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Abstract

Let Γ(k) denote (k − 1)!, and let Γn(k) denote (k − 1)!, where n ∈ {3, . . . , 16} and
k ∈ {2} ∪ [22n−3

+ 1,∞) ∩ N. For an integer n ∈ {3, . . . , 16}, let Σn denote the following statement:
if a system of equations S ⊆ {Γn(xi) = xk : i, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}} with
Γ instead of Γn has only finitely many solutions in positive integers x1, . . . , xn, then every tuple

(x1, . . . , xn) ∈ (N \ {0})n that solves the original system S satisfies x1, . . . , xn 6 22n−2
. Our hypothe-

sis claims that the statements Σ3, . . . ,Σ16 are true. The statement Σ6 proves the following implication:
if the equation x(x + 1) = y! has only finitely many solutions in positive integers x and y, then each
such solution (x, y) belongs to the set {(1, 2), (2, 3)}. The statement Σ6 proves the following implica-
tion: if the equation x! + 1 = y2 has only finitely many solutions in positive integers x and y, then
each such solution (x, y) belongs to the set {(4, 5), (5, 11), (7, 71)}. The statement Σ9 implies the in-
finitude of primes of the form n2 + 1. The statement Σ9 implies that any prime of the form n! + 1 with

n > 229−3
proves the infinitude of primes of the form n! + 1. The statement Σ14 implies the infinitude

of twin primes. The statement Σ16 implies the infinitude of Sophie Germain primes.
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1 Introduction and basic lemmas

The phrase “we know a non-negative integer n” in the title means that we know an algorithm which re-
turns n. The title of the article cannot be formalized in ZFC because the phrase “we know a non-negative
integer n” refers to currently known non-negative integers n with some property. A formally stated title
may look like this: On ZFC-formulae ϕ(x) for which there exists a non-negative integer n such that ZFC
proves that

card({x ∈ N : ϕ(x)}) < ∞ =⇒ max({x ∈ N : ϕ(x)}) 6 n

Unfortunately, this formulation admits formulae ϕ(x) without any known non-negative integer n such
that ZFC proves the above implication.

We say that a non-negative integer m is a threshold number of a set X ⊆ N, if X is infinite if and only
if X contains an element greater than m, cf. [17] and [18]. If a set X ⊆ N is empty or infinite, then any
non-negative integer m is a threshold number of X. If a set X ⊆ N is non-empty and finite, then the all
threshold numbers of X form the set {max(X),max(X) + 1,max(X) + 2, . . .}.
Lemma 1. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Let Γ(k) denote (k − 1)!.
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Lemma 2. For every positive integers x and y, x · Γ(x) = Γ(y) if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 3. For every non-negative integers b and c, b + 1 = c if and only if 22b · 22b
= 22c

.

Lemma 4. (Wilson’s theorem, [4, p. 89]). For every positive integer x, x divides (x − 1)! + 1 if and only
if x = 1 or x is prime.

2 A variant of chess leads to a non-trivial subset ofNwith a known thresh-
old number

Let us assume that there are no draws, castlings, and en passant captures. Let us assume that a player
with no moves loses. As such, the game may continue forever. Let H denote the set of all positive
integers n such that an appropriate strategy of Black guarantees that White cannot enforce a win in less
than n moves.

Lemma 5. ([11, p. 128]). A player who is in a winning position is always able to enforce a win in a
number of moves that is less than the number of positions in the game.

Lemma 6. The number of positions does not exceed 1364.

Proof. With castlings or en passant captures, a legality of a move depends not only on the positions of
the pieces on the board. Without castlings and en passant captures, we observe that 13 corresponds to 12
distinct pieces and the empty square. 64 is the number of squares on the chessboard. �

Lemmas 5 and 6 imply the following corollary.

Corollary 1. If White have a winning strategy, then H ⊆ [1, 1364 − 1]. Otherwise, H = N \ {0}.
The number 1364 − 1 is a threshold number of H , and we can decide the equality H = N \ {0}. If
H , N \ {0}, then we can computeH and max(H).

3 A Diophantine equation whose non-solvability expresses the consis-
tency of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply
the following theorem.

Theorem 1. ([3, p. 35]). There exists a polynomial D(x1, . . . , xm) with integer coefficients such that
if ZFC is arithmetically consistent, then the sentences ”The equation D(x1, . . . , xm) = 0 is solvable in
non-negative integers” and ”The equation D(x1, . . . , xm) = 0 is not solvable in non-negative integers”
are not provable in ZFC.

Let Y denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0 has no
solutions in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, we know an algorithm which for every n ∈ N
decides whether or not n ∈ Y. Let E denote the set of all non-negative integers k such that the equation
D(x1, . . . , xm) = 0 has a solution in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, we know an algorithm
which for every n ∈ N decides whether or not n ∈ E. Theorem 1 implies Theorems 2 and 3.

Theorem 2. If ZFC is arithmetically consistent, then for every n ∈ N the sentences ”n is a threshold
number of Y” and ”n is not a threshold number of Y” are not provable in ZFC.

Theorem 3. The set E is empty or infinite. In both cases, every non-negative integer n is a threshold
number of E. If ZFC is arithmetically consistent, then the sentences ”E is empty”, ”E is not empty”,
”E is finite”, and ”E is infinite” are not provable in ZFC.
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4 Hypothetical statements Ψ3, . . . ,Ψ16

For an integer n > 3, letUn denote the following system of equations:
∀i ∈ {1, . . . , n − 1} \ {2} xi! = xi+1

x1 · x2 = x3
x2 · x2 = x3

The diagram in Figure 1 illustrates the construction of the systemUn.

x1

!

x2

squaring

x3

!
x4

. . .
xn−1

!
xn

x1 · x2 = x3

Fig. 1 Construction of the systemUn

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3.

Lemma 7. For every integer n > 3, the systemUn has exactly two solutions in positive integers, namely
(1, . . . , 1) and

(
2, 2, g(3), . . . , g(n)

)
.

Let
Bn =

{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i , k)

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For an integer n > 3, let Ψn denote the following statement: if a system S ⊆ Bn has only finitely many
solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 g(n).
The statement Ψn says that for subsystems of Bn the largest known solution is indeed the largest possible.

Hypothesis 1. The statements Ψ3, . . . ,Ψ16 are true.

Theorem 4. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

Theorem 5. For every statement Ψn, the bound g(n) cannot be decreased.

Proof. It follows from Lemma 7 becauseUn ⊆ Bn. �

5 The Brocard-Ramanujan equation x! + 1 = y2

LetA denote the following system of equations:

x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 1 and the diagram in Figure 2 explain the construction of the systemA.
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x1
! x2 x4

squaringx5+1
or x2 = x5 = 1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA
Lemma 8. For every x1, x4 ∈ N \ {0, 1}, the systemA is solvable in positive integers x2, x3, x5, x6 if and
only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are uniquely determined by the following
equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

Proof. It follows from Lemma 1. �

It is conjectured that x! + 1 is a perfect square only for x ∈ {4, 5, 7}, see [14, p. 297]. A weak form of
Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y2, see [9].

Theorem 6. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers, then the

statement Ψ6 guarantees that each such solution (x1, x4) belongs to the set {(4, 5), (5, 11), (7, 71)}.
Proof. Suppose that the antecedent holds. Let positive integers x1 and x4 satisfy x1! + 1 = x2

4. Then,
x1, x4 ∈ N \ {0, 1}. By Lemma 8, the system A is solvable in positive integers x2, x3, x5, x6. Since
A ⊆ B6, the statement Ψ6 implies that x6 = (x1! + 1)! 6 g(6) = g(5)!. Hence, x1! + 1 6 g(5) = g(4)!.
Consequently, x1 < g(4) = 24. If x1 ∈ {1, . . . , 23}, then x1! + 1 is a perfect square only for
x1 ∈ {4, 5, 7}. �

6 Are there infinitely many prime numbers of the form n2 + 1?

Let B denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 1 and the diagram in Figure 3 explain the construction of the system B.
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x1
squaring x2 +1

or x2 = x5 = 1

x5 ! x6

!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B
Lemma 9. For every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if and only if
x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 1, for every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if
and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 9 follows from Lemma 4. �

Lemma 10. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 which solve the system B and
satisfy x1 = 1.

Proof. If a tuple (x1, . . . , x9) ∈ (N \ {0})9 solves the system B and x1 = 1, then x1, . . . , x9 6 2. Indeed,
x1 = 1 implies that x2 = x2

1 = 1. Hence, for example, x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1.
Consequently, x9 = x8! 6 2. �

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[8, pp. 37–38].

Theorem 7. The statement Ψ9 proves the following implication: if there exists an integer x1 > 2 such
that x2

1 + 1 is prime and greater than g(7), then there are infinitely many primes of the form n2 + 1.

