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Abstract

Let Γ n (k) denote (k−1)!, where n ∈ {3, . . . , 16} and k ∈ {2}∪
{
22n−3

+ 1, 22n−3
+ 2, 22n−3

+ 3, . . .
}
.

For an integer n ∈ {3, . . . , 16}, let Σn denote the following statement: if a system of equations
S ⊆ {Γ n (xi) = xk : i, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}} has only finitely many solu-

tions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 22n−2
.

The statement Σ6 proves the following implication: if the equation x(x + 1) = y! has only finitely many
solutions in positive integers x and y, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}. The
statement Σ6 proves the following implication: if the equation x! + 1 = y2 has only finitely many solu-
tions in positive integers x and y, then each such solution (x, y) belongs to the set {(4, 5), (5, 11), (7, 71)}.
The statement Σ9 implies the infinitude of primes of the form n2 + 1. The statement Σ9 implies that

any prime of the form n! + 1 with n > 229−3
proves the infinitude of primes of the form n! + 1. The

statement Σ14 implies the infinitude of twin primes. The statement Σ16 implies the infinitude of Sophie
Germain primes. A modified statement Σ7 implies the infinitude of Wilson primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation x! + 1 = y2, composite Fermat
numbers, Erdös’ equation x(x + 1) = y!, prime numbers of the form n2 + 1, prime numbers of the form
n! + 1, Richert’s lemma, Sophie Germain primes, Wilson primes, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 11A41, 68Q05.

1 Introduction

We consider sets X ⊆ N for which we know an algorithm that computes a threshold number t(X) ∈ N such
that X is infinite if and only if X contains an element greater than t(X), cf. [35]. We assume here that
the sets X ⊆ N are defined by formulae in the language of ZF whereas the algorithm that computes t(X) is
written specifically for X. If a set X ⊆ N is empty or infinite, then any non-negative integer m is a threshold
number of X. If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
{max(X),max(X) + 1,max(X) + 2, . . .}.

2 A Diophantine equation whose non-solvability expresses the consistency
of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the
following theorem.

Theorem 1. ([4, p. 35]). There exists a polynomial D(x1, . . . , xm) with integer coefficients such that if ZFC
is arithmetically consistent, then the sentences "The equation D(x1, . . . , xm) = 0 is solvable in non-negative
integers" and "The equation D(x1, . . . , xm) = 0 is not solvable in non-negative integers" are not provable
in ZFC.
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Let Y denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0 has no
solutions in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, we know an algorithm which for every n ∈ N
decides whether or not n ∈ Y. Let γ : Nm+1 → N be a computable bijection, and let E ⊆ Nm+1 be the
solution set of the equation D(x1, . . . , xm) + 0 · xm+1 = 0. Theorem 1 implies Theorems 2 and 3.

Theorem 2. If ZFC is arithmetically consistent, then for every n ∈ N the sentences "n is a threshold number
of Y" and "n is not a threshold number of Y" are not provable in ZFC.

Theorem 3. We know an algorithm which for every n ∈ N decides whether or not n ∈ γ(E). The set γ(E)
is empty or infinite. In both cases, every non-negative integer n is a threshold number of γ(E). If ZFC
is arithmetically consistent, then the sentences "γ(E) is empty", "γ(E) is not empty", "γ(E) is finite", and
"γ(E) is infinite" are not provable in ZFC.

In Figure 1, D(x1, . . . , xm) stands for the polynomial described in Theorem 1. Let K denote the set of
all positive integers k such that the algorithm in Figure 1 halts for k on the input. If ZFC is consistent, then
K = ∅. Otherwise, card(K) = 1.

Start

Input a positive integer k

Does the equation D
(
x1, . . . , xm

)
= 0

have no solutions in {0, . . . , k − 1}m?

Does the equation D
(
x1, . . . , xm

)
= 0

have a solution in {0, . . . , k}m?

Stop

Yes

Yes

No

No

Fig. 1 The algorithm which may halt only when ZFC is inconsistent

Theorem 4. If ZFC is consistent, then for every positive integer n, the inclusion K ⊆ {1, . . . , n} is not
provable in ZFC.

Proof. It follows from Gödel’s second incompleteness theorem because the inclusion K ⊆ {1, . . . , n} im-
plies K = ∅ and the consistency of ZFC. �

Theorem 5. (cf. Theorem 29). If ZFC is consistent and a computer program halts for at most finitely many
positive integers k on the input, then not always we can write the decimal expansion of a positive integer n
which is not smaller than every such number k.

Proof. We write a computer program which implements the algorithm in Figure 1. This program halts
exactly for elements of K on the input. The set K is finite as card(K) 6 1. By Theorem 4, if ZFC is
consistent, then for every positive integer n, the inclusion K ⊆ {1, . . . , n} is not provable in ZFC. �

3 Hypothetical statements Ψ3, . . . ,Ψ16 and number-theoretic lemmas

For a positive integer n, let Γ(n) denote (n − 1)!. Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every

integer n > 2. Let h(1) = 1, and let h(n + 1) = 22h(n)
for every positive integer n. Let g(3) = 4, and

let g(n + 1) = g(n)! for every integer n > 3. For an integer n > 3, let Un denote the following system of
equations: 

∀i ∈ {1, . . . , n − 1} \ {2} xi! = xi+1
x1 · x2 = x3
x2 · x2 = x3
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The diagram in Figure 2 illustrates the construction of the systemUn.

x1

!

x2

squaring

x3

!
x4

. . .
xn−1

!
xn

x1 · x2 = x3

Fig. 2 Construction of the systemUn

Lemma 1. For every integer n > 3, the system Un has exactly two solutions in positive integers, namely
(1, . . . , 1) and

(
2, 2, g(3), . . . , g(n)

)
.

Let
Bn =

{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i , k)

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}

For an integer n > 3, let Ψn denote the following statement: if a system S ⊆ Bn has only finitely many
solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 g(n). The
statement Ψn says that for subsystems of Bn the largest known solution is indeed the largest possible.

Hypothesis 1. The statements Ψ3, . . . ,Ψ16 are true.

Theorem 6. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

Theorem 7. For every statement Ψn, the bound g(n) cannot be decreased.

Proof. It follows from Lemma 1 becauseUn ⊆ Bn. �

Lemma 2. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 3. For every positive integers x and y, x · Γ(x) = Γ(y) if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 4. For every positive integers x and y, x + 1 = y if and only if

(1 , y) ∧ (x! · y = y!)

Lemma 5. For every non-negative integers b and c, b + 1 = c if and only if 22b · 22b
= 22c

.

Let P denote the set of prime numbers.

Lemma 6. (Wilson’s theorem, [7, p. 89]). For every positive integer x, x divides (x − 1)! + 1 if and only if
x ∈ {1} ∪ P.
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4 Heuristic arguments against the statement ∀n ∈ N \ {0, 1, 2} Ψn

Let
Gn = {xi · x j = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}}

Hypothesis 2. ([30, p. 109]. If a system S ⊆ Gn has only finitely many solutions in non-negative integers
x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 h(2n).

Hypothesis 3. If a system S ⊆ Gn has only finitely many solutions in positive integers x1, . . . , xn, then each
such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (2n).

Observations 1 and 2 heuristically justify Hypothesis 3.

Observation 1. (cf. [30, p. 110, Observation 1]). For every system S ⊆ Gn which involves all the variables
x1, . . . , xn, the following new system


⋃

xi·x j=xk∈S
{xi · x j = xk}

 ∪ {xk! = yk : k ∈ {1, . . . , n}} ∪


⋃

xi+1=xk∈S
{1 , xk, yi · xk = yk}



is equivalent to S. If the system S has only finitely many solutions in positive integers x1, . . . , xn, then the
new system has only finitely many solutions in positive integers x1, . . . , xn, y1, . . . , yn.

Proof. It follows from Lemma 4. �

Observation 2. The equation x1! = x1 has exactly two solutions in positive integers, namely x1 = 1 and

x1 = f (1). The system
{

x1! = x1
x1 · x1 = x2

has exactly two solutions in positive integers, namely (1, 1) and

( f (1), f (2)). For every integer n > 3, the following system



x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

has exactly two solutions in positive integers, namely (1, . . . , 1) and ( f (1), . . . , f (n)).

For a positive integer n, let Φn denote the following statement: if a system

S ⊆ {xi · x j = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi! = xk : i, k ∈ {1, . . . , n}} ∪ {1 , xk : k ∈ {1, . . . , n}}

has only finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 f (n).

Theorem 8. The statement ∀n ∈ N \ {0} Φn implies Hypothesis 3.

Proof. It follows from Lemma 4. �

Let Rng denote the class of all rings K that extend Z, and let

En = {1 = xk : k ∈ {1, . . . , n}} ∪ {xi + x j = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}}

Th. Skolem proved that every Diophantine equation can be algorithmically transformed into an equivalent
system of Diophantine equations of degree at most 2, see [22, pp. 2–3] and [13, pp. 3–4]. The following
result strengthens Skolem’s theorem.



On sets X ⊆ N for which we know an algorithm ... 5

Lemma 7. ([28, p. 720]). Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. Assume that deg(D, xi) > 1 for each
i ∈ {1, . . . , p}. We can compute a positive integer n > p and a system T ⊆ En which satisfies the follow-
ing two conditions:

Condition 1. If K ∈ Rng ∪ {N, N \ {0}}, then

∀x̃1, . . . , x̃p ∈ K
(
D(x̃1, . . . , x̃p) = 0⇐⇒ ∃x̃p+1, . . . , x̃n ∈ K (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T

)

Condition 2. If K ∈ Rng ∪ {N, N \ {0}}, then for each x̃1, . . . , x̃p ∈ K with D(x̃1, . . . , x̃p) = 0, there exists
a unique tuple (x̃p+1, . . . , x̃n) ∈ Kn−p such that the tuple (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 1 and 2 imply that for each K ∈ Rng ∪ {N, N \ {0}}, the equation D(x1, . . . , xp) = 0 and the
system T have the same number of solutions in K.

Let α, β, and γ denote variables.

Lemma 8. ([20, p. 100]) For each positive integers x, y, z, x + y = z if and only if

(zx + 1)(zy + 1) = z2(xy + 1) + 1

Corollary 1. We can express the equation x + y = z as an equivalent system F , where F involves x, y, z
and 9 new variables, and where F consists of equations of the forms α + 1 = γ and α · β = γ.

Proof. The new 9 variables express the following polynomials:

zx, zx + 1, zy, zy + 1, z2, xy, xy + 1, z2(xy + 1), z2(xy + 1) + 1

�

Lemma 9. (cf. [30, p. 110, Lemma 4]). Let D(x1, . . . , xp) ∈ Z[x1, . . . , xp]. Assume that deg(D, xi) > 1
for each i ∈ {1, . . . , p}. We can compute a positive integer n > p and a system T ⊆ Gn which satisfies the
following two conditions:

Condition 3. For every positive integers x̃1, . . . , x̃p,

D(x̃1, . . . , x̃p) = 0⇐⇒ ∃x̃p+1, . . . , x̃n ∈ N \ {0} (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T

Condition 4. If positive integers x̃1, . . . , x̃p satisfy D(x̃1, . . . , x̃p) = 0, then there exists a unique tuple
(x̃p+1, . . . , x̃n) ∈ (N \ {0})n−p such that the tuple (x̃1, . . . , x̃p, x̃p+1, . . . , x̃n) solves T .

Conditions 3 and 4 imply that the equation D(x1, . . . , xp) = 0 and the system T have the same number of
solutions in positive integers.

Proof. Let the system T be given by Lemma 7. We replace in T each equation of the form 1 = xk by the
equation xk · xk = xk. Next, we apply Corollary 1 and replace in T each equation of the form xi + x j = xk

by an equivalent system of equations of the forms α + 1 = γ and α · β = γ. �

Theorem 9. Hypothesis 3 implies that there is an algorithm which takes as input a Diophantine equation,
and returns an integer such that this integer is greater than the solutions in positive integers, if these
solutions form a finite set.

Proof. It follows from Lemma 9. �

Open Problem 1. Is there an algorithm which takes as input a Diophantine equation, and returns an
integer such that this integer is greater than the moduli of integer (non-negative integer, positive integer)
solutions, if the solution set is finite?

Matiyasevich’s conjecture on finite-fold Diophantine representations ([15]) implies a negative answer
to Open Problem 1, see [14, p. 42].

The statement ∀n ∈ N \ {0} Φn implies that there is an algorithm which takes as input a factorial Dio-
phantine equation, and returns an integer such that this integer is greater than the solutions in positive
integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper
bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite
number of solutions, see [12, p. 300].
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5 The Brocard-Ramanujan equation x! + 1 = y2

LetA denote the following system of equations:


x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 2 and the diagram in Figure 3 explain the construction of the systemA.

x1
! x2 x4

squaringx5+1
or x2 = x5 = 1

!

x3

!

x6x3 · x5 = x6

Fig. 3 Construction of the systemA
Lemma 10. For every x1, x4 ∈ N \ {0, 1}, the system A is solvable in positive integers x2, x3, x5, x6 if
and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are uniquely determined by the following
equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

Proof. It follows from Lemma 2. �

It is conjectured that x! + 1 is a perfect square only for x ∈ {4, 5, 7}, see [31, p. 297]. A weak form of
Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y2, see [17].

Theorem 10. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers, then the

statement Ψ6 guarantees that each such solution (x1, x4) belongs to the set {(4, 5), (5, 11), (7, 71)}.
Proof. Suppose that the antecedent holds. Let positive integers x1 and x4 satisfy x1! + 1 = x2

4. Then,
x1, x4 ∈ N \ {0, 1}. By Lemma 10, the systemA is solvable in positive integers x2, x3, x5, x6. SinceA ⊆ B6,
the statement Ψ6 implies that x6 = (x1! + 1)! 6 g(6) = g(5)!. Hence, x1! + 1 6 g(5) = g(4)!. Consequently,
x1 < g(4) = 24. If x1 ∈ {1, . . . , 23}, then x1! + 1 is a perfect square only for x1 ∈ {4, 5, 7}. �

6 Are there infinitely many prime numbers of the form n2 + 1?

Let B denote the following system of equations:


x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 2 and the diagram in Figure 4 explain the construction of the system B.
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x1
squaring x2 +1

or x2 = x5 = 1

x5 ! x6

!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 4 Construction of the system B
Lemma 11. For every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if and only if
x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 2, for every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if and
only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 11 follows from Lemma 6. �

Lemma 12. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 which solve the system B and
satisfy x1 = 1.

Proof. If a tuple (x1, . . . , x9) ∈ (N \ {0})9 solves the system B and x1 = 1, then x1, . . . , x9 6 2. Indeed,
x1 = 1 implies that x2 = x2

1 = 1. Hence, for example, x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1.
Consequently, x9 = x8! 6 2. �

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[16, pp. 37–38].

Theorem 11. The statement Ψ9 proves the following implication: if there exists an integer x1 > 2 such that
x2

1 + 1 is prime and greater than g(7), then there are infinitely many primes of the form n2 + 1.

Proof. Suppose that the antecedent holds. By Lemma 11, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system B. Since x2

1 + 1 > g(7),
we obtain that x2

1 > g(7). Hence, (x2
1)! > g(7)! = g(8). Consequently,

x9 = ((x2
1)! + 1)! > (g(8) + 1)! > g(8)! = g(9)

Since B ⊆ B9, the statement Ψ9 and the inequality x9 > g(9) imply that the system B has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 11 and 12, there are infinitely many primes of the
form n2 + 1. �
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7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [3, p. 443] and [23].

Theorem 12. (cf. Theorem 17). The statement Ψ9 proves the following implication: if there exists an
integer x1 > g(6) such that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. �

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [16, p. 39]. Let C denote the following system of
equations: 

x1! = x2
x2! = x3
x4! = x5
x6! = x7
x7! = x8
x9! = x10

x12! = x13
x15! = x16

x2 · x4 = x5
x5 · x6 = x7
x7 · x9 = x10

x4 · x11 = x12
x3 · x12 = x13
x9 · x14 = x15
x8 · x15 = x16

Lemma 2 and the diagram in Figure 5 explain the construction of the system C.

!

x5

!

x10

x1
+1

or x1 = x4 = 1

x4 +1
or x4 = x6 = 1

x6 +1
or x6 = x9 = 1

x9

x2
+1

or x2 = x12 = 1
x12

+1
or x7 = x15 = 1

x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 5 Construction of the system C
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Lemma 13. For every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers
x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if x4 and x9 are prime and x4 + 2 = x9. In
this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 are uniquely determined by the
following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

Proof. By Lemma 2, for every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers x1, x2, x3,
x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if

(
x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)

Hence, the claim of Lemma 13 follows from Lemma 6. �

Lemma 14. There are only finitely many tuples (x1, . . . , x16) ∈ (N \ {0})16 which solve the system C and
satisfy

(x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2})
Proof. If a tuple (x1, . . . , x16) ∈ (N \ {0})16 solves the system C and

(x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2})
then x1, . . . , x16 6 7!. Indeed, for example, if x4 = 2 then x6 = x4 + 1 = 3. Hence, x7 = x6! = 6. Therefore,
x15 = x7 + 1 = 7. Consequently, x16 = x15! = 7!. �

Theorem 13. The statement Ψ16 proves the following implication: (∗) if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
x9 = x4 + 2 > g(14). Hence, x4, x9 ∈ N \ {0, 1, 2}. By Lemma 13, there exists a unique tuple
(x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0})14 such that the tuple (x1, . . . , x16) solves
the system C. Since x9 > g(14), we obtain that x9 − 1 > g(14). Therefore, (x9 − 1)! > g(14)! = g(15).
Hence, (x9 − 1)! + 1 > g(15). Consequently,

x16 = ((x9 − 1)! + 1)! > g(15)! = g(16)

Since C ⊆ B16, the statement Ψ16 and the inequality x16 > g(16) imply that the system C has infinitely many
solutions in positive integers x1, . . . , x16. According to Lemmas 13 and 14, there are infinitely many twin
primes. �

Let P(x) denote the predicate "x is a prime number". Dickson’s conjecture ([16, p. 36], [33, p. 109])
implies that the existential theory of (N,=,+,P) is decidable, see [33, Theorem 2, p. 109]. For a positive
integer n, let Θn denote the following statement: for every system S ⊆ {xi + 1 = xk : i, k ∈ {1, . . . , n}} ∪
{P(xi) : i ∈ {1, . . . , n}} the solvability of S in non-negative integers is decidable.
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Lemma 15. If the existential theory of (N,=,+,P) is decidable, then the statements Θn are true.

Proof. For every non-negative integers x and y, x + 1 = y if and only if

∃u, v ∈ N ((u + u = v) ∧ P(v) ∧ (x + u = y))

�

Theorem 14. The conjunction of the implication (∗) and the statement Θg(14)+2 implies that the twin prime
conjecture is decidable.

Proof. By the statement Θg(14)+2, we can decide the truth of the sentence

∃x1 . . .∃xg(14)+2
(
(∀i ∈ {1, . . . , g(14) + 1} xi + 1 = xi+1) ∧ P(xg(14)) ∧ P(xg(14)+2)

)
(1)

If sentence (1) is false, then the twin prime conjecture is false. If sentence (1) is true, then there exists a
twin prime greater than g(14). In this case, the twin prime conjecture follows from Theorem 13. �

9 Hypothetical statements ∆5, . . . ,∆14 about the Gamma function and their
consequences

Let λ(5) = Γ(25), and let λ(n + 1) = Γ(λ(n)) for every integer n > 5. For an integer n > 5, let Jn denote the
following system of equations:



∀i ∈ {1, . . . , n − 1} \ {3} Γ(xi) = xi+1
x1 · x1 = x4
x2 · x3 = x5

Lemma 3 and the diagram in Figure 6 explain the construction of the system Jn.

x1

Γ

x2

Γ

x3

squaring

x4
+1

or x2 = x4 = 1

Γ

x5

Γ

x6
. . .

xn−1

Γ

xn
x2 · x3 = x5

Fig. 6 Construction of the system Jn

Observation 3. For every integer n > 5, the systemJn has exactly two solutions in positive integers, namely
(1, . . . , 1) and (5, 24, 23!, 25, λ(5), . . . , λ(n)).

For an integer n > 5, let ∆n denote the following statement: if a system S ⊆
{
Γ(xi) = xk : i, k ∈

{1, . . . , n}
}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
has only finitely many solutions in positive integers x1, . . . , xn,

then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 λ(n).

Hypothesis 4. The statements ∆5, . . . ,∆14 are true.

Lemmas 3 and 6 imply that the statements ∆n have similar consequences as the statements Ψn.

Theorem 15. The statement ∆6 implies that any prime number p > 25 proves the infinitude of primes.

Proof. It follows from Lemmas 3 and 6. We leave the details to the reader. �
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10 Hypothetical statements Σ3, . . . ,Σ16 about the Gamma function and their
consequences

Let Γ n (k) denote (k−1)!, where n ∈ {3, . . . , 16} and k ∈ {2} ∪
{
22n−3

+ 1, 22n−3
+ 2, 22n−3

+ 3, . . .
}
. For

an integer n ∈ {3, . . . , 16}, let

Qn = {Γ n (xi) = xk : i, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}}

For an integer n ∈ {3, . . . , 16}, let Pn denote the following system of equations:


x1 · x1 = x1
Γ n (x2) = x1

∀i ∈ {2, . . . , n − 1} xi · xi = xi+1

Lemma 16. For every integer n ∈ {3, . . . , 16}, Pn ⊆ Qn and the system Pn has exactly one solution in posi-

tive integers x1, . . . , xn, namely
(
1, 220

, 221
, 222

, . . . , 22n−2
)
.

For an integer n ∈ {3, . . . , 16}, let Σn denote the following statement: if a system of equations S ⊆ Qn

has only finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies

x1, . . . , xn 6 22n−2
.

Hypothesis 5. The statements Σ3, . . . ,Σ16 are true.

Lemma 17. (cf. Lemma 3). For every integer n ∈ {4, . . . , 16} and for every positive integers x and y,

x · Γ n (x) = Γ n (y) if and only if (x + 1 = y) ∧
(
x > 22n−3

+ 1
)
.

LetZ9 ⊆ Q9 be the system of equations in Figure 7.

Fig. 7 Construction of the systemZ9

Lemma 18. For every positive integer x1, the system Z9 is solvable in positive integers x2, . . . , x9 if and

only if x1 > 229−4
and x2

1 + 1 is prime. In this case, positive integers x2, . . . , x9 are uniquely determined
by x1.

Proof. It follows from Lemmas 6 and 17. �
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Lemma 19. ([26]). The number (13!)2 + 1 = 38775788043632640001 is prime.

Lemma 20.
(
(13!)2 > 229−3

+ 1 = 18446744073709551617
)
∧

(
Γ

9
((13!)2) > 229−2

)
.

Theorem 16. The statement Σ9 implies the infinitude of primes of the form n2 + 1.

Proof. It follows from Lemmas 18–20. �

Theorem 17. (cf. Theorem 12). The statement Σ9 implies that any prime of the form n! + 1 with n > 229−3

proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. �

LetZ14 ⊆ Q14 be the system of equations in Figure 8.

Fig. 8 Construction of the systemZ14

Lemma 21. For every positive integer x1, the systemZ14 is solvable in positive integers x2, . . . , x14 if and

only if x1 and x1 + 2 are prime and x1 > 2214−3
+ 1. In this case, positive integers x2, . . . , x14 are uniquely

determined by x1.

Proof. It follows from Lemmas 6 and 17. �

Lemma 22. ([34, p. 87]). The numbers 459 · 28529 − 1 and 459 · 28529 + 1 are prime (Harvey Dubner).

Lemma 23. 459 · 28529 − 1 > 2214−2
= 24096.

Theorem 18. The statement Σ14 implies the infinitude of twin primes.

Proof. It follows from Lemmas 21–23. �
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A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [32]. LetZ16 ⊆ Q16
be the system of equations in Figure 9.

Fig. 9 Construction of the systemZ16

Lemma 24. For every positive integer x1, the systemZ16 is solvable in positive integers x2, . . . , x16 if and

only if x1 is a Sophie Germain prime and x1 > 2216−3
+ 1. In this case, positive integers x2, . . . , x16 are

uniquely determined by x1.

Proof. It follows from Lemmas 6 and 17. �

Lemma 25. ([18, p. 330]). 8069496435 · 105072 − 1 is a Sophie Germain prime (Harvey Dubner).

Lemma 26. 8069496435 · 105072 − 1 > 2216−2
.

Theorem 19. The statement Σ16 implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas 24–26. �

Theorem 20. The statement Σ6 proves the following implication: if the equation x(x + 1) = y! has only
finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set
{(1, 2), (2, 3)}.
Proof. We leave the proof to the reader. �

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [1]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive
integers, see [11].

Theorem 21. The statement Σ6 proves the following implication: if the equation x! + 1 = y2 has only
finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set
{(4, 5), (5, 11), (7, 71)}.
Proof. We leave the proof to the reader. �
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11 A hypothesis which implies the infinitude of Wilson primes

Let
V7 = {Γ

5
(xi) = xk : i, k ∈ {1, . . . , 7}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , 7}}

Let I7 denote the following system of equations:


x1 · x1 = x1
Γ

5
(x2) = x1

x2 · x2 = x3
x3 · x3 = x4
x4 · x4 = x5

Γ
5

(x5) = x6

Γ
5

(x6) = x7

Lemma 27. I7 ⊆ V7 and the system I7 has exactly one solution in positive integers x1, . . . , x7, namely
(1, 2, 4, 16, 256, 255!, (255! − 1)!).

Let Ξ7 denote the following statement: if a system of equations S ⊆ V7 has only finitely many solutions
in positive integers x1, . . . , x7, then each such solution (x1, . . . , x7) satisfies x1, . . . , x7 6 (255! − 1)!.

Hypothesis 6. The statement Ξ7 is true.

Lemma 28. (cf. Lemma 3). For every positive integers x and y, x · Γ
5

(x) = Γ
5

(y) if and only if

(x + 1 = y) ∧ (x > 17).

A Wilson prime is a prime number p such that p2 divides (p − 1)! + 1, see [2], [18, p. 346], and [27]. It
is conjectured that the set of Wilson primes is infinite, see [2]. Let Z7 ⊆ V7 be the system of equations in
Figure 10.

Fig. 10 Construction of the systemZ7

Lemma 29. For every positive integer x1, the system Z7 is solvable in positive integers x2, . . . , x7 if and
only if x1 is a Wilson prime prime and x1 > 17. In this case, positive integers x2, . . . , x7 are uniquely
determined by x1.
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Proof. It follows from Lemmas 6 and 28. �

Lemma 30. ([2], [18, p. 346], [27]). 563 is a Wilson prime.

Lemma 31. Γ
5

(Γ
5

(563) + 1) > (255! − 1)!.

Theorem 22. The statement Ξ7 implies the infinitude of Wilson primes.

Proof. It follows from Lemmas 29–31. �

Let Ξ̂7 denote the following statement: if a system of equations

S ⊆ {Γ
6

(xi) = xk : i, k ∈ {1, . . . , 7}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , 7}}

has only finitely many solutions in positive integers x1, . . . , x7, then each such solution (x1, . . . , x7) satisfies
x1, . . . , x7 6 (2562 − 1)!.

Theorem 23. The statement Ξ̂7 implies the infinitude of Wilson primes.

Proof. We leave the analogous proof to the reader. �

12 Are there infinitely many composite Fermat numbers?

Integers of the form 22n
+ 1 are called Fermat numbers. Primes of the form 22n

+ 1 are called Fermat
primes, as Fermat conjectured that every integer of the form 22n

+ 1 is prime, see [10, p. 1]. Fermat

correctly remarked that 220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257, and 224
+ 1 = 65537 are

all prime, see [10, p. 1].

Open Problem 2. ([10, p. 159]). Are there infinitely many composite numbers of the form 22n
+ 1?

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [9, p. 23].

Theorem 24. ([29]). An unproven inequality stated in [29] implies that 22n
+ 1 is composite for every

integer n > 5.

Let
Hn =

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}

Lemma 32. The following subsystem of Hn


x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (h(1), . . . , h(n)).

For a positive integer n, let Γn denote the following statement: if a system S ⊆ Hn has only finitely many
solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 h(n). The
statement Γn says that for subsystems of Hn the largest known solution is indeed the largest possible.

Hypothesis 7. The statements Γ1, . . . ,Γ13 are true.

The truth of the statement ∀n ∈ N \ {0} Γn is doubtful because a computable upper bound on
non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of
solutions, see [12, p. 300].
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Theorem 25. Every statement Γn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Hn has a finite number of subsystems. �

Theorem 26. The statement Γ13 proves the following implication: if z ∈ N \ {0} and 22z
+ 1 is composite

and greater than h(12), then 22z
+ 1 is composite for infinitely many positive integers z.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (2)

in positive integers. By Lemma 5, we can transform equation (2) into an equivalent system G which has
13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms α · β = γ and
22α = γ, see the diagram in Figure 11.

x

22(·)

22x

x+1

22(·)

22x+1
squaring

y

22(·)

22y

y+1

22(·)

22y+1
squaring

22z

22(·)

2222z

22z
+1

22(·)

2222z
+1

squaring

z 22(·)

m
u
l
t
i
p
l
y
i
n
g

Fig. 11 Construction of the system G

Since 22z
+ 1 > h(12), we obtain that 2222z

+1
> h(13). By this, the statement Γ13 implies that the systemG

has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat
numbers. �

13 Subsets ofNwhose infinitude is unconditionally equivalent to the halting
of a Turing machine

The following lemma is known as Richert’s lemma.

Lemma 33. ([6], [19], [21, p. 152]). Let {mi}∞i=1 be an increasing sequence of positive integers such that for
some positive integer k the inequality mi+1 6 2mi holds for all i > k. Suppose there exists a non-negative
integer b such that the numbers b + 1, b + 2, b + 3, . . . , b + mk+1 are all expressible as sums of one or
more distinct elements of the set {m1, . . . ,mk}. Then every integer greater than b is expressible as a sum of
one or more distinct elements of the set {m1,m2,m3, . . .}.
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Let T denote the set of all positive integers i such that every integer j > i is expressible as a sum of
one or more distinct elements of the set {m1,m2,m3, . . .}. Obviously, T = ∅ or T = [d,∞) ∩ N for some
positive integer d.

Corollary 2. If the sequence {mi}∞i=1 is computable and the algorithm in Figure 12 terminates, then almost
all positive integers are expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}. In
particular, if the sequence {mi}∞i=1 is computable and the algorithm in Figure 12 terminates, then the set T
is infinite. In this case, the algorithm is Figure 12 prints all positive integers which are not expressible as a
sum of one or more distinct elements of the set {m1,m2,m3, . . .}.

Start

Input the smallest integer k > 2 such that
the inequality mi + 1 6 2mi holds for all i > k b := 0

A :=
{
m1, . . . ,mk

}
B :=

{
m1

}
i := 2

B := B ∪
{
mi

}
∪

{
B[ j] + mi: j ∈ {1, . . . , card(B)}

}

i := i + 1 Print the set {1, . . . , b} \ B Stop

Is i = k + 1? Is b = 0?

G := {min(B) − 1, . . . ,max(B) + 1} \ B

H :=
{
G[n + 1] −G[n]: n ∈ {1, . . . , card(G) − 1}

}

Is max(H) > mk + 1? k := k + 1

The answer is "Yes" if and only if the
set B contains mk + 1 consecutive integers

b := max(B) k := 1

k := k + 1 Is mk + 1 6 b?

YesNo

Yes

No

Yes

No

Yes No

Fig. 12 The algorithm which uses Richert’s lemma

Theorem 27. ([8, Theorem 2.3]). If there exists ε > 0 such that the inequality mi+1 6 (2 − ε) · mi holds
for every sufficiently large i, then the algorithm in Figure 12 terminates if and only if almost all positive
integers are expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}.
Corollary 3. If there exists ε > 0 such that the inequality mi+1 6 (2 − ε) · mi holds for every sufficiently
large i, then the algorithm in Figure 12 terminates if and only if the set T is infinite.

We show how the algorithm in Figure 12 works for a concrete sequence {mi}∞i=1. Let [·] denote the integer

part function. For a positive integer i, let ti =
(i + 19)i + 19

(i + 19)! · 2i + 19 , and let mi = [ti].
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Lemma 34. The inequality mi+1 6 2mi holds for every positive integer i.

Proof. For every positive integer i,

mi

mi+1
=

[ti]
[ti+1]

>
ti − 1
ti+1

=
ti

ti+1
− 1

ti+1
>

ti
ti+1
− 1

t2
=

2 · i + 20
i + 19

·
(
1 − 1

i + 20

)i+20

− 21! · 221

2121 > 2 ·
(
1 − 1

21

)21

− 21! · 221

2121 =
4087158528442715204485120000
5842587018385982521381124421

The last fraction was computed by MuPAD and is greater than 1
2 . �

Theorem 28. The algorithm in Figure 12 terminates for the sequence {mi}∞i=1.

Proof. By Lemma 34, we take k = 2 as the initial value of k. The following MuPAD code

k:=2:
repeat
A:={floor((i+19)^(i+19)/((i+19)!*2^(i+19))) $i=1..k+1}:
B:={A[1]}:
for i from 2 to nops(A)-1 do
B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:
end_for:
G:={y $y=B[1]-1..B[nops(B)]+1} minus B:
H:={G[n+1]-G[n] $n=1..nops(G)-1}:
k:=k+1:
until H[nops(H)]>A[nops(A)] end_repeat:
b:=B[nops(B)]:
k:=1:
while floor((k+20)^(k+20)/((k+20)!*2^(k+20)))<=b do
k:=k+1:
end_while:
A:={floor((i+19)^(i+19)/((i+19)!*2^(i+19))) $i=1..k}:
B:={A[1]}:
for i from 2 to nops(A)-1 do
B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:
end_for:
print({n $n=1..b} minus B):

implements the algorithm in Figure 12 because MuPAD automatically orders every finite set of integers
and the inequality H[nops(H)]>A[nops(A)] holds true if and only if the set B contains mk+1 consecutive
integers. The code returns the following output:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77,

78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127,
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129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143,

144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158,

159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 176,

177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 192,

193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207,

208, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 225, 226,

228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 243,

244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 255, 256, 257, 258,

259, 260, 261, 262, 264, 267, 269, 270, 271, 272, 273, 274, 275, 276,

277, 279, 280, 282, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,

294, 297, 300, 301, 302, 304, 305, 306, 308, 309, 310, 311, 312, 313,

314, 315, 316, 317, 318, 321, 324, 325, 326, 327, 328, 329, 330, 331,

332, 333, 334, 335, 336, 341, 342, 343, 345, 346, 347, 348, 349, 351,

354, 356, 358, 359, 360, 362, 363, 365, 366, 367, 368, 369, 371, 372,

373, 374, 376, 378, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389,

390, 400, 401, 402, 403, 405, 406, 407, 408, 410, 412, 413, 414, 415,

417, 419, 420, 421, 422, 423, 425, 426, 428, 430, 432, 434, 437, 439,

441, 442, 443, 444, 446, 447, 452, 454, 455, 456, 457, 459, 460, 461,

462, 463, 464, 467, 474, 475, 477, 478, 479, 480, 482, 483, 484, 486,

487, 488, 491, 495, 496, 497, 498, 501, 502, 504, 506, 508, 509, 511,

513, 515, 516, 518, 519, 521, 524, 528, 529, 531, 533, 535, 536, 537,

538, 539, 542, 543, 548, 549, 550, 551, 552, 553, 555, 556, 558, 559,

560, 562, 563, 567, 570, 575, 576, 578, 580, 582, 583, 585, 587, 589,

590, 591, 592, 593, 596, 600, 603, 605, 607, 608, 609, 611, 614, 616,

617, 624, 629, 630, 632, 633, 634, 637, 639, 644, 647, 648, 649, 650,

652, 654, 657, 659, 661, 663, 665, 671, 674, 676, 678, 679, 681, 683,
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684, 686, 688, 689, 691, 701, 704, 705, 706, 713, 715, 717, 718, 719,

720, 725, 728, 729, 732, 733, 735, 737, 745, 746, 750, 755, 758, 760,

766, 770, 773, 775, 777, 778, 780, 785, 786, 787, 789, 790, 791, 804,

807, 809, 811, 812, 814, 816, 819, 824, 827, 829, 830, 832, 834, 841,

845, 846, 851, 856, 858, 861, 865, 866, 871, 881, 883, 886, 887, 888,

899, 902, 903, 905, 906, 908, 912, 920, 925, 928, 940, 942, 943, 947,

952, 953, 955, 957, 959, 960, 962, 974, 977, 979, 982, 984, 986, 994,

997, 999, 1004, 1015, 1028, 1031, 1035, 1036, 1048, 1049, 1051, 1053,

1056, 1058, 1069, 1073, 1076, 1078, 1080, 1082, 1088, 1089, 1090, 1093,

1095, 1107, 1110, 1122, 1123, 1127, 1129, 1130, 1132, 1147, 1152, 1154,

1164, 1169, 1174, 1179, 1184, 1201, 1205, 1206, 1218, 1219, 1223, 1224,

1226, 1228, 1246, 1250, 1255, 1257, 1258, 1259, 1260, 1275, 1277, 1280,

1298, 1300, 1302, 1307, 1315, 1322, 1329, 1331, 1346, 1351, 1352, 1354,

1356, 1372, 1374, 1376, 1381, 1383, 1385, 1387, 1396, 1398, 1403, 1405,

1426, 1427, 1428, 1450, 1457, 1468, 1472, 1477, 1482, 1497, 1499, 1526,

1529, 1533, 1549, 1551, 1573, 1580, 1583, 1603, 1605, 1610, 1625, 1627,

1647, 1667, 1679, 1681, 1699, 1701, 1721, 1753, 1773, 1775, 1780, 1795,

1817, 1832, 1849, 1852, 1869, 1871, 1886, 1923, 1925, 1943, 1945, 1950,

1997, 2022, 2039, 2073, 2120, 2174, 2221, 2246, 2297, 2369, 2416, 2591,

2761}

�

Corollary 4. T = [2762,∞) ∩ N.

MuPAD is a general-purpose computer algebra system. MuPAD is no longer available as a stand-alone
computer program, but only as the Symbolic Math Toolbox of MATLAB. Fortunately, the presented code
can be executed by MuPAD Light, which was offered for free for research and education until autumn 2005.
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14 A hypothetical infinitude of various classes of primes via computer pro-
grams which halt for at most finitely many positive integers on the input

Let fact−1 : {1, 2, 6, 24, . . .} → N \ {0} denote the inverse function to the factorial function. For positive
integers x and y, let rem(x, y) denote the remainder from dividing x by y.

