$.

Hypothesis 2. The implication in Theorem 8 is true.

Corollary 6. Assuming Hypothesis 2, a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation $x! + 1 = y^2$.

4 Are there infinitely many prime numbers of the form $n^2 + 1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [14, pp. 37–38]. Let \mathcal{B} denote the following system of equations:

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

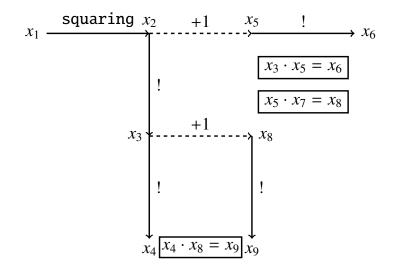


Fig. 3 Construction of the system \mathcal{B}

Lemma 7. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

$$x_{2} = x_{1}^{2}$$

$$x_{3} = (x_{1}^{2})!$$

$$x_{4} = ((x_{1}^{2})!)!$$

$$x_{5} = x_{1}^{2} + 1$$

$$x_{6} = (x_{1}^{2} + 1)!$$

$$x_{7} = \frac{(x_{1}^{2})! + 1}{x_{1}^{2} + 1}$$

$$x_{8} = (x_{1}^{2})! + 1$$

$$x_{9} = ((x_{1}^{2})! + 1)!$$

and $\min(x_1, ..., x_9) = x_1$.

Proof. By Lemmas 3 and 4, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 7 follows from Lemma 5.

Theorem 9. The statement Θ_9 proves the following implication: if there exists an integer $x_1 > f(9)$ such that $x_1^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Assume that an integer x_1 is greater than f(9) and $x_1^2 + 1$ is prime. By Lemma 7, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the

system \mathcal{B} . Lemma 7 guarantees that $\min(x_1, \ldots, x_9) = x_1$. Since $\mathcal{B} \subseteq H_9$, the statement Θ_9 and the inequality $\min(x_1, \ldots, x_9) = x_1 > f(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 7, there are infinitely many primes of the form $n^2 + 1$.

Hypothesis 3. The implication in Theorem 9 is true.

Corollary 7. Assuming Hypothesis 3, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^2 + 1$.

The following question is open: Is it possible to write a single computer program which computes the largest prime number of the form $n^2 + 1$, if the set of these primes is finite? The unproven statement Θ_9 implies this claim although does not imply that there are infinitely many primes of the form $n^2 + 1$.

Let $J = \{0\} \cup \{i \in \{1\} : 2^{\aleph_i} = \aleph_{i+1}\}.$

Theorem 10. It is impossible to uniquely determine an integer $j \in \{0, 1\}$ which is the largest element of *J*.

Proof. If ZFC is inconsistent, then for every integer $n \in \mathbb{N}$ the sentence

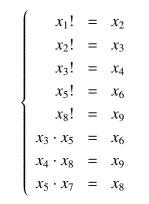
"*n* is the largest element of J"

is provable in ZFC. If ZFC is consistent, then by Easton's theorem ([7] and [10, p. 232]) for every integer $n \in \{0, 1\}$ there exists a model of ZFC in which $J = \{0, ..., n\}$.

Let \mathcal{P} denote the set of prime numbers. For a non-negative integer *n*, let $\Omega(n)$ denote the following statement: $\exists m \in \mathbb{N} \cap (n, \infty) m^2 + 1 \in \mathcal{P}$. By Theorem 9, assuming the statement Θ_9 , we can infer the statement $\forall n \in \mathbb{N} \Omega(n)$ from any statement $\Omega(n)$ with $n \ge f(9)$. A similar situation holds for inference by the so called *"super-induction method"*, see [24]–[27]. In section 8, we present Richert's lemma which is frequently used in proofs by super-induction.

5 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and [20]. Let \mathcal{G} denote the following system of equations:



Lemma 3 and the diagram in Figure 4 explain the construction of the system G.

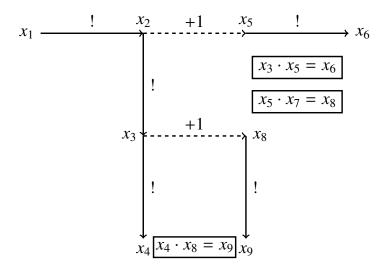


Fig. 4 Construction of the system G

Lemma 8. For every integer $x_1 \ge 2$, the system G is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1! + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by

the following equalities:

$$x_{2} = x_{1}!$$

$$x_{3} = (x_{1}!)!$$

$$x_{4} = ((x_{1}!)!)!$$

$$x_{5} = x_{1}^{!} + 1$$

$$x_{6} = (x_{1}! + 1)!$$

$$x_{7} = \frac{(x_{1}!)! + 1}{x_{1}! + 1}$$

$$x_{8} = (x_{1}!)! + 1$$

$$x_{9} = ((x_{1}!)! + 1)!$$

and $\min(x_1, ..., x_9) = x_1$.

Proof. By Lemmas 3 and 4, for every integer $x_1 \ge 2$, the system \mathcal{G} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1! + 1$ divides $(x_1!)! + 1$. Hence, the claim of Lemma 8 follows from Lemma 5.

Theorem 11. The statement Θ_9 proves the following implication: if there exists an integer $x_1 > f(9)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x_1 is greater than f(9) and $x_1! + 1$ is prime. By Lemma 8, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{G} . Lemma 8 guarantees that $\min(x_1, \ldots, x_9) = x_1$. Since $\mathcal{G} \subseteq H_9$, the statement Θ_9 and the inequality $\min(x_1, \ldots, x_9) = x_1 > f(9)$ imply that the system \mathcal{G} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 8, there are infinitely many primes of the form n! + 1.

Hypothesis 4. The implication in Theorem 11 is true.

Corollary 8. Assuming Hypothesis 4, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form n! + 1.

The following question is open: Is it possible to write a single computer program which computes the largest prime number of the form n! + 1, if the set of these primes is finite? The unproven statement Θ_9 implies this claim although does not imply that there are infinitely many primes of the form n! + 1.

6 The twin prime conjecture

Let *C* denote the following system of equations:

 $\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_4! = x_5 \\ x_6! = x_7 \\ x_7! = x_8 \\ x_9! = x_{10} \\ x_{12}! = x_{13} \\ x_{15}! = x_{16} \\ x_2 \cdot x_4 = x_5 \\ x_5 \cdot x_6 = x_7 \\ x_7 \cdot x_9 = x_{10} \\ x_4 \cdot x_{11} = x_{12} \\ x_3 \cdot x_{12} = x_{13} \\ x_9 \cdot x_{14} = x_{15} \\ x_8 \cdot x_{15} = x_{16} \end{cases}$

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.

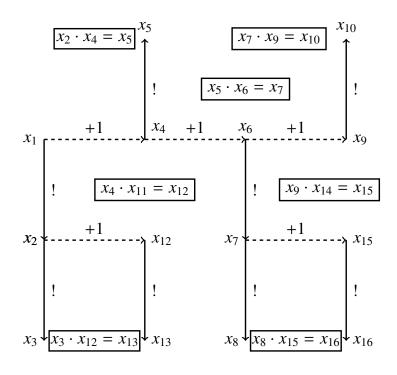


Fig. 5 Construction of the system C

Lemma 9. If $x_4 = 2$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1. *Proof.* The equality $x_2 \cdot x_4 = x_5 = x_4!$ and the equality $x_4 = 2$ imply that $x_2 = 1$. \Box **Lemma 10.** If $x_4 = 3$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1. *Proof.* The equality $x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1$ and the equality $x_4 = 3$ imply that $x_{11} = 1$. \Box **Lemma 11.** For every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_4

and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers x_1 , x_2 , x_3 , x_5 , x_6 , x_7 , x_8 , x_{10} , x_{11} , x_{12} ,

 x_{13} , x_{14} , x_{15} , x_{16} are uniquely determined by the following equalities:

$$x_{1} = x_{4} - 1$$

$$x_{2} = (x_{4} - 1)!$$

$$x_{3} = ((x_{4} - 1)!)!$$

$$x_{5} = x_{4}!$$

$$x_{6} = x_{9} - 1$$

$$x_{7} = (x_{9} - 1)!$$

$$x_{8} = ((x_{9} - 1)!)!$$

$$x_{10} = x_{9}!$$

$$x_{11} = \frac{(x_{4} - 1)! + 1}{x_{4}}$$

$$x_{12} = (x_{4} - 1)! + 1$$

$$x_{13} = ((x_{4} - 1)! + 1)!$$

$$x_{14} = \frac{(x_{9} - 1)! + 1}{x_{9}}$$

$$x_{15} = (x_{9} - 1)! + 1$$

and $\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3$.

Proof. By Lemmas 3 and 4, for every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system *C* is solvable in integers x_1 , x_2 , x_3 , x_5 , x_6 , x_7 , x_8 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} greater than 1 if and only if

$$(x_4 + 2 = x_9) \land (x_4 | (x_4 - 1)! + 1) \land (x_9 | (x_9 - 1)! + 1)$$

Hence, the claim of Lemma 11 follows from Lemma 5.

Theorem 12. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than f(16) + 3, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > f(16) + 3$. Hence, $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 11, there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0, 1\})^{14}$ such that the tuple (x_1, \dots, x_{16}) solves the system *C*. Lemma 11 guarantees that $\min(x_1, \dots, x_{16}) = x_1 = x_9 - 3 > f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min(x_1, \dots, x_{16}) > f(16)$ imply that the system *C* has infinitely many solutions in integers x_1, \dots, x_{16} greater than 1. According to Lemmas 9–11, there are infinitely many twin primes.

