Is it possible to compute an integer d such that any
twin prime greater than d proves that the set of twin
primes is infinite?
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Abstract

For a positive integer, let I'(n) denote (n — 1)!. Let f(5) =24!, and let f(n + 1) =
I'(f(n)) for every integer n > 5. For an integer n > 5, let T'(n) denote the statement: if a
system of equations S C {F(xi) =x;: L,ke {1,...,n}} U {xi “Xj=xpc L,k € {1,...,n}}
has at most finitely many solutions in positive integers xp,...,X,, then each such
solution (xi,...,X,) satisfies min(xy, ..., x,) < f(n). We conjecture that the statements
T(5),...,7(14) are true. The statement 7(6) implies that if x!+ 1 is a square for at
most finitely many non-negative integers x then each such x satisfies x < f(6). The
statement 7'(9) proves the implication: if there exists an integer x > f(9) such that 2+l
is prime, then there are infinitely many primes of the form n”> + 1. The statement 7'(14)
proves the implication: if there exists a twin prime greater than f(14) + 2, then there are
infinitely many twin primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation, prime numbers of
the form n” + 1, single query to an oracle for the halting problem, twin prime conjecture.

2010 Mathematics Subject Classification: 11U05.

1. Introduction and basic lemmas

In this article, we study a conjecture which applies to Brocard’s problem, the problem of the
infinitude of primes of the form n* + 1, and the twin prime problem. The conjecture allows us
to compute an integer bg such that if x! + 1 is a square for at most finitely many non-negative
integers x then each such x satisfies x < bg. The conjecture allows us to compute an integer b
such that any prime number of the form n* + 1 which is greater than by proves that the set of
prime numbers of the form n? + 1 is infinite. The conjecture allows us to compute an integer b4
such that any twin prime greater than b4 + 2 proves that the set of twin primes is infinite.

For a positive integer, let I'(n) denote (n — 1)!.
Lemma 1. For every positive integers x and y, x - I'(x) = I'(y) if and only if
x+l=yVvEx=y=1

Lemma 2. (Wilson’s theorem, [, p. 89]). For every integer x > 2, x is prime if and only if x
divides I'(x) + 1.

Lemma 3. For every integer x > 5, we have x < VI'(x) + 1.



Lemma 4. For every integer x > 5, we have x < W

2. A conjecture on the statements Y(n, b)

For a positive integer n, let G, denote the following system of equations:
Py = ike . omfufxxy=x: ijikell,... n)

For positive integers n and b, let W(n,b) denote the statement: if a system S C G, has at
most finitely many solutions in positive integers xi, ..., x, then each such solution (x, ..., x,)
satisfies min(xy, ..., x,) < b.

Theorem 1. For every positive integer n, there exists an integer b > 4 such that the statement
Y(n, b) is true.

Proof. It follows from the fact that the system G, has a finite number of subsystems. O

Let f(5) = 24!, and let f(n + 1) = I'(f(n)) for every integer n > 5. For an integer n > 5, let
U, C G, be the system of equations illustrated in Figure 1. Lemma [I] explains the construction
of the system U,,.
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Fig. 1 Construction of the system U,

For every integer n > 5, the system U, has exactly two solutions in positive integers, namely
(1,...,D)and (5,24,23!,25, f(5), ..., f(n)).

Conjecture. For every integer n € {5, ..., 14}, the statement Y (n, f(n)) is true.



3. Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation I'(x) + 1 = y?, see [3]]. It is conjectured that I'(x) + 1 is a square
only for x € {5, 6, 8}, see [4}, p. 297].

Let A C G be the system of equations illustrated in Figure 2. Lemma [I] explains the
construction of the system A.
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Fig. 2 Construction of the system A
Lemma 5. The system A has only finitely many solutions (x,...,x¢) € N\ {0)® with
x1 € {1,2}. For every integer x| > 3, the system A is solvable in positive integers x,,. .., Xq
if and only if I'(x;) + 1 is a square. In this case, x| > 5, the numbers x,, ..., Xq are uniquely
determined by x,, and x; = min(xy, ..., x¢) (which follows from x| > 5 and Lemma 3).
Proof. 1t follows from Lemmal I} m|

Theorem 2. For every positive integer b, if I'(x1) + 1 is a square for at most finitely many
positive integers xi, then the statement Y(6, b) implies that each such x; satisfies x; < b.

