On sets X C N for which we know an algorithm that computes a
threshold number #(X) € N such that X is infinite if and only if X
contains an element greater than #(X)
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Abstract
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LetF(k)denote(k—l)!,wherene{3,...,16}andke{2}u{22 +1,22"7 42,02 +3,...}.

For an integer n € {3,...,16}, let £, denote the following statement: if a system of equations
Sc {F(xi) =xi: Lke{l,...,nJU{x;-x;=x¢: i,j,ke{l,...,n}} has only finitely many solu-
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tions in positive integers xi, ..., x,, then each such solution (xi,..., x,) satisfies xi,...,x, < 22" .

The statement X proves the following implication: if the equation x(x + 1) = y! has only finitely many
solutions in positive integers x and y, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}. The
statement X proves the following implication: if the equation x! + 1 = y? has only finitely many solu-
tions in positive integers x and y, then each such solution (x, y) belongs to the set {(4, 5), (5, 11), (7, 71)}.
The statement X9 implies the infinitude of primes of the form n? + 1. The statement Xg implies that

9-3

any prime of the form n! + 1 with n > 22 proves the infinitude of primes of the form n! + 1. The
statement X4 implies the infinitude of twin primes. The statement X5 implies the infinitude of Sophie
Germain primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation x! + 1 = y?, composite Fermat
numbers, Erdos’ equation x(x + 1) = y!, prime numbers of the form »? + 1, prime numbers of the form
n! + 1, Richert’s lemma, Sophie Germain primes, twin prime conjecture.
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1 Introduction

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [[17, p. 39]. The following statement
(1) "For every non-negative integer n there exist prime exist numbers p and g
such that p + 2 = g and p € [107, 107 T 1}
is a I1; statement which strengthens the twin prime conjecture, see [4, p. 43], cf. [6, pp. 337-338]. State-
ment (1) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical
conjectures can be settled indirectly by proving stronger I1; statements, see [1]].

In this article, we study sets X C N for which we know an algorithm that computes a threshold
number #X) € N such that X is infinite if and only if X contains an element greater than #(X). If X
is computable, then this property implies that the infinity of X is equivalent to the halting of a Tur-
ing machine. If a set X €N is empty or infinite, then any non-negative integer m is a threshold num-
ber of X. If a set X C N is non-empty and finite, then the all threshold numbers of X form the set
{max(X), max(X) + 1, max(X) + 2,...}.

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recur-
sively enumerable, see [[18, p. 234].

Corollary 1. If an algorithm Alg; for every recursive set R C N finds a non-negative integer A1g;(R),
then there exists a finite set W C N such that W N [ALlg1 (‘W) + 1,00) # 0. If an algorithm Alg; for
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every recursively enumerable set R C N finds a non-negative integer A1g,(R), then there exists a finite set
W C N such that W N [Algy (‘W) + 1, 00) # 0.

2 A Diophantine equation whose non-solvability expresses the consistency
of ZFC

Godel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the
following theorem.

Theorem 1. (/5 p. 35]). There exists a polynomial D(xy, ..., X,) with integer coefficients such that if ZFC
is arithmetically consistent, then the sentences "The equation D(xy, ..., Xx,) = 0 is solvable in non-negative
integers" and "The equation D(xy,..., Xx;) = 0 is not solvable in non-negative integers" are not provable
in ZFC.

Let Y denote the set of all non-negative integers k such that the equation D(xi,...,x,;) = 0 has no
solutions in {0, ..., k}". Since the set {0,...,k}" is finite, we know an algorithm which for every n € N
decides whether or not n € Y. Let y: N*! — N be a computable bijection, and let & C N"*! be the
solution set of the equation D(x, ..., X;) + 0 X417 = 0. Theoremmimplies Theorems@] and@

Theorem 2. [f ZFC is arithmetically consistent, then for every n € N the sentences "n is a threshold number
of Y" and "n is not a threshold number of Y" are not provable in ZFC.

Theorem 3. We know an algorithm which for every n € N decides whether or not n € y(E). The set y(E)
is empty or infinite. In both cases, every non-negative integer n is a threshold number of y(&). If ZFC

is arithmetically consistent, then the sentences "y(E) is empty", "y(&) is not empty", "y(&) is finite", and
"y(E) is infinite" are not provable in ZFC.

In Figure 1, D(xy,..., x;;) stands for the polynomial described in Theorem |1} Let K denote the set of
all positive integers k such that the algorithm in Figure 1 halts for k on the input. If ZFC is consistent, then

K = 0. Otherwise, card(K) = 1.

/Input a positive integer k/

Does the equation D(xl, .. .,xm) =0| No

have no solutions in {0,...,k — l}m?
lYes
Does the equation D(xl, .. .,xm) =0| No
have a solution in {0, .. .,k}m?
Yes

Fig. 1 The algorithm which may halt only when ZFC is inconsistent

Theorem 4. If ZFC is consistent, then for every positive integer n, the inclusion K C {1,...,n} is not
provable in ZFC.

Proof. 1t follows from Godel’s second incompleteness theorem because the inclusion K C {1,...,n} im-
plies K = 0 and the consistency of ZFC. O

Theorem 5. (cf. Theorem[27). If ZFC is consistent and a computer program halts for at most finitely many
positive integers k on the input, then not always we can write the decimal expansion of a positive integer n
which is not smaller than every such number k.
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Proof. We write a computer program which implements the algorithm in Figure 1. This program halts
exactly for elements of K on the input. The set K is finite as card() < 1. By Theorem {4} if ZFC is
consistent, then for every positive integer n, the inclusion K C {1, ..., n} is not provable in ZFC. O

3 Hypothetical statements Vs, ..., Y and number-theoretic lemmas

For a positive integer n, let I'(n) denote (n — 1)!. Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every

h
integer n > 2. Let (1) = 1, and let h(n + 1) = 22 ) for every positive integer n. Let g(3) = 4, and
let g(n + 1) = g(n)! for every integer n > 3. For an integer n > 3, let U, denote the following system of
equations:

Vie{l,...,n=1}\ {2} x;! = xi11
X1-X2 = X3
X2-X2 = X3

The diagram in Figure 2 illustrates the construction of the system U,,.

X1
[ X1 "X = X3
!
squaring ! !
> > cee — >
X2 X3 X4 Xn—1 Xn

Fig. 2 Construction of the system U,

Lemma 1. For every integer n > 3, the system U, has exactly two solutions in positive integers, namely

(,...,1)and (2, 2,803),... ,g(n)).

Let
By={x!=xc: Gike{l,....nhAG# R U{xi-x;=xc: i jkell,....n}

For an integer n > 3, let ¥, denote the following statement: if a system S C B, has only finitely many
solutions in positive integers xi, . .., X,, then each such solution (xi, ..., x,) satisfies x1, ..., %, < g(n). The
statement ¥, says that for subsystems of B,, the largest known solution is indeed the largest possible.