Hypothesis 5. *The implication in Theorem 12 is true.*

Corollary 9. (cf. [5]). Assuming Hypothesis 5, a single query to an oracle for the halting problem decides the twin prime problem.

The following question is open: Is it possible to write a single computer program which computes the largest twin prime, if the set of twin primes is finite? The unproven statement Θ_{16} implies this claim although does not imply that there are infinitely many twin primes.

7 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [13, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [13, p. 1].

Open Problem. ([13, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \ge 5$, see [12, p. 23].

Theorem 13. ([21]). An unproven inequality stated in [21] implies that $2^{2^n} + 1$ is composite for every integer $n \ge 5$.

Lemma 12. ([13, p. 38]). For every positive integer n, if a prime number p divides $2^{2^n} + 1$, then there exists a positive integer k such that $p = k \cdot 2^{n+1} + 1$.

Corollary 10. Since $k \cdot 2^{n+1} + 1 \ge 2^{n+1} + 1 \ge n+3$, for every positive integers *x*, *y*, and *n*, the equality $(x + 1)(y + 1) = 2^{2^n} + 1$ implies that $\min(n, x, x + 1, y, y + 1) = n$.

Let

$$G_n = \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\} \cup \left\{ 2^{2^{X_i}} = x_k : i, k \in \{1, \dots, n\} \right\}$$

Lemma 13. The following subsystem of G_n

$$\begin{cases} x_1 \cdot x_1 = x_1 \\ \forall i \in \{1, \dots, n-1\} \ 2^{2^{X_i}} = x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(g(1), \ldots, g(n))$.

For a positive integer *n*, let Ψ_n denote the following statement: if a system $S \subseteq G_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq g(n)$. The assumption $\min(x_1, \ldots, x_n) \leq g(n)$ is weaker than the assumption $\max(x_1, \ldots, x_n) \leq g(n)$ suggested by Lemma 13.

Lemma 14. For every positive integer n, the system G_n has a finite number of subsystems.

Theorem 14. Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 14.

Lemma 15. For every non-negative integers b and c, b + 1 = c if and only if $2^{2^b} \cdot 2^{2^b} = 2^{2^c}$.

Theorem 15. The statement Ψ_{13} proves the following implication: if $2^{2^n} + 1$ is composite for some integer n > g(13), then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^{Z}} + 1$$
(1)

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (*x*, *y*, *z*, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^{\alpha}} = \gamma$, see the diagram in Figure 6.

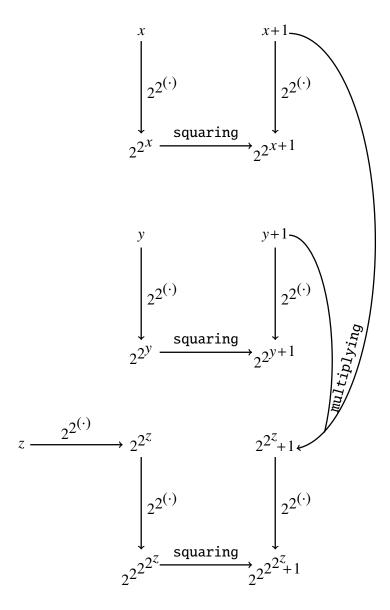


Fig. 6 Construction of the system \mathcal{F}

Assume that $2^{2^n} + 1$ is composite for some integer n > g(13). By this and Corollary 10, equation (1) has a solution $(x, y, z) \in (\mathbb{N} \setminus \{0\})^3$ such that z = n and $z = \min(z, x, x + 1, y, y + 1)$. Hence, the system \mathcal{F} has a solution in positive integers such that z = n and n is the smallest number in the solution sequence. Since n > g(13), the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^n} + 1$ is composite.

Hypothesis 6. The implication in Theorem 15 is true.

Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

The following question is open: Is it possible to write a single computer program which computes the largest composite Fermat number, if the set of these numbers is finite? The unproven statement Ψ_{13} implies this claim although does not imply that there are infinitely many composite Fermat numbers.

8 Subsets of $\mathbb{N} \setminus \{0\}$ which are cofinite by Richert's lemma and the halting of a computer program

The following lemma is known as Richert's lemma.