Proof. Suppose that the antecedent holds. By Lemma 9, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system B. Since x2

1 + 1 > g(7),
we obtain that x2

1 > g(7). Hence, (x2
1)! > g(7)! = g(8). Consequently,

x9 = ((x2
1)! + 1)! > (g(8) + 1)! > g(8)! = g(9)

Since B ⊆ B9, the statement Ψ9 and the inequality x9 > g(9) imply that the system B has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 9 and 10, there are infinitely many primes of
the form n2 + 1. �
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Corollary 2. Let X9 denote the set of primes of the form n2 + 1. The statement Ψ9 implies that we know
an algorithm such that it returns a threshold number of X9, and this number equals max(X9), if X9 is
finite.

Proof. We consider an algorithm which computes max(X9 ∩ [1, g(7)]). �

7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and [12].

Theorem 8. (cf. Theorem 12). The statement Ψ9 proves the following implication: if there exists an
integer x1 > g(6) such that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. �

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [8, p. 39]. Let C denote the following system of
equations: 

x1! = x2
x2! = x3
x4! = x5
x6! = x7
x7! = x8
x9! = x10

x12! = x13
x15! = x16

x2 · x4 = x5
x5 · x6 = x7
x7 · x9 = x10

x4 · x11 = x12
x3 · x12 = x13
x9 · x14 = x15
x8 · x15 = x16

Lemma 1 and the diagram in Figure 4 explain the construction of the system C.
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!

x5

!

x10

x1
+1

or x1 = x4 = 1

x4 +1
or x4 = x6 = 1

x6 +1
or x6 = x9 = 1

x9

x2
+1

or x2 = x12 = 1
x12

+1
or x7 = x15 = 1

x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 4 Construction of the system C
Lemma 11. For every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers
x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if x4 and x9 are prime and x4 + 2 = x9.
In this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 are uniquely determined by
the following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

Proof. By Lemma 1, for every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers x1, x2,
x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if(

x4 + 2 = x9
)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)
Hence, the claim of Lemma 11 follows from Lemma 4. �
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Lemma 12. There are only finitely many tuples (x1, . . . , x16) ∈ (N \ {0})16 which solve the system C and
satisfy

(x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2})
Proof. If a tuple (x1, . . . , x16) ∈ (N \ {0})16 solves the system C and

(x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2})

then x1, . . . , x16 6 7!. Indeed, for example, if x4 = 2 then x6 = x4 + 1 = 3. Hence, x7 = x6! = 6. There-
fore, x15 = x7 + 1 = 7. Consequently, x16 = x15! = 7!. �

Theorem 9. The statement Ψ16 proves the following implication: if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such
that x9 = x4 + 2 > g(14). Hence, x4, x9 ∈ N \ {0, 1, 2}. By Lemma 11, there exists a
unique tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0})14 such that the tuple
(x1, . . . , x16) solves the system C. Since x9 > g(14), we obtain that x9 − 1 > g(14). Therefore,
(x9 − 1)! > g(14)! = g(15). Hence, (x9 − 1)! + 1 > g(15). Consequently,

x16 = ((x9 − 1)! + 1)! > g(15)! = g(16)

Since C ⊆ B16, the statement Ψ16 and the inequality x16 > g(16) imply that the system C has infinitely
many solutions in positive integers x1, . . . , x16. According to Lemmas 11 and 12, there are infinitely
many twin primes. �

Corollary 3. LetX16 denote the set of twin primes. The statement Ψ16 implies that we know an algorithm
such that it returns a threshold number of X16, and this number equals max(X16), if X16 is finite.

Proof. We consider an algorithm which computes max(X16 ∩ [1, g(14)]). �

9 Hypothetical statements ∆5, . . . ,∆14 about the Gamma function and
their consequences

Let λ(5) = Γ(25), and let λ(n + 1) = Γ(λ(n)) for every integer n > 5. For an integer n > 5, let Jn denote
the following system of equations:

∀i ∈ {1, . . . , n − 1} \ {3} Γ(xi) = xi+1
x1 · x1 = x4
x2 · x3 = x5

Lemma 2 and the diagram in Figure 5 explain the construction of the system Jn.
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x1

Γ

x2

Γ

x3

squaring

x4
+1

or x2 = x4 = 1

Γ

x5

Γ

x6
. . .

xn−1

Γ

xn
x2 · x3 = x5

Fig. 5 Construction of the system Jn

For every integer n > 5, the system Jn has exactly two solutions in positive integers, namely
(1, . . . , 1) and (5, 24, 23!, 25, λ(5), . . . , λ(n)). For an integer n > 5, let ∆n denote the following statement:
if a system S ⊆

{
Γ(xi) = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
has only finitely many

solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 λ(n).