Hypothesis 1. The statements V3, ...,V 1¢ are true.
Theorem 6. Every statement V), is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B,, has a finite number of subsystems. |
Theorem 7. For every statement V,,, the bound g(n) cannot be decreased.
Proof. 1t follows from Lemma(I|because U, C B,,. O
Lemma 2. For every positive integers x and y, x! - y = y! if and only if
(x+l=y)Vvix=y=1
Lemma 3. For every positive integers x and y, x - I'(x) = I'(y) if and only if
(x+1l=yvx=y=1
Lemma 4. For every positive integers x and y, x + 1 =y if and only if

(IT#£yAE!-y=yh
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Lemma 5. For every non-negative integers b and ¢, b + 1 = c if and only if 2= -2% =2+ .
Let # denote the set of prime numbers.

Lemma 6. (Wilson’s theorem, [8 p. 89]). For every positive integer x, x divides (x — 1)! + 1 if and only if
xe{l}UP.

4 Heuristic arguments against the statement Vn € N \ {0, 1,2} Y,

Let
Go=1{xi-xj=x: i,jke{l,....n}}U{x;+1=x: i,ke{l,...,n}}

Hypothesis 2. (/31 p. 109]. If a system S C G,, has only finitely many solutions in non-negative integers

X1, ..., Xp, then each such solution (x1,..., x,) satisfies xi, ..., x, < h(2n).
Hypothesis 3. Ifa system S C G, has only finitely many solutions in positive integers xi, . . ., X,, then each
such solution (xy, ..., x,) satisfies x1,...,x, < f(2n).

Observations [T|and [2] heuristically justify Hypothesis 3]

Observation 1. (c¢f [31 p. 110, Observation 1]). For every system S C G, which involves all the variables
X1,. .., Xp, the following new system

[ g {x,--xj:xk}]u{xk!=yk:ke{l,...,n}}u U 0#x v mo=y)

Xi*Xj=XkES xi+1=x€S

is equivalent to S. If the system S has only finitely many solutions in positive integers xi, ..., X,, then the
new system has only finitely many solutions in positive integers Xi,...,Xu, Y1s -+ - Yn-

Proof. 1t follows from Lemma 4] O

Observation 2. The equation x|! = x1 has exactly two solutions in positive integers, namely x; = 1 and

_ X1 ! X1
x1 = f(Q1). The system{ Xox = 1
(f(1), f(2)). For every integer n > 3, the following system

has exactly two solutions in positive integers, namely (1, 1) and

X1 ! = X1
X1 X = X
Vie{2,...,n—1}xi! = Xi+l
has exactly two solutions in positive integers, namely (1,...,1) and (f(1),..., f(n)).

For a positive integer n, let ®,, denote the following statement: if a system
Scixi-xj=x: L, pke{l,...,njUlx!=xc: i,ke{l,...,nJU{l £x: ke{l,...,n}}

has only finitely many solutions in positive integers x\, . . . , Xn, then each such solution (x1, ..., x,) satisfies
Xly..osXp < f(n).

Theorem 8. The statement Vn € N \ {0} @, implies Hypothesis 3]

Proof. 1t follows from Lemma 4] O
Let Rng denote the class of all rings K that extend Z, and let
E,={1=x: ke{l,...,nJU{xi+x;=xc: i, kef{l,....n}}U{x;-xj=xc: i, jke{l,...,n}}

Th. Skolem proved that every Diophantine equation can be algorithmically transformed into an equivalent
system of Diophantine equations of degree at most 2, see [24, pp. 2-3] and [[14} pp. 3—4]. The following
result strengthens Skolem’s theorem.
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Lemma 7. (/29 p. 720]). Let D(xy,...,xp) € Z[x1,...,Xp). Assume that deg(D, x;) > 1 for each
iel{l,...,p}. We can compute a positive integer n > p and a system T C E, which satisfies the follow-
ing two conditions:

Condition 1. IfK € Rng U {N, N\ {0}}, then
Vi1 5 €K (DG, %) =0 & Axpyr,... By € K (Ris. ., 5o pats ..., Xy) solves T)

Condition 2. IfK € Rng U{N, N\ {0}, then for each %1, ...,%, € Kwith D(X,...,X,) = 0, there exists
a unique tuple (Xp11, ..., %,) € K'P such that the tuple (X1, ...,%p, Xp+1,..., %) solves T.

Conditions I and 2 imply that for each K € Rng U {N, N\ {0}}, the equation D(xi,...,x,) =0 and the
system T have the same number of solutions in K.

Let @, 8, and y denote variables.
Lemma 8. (/22| p. 100]) For each positive integers x,y,z, x +y = z if and only if
(zx+ D(zy+ 1) =20y + 1) +1

Corollary 2. We can express the equation x +y = z as an equivalent system ¥, where ¥ involves x,y,z
and 9 new variables, and where F consists of equations of the forms a +1 = yand a - = .
Proof. The new 9 variables express the following polynomials:

>, z+1, zv, o+l 2 oxy xv+l, Zay+1), Zay+D+1

O
Lemma 9. (¢f. [31} p. 110, Lemma 4]). Let D(x,...,xp) € Z[x1,...,Xxp]. Assume that deg(D, x;) > 1

foreachie€{l,...,p}. We can compute a positive integer n > p and a system T C G, which satisfies the
following two conditions:

Condition 3. For every positive integers X1, ..., Xp,
D(Xy,...,%p) =0 dXp41,..., %, e N\ {0} (X1,...,Xp, Xpy1,...,X,) solves T
Condition 4. If positive integers X1,..., X, satisfy D(X1,...,X,) =0, then there exists a unique tuple
(Xp+15 .., Xn) € N\ {OD""P such that the tuple (%1, ...,X,, Xps1,..., %) solves T.
Conditions 3 and 4 imply that the equation D(x, ..., x,) = 0 and the system T have the same number of

solutions in positive integers.

Proof. Let the system T be given by Lemma [/| We replace in T each equation of the form 1 = x; by the
equation xi - x;x = x¢. Next, we apply Corollary @ and replace in T each equation of the form x; + x; = x;
by an equivalent system of equations of the forms ¢+ 1 =yand -5 =y. |

Theorem 9. Hypothesis 3|implies that there is an algorithm which takes as input a Diophantine equation,
and returns an integer such that this integer is greater than the solutions in positive integers, if these
solutions form a finite set.

Proof. 1t follows from Lemma[9} m]

Open Problem 1. Is there an algorithm which takes as input a Diophantine equation, and returns an
integer such that this integer is greater than the moduli of integer (non-negative integer, positive integer)
solutions, if the solution set is finite?

Matiyasevich’s conjecture on finite-fold Diophantine representations ([16l]) implies a negative answer
to Open Problem[I] see [15] p. 42].

The statement Yn € N \ {0} @, implies that there is an algorithm which takes as input a factorial Dio-
phantine equation, and returns an integer such that this integer is greater than the solutions in positive
integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper
bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite
number of solutions, see [[13 p. 300].
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5 The Brocard-Ramanujan equation x! + 1 = y?

Let A denote the following system of equations:

X1 ! = X2
X! = x3
X5! = X6
X4+X4 = X5
X3-X5 = Xg

Lemma 2] and the diagram in Figure 3 explain the construction of the system A.