Lemma 16. ([6], [18], [19, p. 152]). Let $\{m_i\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leq 2m_i$ holds for all i > k. Suppose there exists a non-negative integer b such that the numbers b + 1, b + 2, b + 3, ..., $b + m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\{m_1, \ldots, m_k\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

Corollary 12. If the sequence $\{m_i\}_{i=1}^{\infty}$ is computable and the flowchart algorithm in Figure 7 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$ and the algorithm returns all positive integers which are not expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$ and the algorithm returns all positive integers which are not

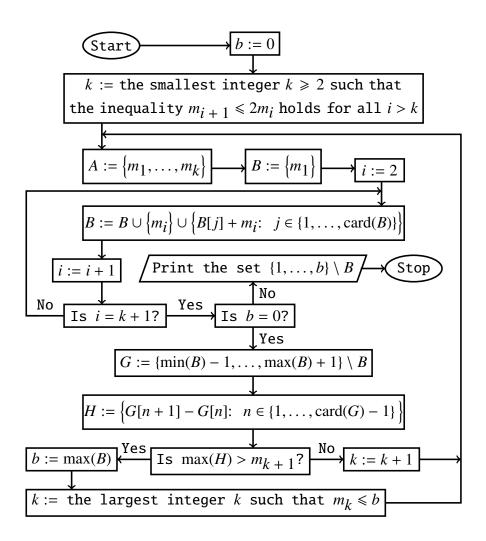


Fig. 7 The algorithm which uses Richert's lemma

The above algorithm works correctly because the inequality $max(H) > m_{k+1}$ holds true if and only if the set *B* contains m_{k+1} consecutive integers.

Theorem 16. ([11, Theorem 2.3]). If there exists $\varepsilon > 0$ such that the inequality $m_{i+1} \leq (2 - \varepsilon) \cdot m_i$ holds for every sufficiently large *i*, then the flowchart algorithm in Figure 7 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

References

[1] C. H. Bennett, *Chaitin's Omega*, in: *Fractal music, hypercards, and more* ... (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307–319.

- [2] C. K. Caldwell and Y. Gallot, On the primality of n! ± 1 and 2×3×5×···× p ± 1, Math. Comp. 71 (2002), no. 237, 441–448, https://doi.org/10.1090/ S0025-5718-01-01315-1.
- [3] C. S. Calude, H. Jürgensen, S. Legg, *Solving problems with finite test sets*, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), Springer, London, 2000.
- [4] N. C. A. da Costa and F. A. Doria, *On the foundations of science (LIVRO): essays, first series,* E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
- [5] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, https://mathoverflow.net/questions/71050.
- [6] R. E. Dressler, A. Mąkowski, T. Parker, *Sums of distinct primes from congruence classes modulo* 12, Math. Comp. 28 (1974), 651–652.
- [7] W. B. Easton, *Powers of regular cardinals*, Ann. Math. Logic 1 (1970), 139–178.
- [8] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [9] J. van der Hoeven, Undecidability versus undecidability, Bull. Symbolic Logic 5 (1999), no. 1, 75, https://dx.doi.org/10.2307/421141.
- [10] T. Jech, Set theory, Springer, Berlin, 2003.
- [11] T. Kløve, Sums of distinct elements from a fixed set, Math. Comp. 29 (1975), 1144–1149.
- [12] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
- [13] M. Křížek, F. Luca, L. Somer, *17 lectures on Fermat numbers: from number theory to geometry*, Springer, New York, 2001.
- [14] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [15] P. Odifreddi, *Classical recursion theory: the theory of functions and sets of natural numbers*, North-Holland, Amsterdam, 1989.

- [16] M. Overholt, *The Diophantine equation n*! + 1 = m², Bull. London Math. Soc. 25 (1993), no. 2, 104, https://doi.org/10.1112/blms/25.2.104.
- [17] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: a survey; in: Model theoretic methods in finite combinatorics, Contemp. Math. 558, 129–179, Amer. Math. Soc., Providence, RI, 2011, https://dx.doi.org/10.1090/conm/558.
- [18] H.-E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120–122.
- [19] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
- [20] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that n! + 1 is prime, https://oeis.org/A002981.
- [21] A. Tyszka, Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?, Open Comput. Sci. 7 (2017), no. 1, 17–23, https://doi.org/10.1515/comp-2017-0003.
- [22] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109–114, https://dx.doi.org/10.1515/comp-2018-0012.
- [23] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [24] A. A. Zenkin, Superinduction: a new method for proving general mathematical statements with a computer, Dokl. Math. 55 (1997), no. 3, 410–413.
- [25] A. A. Zenkin, Superinduction method: logical acupuncture of mathematical infinity (in Russian), in: Infinity in mathematics: philosophical and historical aspects (ed. A. G. Barabashev), Janus-K, Moscow, 1997, 152–168, 173–176.
- [26] A. A. Zenkin, The generalized Waring problem: estimation of the function G(m, r) in terms of the function g(m 1, r) by the superinduction method, Dokl. Math. 56 (1997), no. 1, 597–600.

[27] A. A. Zenkin, *Super-induction method: logical acupuncture of mathematical infinity,* paper presented at the Twentieth World Congress of Philosophy, Boston, MA, August 10–15, 1998, https://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl