Is it possible to compute an integer d such that any twin prime greater than d proves that the set of twin primes is infinite?

Apoloniusz Tyszka

Abstract

For a positive integer, let $\Gamma(n)$ denote $(n-1)$!. Let $f(5)=24$!, and let $f(n+1)=$ $\Gamma(f(n))$ for every integer $n \geqslant 5$. For an integer $n \geqslant 5$, let $T(n)$ denote the statement: if a system of equations $\mathcal{S} \subseteq\left\{\Gamma\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. We conjecture that the statements $T(5), \ldots, T(14)$ are true. The statement $T(6)$ implies that if $x!+1$ is a square for at most finitely many non-negative integers x then each such x satisfies $x \leqslant f(6)$. The statement $T(9)$ proves the implication: if there exists an integer $x>f(9)$ such that $x^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$. The statement $T(14)$ proves the implication: if there exists a twin prime greater than $f(14)+2$, then there are infinitely many twin primes.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, prime numbers of the form $n^{2}+1$, single query to an oracle for the halting problem, twin prime conjecture.

2010 Mathematics Subject Classification: 11U05.

1. Introduction and basic lemmas

In this article, we study a conjecture which applies to Brocard's problem, the problem of the infinitude of primes of the form $n^{2}+1$, and the twin prime problem. The conjecture allows us to compute an integer b_{6} such that if $x!+1$ is a square for at most finitely many non-negative integers x then each such x satisfies $x \leqslant b_{6}$. The conjecture allows us to compute an integer b_{9} such that any prime number of the form $n^{2}+1$ which is greater than b_{9} proves that the set of prime numbers of the form $n^{2}+1$ is infinite. The conjecture allows us to compute an integer b_{14} such that any twin prime greater than $b_{14}+2$ proves that the set of twin primes is infinite.

For a positive integer, let $\Gamma(n)$ denote $(n-1)$!.
Lemma 1. For every positive integers x and $y, x \cdot \Gamma(x)=\Gamma(y)$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 2. (Wilson's theorem, [1] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $\Gamma(x)+1$.

Lemma 3. For every integer $x \geqslant 5$, we have $x \leqslant \sqrt{\Gamma(x)+1}$.

Lemma 4. For every integer $x \geqslant 5$, we have $x \leqslant \frac{\Gamma(x)+1}{x}$.

2. A conjecture on the statements $\Psi(n, b)$

For a positive integer n, let G_{n} denote the following system of equations:

$$
\left\{\Gamma\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For positive integers n and b, let $\Psi(n, b)$ denote the statement: if a system $\mathcal{S} \subseteq G_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n} then each such solution (x_{1}, \ldots, x_{n}) satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant b$.

Theorem 1. For every positive integer n, there exists an integer $b \geqslant 4$ such that the statement $\Psi(n, b)$ is true.

Proof. It follows from the fact that the system G_{n} has a finite number of subsystems.
Let $f(5)=24$!, and let $f(n+1)=\Gamma(f(n))$ for every integer $n \geqslant 5$. For an integer $n \geqslant 5$, let $\mathcal{U}_{n} \subseteq G_{n}$ be the system of equations illustrated in Figure 1. Lemma 1 explains the construction of the system \mathcal{U}_{n}.

Fig. 1 Construction of the system \mathcal{U}_{n}
For every integer $n \geqslant 5$, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(5,24,23!, 25, f(5), \ldots, f(n))$.
Conjecture. For every integer $n \in\{5, \ldots, 14\}$, the statement $\Psi(n, f(n))$ is true.

3. Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $\Gamma(x)+1=y^{2}$, see [3]. It is conjectured that $\Gamma(x)+1$ is a square only for $x \in\{5,6,8\}$, see [4, p. 297].

Let $\mathcal{A} \subseteq G_{6}$ be the system of equations illustrated in Figure 2. Lemma 1 explains the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 5. The system \mathcal{A} has only finitely many solutions $\left(x_{1}, \ldots, x_{6}\right) \in(\mathbb{N} \backslash\{0\})^{6}$ with $x_{1} \in\{1,2\}$. For every integer $x_{1} \geqslant 3$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{6} if and only if $\Gamma\left(x_{1}\right)+1$ is a square. In this case, $x_{1} \geqslant 5$, the numbers x_{2}, \ldots, x_{6} are uniquely determined by x_{1}, and $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$ (which follows from $x_{1} \geqslant 5$ and Lemma 3).

Proof. It follows from Lemma 1 .
Theorem 2. For every positive integer b, if $\Gamma\left(x_{1}\right)+1$ is a square for at most finitely many positive integers x_{1}, then the statement $\Psi(6, b)$ implies that each such x_{1} satisfies $x_{1} \leqslant b$.

