

Apoloniusz Tyszka

Abstract

For a positive integer, let $\Gamma(n)$ denote (n-1)!. Let f(5) = 24!, and let $f(n + 1) = \Gamma(f(n))$ for every integer $n \ge 5$. For an integer $n \ge 5$, let T(n) denote the statement: if a system of equations $S \subseteq \{\Gamma(x_i) = x_k : i, k \in \{1, ..., n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$ has at most finitely many solutions in positive integers $x_1, ..., x_n$, then each such solution $(x_1, ..., x_n)$ satisfies $\min(x_1, ..., x_n) \le f(n)$. We conjecture that the statements T(5), ..., T(14) are true. The statement T(6) implies that if x! + 1 is a square for at most finitely many non-negative integers x then each such x satisfies $x \le f(6)$. The statement T(9) proves the implication: if there exists an integer x > f(9) such that $x^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$. The statement T(14) proves the implication: if there exists a twin prime greater than f(14) + 2, then there are infinitely many twin primes.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, prime numbers of the form $n^2 + 1$, twin prime conjecture, Wilson's theorem.

2010 Mathematics Subject Classification: 11A41.

1. Introduction and basic lemmas

In this article, we study a conjecture which applies to Brocard's problem, the problem of the infinitude of primes of the form $n^2 + 1$, and the twin prime problem. The conjecture allows us to compute an integer b_6 such that if x! + 1 is a square for at most finitely many non-negative integers x then each such x satisfies $x \le b_6$. The conjecture allows us to compute an integer b_9 such that any prime number of the form $n^2 + 1$ which is greater than b_9 proves that the set of prime numbers of the form $n^2 + 1$ is infinite. The conjecture allows us to compute an integer b_{14} such that any twin prime greater than $b_{14} + 2$ proves that the set of twin primes is infinite.

For a positive integer, let $\Gamma(n)$ denote (n - 1)!.

Lemma 1. For every positive integers x and y, $x \cdot \Gamma(x) = \Gamma(y)$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Lemma 2. (Wilson's theorem, [1, p. 89]). For every integer $x \ge 2$, x is prime if and only if x divides $\Gamma(x) + 1$.

Lemma 3. For every integer $x \ge 5$, we have $x \le \sqrt{\Gamma(x) + 1}$.

Lemma 4. For every integer $x \ge 5$, we have $x \le \frac{\Gamma(x) + 1}{x}$.

2. A conjecture on the statements $\Psi(n, b)$

For a positive integer n, let G_n denote the following system of equations:

$$\left\{\Gamma(x_i) = x_k : i, k \in \{1, \dots, n\}\right\} \cup \left\{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\right\}$$

For positive integers *n* and *b*, let $\Psi(n, b)$ denote the statement: if a system $S \subseteq G_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq b$.

Theorem 1. For every positive integer *n*, there exists an integer $b \ge 4$ such that the statement $\Psi(n, b)$ is true.

Proof. It follows from the fact that the system G_n has a finite number of subsystems. \Box

Let f(5) = 24!, and let $f(n + 1) = \Gamma(f(n))$ for every integer $n \ge 5$. For an integer $n \ge 5$, let $\mathcal{U}_n \subseteq G_n$ be the system of equations illustrated in Figure 1. Lemma 1 explains the construction of the system \mathcal{U}_n .

Fig. 1 Construction of the system \mathcal{U}_n

For every integer $n \ge 5$, the system \mathcal{U}_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(5, 24, 23!, 25, f(5), \ldots, f(n))$.

Conjecture. For every integer $n \in \{5, ..., 14\}$, the statement $\Psi(n, f(n))$ is true.

We present a heuristic reasoning that leads to the Conjecture. Let $n \in \{5, ..., 14\}$. We consider subsystems of the system G_n which have only finitely many solutions in positive integers $x_1, ..., x_n$. We conjecture that the largest number in the largest known solution majorizes min $(x_1, ..., x_n)$ for every tuple $(x_1, ..., x_n) \in (\mathbb{N} \setminus \{0\})^n$ that solves a subsystem of G_n .

3. Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $\Gamma(x) + 1 = y^2$, see [3]. It is conjectured that $\Gamma(x) + 1$ is a square only for $x \in \{5, 6, 8\}$, see [4, p. 297].

Let $\mathcal{A} \subseteq G_6$ be the system of equations illustrated in Figure 2. Lemma 1 explains the construction of the system \mathcal{A} .

Fig. 2 Construction of the system \mathcal{A}

Lemma 5. The system \mathcal{A} has only finitely many solutions $(x_1, \ldots, x_6) \in (\mathbb{N} \setminus \{0\})^6$ with $x_1 \in \{1, 2\}$. For every integer $x_1 \ge 3$, the system \mathcal{A} is solvable in positive integers x_2, \ldots, x_6 if and only if $\Gamma(x_1) + 1$ is a square. In this case, $x_1 \ge 5$, the numbers x_2, \ldots, x_6 are uniquely determined by x_1 , and $x_1 = \min(x_1, \ldots, x_6)$.