! X +1 Xs squaring
X ——— ) - = e e e e e == - X4
or X, = X5 = 1

L 4 L 4

X3 X3+ X5 = Xg X6

Fig. 3 Construction of the system A

Lemma 10. For every xi,x4 € N\ {0, 1}, the system A is solvable in positive integers x», x3, Xs, X¢ if
and only if x(! +1 = xi. In this case, the integers x;, x3, X5, X are uniquely determined by the following
equalities:

x2 = xp!
X3 = (x1 !)!
x5 = x!+1
x6 = (x!'+ 1)
Proof. 1Tt follows from Lemma[2] O

It is conjectured that x! + 1 is a perfect square only for x € {4,5, 7}, see [32, p. 297]. A weak form of
Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?, see [19].

Theorem 10. If the equation x1!+ 1 = xi has only finitely many solutions in positive integers, then the
statement V¢ guarantees that each such solution (x1, x4) belongs to the set {(4,5),(5,11),(7,71)}.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 = xi. Then,
x1, x4 € N\ {0, 1}. By Lemma[IQl the system A is solvable in positive integers x, x3, X5, X. Since A C By,
the statement Wg implies that xg = (x1! + 1)! < g(6) = g(5)!. Hence, x;! + 1 < g(5) = g(4)!. Consequently,
x; <g@)=24.1f x; € {1,...,23}, then x;! + 1 is a perfect square only for x| € {4,5,7}. m|

6 Are there infinitely many prime numbers of the form n? + 1?

Let 8 denote the following system of equations:

)Cz! = X3
x3! = x4
x5! = xg
xg! = X
X1-X1 = X2
X3-X5 = Xg
X4+Xg = X9
X5°-X7 = Xg§

Lemma[2]and the diagram in Figure 4 explain the construction of the system 8.
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squaring x; +1 X5 !
X —————————— ) ----mmmm-e > > X6

or X2:X5=1
X3+ X5 = Xg
X5+ X7 = X3

X3 F======mmmm== n X8
or x3=xg=1

L 4 L 4

X4 | X4 Xg = X9 | Xo

Fig. 4 Construction of the system 8

Lemma 11. For every integer x| > 2, the system B is solvable in positive integers x, ..., Xq9 if and only if
x% + 1 is prime. In this case, the integers xy, ..., x9 are uniquely determined by the following equalities:

X, = x%

X3 = (x%)!

xo= (@)D

Xs = x% +1

X6 = (xF+1)!

D+l

7= x% +1

xg = (D+1

X9 = () +1)!
Proof. By Lemmal[2] for every integer x; > 2, the system 3 is solvable in positive integers x», ..., xg if and
only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemmafollows from Lemma@ m]

Lemma 12. There are only finitely many tuples (xi,...,x9) € (N\ {0})? which solve the system B and
satisfy x; = 1.

Proof. If a tuple (xi,...,x9) € (N \ {0})° solves the system B and x| = 1, then xi,...,x9 < 2. Indeed,
x1 = 1 implies that x, = x% = 1. Hence, for example, x3 = xp! = 1. Therefore, xg = x3+1 =2 or x3 = 1.
Consequently, xg = xg! < 2. |

Edmund Landau’s conjecture states that there are infinitely many primes of the form n® + 1, see
[17, pp. 37-38].

Theorem 11. The statement Yo proves the following implication: if there exists an integer x| > 2 such that
x% + 1 is prime and greater than g(7), then there are infinitely many primes of the form n*> + 1.

Proof. Suppose that the antecedent holds. By Lemmal[l]l there exists a unique tuple
(x2,..., %) € N\ {OH® such that the tuple (x1,x2,...,x) solves the system B. Since x3 + 1 > g(7),
we obtain that x% > g(7). Hence, (x%)! > g(7)! = g(8). Consequently,

X9 = (D! + D! > (2(8) + 1! > g(8)! = g(9)

Since B C By, the statement W9 and the inequality x9 > g(9) imply that the system 8 has infinitely many
solutions (x1,. .., x9) € (N \ {0})°. According to Lemmas [[T]and [[2] there are infinitely many primes of the
form n? + 1. m|
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7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [3} p. 443] and [25]].

Theorem 12. (c¢f. Theorem [[7). The statement Wy proves the following implication: if there exists an
integer x1 > g(6) such that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. m|

8 The twin prime conjecture

Let C denote the following system of equations:

x1! = x
)Cz! = X3
x4 = x5
x()! = X7
x7! = xg
Xc)! = X10
xi2! = X3
x5! = X6
X2 X4 = Xj5
X5-X6 = X7
X7+X9 = X10
X4 X11 = X12
X3+ X12 = X13
X9 - X14 = Xi15
Xg - X15 = X16

Lemma[2]and the diagram in Figure 5 explain the construction of the system C.

— X5 — X10
X2 X4 = X5 A X7+ X9 = X10 A

PR A N X12 R A N X15
or x; =xpp =1 or xy=x15=1

X3V | X3 X12 = X13 | VY X13 Xg¥ | Xg - X15 = X16 | Y X16

Fig. 5 Construction of the system C
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Lemma 13. For every x4,x € N\{0,1,2}, the system C is solvable in positive integers
X1, X2, X3, X5, X6, X7, X8, X10, X11, X12, X13> X14, X15, X16 if and only if x4 and x9 are prime and x4 + 2 = x9. In
this case, the integers x1, X3, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 are uniquely determined by the
following equalities:

xp = x-—1

X2 = (X4 - 1)!

x3 = (- D!

X5 = x4!

X6 = Xx9—1

X7 = (XQ - 1)!

xg = ((xo—DH!

X10 = Xo!

oy = Gaz DUl

X2 = (X4 - 1)! +1

x1i3 = ((u-Dr+ D!
(o= D'+1

X14 = x—g

X115 = (X9 - 1)! +1

X16 = ((X9 — 1)! + 1)!

Proof. By Lemma@, for every x4, x9 € N\ {0, 1, 2}, the system C is solvable in positive integers x1, x, X3,
X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = x0) A (xalxa = D!+ 1) A (ol (o = 1)1 + 1)
Hence, the claim of Lemma [[3]follows from Lemma [6] ]

Lemma 14. There are only finitely many tuples (x1,...,x16) € (N \ {ON'6 which solve the system C and

satisfy
(x4 €{1,2D) V (x9 € {1,2})

Proof. If atuple (xq,...,x16) € (N\ {0})16 solves the system C and
(x4 €{1,2D) V (x9 € {1,2})

then xp, ..., x16 < 7!. Indeed, for example, if x4 = 2 then x = x4 + 1 = 3. Hence, x7 = x¢! = 6. Therefore,
x15 = x7 + 1 = 7. Consequently, xjg = x15! = 7. O

Theorem 13. The statement W1 proves the following implication: (*) if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
X9 = x4 +2 > g(14). Hence, x4,x9 € N\{0,1,2}. By Lemma there exists a unique tuple
(x1, X2, X3, X5, X6, X7, X8, X105 X11, X125 X13, X14, X15, X16) € (N \ {0})14 such that the tuple (x1,...,Xx16) solves
the system C. Since x9 > g(14), we obtain that xg — 1 > g(14). Therefore, (x9 — 1)! > g(14)! = g(15).
Hence, (x9 — 1)! + 1 > g(15). Consequently,

Xx16 = ((xo = D! + 1) > g(15)! = g(16)

Since C C Bjs, the statement ¢ and the inequality xj¢ > g(16) imply that the system C has infinitely many
solutions in positive integers xi, ..., xj6. According to Lemmas [I3]and [I4] there are infinitely many twin
primes. |

Let P(x) denote the predicate "x is a prime number". Dickson’s conjecture ([[L7, p. 36], [34, p. 109])
implies that the existential theory of (N, =, +, P) is decidable, see [34, Theorem 2, p. 109]. For a positive
integer n, let ®, denote the following statement: for every system S C {x; + 1 = x; : i,k € {1,...,n}} U
{P(x;) : i €{l,...,n}} the solvability of S in non-negative integers is decidable.
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Lemma 15. If the existential theory of (N, =, +,P) is decidable, then the statements ®,, are true.
Proof. For every non-negative integers x and y, x + 1 = y if and only if
duveN (u+u=v)APOWAX+u=y))

O

Theorem 14. The conjunction of the implication (*) and the statement ®g(14y2 implies that the twin prime
conjecture is decidable.

Proof. By the statement @g(14)+2, We can decide the truth of the sentence

Axy ... Axgaay+2 ((Vi €fl,...,g(04) + 1} x; + 1 = x;41) A P(xga14)) A P(xg(l4)+2)) (2)
If sentence (2) is false, then the twin prime conjecture is false. If sentence (2) is true, then there exists a
twin prime greater than g(14). In this case, the twin prime conjecture follows from Theorem [I3] O

9 Hypothetical statements As, ..., A4 about the Gamma function and their
consequences

Let A(5) =I'(25), and let A(n + 1) = I'(A(n)) for every integer n > 5. For an integer n > 5, let J,, denote the
following system of equations:

Vie{l,...,n-D\{3}T(x)) = xix
X1X1 = X4
X2 X3 = X5
Lemma [3|and the diagram in Figure 6 explain the construction of the system 7,.

X1

X2

or XZ:X4:1

I r

L,

X3V [ X2 X3 = Xs5 > > >
X5 X6 Xn—1 X

Fig. 6 Construction of the system 7,

Observation 3. For every integer n > 5, the system J,, has exactly two solutions in positive integers, namely
(1,...,1)and (5,24,23!,25, A(5), . . . , A(n)).

For an integer n > 5, let A, denote the following statement: if a system S C {F(xl-) = x; : i,k €

{1,... ,n}} U {x,- Xj=x i kedl, ..., n}} has only finitely many solutions in positive integers Xy, . . ., Xp,
then each such solution (x1, ..., x,) satisfies x1, ..., X, < A(n).

Hypothesis 4. The statements As, ..., A4 are true.
Lemmas 3] and [6]imply that the statements A, have similar consequences as the statements ‘P,,.
Theorem 15. The statement Ag implies that any prime number p > 25 proves the infinitude of primes.

Proof. 1t follows from Lemmas [3]and[6] We leave the details to the reader. O



On sets X € N for which we know an algorithm ... 11

10 Hypothetical statements 25, . . ., X about the Gamma function and their
consequences

2n—3 2n—3 2n—3
LetF(k) denote (k—1)!, wheren € {3,...,16}and k € {2}U{2 +1,2 +2,2 + 3, } For
an integer n € {3, ..., 16}, let

an{F(xi):xk: Lkef{l,...,n}}U{x;-xj=xc: 1, j,kel{l,...,n}}

For an integer n € (3, ..., 16}, let P, denote the following system of equations:
X1-X1 = X1
r()62) = X
Vie{Z,...,n—l}xi-xi = Xi+1
Lemma 16. For every integer n € {3,...,16}, the system P, has exactly one solution in positive integers

0 1 2 -2
Xy ey Xn namely(l,22 s 22 ,22 ,...,22n )

For an integer n € {3,..., 16}, let £, denote the following statement: if a system of equations S C Q,
has only finitely many solutions in positive integers xi, .. ., X,, then each such solution (xi, ..., x,) satisfies
2n—2
Xlyoouy Xy <2 .

Hypothesis 5. The statements X, ..., Z16 are true.

Lemma 17. (¢f. Lemma [3). For every integer n € {4,...,16} and for every positive integers x and y,
-3

X- F(x) = F(y) ifandonly if (x + 1 = y) A (x >22"7 4 1),

Let Zy € Qg be the system of equations in Figure 7.

X
LTE Y 2 c TR AP W
A
+1
\V4 - X, = \ AP SN 1
X Xo Xy=Xg | X5 > X

X T 3| X
+ g
Fig. 7 Construction of the system Zg
Lemma 18. For every positive integer xi, the system Zy is solvable in positive integers xa, . .., X9 if and
9-4
only if x| > 227" and x% + 1 is prime. In this case, positive integers xy, ..., X9 are uniquely determined

by x1.
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Proof. It follows from Lemmas [6| and [T7]

Lemma 19. (/28]). The number (13!)? + 1 = 38775788043632640001 is prime.

9-3 9-2
Lemma 20. ((13!)2 >227 41 = 18446744073709551617) A (r@((m)z) > 22 )

Theorem 16. The statement Zo implies the infinitude of primes of the form n*> + 1.

Proof. It follows from Lemmas [[8H20}

12

O

9-3
Theorem 17. (c¢f. Theorem . The statement X9 implies that any prime of the form n! + 1 with n > 22
proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. O
Let Z14 € Q14 be the system of equations in Figure 8.
¥ +1 Xy +1 ¥z
Sk nahlEt et
X4 Xy2= X Xq-X, =X
1 %43~ 7%¢ [_1 3"y =
X4~ XS: XI.' JV_ F
Xy
+1
Y X
Ky=Xy |- - — - —
X Xy=%3 | 7 E
+1
O s =
(4]
r'@ Voo ex, | Y
X " ¥ Mg | X 12
W /
Ys v X =) \
Xq l 30 %
Fig. 8 Construction of the system Z14
Lemma 21. For every positive integer x, the system Z14 is solvable in positive integers xy, ..., Xx14 if and
only if x| and x| + 2 are prime and x| > 2214_3 + 1. In this case, positive integers xy, ..., X14 are uniquely
determined by x.
Proof. It follows from Lemmas [6|and [T7] m]

Lemma 22. (/35| p. 87]). The numbers 459 - 28529 _ 1 and 459 - 28529 4 1 are prime (Harvey Dubner).
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14-2
Lemma 23. 45928529 _ 1 5 22777 = 24096
Theorem 18. The statement X4 implies the infinitude of twin primes.

Proof. It follows from Lemmas 2TH23] o

A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [33]]. Let Z16 € Q16
be the system of equations in Figure 9.

10

\l/ -l S \ 4 r F

X | 44 "12f X

A4 12

Y ot =kl ¥
9 Yz AL
13 %
Fig. 9 Construction of the system Zi¢
Lemma 24. For every positive integer x1, the system ¢ is solvable in positive integers x, . .., X6 if and
16-3

only if xy is a Sophie Germain prime and x| > 22 + 1. In this case, positive integers xa, ..., X1¢ are
uniquely determined by x.
Proof. It follows from Lemmas [6] and [T7] m

Lemma 25. (20, p. 330]). 8069496435 - 100072 _ 1 s q Sophie Germain prime (Harvey Dubner).

16-2
Lemma 26. 8069496435 - 10°072 1 > 2277,
Theorem 19. The statement X1 implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas 24H26] m]

Theorem 20. The statement g proves the following implication: if the equation x(x + 1) = y! has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set

{(1,2),(2,3)}.
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Proof. We leave the proof to the reader. O

The question of solving the equation x(x + 1) = y! was posed by P. Erdos, see [2]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive
integers, see [12].

Theorem 21. The statement ¢ proves the following implication: if the equation x|+ 1 = y* has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set
{(4,5),(5,11),(7,7T1)}.

Proof. We leave the proof to the reader. |

11 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" 4+ 1 are called Fermat numbers. Primes of the form 22 + 1 are called Fermat

n
primes, as Fermat conjectured that every integer of the form 227 4 1is prime, see [11, p. 1]. Fermat

20 21 22 23 24
correctly remarked that 2« +1=3,2 +1=5,2 +1=17,2¢ +1=257,and2* + 1 = 65537 are
all prime, see [[11} p. 1].

n
Open Problem 2. (/11| p. 159]). Are there infinitely many composite numbers of the form 227 412
Most mathematicians believe that 22n + 1 is composite for every integer n > 5, see [[10} p. 23].

Theorem 22. ([30]). An unproven inequality stated in [30|] implies that 22n + 1 is composite for every
integer n > 5.

Let i
Ho={xi xj=x: ijkell.nful® =y ikell,....n)

Lemma 27. The following subsystem of H,

X|Xp = X|
. 2Xi
Vie{l,...,n—1}2 = X4l
has exactly one solution (xi, ..., x,) € (N\ {0})", namely (h(1), ..., h(n)).

For a positive integer n, let I';, denote the following statement: if a system S C H, has only finitely many
solutions in positive integers xi, . .., Xy, then each such solution (x1, ..., x,) satisfies x1, ..., x, < h(n). The
statement I',, says that for subsystems of H,, the largest known solution is indeed the largest possible.

Hypothesis 6. The statements 'y, ...,I'13 are true.

The truth of the statement Vn € N\ {0} I, is doubtful because a computable upper bound on
non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of
solutions, see [13l p. 300].

Theorem 23. Every statement I, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H, has a finite number of subsystems. O

Z
Theorem 24. The statement I'13 proves the following implication: if z € N\ {0} and 22 4 1is composite
2z . . o
and greater than h(12), then 2= + 1 is composite for infinitely many positive integers z.

Proof. Let us consider the equation
Z
x+ D+ 1) =22 +1 (3

in positive integers. By Lemma[5 we can transform equation (3) into an equivalent system G which has
13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms « - 5 = y and

a
227 = v, see the diagram in Figure 10.
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X x+1 y+1 y

(o)}
5
=
Qo

. . = . .

22( ) 22( ) 5 22( ) 22( )
g

R squaring , 22x+ 1 22y+ P squaring 2
22() I 22 22
< 2 2 +1
squaring M
22 > 2271

Fig. 10 Construction of the system G
22
. 22 . 22°+1 . o
Since 2¢ + 1 > h(12), we obtain that 2 > h(13). By this, the statement I'|3 implies that the system G
has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat
numbers. m|

12 Subsets of N whose infinitude is unconditionally equivalent to the halting
of a Turing machine

The following lemma is known as Richert’s lemma.

Lemma 28. ([[7], [21]], [23| p. 152]). Let {m;};>, be an increasing sequence of positive integers such that for
some positive integer k the inequality mi.1 < 2m; holds for all i > k. Suppose there exists a non-negative
integer b such that the numbers b+ 1, b+ 2, b+ 3, ..., b+ m are all expressible as sums of one or
more distinct elements of the set {my, ..., my}). Then every integer greater than b is expressible as a sum of

one or more distinct elements of the set {my,my, ms,...}.

Let 7 denote the set of all positive integers i such that every integer j > i is expressible as a sum of
one or more distinct elements of the set {m,my, ms,...}. Obviously, 7 =0 or 7 = [d,0) NN for some
positive integer d.

Corollary 3. If the sequence {m;}; is computable and the algorithm in Figure 11 terminates, then almost
all positive integers are expressible as a sum of one or more distinct elements of the set {my,my,m3,...}. In
particular, if the sequence {m;};_ is computable and the algorithm in Figure 11 terminates, then the set T
is infinite. In this case, the algorithm is Figure 11 prints all positive integers which are not expressible as a
sum of one or more distinct elements of the set {m, mp, ms,...}.
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Input the smallest integer k > 2 such that
the inequality m; . | < 2m; holds for all i >k b:=0

ASZ{ml,...,mk} B::{ml} 1:=2

B:= BU {m;} U {BLjl +mj j € (l,... card(B))]

— il+1 / Print the set (1,....b)\ B f/—(Stop)

l No
No > Yes
Is i=k+17 Is b=07
Yes

G :={min(B)-1,...,max(B) + 1} \ B
{

H := {G[n +1]=Glnl:ne(1,...,card(G) — 1}}

’l' No

Is max(H) > my , 17 ki=k+1

The answer is "Yes" if and only if the
Yes

set B contains my, , | consecutive integers

b := max(B) k:=1

|
Yes
ki=k+1 Is my 4| <b?

No

Fig. 11 The algorithm which uses Richert’s lemma

Theorem 25. (/9 Theorem 2.3]). If there exists € > 0 such that the inequality m;.; < (2 — &) - m; holds
for every sufficiently large i, then the algorithm in Figure 11 terminates if and only if almost all positive
integers are expressible as a sum of one or more distinct elements of the set {my,my, ms, .. .}.

Corollary 4. If there exists € > 0 such that the inequality miy1 < (2 — &) - m; holds for every sufficiently
large i, then the algorithm in Figure 11 terminates if and only if the set T is infinite.

We show how the algorithm in Figure 11 works for a concrete sequence {m;};°,. Let [-] denote the integer
(i+19)0+ 19
(i+19) .20+ 197

Lemma 29. The inequality m;y1 < 2m; holds for every positive integer i.

part function. For a positive integer i, let z; = and let m; = [1;].