Proof. Let us assume that for a positive integer x_{1} there exists a positive integer x_{2} such that $\Gamma\left(x_{1}\right)+1=x_{2}^{2}$. Then, $x_{1} \geqslant 5$. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{6}\right) \in(\mathbb{N} \backslash\{0\})^{5}$ such that the tuple $\left(x_{1}, \ldots, x_{6}\right)$ solves the system \mathcal{A}. Lemma 5 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$. By the antecedent and Lemma 5 , the system \mathcal{A} has only finitely many solutions in positive integers x_{1}, \ldots, x_{6}. Therefore, the statement $\Psi(6, b)$ implies that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right) \leqslant b$.

4. Are there infinitely many prime numbers of the form $n^{2}+1$?

Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [2, pp. 37-38].

Let $\mathcal{B} \subseteq G_{9}$ be the system of equations illustrated in Figure 3. Lemma 1 explains the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 6. The system \mathcal{B} has only finitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ with $x_{1}=1$. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the numbers x_{2}, \ldots, x_{9} are uniquely determined by x_{1}, and $x_{1}=\min \left(x_{1}, \ldots, x_{9}\right)$.

Proof. By Lemma 1, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\Gamma\left(x_{1}^{2}+1\right)+1$. By Lemma 2 , the last is true if and only if $x_{1}^{2}+1$ is prime. The inequality $x_{1} \geqslant 2$ and Lemma 4 imply that $x_{1}=\min \left(x_{1}, \ldots, x_{9}\right)$.
Theorem 3. For every integer $b \geqslant 4$, the statement $\Psi(9, b)$ proves the implication: if there exists an integer $x_{1}>b$ such that $x_{1}^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Let us assume that an integer x_{1} is greater than b and $x_{1}^{2}+1$ is prime. Since $b \geqslant 4$, we obtain that $x_{1} \geqslant 5$. By Lemma 6, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Lemma 6 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{9}\right)$. Since $\mathcal{B} \subseteq G_{9}$, we obtain that the statement $\Psi(9, b)$ and the inequality $b<x_{1}=\min \left(x_{1}, \ldots, x_{9}\right)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemma 6 , there are infinitely many primes of the form $n^{2}+1$.

5. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [2, p. 39].

Let $C \subseteq G_{14}$ be the system of equations illustrated in Figure 4. Lemma 1 explains the construction of the system C.

Fig. 4 Construction of the system C
Lemma 7. The system C has only finitely many solutions $\left(x_{1}, \ldots, x_{14}\right) \in(\mathbb{N} \backslash\{0\})^{14}$ with $x_{1} \in\{1,2,3,4\}$. For every integer $x_{1} \geqslant 5$, the system C is solvable in positive integers x_{2}, \ldots, x_{14} if and only if x_{1} and $x_{1}+2$ are prime. In this case, the numbers x_{2}, \ldots, x_{14} are uniquely determined by x_{1}, and $x_{1}=\min \left(x_{1}, \ldots, x_{14}\right)$.

Proof. By Lemma 1, for every integer $x_{1} \geqslant 5$, the system C is solvable in positive integers x_{2}, \ldots, x_{14} if and only if x_{1} divides $\Gamma\left(x_{1}\right)+1$ and $x_{1}+2$ divides $\Gamma\left(x_{1}+2\right)+1$. By Lemma 2 , the last is true if and only if x_{1} and $x_{1}+2$ are prime. The inequality $x_{1} \geqslant 5$ and Lemma4imply that $x_{1}=\min \left(x_{1}, \ldots, x_{14}\right)$.

Theorem 4. For every integer $b \geqslant 4$, the statement $\Psi(14, b)$ proves the implication: if there exists a twin prime greater than $b+2$, then there are infinitely many twin primes.

Proof. Let us assume that there exists a prime number x_{1} such that $x_{1}+2$ is prime and $x_{1}+2>b+2$. Since $b \geqslant 4$, we obtain that $x_{1} \geqslant 5$. By Lemma 7, there exists a unique tuple $\left(x_{2}, \ldots, x_{14}\right) \in(\mathbb{N} \backslash\{0\})^{13}$ such that the tuple $\left(x_{1}, \ldots, x_{14}\right)$ solves the system C. Lemma 7 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{14}\right)$. Since $C \subseteq G_{14}$, we conclude that the statement $\Psi(14, b)$ and the inequality $b<x_{1}=\min \left(x_{1}, \ldots, x_{14}\right)$ imply that the system C has infinitely many solutions in positive integers x_{1}, \ldots, x_{14}. According to Lemma 7, there are infinitely many twin primes.

References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[3] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
[4] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłạtaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