Definition. For a positive integer n, by a program of length n we understand any sequence of terms
x1, . . . , xn such that x1 is defined as the variable x, and for every integer i ∈ {2, . . . , n}, xi is defined as
Γ(xi−1), or fact−1(xi−1), or rem(xi−1, xi−2) – but only if i > 3 and xi−1 is defined as Γ(xi−2).

Let δ(4) = 3, and let δ(n + 1) = δ(n)! for every integer n > 4. For an integer n > 4, let Ωn denote the
following statement: if a program of length n returns positive integers x1, . . . , xn for at most finitely many
positive integers x, then every such x does not exceed δ(n).

Theorem 29. (cf. Theorem 5). For every integer n > 4, the statement Ωn is true with an unknown integer
bound that depends on n.

Proof. For every positive integer n, there are only finitely many programs of length n. �

Lemma 35. ([21, pp. 214–215]) . For every positive integer x, rem(Γ(x), x) ∈ N \ {0} if and only if
x ∈ {4} ∪ P.

Theorem 30. For every integer n > 4 and for every positive integer x, the following programHn


x1 := x
∀i ∈ {2, . . . , n − 3} xi := fact−1(xi−1)

xn−2 := Γ(xn−3)
xn−1 := Γ(xn−2)

xn := rem(xn−1, xn−2)

returns positive integers x1, . . . , xn if and only if x = δ(n).

Proof. We make three observations.

Observation 4. If xn−3 = 3, then x1, . . . , xn−3 ∈ N \ {0} and x = x1 = δ(n).
If x = δ(n), then x1, . . . , xn−3 ∈ N \ {0} and xn−3 = 3.
Hence, xn−2 = Γ(xn−3) = 2 and xn−1 = Γ(xn−2) = 1. Therefore, xn = rem(xn−1, xn−2) = 1.

Observation 5. If xn−3 = 2, then x = x1 = . . . = xn−3 = 2.
If x = 2, then x1 = . . . = xn−3 = 2. Hence, xn−2 = Γ(xn−3) = 1 and xn−1 = Γ(xn−2) = 1.
Therefore, xn = rem(xn−1, xn−2) = 0 < N \ {0}.
Observation 6. If xn−3 = 1, then xn−2 = Γ(xn−3) = 1. Hence, xn−1 = Γ(xn−2) = 1.
Therefore, xn = rem(xn−1, xn−2) = 0 < N \ {0}.
Observations 4–6 cover the case when xn−3 ∈ {1, 2, 3}. If xn−3 > 4, then xn−2 = Γ(xn−3) is greater than 4 and
composite. By Lemma 35, xn = rem(xn−1, xn−2) = rem(Γ(xn−2), xn−2) = 0 < N \ {0}. �

Corollary 5. For every integer n > 4, the bound δ(n) in the statement Ωn cannot be decreased.

Lemma 36. If x ∈ P, then rem(Γ(x), x) = x − 1.

Proof. It follows from Lemma 6. �

Lemma 37. For every positive integer x, the following programA


x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)

returns positive integers x1, . . . , x4 if and only if x = 4 or x is a prime number of the form n! + 1.
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Proof. For an integer i ∈ {1, . . . , 4}, let Ai denote the set of positive integers x such that the first i instructions
of the programA returns positive integers x1, . . . , xi. We show that

A4 = {4} ∪ {n! + 1 : n ∈ N \ {0}} ∩ P (4)

For every positive integer x, the terms x1 and x2 belong to N \ {0}. By Lemma 35, the term x3
(which equals rem(Γ(x), x)) belongs to N \ {0} if and only if x ∈ {4} ∪ P. Hence, A3 = {4} ∪ P.
If x = 4, then x1, . . . , x4 ∈ N \ {0}. Hence, 4 ∈ A4. If x ∈ P, then Lemma 36 implies that
x3 = rem(Γ(x), x) = x − 1 ∈ N \ {0}. Therefore, for every x ∈ P, the term x4 = fact−1(x3) belongs to N \ {0}
if and only if x ∈ {n! + 1 : n ∈ N \ {0}}. This proves equality (4). �

Theorem 31. The statement Ω4 implies that the set of primes of the form n! + 1 is infinite.

Proof. The number 3! + 1 = 7 is prime. By Lemma 37, for x = 7 the program A returns positive integers
x1, . . . , x4. Since x = 7 > 3 = δ(4), the statement Ω4 guarantees that the programA returns positive integers
x1, . . . , x4 for infinitely many positive integers x. By Lemma 37, there are infinitely many primes of the
form n! + 1. �

Lemma 38. If x ∈ N \ {0, 1}, then fact−1(Γ(x)) = x − 1.

Theorem 32. If the set of primes of the form n! + 1 is infinite, then the statement Ω4 is true.

Proof. There exist exactly 10 programs of length 4 that differ from H4 and A, see Figure 13. For every
such program Fi, we determine the set S i of all positive integers x such that the program Fi outputs positive
integers x1, . . . , x4 on input x. We omit 10 easy proofs which use Lemmas 35 and 38. The sets S i are
infinite, see Figure 13.

F1 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 1

F2 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 2

H4 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := rem(x3, x2)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x = 3

F3 x1 := x x2 := Γ(x1) x3 := fact−1(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 3

F4 x1 := x x2 := Γ(x1) x3 := fact−1(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {1} ∪ {n! + 1 : n ∈ N \ {0}} = S 4

F5 x1 := x x2 := Γ(x1) x3 := rem(x2, x1) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4} ∪ P = S 5

A x1 := x x2 := Γ(x1) x3 := rem(x2, x1) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4} ∪ {n! + 1 : n ∈ N \ {0}} ∩ P
F6 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := Γ(x3)

x1, . . . , x4 ∈ N \ {0} ⇐⇒
x ∈ {n! : n ∈ N \ {0}} = S 6

F7 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {n! : n ∈ N \ {0}} = S 7

F8 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := rem(x3, x2)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4!} ∪ {p! : p ∈ P} = S 8

F9 x1 := x x2 := fact−1(x1) x3 := fact−1(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {(n!)! : n ∈ N \ {0}} = S 9

F10 x1 := x x2 := fact−1(x1) x3 := fact−1(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {((n!)!)! : n ∈ N \ {0}} = S 10

Fig. 13 12 programs of length 4, x ∈ N \ {0}
This completes the proof. �

Hypothesis 8. The statements Ω4, . . . ,Ω7 are true.
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Lemma 39. For every positive integer x, the following program B


x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if x ∈ {4} ∪ {p! + 1 : p ∈ P} ∩ P
Proof. For an integer i ∈ {1, . . . , 6}, let Bi denote the set of positive integers x such that the first i instructions
of the program B returns positive integers x1, . . . , xi. Since the programs A and B have the same first four
instructions, the equality Bi = Ai holds for every i ∈ {1, . . . , 4}. In particular,