Proof. Let us assume that for a positive integer x; there exists a positive integer x,
such that I'(x;)+1=x3. Then, x; >5. By Lemma there exists a unique tuple
(x2,...,%) € (N\ {0})° such that the tuple (xi,...,xs) solves the system A. Lemma

guarantees that x; = min(xy, ..., xs). By the antecedent and Lemma [5] the system A has only
finitely many solutions in positive integers xi, ..., Xs. Therefore, the statement ‘¥'(6, b) implies
that x; = min(xy, ..., xs) < b. O

4. Are there infinitely many prime numbers of the form n? + 1?

Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
[2, pp. 37-38].

Let B8 C Gy be the system of equations illustrated in Figure 3. Lemma [I] explains the
construction of the system 5.
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Fig. 3 Construction of the system 8
Lemma 6. The system B has only finitely many solutions (xi, ..., X9) € (N \ {0})° with x; = 1.
For every integer x| > 2, the system B is solvable in positive integers x,, ..., Xy if and only
if x3+ 1 is prime. In this case, the numbers x,,...,xo are uniquely determined by x,, and

x; = min(xy, ..., X9).

Proof. By Lemma (1] for every integer x; > 2, the system 8 is solvable in positive integers
X2, ..., Xo if and only if x? + 1 divides I'(x? + 1) + 1. By Lemma the last is true if and only if
xt + 1 is prime. The inequality x; > 2 and Lemmaimply that x; = min(xy, ..., X9). O

Theorem 3. For every integer b > 4, the statement ¥(9, b) proves the implication: if there exists

an integer x; > b such that x> + 1 is prime, then there are infinitely many primes of the form
2

n-+ 1.

Proof. Let us assume that an integer x, is greater than b and x? + 1 is prime. Since b > 4, we
obtain that x; > 5. By Lemma @ there exists a unique tuple (x,, ..., Xo) € (N \ {0})® such that

the tuple (xy, ..., x9) solves the system B. Lemma@] guarantees that x; = min(xy, ..., X9). Since
B C Gy, we obtain that the statement W(9, b) and the inequality b < x; = min(xy, ..., X9) imply
that the system $ has infinitely many solutions (xy, . .., x9) € (N \ {0})°. According to Lemma@
there are infinitely many primes of the form n* + 1. O

5. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [2, p. 39].

Let C € G4 be the system of equations illustrated in Figure 4. Lemma [I] explains the
construction of the system C.
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Fig. 4 Construction of the system C
Lemma 7. The system C has only finitely many solutions (xi,...,x14) € N\ {OD" with
x1 €{1,2,3,4}. For every integer x; > 5, the system C is solvable in positive integers x,, ..., X14
if and only if x; and x; + 2 are prime. In this case, the numbers x,,..., X4 are uniquely
determined by xi, and x; = min(xy, ..., X14).

Proof. By Lemma (1| for every integer x; > 5, the system C is solvable in positive integers
X2,..., X4 1f and only if x; divides I'(x;) + 1 and x; + 2 divides I'(x; + 2) + 1. By Lemma 2] the
last is true if and only if x; and x; + 2 are prime. The inequality x; > 5 and LemmaM]imply that
X = min(xl, ceey X14). O



Theorem 4. For every integer b > 4, the statement Y (14, b) proves the implication: if there
exists a twin prime greater than b + 2, then there are infinitely many twin primes.

Proof. Let us assume that there exists a prime number x; such that x; + 2 is prime and
x1+2>b+2. Since b >4, we obtain that x; > 5. By Lemma [/| there exists a unique
tuple (xa, . .., x14) € (N \ {O})'3 such that the tuple (xi, ..., x14) solves the system C. Lemma 7]

guarantees that x; = min(xy, ..., x14). Since C C G4, we conclude that the statement \¥(14, b)
and the inequality b < x; = min(xy,...,x;4) imply that the system C has infinitely many
solutions in positive integers Xxi,...,x;4. According to Lemma [/, there are infinitely many
twin primes. O
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