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Abstract

For a positive integer, let I'(n) denote (n — 1)!. Let f(5) =24!, and let f(n + 1) =
I'(f(n)) for every integer n > 5. For an integer n > 5, let T'(n) denote the statement: if a
system of equations S C {F(xi) =x;: L,ke {1,...,n}} U {xi “Xj=xpc L,k € {1,...,n}}
has at most finitely many solutions in positive integers xp,...,X,, then each such
solution (xi,...,X,) satisfies min(xy, ..., x,) < f(n). We conjecture that the statements
T(5),...,7(14) are true. The statement 7(6) implies that if x!+ 1 is a square for at
most finitely many non-negative integers x then each such x satisfies x < f(6). The
statement 7'(9) proves the implication: if there exists an integer x > f(9) such that 2+l
is prime, then there are infinitely many primes of the form n”> + 1. The statement 7'(14)
proves the implication: if there exists a twin prime greater than f(14) + 2, then there are
infinitely many twin primes.
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1. Introduction and basic lemmas

In this article, we study a conjecture which applies to Brocard’s problem, the problem of the
infinitude of primes of the form n* + 1, and the twin prime problem. The conjecture allows us
to compute an integer bg such that if x! + 1 is a square for at most finitely many non-negative
integers x then each such x satisfies x < bg. The conjecture allows us to compute an integer bg
such that any prime number of the form n* + 1 which is greater than by proves that the set of
prime numbers of the form n? + 1 is infinite. The conjecture allows us to compute an integer b4
such that any twin prime greater than b4 + 2 proves that the set of twin primes is infinite.

For a positive integer, let I'(n) denote (n — 1)!.
Lemma 1. For every positive integers x and y, x - I'(x) = I'(y) if and only if
x+l=y)vx=y=1)

Lemma 2. (Wilson’s theorem, [, p. 89]). For every integer x > 2, x is prime if and only if x
divides I'(x) + 1.
Lemma 3. For every integer x > 5, we have x < VI'(x) + 1.

Lemma 4. For every integer x > 5, we have x < W



2. A conjecture on the statements Y(n, b)

For a positive integer n, let G, denote the following system of equations:
rey =w: iketl,omfufxy=x: ijkell,... n)

For positive integers n and b, let ¥(n, b) denote the statement: if a system S C G, has at
most finitely many solutions in positive integers xi, ..., x, then each such solution (x, ..., x,)
satisfies min(xy, ..., x,) < b.

Theorem 1. For every positive integer n, there exists an integer b > 4 such that the statement
Y(n, b) is true.

Proof. It follows from the fact that the system G, has a finite number of subsystems. O

Let f(5) = 24!, and let f(n + 1) = I'(f(n)) for every integer n > 5. For an integer n > 5, let
U, C G, be the system of equations illustrated in Figure 1. Lemma [I] explains the construction
of the system U,,.
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Fig. 1 Construction of the system U,
For every integer n > 5, the system U, has exactly two solutions in positive integers, namely
(1,...,1)and (5,24,23!,25, f(5), ..., f(n)).
Conjecture. For every integer n € {5, ..., 14}, the statement ¥ (n, f(n)) is true.
We present a heuristic reasoning that leads to the Conjecture. Let n € {5,...,14}. We
consider subsystems of the system G, which have only finitely many solutions in positive

integers xp,...,x,. We conjecture that the largest number in the largest known solution
majorizes min(xy, .. ., X,) for every tuple (x;, ..., x,) € (N \ {0})" that solves a subsystem of G,,.



3. Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation I'(x) + 1 = y?, see [3]]. It is conjectured that I'(x) + 1 is a square
only for x € {5, 6, 8}, see [4}, p. 297].

Let A C G be the system of equations illustrated in Figure 2. Lemma [I] explains the
construction of the system A.
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Fig. 2 Construction of the system A

Lemma 5. The system A has only finitely many solutions (x,...,x¢) € N\ {0)® with
x1 € {1,2}. For every integer x| > 3, the system A is solvable in positive integers x,, ..., X¢
if and only if I'(x;) + 1 is a square. In this case, x| > 5, the numbers x,, ..., Xq are uniquely
determined by x,, and x; = min(xy, ..., Xs).
Proof. All the statements in this Lemma, except the equality x; = min(xy,..., Xs), follow from
Lemma|[l] Lemma[3]and the inequality x; > 5 imply that x; = min(xy, ..., Xe). m|

Theorem 2. For every positive integer b, if I'(x1) + 1 is a square for at most finitely many
positive integers xi, then the statement (6, b) implies that each such x; satisfies x; < b.

Proof. Let us assume that for a positive integer x; there exists a positive integer x;
such that ['(x;)+1=1x. Then, x; >5. By Lemma there exists a unique tuple
(x2,...,%) € (N\ {0})° such that the tuple (xi,...,xs) solves the system A. Lemma

guarantees that x; = min(xy, ..., xs). By the antecedent and Lemma [5] the system A has only
finitely many solutions in positive integers xi, ..., Xs. Therefore, the statement ¥(6, b) implies
that x; = min(xy,...,xs) < b. O

4. Are there infinitely many prime numbers of the form n? + 1?

Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
[2, pp. 37-38].

Let B8 C Gy be the system of equations illustrated in Figure 3. Lemma [I] explains the
construction of the system 8.
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Fig. 3 Construction of the system 8
Lemma 6. The system B has only finitely many solutions (xi, ..., X9) € (N \ {0})° with x; = 1.
For every integer x| > 2, the system B is solvable in positive integers x,, ..., Xy if and only
if x3+ 1 is prime. In this case, the numbers x,,...,xo are uniquely determined by x,, and

x; = min(xy, ..., X9).

Proof. By Lemma (1] for every integer x; > 2, the system 8 is solvable in positive integers
X2, ..., Xo if and only if x? + 1 divides I'(x? + 1) + 1. By Lemma the last is true if and only if
xt + 1 is prime. The inequality x; > 2 and Lemmaimply that x; = min(xy, ..., X9). O

Theorem 3. For every positive integer b, the statement ¥(9, b) proves the implication: if there
exists an integer x; > b such that x% + 1 is prime, then there are infinitely many primes of the
formn® + 1.

Proof. Let us assume that a positive integer x; is greater than b and x? + 1 is prime. Since b > 1,
we obtain that x; > 2. By Lemma |§], there exists a unique tuple (x,, ..., Xo) € (N \ {0})® such
that the tuple (xy, ..., xo) solves the system B. Lemma [f] guarantees that x; = min(xy, ..., Xo).
Since B C Gy, we obtain that the statement W(9, b) and the inequality b < x; = min(xy, ..., X9)
imply that the system 8B has infinitely many solutions (xi, ..., X9) € (N \ {0})°. According to
Lemma@ there are infinitely many primes of the form n* + 1. O

5. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [2, p. 39].

Let C € G4 be the system of equations illustrated in Figure 4. Lemma [I] explains the
construction of the system C.
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Fig. 4 Construction of the system C
Lemma 7. The system C has only finitely many solutions (xi,...,x14) € N\ {OD" with
x1 €{1,2,3,4}. For every integer x; > 5, the system C is solvable in positive integers x,, ..., X14
if and only if x; and x; + 2 are prime. In this case, the numbers x,,..., X4 are uniquely
determined by xi, and x; = min(xy, ..., X14).

Proof. By Lemma (1| for every integer x; > 5, the system C is solvable in positive integers
X2,..., X4 1f and only if x; divides I'(x;) + 1 and x; + 2 divides I'(x; + 2) + 1. By Lemma 2] the
last is true if and only if x; and x; + 2 are prime. The inequality x; > 5 and LemmaM]imply that
X = min(xl, ceey X14). O



Theorem 4. For every integer b > 4, the statement Y (14, b) proves the implication: if there
exists a twin prime greater than b + 2, then there are infinitely many twin primes.

Proof. Let us assume that there exists a prime number x; such that x; + 2 is prime and
x1+2>b+2. Since b >4, we obtain that x; > 5. By Lemma [/| there exists a unique
tuple (xa, . .., x14) € (N \ {O})'3 such that the tuple (xi, ..., x14) solves the system C. Lemma 7]

guarantees that x; = min(xy, ..., x14). Since C C G4, we conclude that the statement \¥(14, b)
and the inequality b < x; = min(xy,...,x;4) imply that the system C has infinitely many
solutions in positive integers Xxi,...,x;4. According to Lemma [/, there are infinitely many
twin primes. O

The inequality f(14) + 2 < (((((CCC24DHHHNHHNHHNHD! together with the Conjecture and
Theorem 4| justifies the title of the article.
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