B4 = {4} ∪ {n! + 1 : n ∈ N \ {0}} ∩ P

We show that
B6 = {4} ∪ {p! + 1 : p ∈ P} ∩ P (5)

If x = 4, then x1, . . . , x6 ∈ N \ {0}. Hence, 4 ∈ B6. Let x ∈ P, and let x = n! + 1, where n ∈ N \ {0}.
Hence, n , 4. Lemma 36 implies that x3 = rem(Γ(x), x) = x − 1 = n!. Hence, x4 = fact−1(x3) = n and
x5 = Γ(x4) = Γ(n) ∈ N \ {0}. By Lemma 35, the term x6 (which equals rem(Γ(n), n)) belongs to N \ {0}
if and only if n ∈ {4} ∪ P. This proves equality (5) as n , 4. �

Theorem 33. The statement Ω6 implies that for infinitely many primes p the number p! + 1 is prime.

Proof. The numbers 11 and 11! + 1 are prime, see [3, p. 441] and [25]. By Lemma 39, for x = 11! + 1 the
program B returns positive integers x1, . . . , x6. Since x = 11! + 1 > 6! = δ(6), the statement Ω6 guarantees
that the programB returns positive integers x1, . . . , x6 for infinitely many positive integers x. By Lemma 39,
for infinitely many primes p the number p! + 1 is prime. �

Lemma 40. For every positive integer x, the following program C


x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if (x − 1)! − 1 is prime.

Proof. For an integer i ∈ {1, . . . , 6}, let Ci denote the set of positive integers x such that the first i in-
structions of the program C returns positive integers x1, . . . , xi. If x ∈ {1, 2, 3}, then x6 = 0. Therefore,
C6 ⊆ N \ {0, 1, 2, 3}. By Lemma 38, for every integer x > 4, x4 = (x − 1)! − 1, x5 = Γ((x − 1)! − 1), and
x1, . . . , x5 ∈ N \ {0}. By Lemma 35, for every integer x > 4,

x6 = rem(Γ((x − 1)! − 1), (x − 1)! − 1)

belongs to N \ {0} if and only if (x − 1)! − 1 ∈ {4} ∪ P. The last condition equivalently expresses that
(x − 1)! − 1 is prime as (x − 1)! − 1 > 5 for every integer x > 4. Hence,

C6 = (N \ {0, 1, 2, 3}) ∩ {x ∈ N \ {0, 1, 2, 3} : (x − 1)! − 1 ∈ P} = {x ∈ N \ {0} : (x − 1)! − 1 ∈ P}

�

It is conjectured that there are infinitely many primes of the form n! − 1, see [3, p. 443] and [24].
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Theorem 34. The statement Ω6 implies that there are infinitely many primes of the form x! − 1.

Proof. The number (975 − 1)! − 1 is prime, see [3, p. 441] and [24]. By Lemma 40, for x = 975 the pro-
gram C returns positive integers x1, . . . , x6. Since x = 975 > 720 = δ(6), the statement Ω6 guarantees that
the program C returns positive integers x1, . . . , x6 for infinitely many positive integers x. By Lemma 40, the
set {x ∈ N \ {0} : (x − 1)! − 1 ∈ P} is infinite. �

Lemma 41. For every positive integer x, the following programD


x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := Γ(x3)
x5 := fact−1(x4)
x6 := Γ(x5)
x7 := rem(x6, x5)

returns positive integers x1, . . . , x7 if and only if both x and x − 2 are prime.

Proof. For an integer i ∈ {1, . . . , 7}, let Di denote the set of positive integers x such that the first i instructions
of the programD returns positive integers x1, . . . , xi. If x = 1, then x3 = 0. Hence, D7 ⊆ D3 ⊆ N \ {0, 1}. If
x ∈ {2, 3, 4}, then x7 = 0. Therefore,

D7 ⊆ (N \ {0, 1}) ∩ (N \ {0, 2, 3, 4}) = N \ {0, 1, 2, 3, 4}

By Lemma 35, for every integer x > 5, the term x3 (which equals rem(Γ(x), x)) belongs to N \ {0} if and
only if x ∈ P \ {2, 3}. By Lemma 36, for every x ∈ P \ {2, 3}, x3 = x − 1 ∈ N \ {0, 1, 2, 3}. By Lemma 38,
for every x ∈ P \ {2, 3}, the terms x4 and x5 belong to N \ {0} and x5 = x3 − 1 = x − 2. By Lemma 35,
for every x ∈ P \ {2, 3}, the term x7 (which equals rem(Γ(x5), x5)) belongs to N \ {0} if and only if
x5 = x − 2 ∈ {4} ∪ P. From these facts, we obtain that

D7 = (N \ {0, 1, 2, 3, 4}) ∩ (P \ {2, 3}) ∩ ({6} ∪ {p + 2 : p ∈ P}) = {p ∈ P : p − 2 ∈ P}

�

Theorem 35. The statement Ω7 implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers 459 · 28529 − 1 and 459 · 28529 + 1 are prime, see
[34, p. 87]. By Lemma 41, for x = 459 · 28529 + 1 the program D returns positive integers x1, . . . , x7.
Since x > 720! = δ(7), the statement Ω7 guarantees that the program D returns positive integers x1, . . . , x7
for infinitely many positive integers x. By Lemma 41, there are infinitely many twin primes. �

We can transform every program of length n into a computer program with n instructions which for
every x ∈ N \ {0} does the same if (x1, . . . , xn) ∈ (N \ {0})n, and never halts if (x1, . . . , xn) < (N \ {0})n or the
tuple (x1, . . . , xn) is undefined. To do so, we perform the following steps:

a)We replace the instruction x1 := x by the following instruction:

x1 := x & PRINT(x1)

b)We replace every instruction of the form xi = Γ(xi−1) by the following instruction:

xi := Γ(xi−1) & PRINT(xi)

c)We replace every instruction of the form xi := fact−1(xi−1) by the following instruction:

IF fact−1(xi−1) ∈ N \ {0} THEN xi := fact−1(xi−1) & PRINT(xi) ELSE GOTO Instruction 1

d)We replace every instruction of the form xi := rem(xi−1, xi−2) by the following instruction:

IF rem(xi−1, xi−2) ∈ N \ {0} THEN xi := rem(xi−1, xi−2) & PRINT(xi) ELSE GOTO Instruction 1
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