Hypothesis 2. The statements ∆5, . . . ,∆14 are true.

Lemmas 2 and 4 imply that the statements ∆n have similar consequences as the statements Ψn.

Theorem 10. The statement ∆6 implies that any prime number p > 25 proves the infinitude of primes.

Proof. It follows from Lemmas 2 and 4. We leave the details to the reader. �

10 Hypothetical statements Σ3, . . . ,Σ16 about the Gamma function and
their consequences

Let Γn(k) denote (k − 1)!, where n ∈ {3, . . . , 16} and k ∈ {2} ∪ [22n−3
+ 1,∞) ∩ N. For an integer

n ∈ {3, . . . , 16}, let

Qn = {Γn(xi) = xk : i, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}}
For an integer n ∈ {3, . . . , 16}, let Pn denote the following system of equations:

x1 · x1 = x1
Γn(x2) = x1

∀i ∈ {2, . . . , n − 1} xi · xi = xi+1

Lemma 13. For every integer n ∈ {3, . . . , 16}, Pn ⊆ Qn and the system Pn with Γ instead of Γn has exactly

one solution in positive integers x1, . . . , xn, namely
(
1, 220

, 221
, 222

, . . . , 22n−2
)
.

For an integer n ∈ {3, . . . , 16}, let Σn denote the following statement: if a system of equations S ⊆ Qn

with Γ instead of Γn has only finitely many solutions in positive integers x1, . . . , xn, then every tuple

(x1, . . . , xn) ∈ (N \ {0})n that solves the original system S satisfies x1, . . . , xn 6 22n−2
.

Hypothesis 3. The statements Σ3, . . . ,Σ16 are true.

Lemma 14. (cf. Lemma 2). For every integer n ∈ {4, . . . , 16} and for every positive integers x and y,

x · Γn(x) = Γn(y) if and only if (x + 1 = y) ∧
(
x > 22n−3

+ 1
)
.
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LetZ9 ⊆ Q9 be the system of equations in Figure 6.

x1
squaring x2 +1 x3

+1 x6

Γ9

x4

Γ9

x5

Γ9

x7

Γ9

x8

x2 · x4 = x5

x3 · x9 = x6

x5 · x7 = x8

Fig. 6 Construction of the systemZ9

Lemma 15. For every positive integer x1, the systemZ9 is solvable in positive integers x2, . . . , x9 if and

only if x1 > 229−4
and x2

1 + 1 is prime. In this case, positive integers x2, . . . , x9 are uniquely determined
by x1. For every positive integer n, at most finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 begin with n and
solve the systemZ9 with Γ instead of Γ9.

Proof. It follows from Lemmas 2, 4, and 14. �

Lemma 16. ([13]). The number (13!)2 + 1 = 38775788043632640001 is prime.

Lemma 17.
(
(13!)2 > 229−3

+ 1 = 18446744073709551617
)
∧

(
Γ9((13!)2) > 229−2

)
.

Theorem 11. The statement Σ9 implies the infinitude of primes of the form n2 + 1.

Proof. It follows from Lemmas 15–17. �

Theorem 12. (cf. Theorem 8). The statement Σ9 implies that any prime of the form n! + 1 with n > 229−3

proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. �

Corollary 4. Let Y9 denote the set of primes of the form n! + 1. The statement Σ9 implies that we know
an algorithm such that it returns a threshold number of Y9, and this number equals max(Y9), if Y9 is
finite.

Proof. We consider an algorithm which computes max(Y9 ∩ [1, (229−3 − 1)! + 1]). �
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LetZ14 ⊆ Q14 be the system of equations in Figure 7.

x1

x5

Γ14

Γ14

x9

x2

Γ14

x4

x6

Γ14

x10

x3

Γ14

x7

Γ14

x11

x8

Γ14

x12

+1 +1

+1

+1

x1 · x13 = x6

x1 · x5 = x4

x5 · x9 = x10

x2 · x4 = x7

x3 · x14 = x8

x7 · x11 = x12

Fig. 7 Construction of the systemZ14

Lemma 18. For every positive integer x1, the system Z14 is solvable in positive integers x2, . . . , x14

if and only if x1 and x1 + 2 are prime and x1 > 2214−3
+ 1. In this case, positive integers

x2, . . . , x14 are uniquely determined by x1. For every positive integer n, at most finitely many tuples
(x1, . . . , x14) ∈ (N \ {0})14 begin with n and solve the systemZ14 with Γ instead of Γ14.

Proof. It follows from Lemmas 2, 4, and 14. �

Lemma 19. ([16, p. 87]). The numbers 459 · 28529 − 1 and 459 · 28529 + 1 are prime (Harvey Dub-
ner).

Lemma 20. 459 · 28529 − 1 > 2214−2
= 24096.

Theorem 13. The statement Σ14 implies the infinitude of twin primes.

Proof. It follows from Lemmas 18–20. �
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A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [15]. Let
Z16 ⊆ Q16 be the system of equations in Figure 8.

x2

Γ16

x3

multiplying

x1

Γ16

x6

Γ16

x11

x4

Γ16

x8

x7

Γ16

x12

x5

Γ16

x9

Γ16

x13

x10

Γ16

x14

+1

+1

+1

x3 · x3 = x3

x1 · x15 = x7

x6 · x11 = x12

x4 · x8 = x9

x5 · x16 = x10

x9 · x13 = x14

Fig. 8 Construction of the systemZ16

Lemma 21. For every positive integer x1, the system Z16 is solvable in positive integers x2, . . . , x16

if and only if x1 is a Sophie Germain prime and x1 > 2216−3
+ 1. In this case, positive integers

x2, . . . , x16 are uniquely determined by x1. For every positive integer n, at most finitely many tuples
(x1, . . . , x16) ∈ (N \ {0})16 begin with n and solve the systemZ16 with Γ instead of Γ16.

Proof. It follows from Lemmas 2, 4, and 14. �

Lemma 22. ([10, p. 330]). 8069496435 · 105072 − 1 is a Sophie Germain prime (Harvey Dubner).

Lemma 23. 8069496435 · 105072 − 1 > 2216−2
.

Theorem 14. The statement Σ16 implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas 21–23. �

Theorem 15. The statement Σ6 proves the following implication: if the equation x(x + 1) = y! has only
finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set
{(1, 2), (2, 3)}.
Proof. We leave the proof to the reader. �

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [1]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive
integers, see [7].

Theorem 16. The statement Σ6 proves the following implication: if the equation x! + 1 = y2 has only
finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set
{(4, 5), (5, 11), (7, 71)}.
Proof. We leave the proof to the reader. �
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11 Are there infinitely many composite Fermat numbers?

Integers of the form 22n
+ 1 are called Fermat numbers. Primes of the form 22n

+ 1 are called Fermat
primes, as Fermat conjectured that every integer of the form 22n

+ 1 is prime, see [6, p. 1]. Fermat

correctly remarked that 220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257, and 224
+ 1 = 65537

are all prime, see [6, p. 1].

Open Problem. ([6, p. 159]). Are there infinitely many composite numbers of the form 22n
+ 1?

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [5, p. 23]. Let

Hn =
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}

Let h(1) = 1, and let h(n + 1) = 22h(n)
for every positive integer n.

Lemma 24. The following subsystem of Hn x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (h(1), . . . , h(n)).

For a positive integer n, let ξn denote the following statement: if a system S ⊆ Hn has only
finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 h(n). The statement ξn says that for subsystems of Hn the largest known solution is indeed
the largest possible.

Hypothesis 4. The statements ξ1, . . . , ξ13 are true.

Theorem 17. Every statement ξn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Hn has a finite number of subsystems. �

Theorem 18. The statement ξ13 proves the following implication: if z ∈ N \ {0} and 22z
+ 1 is composite

and greater than h(12), then 22z
+ 1 is composite for infinitely many positive integers z.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (1)

in positive integers. By Lemma 3, we can transform equation (1) into an equivalent system G which has
13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms α · β = γ and
22α = γ, see the diagram in Figure 9.
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Fig. 9 Construction of the system G

Since 22z
+ 1 > h(12), we obtain that 2222z

+1
> h(13). By this, the statement ξ13 implies that the

system G has infinitely many solutions in positive integers. It means that there are infinitely many
composite Fermat numbers. �

Corollary 5. LetW13 denote the set of composite Fermat numbers. The statement ξ13 implies that we
know an algorithm such that it returns a threshold number ofW13, and this number equals max(W13),
ifW13 is finite.

Proof. We consider an algorithm which computes max(W13 ∩ [1, h(12)]). �
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