Proof. All the statements in this Lemma, except the equality $x_1 = \min(x_1, \ldots, x_6)$, follow from Lemma 1. Lemma 3 and the inequality $x_1 \ge 5$ imply that $x_1 = \min(x_1, \ldots, x_6)$.

Theorem 2. For every positive integer b, if $\Gamma(x_1) + 1$ is a square for at most finitely many positive integers x_1 , then the statement $\Psi(6, b)$ implies that each such x_1 satisfies $x_1 \leq b$.

Proof. Let us assume that for a positive integer x_1 there exists a positive integer x_2 such that $\Gamma(x_1) + 1 = x_2^2$. Then, $x_1 \ge 5$. By Lemma 5, there exists a unique tuple $(x_2, \ldots, x_6) \in (\mathbb{N} \setminus \{0\})^5$ such that the tuple (x_1, \ldots, x_6) solves the system \mathcal{A} . Lemma 5 guarantees that $x_1 = \min(x_1, \ldots, x_6)$. By the antecedent and Lemma 5, the system \mathcal{A} has only finitely many solutions in positive integers x_1, \ldots, x_6 . Therefore, the statement $\Psi(6, b)$ implies that $x_1 = \min(x_1, \ldots, x_6) \le b$.

4. Are there infinitely many prime numbers of the form $n^2 + 1$?

Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [2, pp. 37–38].

Let $\mathcal{B} \subseteq G_9$ be the system of equations illustrated in Figure 3. Lemma 1 explains the construction of the system \mathcal{B} .

Fig. 3 Construction of the system \mathcal{B}

Lemma 6. The system \mathcal{B} has only finitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ with $x_1 = 1$. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the numbers x_2, \ldots, x_9 are uniquely determined by x_1 , and $x_1 = \min(x_1, \ldots, x_9)$.

Proof. By Lemma 1, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ divides $\Gamma(x_1^2 + 1) + 1$. By Lemma 2, the last is true if and only if $x_1^2 + 1$ is prime. The inequality $x_1 \ge 2$ and Lemma 4 imply that $x_1 = \min(x_1, \ldots, x_9)$.

Theorem 3. For every positive integer b, the statement $\Psi(9, b)$ proves the implication: if there exists an integer $x_1 > b$ such that $x_1^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Let us assume that a positive integer x_1 is greater than b and $x_1^2 + 1$ is prime. Since $b \ge 1$, we obtain that $x_1 \ge 2$. By Lemma 6, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, \ldots, x_9) solves the system \mathcal{B} . Lemma 6 guarantees that $x_1 = \min(x_1, \ldots, x_9)$. Since $\mathcal{B} \subseteq G_9$, we obtain that the statement $\Psi(9, b)$ and the inequality $b < x_1 = \min(x_1, \ldots, x_9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemma 6, there are infinitely many primes of the form $n^2 + 1$.

5. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [2, p. 39].

Let $C \subseteq G_{14}$ be the system of equations illustrated in Figure 4. Lemma 1 explains the construction of the system *C*.

Fig. 4 Construction of the system C

Lemma 7. The system C has only finitely many solutions $(x_1, \ldots, x_{14}) \in (\mathbb{N} \setminus \{0\})^{14}$ with $x_1 \in \{1, 2, 3, 4\}$. For every integer $x_1 \ge 5$, the system C is solvable in positive integers x_2, \ldots, x_{14} if and only if x_1 and $x_1 + 2$ are prime. In this case, the numbers x_2, \ldots, x_{14} are uniquely determined by x_1 , and $x_1 = \min(x_1, \ldots, x_{14})$.

Proof. By Lemma 1, for every integer $x_1 \ge 5$, the system *C* is solvable in positive integers x_2, \ldots, x_{14} if and only if x_1 divides $\Gamma(x_1) + 1$ and $x_1 + 2$ divides $\Gamma(x_1 + 2) + 1$. By Lemma 2, the last is true if and only if x_1 and $x_1 + 2$ are prime. The inequality $x_1 \ge 5$ and Lemma 4 imply that $x_1 = \min(x_1, \ldots, x_{14})$.

Theorem 4. For every integer $b \ge 4$, the statement $\Psi(14, b)$ proves the implication: if there exists a twin prime greater than b + 2, then there are infinitely many twin primes.

Proof. Let us assume that there exists a prime number x_1 such that $x_1 + 2$ is prime and $x_1 + 2 > b + 2$. Since $b \ge 4$, we obtain that $x_1 \ge 5$. By Lemma 7, there exists a unique tuple $(x_2, \ldots, x_{14}) \in (\mathbb{N} \setminus \{0\})^{13}$ such that the tuple (x_1, \ldots, x_{14}) solves the system *C*. Lemma 7 guarantees that $x_1 = \min(x_1, \ldots, x_{14})$. Since $C \subseteq G_{14}$, we conclude that the statement $\Psi(14, b)$ and the inequality $b < x_1 = \min(x_1, \ldots, x_{14})$ imply that the system *C* has infinitely many solutions in positive integers x_1, \ldots, x_{14} . According to Lemma 7, there are infinitely many twin primes.

References

- [1] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [2] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [3] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [4] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl