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Abstract

For a positive integer, let Γ(n) denote (n − 1)!. Let f (5) = 24!, and let f (n + 1) =

Γ( f (n)) for every integer n > 5. For an integer n > 5, let T (n) denote the statement: if a
system of equationsS ⊆

{
Γ(xi) = xk : i, k ∈ {1, . . . , n}

}
∪
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
has at most finitely many solutions in positive integers x1, . . . , xn, then each such
solution (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 f (n). We conjecture that the statements
T (5), . . . ,T (14) are true. The statement T (6) implies that if x! + 1 is a square for at
most finitely many non-negative integers x then each such x satisfies x 6 f (6). The
statement T (9) proves the implication: if there exists an integer x > f (9) such that x2 + 1
is prime, then there are infinitely many primes of the form n2 + 1. The statement T (14)
proves the implication: if there exists a twin prime greater than f (14) + 2, then there are
infinitely many twin primes.
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1. Introduction and basic lemmas
In this article, we study a conjecture which applies to Brocard’s problem, the problem of the

infinitude of primes of the form n2 + 1, and the twin prime problem. The conjecture allows us
to compute an integer b6 such that if x! + 1 is a square for at most finitely many non-negative
integers x then each such x satisfies x 6 b6. The conjecture allows us to compute an integer b9

such that any prime number of the form n2 + 1 which is greater than b9 proves that the set of
prime numbers of the form n2 + 1 is infinite. The conjecture allows us to compute an integer b14

such that any twin prime greater than b14 + 2 proves that the set of twin primes is infinite.

For a positive integer, let Γ(n) denote (n − 1)!.

Lemma 1. For every positive integers x and y, x · Γ(x) = Γ(y) if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 2. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and only if x
divides Γ(x) + 1.

Lemma 3. For every integer x > 5, we have x 6
√

Γ(x) + 1.

Lemma 4. For every integer x > 5, we have x 6 Γ(x) + 1
x .
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2. A conjecture on the statements Ψ(n, b)
For a positive integer n, let Gn denote the following system of equations:{

Γ(xi) = xk : i, k ∈ {1, . . . , n}
}
∪
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For positive integers n and b, let Ψ(n, b) denote the statement: if a system S ⊆ Gn has at
most finitely many solutions in positive integers x1, . . . , xn then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 b.

Theorem 1. For every positive integer n, there exists an integer b > 4 such that the statement
Ψ(n, b) is true.

Proof. It follows from the fact that the system Gn has a finite number of subsystems. �

Let f (5) = 24!, and let f (n + 1) = Γ( f (n)) for every integer n > 5. For an integer n > 5, let
Un ⊆ Gn be the system of equations illustrated in Figure 1. Lemma 1 explains the construction
of the systemUn.

Fig. 1 Construction of the systemUn

For every integer n > 5, the system Un has exactly two solutions in positive integers, namely
(1, . . . , 1) and (5, 24, 23!, 25, f (5), . . . , f (n)).

Conjecture. For every integer n ∈ {5, . . . , 14}, the statement Ψ(n, f (n)) is true.

We present a heuristic reasoning that leads to the Conjecture. Let n ∈ {5, . . . , 14}. We
consider subsystems of the system Gn which have only finitely many solutions in positive
integers x1, . . . , xn. We conjecture that the largest number in the largest known solution
majorizes min(x1, . . . , xn) for every tuple (x1, . . . , xn) ∈ (N \ {0})n that solves a subsystem of Gn.
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3. Brocard’s problem
A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the

Brocard-Ramanujan equation Γ(x) + 1 = y2, see [3]. It is conjectured that Γ(x) + 1 is a square
only for x ∈ {5, 6, 8}, see [4, p. 297].

Let A ⊆ G6 be the system of equations illustrated in Figure 2. Lemma 1 explains the
construction of the systemA.

Fig. 2 Construction of the systemA

Lemma 5. The system A has only finitely many solutions (x1, . . . , x6) ∈ (N \ {0})6 with
x1 ∈ {1, 2}. For every integer x1 > 3, the system A is solvable in positive integers x2, . . . , x6

if and only if Γ(x1) + 1 is a square. In this case, x1 > 5, the numbers x2, . . . , x6 are uniquely
determined by x1, and x1 = min(x1, . . . , x6).

Proof. All the statements in this Lemma, except the equality x1 = min(x1, . . . , x6), follow from
Lemma 1. Lemma 3 and the inequality x1 > 5 imply that x1 = min(x1, . . . , x6). �

Theorem 2. For every positive integer b, if Γ(x1) + 1 is a square for at most finitely many
positive integers x1, then the statement Ψ(6, b) implies that each such x1 satisfies x1 6 b.

Proof. Let us assume that for a positive integer x1 there exists a positive integer x2

such that Γ(x1) + 1 = x2
2. Then, x1 > 5. By Lemma 5, there exists a unique tuple

(x2, . . . , x6) ∈ (N \ {0})5 such that the tuple (x1, . . . , x6) solves the system A. Lemma 5
guarantees that x1 = min(x1, . . . , x6). By the antecedent and Lemma 5, the system A has only
finitely many solutions in positive integers x1, . . . , x6. Therefore, the statement Ψ(6, b) implies
that x1 = min(x1, . . . , x6) 6 b. �

4. Are there infinitely many prime numbers of the form n2 + 1?
Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see

[2, pp. 37–38].

Let B ⊆ G9 be the system of equations illustrated in Figure 3. Lemma 1 explains the
construction of the system B.
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Fig. 3 Construction of the system B

Lemma 6. The system B has only finitely many solutions (x1, . . . , x9) ∈ (N \ {0})9 with x1 = 1.
For every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if and only
if x2

1 + 1 is prime. In this case, the numbers x2, . . . , x9 are uniquely determined by x1, and
x1 = min(x1, . . . , x9).

Proof. By Lemma 1, for every integer x1 > 2, the system B is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 divides Γ(x2
1 + 1) + 1. By Lemma 2, the last is true if and only if

x2
1 + 1 is prime. The inequality x1 > 2 and Lemma 4 imply that x1 = min(x1, . . . , x9). �

Theorem 3. For every positive integer b, the statement Ψ(9, b) proves the implication: if there
exists an integer x1 > b such that x2

1 + 1 is prime, then there are infinitely many primes of the
form n2 + 1.

Proof. Let us assume that a positive integer x1 is greater than b and x2
1 + 1 is prime. Since b > 1,

we obtain that x1 > 2. By Lemma 6, there exists a unique tuple (x2, . . . , x9) ∈ (N \ {0})8 such
that the tuple (x1, . . . , x9) solves the system B. Lemma 6 guarantees that x1 = min(x1, . . . , x9).
Since B ⊆ G9, we obtain that the statement Ψ(9, b) and the inequality b < x1 = min(x1, . . . , x9)
imply that the system B has infinitely many solutions (x1, . . . , x9) ∈ (N \ {0})9. According to
Lemma 6, there are infinitely many primes of the form n2 + 1. �

5. The twin prime conjecture
A twin prime is a prime number that is either 2 less or 2 more than another prime number.

The twin prime conjecture states that there are infinitely many twin primes, see [2, p. 39].

Let C ⊆ G14 be the system of equations illustrated in Figure 4. Lemma 1 explains the
construction of the system C.

4



Fig. 4 Construction of the system C

Lemma 7. The system C has only finitely many solutions (x1, . . . , x14) ∈ (N \ {0})14 with
x1 ∈ {1, 2, 3, 4}. For every integer x1 > 5, the system C is solvable in positive integers x2, . . . , x14

if and only if x1 and x1 + 2 are prime. In this case, the numbers x2, . . . , x14 are uniquely
determined by x1, and x1 = min(x1, . . . , x14).

Proof. By Lemma 1, for every integer x1 > 5, the system C is solvable in positive integers
x2, . . . , x14 if and only if x1 divides Γ(x1) + 1 and x1 + 2 divides Γ(x1 + 2) + 1. By Lemma 2, the
last is true if and only if x1 and x1 + 2 are prime. The inequality x1 > 5 and Lemma 4 imply that
x1 = min(x1, . . . , x14). �
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Theorem 4. For every integer b > 4, the statement Ψ(14, b) proves the implication: if there
exists a twin prime greater than b + 2, then there are infinitely many twin primes.

Proof. Let us assume that there exists a prime number x1 such that x1 + 2 is prime and
x1 + 2 > b + 2. Since b > 4, we obtain that x1 > 5. By Lemma 7, there exists a unique
tuple (x2, . . . , x14) ∈ (N \ {0})13 such that the tuple (x1, . . . , x14) solves the system C. Lemma 7
guarantees that x1 = min(x1, . . . , x14). Since C ⊆ G14, we conclude that the statement Ψ(14, b)
and the inequality b < x1 = min(x1, . . . , x14) imply that the system C has infinitely many
solutions in positive integers x1, . . . , x14. According to Lemma 7, there are infinitely many
twin primes. �

The inequality f (14) + 2 < (((((((((24!)!)!)!)!)!)!)!)!)! together with the Conjecture and
Theorem 4 justifies the title of the article.
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