Proof. For every positive integer i,

m; [#] ti—1 t; 1 t; 1
= > = 2 =
miy1 [fi] fiy1 liy1 L1 Lyl b

L. i%20 (1 \T 2112 L\ 21127 4087158528442715204485120000
i+19 i+20 2121 21 2121 T 5842587018385982521381124421

The last fraction was computed by MuPAD and is greater than % O
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Theorem 26. The algorithm in Figure 11 terminates for the sequence {m;}°

1

Proof. By Lemma[29] we take k = 2 as the initial value of k. The following MuPAD code

k:=2:
repeat

A:={floor((i+19)A(i+19)/((i+19)!*24(i+19))) $i=1..k+1}:

B:={A[1]}:
for i from 2 to nops(A)-1 do

B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:

end_for:
G:
H:
k:=k+1:

{y $y=B[1]-1..B[nops(B)]+1} minus B:
{G[n+1]-G[n] $n=1..nops(G)-1}:

until H[nops(H)]>A[nops(A)] end_repeat:

b:=B[nops(B)]:
k:=1:

while floor((k+20)*(k+20)/((k+20)!%24(k+20)))<=b do

k:=k+1:
end_while:

A:={floor((i+19)A(i+19)/((i+19)!*2A(i+19))) $i=1..k}:

B:={A[1]}:
for i from 2 to nops(A)-1 do

B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:

end_for:
print({n $n=1..b} minus B):

17

implements the algorithm in Figure 11 because MuPAD automatically orders every finite set of integers
and the inequality H[nops (H) ]>A[nops (A) ] holds true if and only if the set B contains my,| consecutive

integers. The code returns the following output:

{1, 2,

21,

39,

59,

78,

98,

112,

129,

144,

159,

177,

193,

3, 4,

22,

40,

60,

79,

99,

114,

130,

145,

160,

178,

194,

5, 6,7, 8,09,

100,

115,

131,

146,

161,

179,

195,

101,

23, 24, 25,

116,

132,

147,

162,

180,

196,

102,

26, 27,

42, 43, 44, 45, 46,

61, 62, 63, 64, 65,

80, 81, 82, 83, 84,

117,

133,

148,

163,

181,

197,

103,

10,

118,

134,

149,

164,

183,

198,

11,

12,

13,

28,

104,

47, 48,

66, 67,

85, 86,

119,

135,

151,

165,

184,

199,

29,

105,

30,

49,

68,

87,

120,

136,

152,

166,

185,

201,

106,

14,

31,

50,

69,

88,

121,

138,

153,

171,

186,

202,

32,

51,

70,

89,

107,

15,

122,

139,

154,

172,

187,

203,

16,

17,

18,

19, 20,

33,

52,

71,

108,

123,

140,

155,

173,

188,

204,

34,

53,

73,

109,

35,

55,

74,

124,

141,

156,

174,

189,

205,

110,

36,

56,

75,

90, 91, 92, 93,

125,

142,

157,

175,

190,

200,

37, 38,

57, 58,
76, 77,

94, 97,

111,

127,

143,

158,

176,

192,

207,
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208,

228,

244,

259,

277,

294,

314,

332,

354,

373,

390,

417,

441,

462,

487,

513,

538,

560,

590,

617,

652,

684,

720,

766,

807,

845,

210,

229,

245,

260,

279,

297,

315,

333,

356,

374,

400,

419,

442,

463,

488,

515,

539,

562,

591,

624,

654,

686,

725,

770,

809,

846,

212,

230,

246,

261,

280,

300,

316,

334,

358,

376,

401,

420,

443,

464,

491,

516,

542,

563,

592,

629,

657,

688,

728,

773,

811,

851,

213,

231,

247,

262,

282,

301,

317,

335,

359,

378,

402,

421,

444,

467,

495,

518,

543,

567,

593,

630,

659,

689,

729,

775,

812,

856,

214,

232,

248,

264,

284,

302,

318,

336,

360,

380,

403,

422,

446,

474,

496,

519,

548,

570,

596,

632,

661,

691,

732,

777,

814,

858,

215,

233,

249,

267,

285,

304,

321,

341,

362,

381,

405,

423,

447,

475,

497,

521,

549,

575,

600,

633,

663,

701,

733,

778,

816,

861,

216,

234,

250,

269,

286,

305,

324,

342,

363,

382,

406,

425,

452,

477,

498,

524,

550,

576,

603,

634,

665,

704,

735,

780,

819,

865,

217,

235,

251,

270,

287,

306,

325,

343,

365,

383,

407,

426,

454,

478,

501,

528,

551,

578,

605,

637,

671,

705,

737,

785,

824,

866,

218,

236,

252,

271,

288,

308,

326,

345,

366,

384,

408,

428,

455,

479,

502,

529,

552,

580,

607,

639,

674,

7006,

745,

786,

827,

871,

219,

237,

253,

272,

289,

309,

327,

346,

367,

385,

410,

430,

456,

480,

504,

531,

553,

582,

608,

644,

676,

713,

746,

787,

829,

881,

220,

238,

255,

273,

290,

310,

328,

347,

368,

386,

412,

432,

457,

482,

506,

533,

555,

583,

609,

647,

678,

715,

750,

789,

830,

883,

221,

239,

256,

274,

291,

311,

329,

348,

369,

387,

413,

434,

459,

483,

508,

535,

556,

585,

611,

648,

679,

717,

755,

790,

832,

886,

225,

240,

257,

275,

292,

312,

330,

349,

371,

388,

414,

437,

460,

484,

509,

536,

558,

587,

614,

649,

681,

718,

758,

791,

834,

887,

226,

243,

258,

276,

293,

313,

331,

351,

372,

389,

415,

439,

461,

486,

511,

537,

559,

589,

616,

650,

683,

719,

760,

804,

841,

888,

18
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899, 902, 903, 905, 906, 908, 912, 920, 925, 928, 940, 942, 943, 947,

952, 953, 955, 957, 959, 960, 962, 974, 977, 979, 982, 984, 986, 994,

997, 999, 1004, 1015, 1028, 1031, 1035, 1036, 1048, 1049, 1051, 1053,

1056, 1058, 1069, 1073, 1076, 1078, 1080, 1082, 1088, 1089, 1090, 1093,
1095, 1107, 1110, 1122, 1123, 1127, 1129, 1130, 1132, 1147, 1152, 1154,
1164, 1169, 1174, 1179, 1184, 1201, 1205, 1206, 1218, 1219, 1223, 1224,
1226, 1228, 1246, 1250, 1255, 1257, 1258, 1259, 1260, 1275, 1277, 1280,
1298, 1300, 1302, 1307, 1315, 1322, 1329, 1331, 1346, 1351, 1352, 1354,
1356, 1372, 1374, 1376, 1381, 1383, 1385, 1387, 1396, 1398, 1403, 1405,
1426, 1427, 1428, 1450, 1457, 1468, 1472, 1477, 1482, 1497, 1499, 1526,
1529, 1533, 1549, 1551, 1573, 1580, 1583, 1603, 1605, 1610, 1625, 1627,
1647, 1667, 1679, 1681, 1699, 1701, 1721, 1753, 1773, 1775, 1780, 1795,
1817, 1832, 1849, 1852, 1869, 1871, 1886, 1923, 1925, 1943, 1945, 1950,
1997, 2022, 2039, 2073, 2120, 2174, 2221, 2246, 2297, 2369, 2416, 2591,

2761}

Corollary 5. 7 = [2762,0) N N,

MuPAD is a general-purpose computer algebra system. MuPAD is no longer available as a stand-alone
computer program, but only as the Symbolic Math Toolbox of MATLAB. Fortunately, the presented code
can be executed by MuPAD Light, which was offered for free for research and education until autumn 2005.

13 A hypothetical infinitude of various classes of primes via computer pro-
grams which halt for at most finitely many positive integers on the input

Let fact™!: {1,2,6,24,...} > N\ {0} denote the inverse function to the factorial function. For positive
integers x and y, let rem(x, y) denote the remainder from dividing x by y.

Definition. For a positive integer n, by a program of length n we understand any sequence of terms
X1,..., X Such that x| is defined as the variable x, and for every integer i € {2,...,n}, x; is defined as
I'(x;_1), or fact_l(x,-_l), orrem(x;_1, xj—2) — but only if i > 3 and x;_ is defined as I'(x;_3).

Let 6(4) = 3, and let 6(n + 1) = 6(n)! for every integer n > 4. For an integer n > 4, let €, denote the
following statement: if a program of length n returns positive integers xi, ..., x, for at most finitely many
positive integers x, then every such x does not exceed d(n).

Theorem 27. (cf. Theorem[S)). For every integer n > 4, the statement Q,, is true with an unknown integer
bound that depends on n.
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Proof. For every positive integer n, there are only finitely many programs of length n. O

Lemma 30. (/23| pp. 214-215]) . For every positive integer x, rem(I'(x), x) € N\ {0} if and only if
x€e{4UP.

Theorem 28. For every integer n > 4 and for every positive integer x, the following program H,

X1 = X
Vie{2,....n=3}x; = fact™'(xiy)
X2 = T(x-3)
Xn-1 = [(g-2)
Xp = rem(Xp-1, Xp-2)
returns positive integers Xy, . .., X, if and only if x = 6(n).

Proof. We make three observations.

Observation 4. If x,_3 = 3, then x1,...,x,-3 € N\ {0} and x = x; = (n).
If x = 6(n), then x1,...,x,-3 € N\ {0} and x,—3 = 3.
Hence, x,—3 = I'(x,-3) = 2 and x,—1 = I'(x,—2) = 1. Therefore, x, = rem(x,_1, x,—2) = 1.

Observation 5. If x,—3 =2, thenx=x; = ... = X;-3 = 2.
If x =2, then x| = ... = x,—3 = 2. Hence, x,—p = I'(x;—3) = 1 and x,,—1 = T'(x,—3) = 1.
Therefore, x, = rem(x;,-1, x,—2) = 0 ¢ N\ {0}.

Observation 6. If x,_3 = 1, then x,_p = I'(x,—3) = 1. Hence, x,—1 = I'(x,—3) = 1.
Therefore, x, = rem(x;,-1, x,—2) = 0 ¢ N\ {0}.

Observations dH6| cover the case when x,,_3 € {1,2,3}. If x,_3 > 4, then x,,_, = I'(x,_3) is greater than 4 and
composite. By Lemma [30} x,, = rem(x,,—1, x,—2) = rem(I'(x;-2), x,—2) = 0 ¢ N\ {0}. O

Corollary 6. For every integer n > 4, the bound 6(n) in the statement Q,, cannot be decreased.
Lemma 31. [f x € P, then rem(I'(x), x) = x — 1.
Proof. 1t follows from Lemma [6] O

Lemma 32. For every positive integer x, the following program A

X1 = X

Xy = D)

x3 = rem(xp,Xx])

x4 = fact™(x3)
returns positive integers xi, . . ., X4 if and only if x = 4 or x is a prime number of the form n! + 1.
Proof. Foranintegeri € {1,...,4}, let A; denote the set of positive integers x such that the first i instructions
of the program A returns positive integers xi, ..., x;. We show that

Ag={4}u{nl+1: neN\{0}}nP C))

For every positive integer x, the terms x; and x; belong to N\ {0}. By Lemma the term x3
(which equals rem(I'(x), x)) belongs to N\ {0} if and only if x€{4}U%P. Hence, A3 ={4}UP.
If x=4, then x,...,x4 € N\ {0} Hence, 4 € A4. If xe®, then Lemma implies that
x3 = rem(I'(x), x) = x — 1 € N'\ {0}. Therefore, for every x € P, the term x4 = fact™!(x3) belongs to N \ {0}
if and only if x € {n! + 1 : n € N\ {0}}. This proves equality (4). O

Theorem 29. The statement Qg4 implies that the set of primes of the form n! + 1 is infinite.
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Proof. The number 3! + 1 = 7 is prime. By Lemma [32] for x = 7 the program A returns positive integers
Xl,...,Xxs. Since x = 7 > 3 = §(4), the statement {4 guarantees that the program A returns positive integers
X1,..., x4 for infinitely many positive integers x. By Lemma [32] there are infinitely many primes of the
formn! + 1. m|

Lemma 33. [f x € N\ {0, 1}, then fact™'([(x)) = x — 1.
Theorem 30. If the set of primes of the form n! + 1 is infinite, then the statement )y is true.

Proof. There exist exactly 10 programs of length 4 that differ from Hj and (A, see Figure 12. For every
such program 7;, we determine the set S; of all positive integers x such that the program ¥; outputs positive
integers xj,..., x4 on input x. We omit 10 easy proofs which use Lemmas [30] and [33] The sets §; are
infinite, see Figure 12.

Xiy...,X4 €EN\ {0} =
Fi X] =X xp :=1'(xy) x3 :=1'(xp) x4 :=1'(x3) xeN\{0} =5,
XiseoosXq EN\{O} —
Fr | xp:=x xp :=1(x)) x3 :=T'(xp) X4 = fact‘l(x3) xeN\{0} =5,
X1,..., X €N\ {0} =
Hy | x1:=x xp :=T(x) x3 :=T(x) x4 1= rem(xs, X») x=3
X1,..., X% €EN\ {0} =
Fz | xp:=x xp :=1(xy) X3 = fact’l(xz) x4 :=T(x3) xeN\{0} =83
X1,..., X% €EN\ {0} =
Fa | x1:=x X :=T(x)) x3:=fact™ ' (x) | xgi=fact'(x3) | xe{l}jUfn!+1: neN\{0}} =S,
X1,..., X% €N\ {0} =
Fs | x;:=x xp :=1'(xy) x3 = rem(xp, X1) x4 :=1'(x3) xe{4juP =S5
XiseoosXg EN\{O} —
A | x =X xp :=1'(xy) X3 :=rem(xp, x1) | X4 := fact_l()C3) xe{dju{n!'+1: neN\{O}}NnP
X1,..., X €E N\ {0} =
Fo | X1:=x | xp:= fact’l(xl) x3 :=T'(xp) x4 :=T'(x3) xe{n':neN\{0}} =S¢
X1,..., X% €EN\ {0} =
Fr | x1:=x | x:=fact ' (x)) x3 := [(x2) xg := fact™ (x3) xe€fn!:neN\{0}} =S,
X1,...,X4 € N\ {0}
Fo | x1:=x | xp:=fact™(x)) x3 :=1'(xp) x4 1= rem(xsz, X») xe{dhu{p!: peP}==Ss
XiseoesXg EN\{O} —
Fo | xp:=x | x:= fact_l(xl) X3 = fact_l(xz) x4 :=T(x3) xe{mH!': neN\{0}} =S8y
X1,..., X €EN\ {0} =
Fro | x1:=x | xp:=fact'(x)) | x3:=fact'(x)) | x4 :=fact™ (x3) xe{((nHN!: ne N\ {0}} =S
Fig. 12 12 programs of length 4, x € N\ {0}
This completes the proof. O
Hypothesis 7. The statements Qu, . ..,Q7 are true.
Lemma 34. For every positive integer x, the following program B
X1 X
x = I(xp)
x3 = rem(xp,Xx;)
X4 = fact_l(xg)
x5 = I(xg)
X = rem(xs,x4)
returns positive integers x1,...,X¢ ifandonly if x e {4} U{p! +1: peP}NP
Proof. Foranintegeri € {1,..., 6}, let B; denote the set of positive integers x such that the first i instructions

of the program 8 returns positive integers xi, .. ., x;. Since the programs A and B have the same first four
instructions, the equality B; = A; holds for every i € {1,...,4}. In particular,

By={4ufn!+1: neN\{O}}nP



On sets X € N for which we know an algorithm ... 22

We show that
Bs={4ju{p!+1: pePinP 5

If x=4, then xy,...,x6 € N\ {0}. Hence, 4 € Bs. Let x€ %, and let x =n!+ 1, where n € N\ {0}.
Hence, n # 4. Lemma implies that x3 = rem(I'(x), x) = x — 1 = n!. Hence, x4 = fact™!(x3) = n and
x5 =I'(x4) =T'(n) e N\ {0}. By Lemma the term xg (which equals rem(I'(n), n)) belongs to N\ {0}
if and only if n € {4} U P. This proves equality (5) asn # 4. O

Theorem 31. The statement Qg implies that for infinitely many primes p the number p! + 1 is prime.

Proof. The numbers 11 and 11! + 1 are prime, see [3} p. 441] and [27]. By Lemma[34] for x = 11! + I the

program 8 returns positive integers xi, ..., x¢. Since x = 11! + 1 > 6! = §(6), the statement (¢ guarantees
that the program & returns positive integers xi, . . ., X¢ for infinitely many positive integers x. By Lemma(34]
for infinitely many primes p the number p! + 1 is prime. O

Lemma 35. For every positive integer x, the following program C

X1 = X

X = I'(xy))

x3 = T'(x)

xa = fact™!(x3)

x5 = I'(xg)

xX¢ = rem(xs,xsq)
returns positive integers xi, . . ., X¢ if and only if (x — 1)! — 1 is prime.
Proof. For an integer i € {1,...,6}, let C; denote the set of positive integers x such that the first i in-
structions of the program C returns positive integers xi,...,x;. If x € {1,2,3}, then x¢ = 0. Therefore,

Ce CN\{0,1,2,3}. By Lemma [33] for every integer x >4, x4 = (x — 1)! = 1, x5 = [((x — 1)! — 1), and
X1,...,xs € N\ {0}. By Lemma@], for every integer x > 4,

xe =remI((x— D! -1),(x-1!-1)

belongs to N\ {0} if and only if (x —1)! —1 € {4} U%P. The last condition equivalently expresses that
(x—1)! = 1is prime as (x — 1)! — 1 > 5 for every integer x > 4. Hence,

Co=(MN\{0,1,2,3DN{xeN\{0,1,2,3}: (x—D!'=1eP={xeN\{0}: x-D!-1€P}

It is conjectured that there are infinitely many primes of the form n! — 1, see [3, p. 443] and [26].
Theorem 32. The statement Qg implies that there are infinitely many primes of the form x! — 1.

Proof. The number (975 — 1)! — 1 is prime, see [3| p. 441] and [26]. By Lemma [35] for x = 975 the pro-

gram C returns positive integers xi,. .., Xs. Since x = 975 > 720 = §(6), the statement Qg guarantees that
the program C returns positive integers xj, ... ., x¢ for infinitely many positive integers x. By Lemma[35] the
set {x e N\ {0}: (x—1)! =1 € P} is infinite. O

Lemma 36. For every positive integer x, the following program D

X1 = X

xp = I(xp)

x3 = rem(xy,Xxp)
x4 = I'(x3)

xs = fact™!(x4)
xe = D(xs)

x7 = rem(xg, X5)

returns positive integers xi, . . ., x7 if and only if both x and x — 2 are prime.
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Proof. Foranintegeri € {1,...,7}, let D; denote the set of positive integers x such that the first i instructions
of the program P returns positive integers xi, ..., x;. If x = 1, then x3 = 0. Hence, D7 € D3 C N\ {0, 1}. If
x € {2, 3,4}, then x; = 0. Therefore,

D7 C(N\{0,1) N (N \{0,2,3,4}) =N\ {0,1,2,3,4}

By Lemma [30] for every integer x > 5, the term x3 (which equals rem(I'(x), x)) belongs to N \ {0} if and
only if x € P\ {2,3}. By Lemma/[31] for every x € £\ {2,3}, x3 = x— 1 e N\ {0, 1,2,3}. By Lemma/[33]
for every x € #\ {2,3}, the terms x4 and x5 belong to N'\ {0} and x5 = x3 — 1 = x—2. By Lemma [30}
for every x € P\ {2,3}, the term x; (which equals rem(I'(xs), xs)) belongs to N\ {0} if and only if
x5 = x — 2 € {4} U P. From these facts, we obtain that

D7 =(N\{0,1,2,3,4h N (P\{2,3hn({6lui{p+2: pePh={peP: p-2eP}

Theorem 33. The statement Q7 implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers 459 - 28529 _ 1 and 45928529 4 1 are prime, see
[35 p. 87]. By Lemma for x = 45928529 4 | the program P returns positive integers xi, ..., x7.
Since x > 720! = ¢(7), the statement {27 guarantees that the program P returns positive integers xi, ..., x7
for infinitely many positive integers x. By Lemma[36] there are infinitely many twin primes. O

We can transform every program of length » into a computer program with n instructions which for
every x € N\ {0} does the same if (x1, ..., x,) € (N'\ {0})", and never halts if (x1,...,x;) € AN\ {0})" or the
tuple (xp, ..., x,) is undefined. To do so, we perform the following steps:

a) We replace the instruction x; := x by the following instruction:
X1 := x & PRINT(x;)
b) We replace every instruction of the form x; = I'(x;_;) by the following instruction:
x; = I'(xj—1) & PRINT(x;)
c) We replace every instruction of the form x; := fact™! (x;—1) by the following instruction:
IF fact™'(x;_;) € N\ {0} THEN x; := fact™'(x;_;) & PRINT(x;) ELSE GOTO Instruction 1
d) We replace every instruction of the form x; := rem(x;_1, x;_») by the following instruction:

IF rem(x;_1, xi_p) € N\ {0} THEN x; := rem(x;_, x;—2) & PRINT(x;) ELSE GOTO Instruction 1
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