On ZFC-formulae ¢(x) for which we know a non-negative
integer n such that max({x € N: ¢(x)}) < n if the set
{x € N: ¢(x)} is finite
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Abstract

Let T'(k) denote (k—1)!, and let I,(k) denote (k—1)!, where ne({3,...,16} and
ke{2}u [22’1_3 + 1,00) N N. For an integer n € {3,..., 16}, let Z, denote the following statement:
if a system of equations S C {[,(x;) = x¢ : i, ke(l,...,n}U{x;-x;=x¢: i, j,ke{l,...,n}} with
I instead of I',, has only finitely many solutions in positive integers xi,..., x,, then every tuple
(x1,...,x,) € (N'\ {0})" that solves the original system S satisfies xi, ..., x,; < 22n_2. Our hypothe-
sis claims that the statements X3, ..., X4 are true. The statement Xg proves the following implication:
if the equation x(x + 1) = y! has only finitely many solutions in positive integers x and y, then each
such solution (x, y) belongs to the set {(1,2), (2,3)}. The statement Z¢ proves the following implica-
tion: if the equation x! + 1 = y? has only finitely many solutions in positive integers x and y, then
each such solution (x,y) belongs to the set {(4,5), (5, 11),(7,71)}. The statement £y implies the in-
finitude of primes of the form n” + 1. The statement Xo implies that any prime of the form n! + 1 with
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n>22 proves the infinitude of primes of the form n! + 1. The statement X4 implies the infinitude
of twin primes. The statement X4 implies the infinitude of Sophie Germain primes.
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mat numbers, Erdos’ equation x(x + 1) = y!, prime numbers of the form n? + 1, prime numbers of the
form n! + 1, Sophie Germain primes, twin primes.
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1 Introduction and basic lemmas

The phrase “we know a non-negative integer n” in the title means that we know an algorithm which re-
turns n. The title of the article cannot be formalized in ZFC because the phrase “we know a non-negative
integer n” refers to currently known non-negative integers n with some property. A formally stated title
may look like this: On ZFC-formulae ¢(x) for which there exists a non-negative integer n such that ZFC
proves that

card({x e N: ¢(x)}) < co = max({x € N: ¢(x)}) <n

Unfortunately, this formulation admits formulae ¢(x) without any known non-negative integer n such
that ZFC proves the above implication.

Lemma 1. For every positive integers x and y, x! - y = y! if and only if
(x+l=y)vix=y=1
Let I'(k) denote (k — 1)!.
Lemma 2. For every positive integers x and y, x - I'(x) = I'(y) if and only if

(x+l=y)vix=y=1
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Lemma 3. For every non-negative integers b and c, b + 1 = c if and only if 227027 = 226.
Lemma 4. (Wilson’s theorem, [4, p. 89]). For every positive integer x, x divides (x — 1)! + 1 if and only
if x =1 or x is prime.

We say that a non-negative integer m is a threshold number of a set X C N, if X is infinite if and only
if X contains an element greater than m, cf. [20] and [21]]. If a set X C N is empty or infinite, then any
non-negative integer m is a threshold number of X. If a set X C N is non-empty and finite, then the all
threshold numbers of X form the set {max(X), max(X) + 1, max(X) + 2,...}.

2 Subsets of N and their threshold numbers

The height of a rational number % is denoted by H (f]—’) and equals max(|p|, |g|) provided 1—; is written
in lowest terms. The height of a rational tuple (xi,...,x,) is denoted by H(xy,...,x,) and equals
max(H(xy),...,H(x,)).

Lemma 5. The equation x> — x = y*> —y has only finitely many rational solutions, see [8 p. 212]. The

known rational solutions are (x,y) = (—1,0), (-1, 1), (0,0), (0,1), (1,0), (1,1), (2,-5), (2,6), (3,—15),
(3.16), (30,-4929), (30,4930), (}.8), (3 %) (-8.-1%) (-1.18). and the existence of other
solutions is an open question, see [[13| pp. 223-224].

Corollary 1. The set T = {n € N : the equation x> — x = y> — y has a rational solution of height n} is

finite. We know an algorithm which for every n € N decides whether or not n € 7. We do not know any
algorithm which returns a threshold number of T .

Let O denote the following system of equations:

RiyP = 82
P+z2 = P
P+ = 2

R+ = P

Let ¥ = {z € N : the system D has a solution (x,y,z, s, t,u,v) € (N \ {0})7 with x < y < z}. A perfect
cuboid is a cuboid having integer side lengths, integer face diagonals, and an integer space diagonal.

Lemma 6. (//7]). No perfect cuboids are known.

Corollary 2. The set 7 is empty or infinite. We know an algorithm which for every z € N decides whether
or not z € F. Every non-negative integer z is a threshold number of .

Let

9
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We do not know whether or not the set H is finite.

99
Proposition 1. The number 999 is a threshold number of H. We know an algorithm which decides
the equality H = N. If H # N, then the set H consists of all integers from 0 to a non-negative integer
which can be computed by a known algorithm. We know an algorithm which for every n € N decides
whether or not n € H.




It is conjectured that the set of prime numbers of the form n® + 1 is infinite, see [9, pp. 37-38]. It
is conjectured that the set of prime numbers of the form n! + 1 is infinite, see [2 p. 443] and [14]. It is
conjectured that the set of twin primes is infinite, see [9, p. 39]. It is conjectured that the set of composite
numbers of the form 22n + 1 is infinite, see [S, p. 23] and [6 pp. 158—159]. For each of these sets, we do
not know any threshold number.

3 A Diophantine equation whose non-solvability expresses the consis-
tency of ZFC

Godel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply
the following theorem.

Theorem 1. (/3| p. 35]). There exists a polynomial D(xy, ..., X,) with integer coefficients such that
if ZFC is arithmetically consistent, then the sentences "The equation D(xy, ..., x,) = 0 is solvable in
non-negative integers” and “The equation D(xi, ..., x,) = 0 is not solvable in non-negative integers”
are not provable in ZFC.

Let Y denote the set of all non-negative integers k such that the equation D(xy, ..., x,) = 0 has no
solutions in {0, ..., k}". Since the set {0,..., k}" is finite, we know an algorithm which for every n € N
decides whether or not n € Y. Let & denote the set of all non-negative integers k such that the equation
D(x1,...,xy) = 0 has a solution in {0, ..., k}". Since the set {0, ..., k}" is finite, we know an algorithm
which for every n € N decides whether or not n € 8. Theorem [I|implies Theorems 2] and

Theorem 2. For every n € N, ZFC proves that n € Y. If ZFC is arithmetically consistent, then the
sentences “Y is finite” and “Y is infinite” are not provable in ZFC. If ZFC is arithmetically consistent,
then for every n € N the sentences “n is a threshold number of Y and “n is not a threshold number of Y’
are not provable in ZFC.

Theorem 3. The set & is empty or infinite. In both cases, every non-negative integer n is a threshold
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number of & If ZFC is arithmetically consistent, then the sentences “E is empty”, “&E is not empty”,
“&1is finite”, and “E is infinite” are not provable in ZFC.

4 Hypothetical statements V3, ..., ¥4

For an integer n > 3, let U, denote the following system of equations:

Yiel{l,...,n—=1}\{2} xi! = xi41
X1:X2 = X3
X2-Xp = X3

The diagram in Figure 1 illustrates the construction of the system U,.

X1
[} X1+ Xp = X3
!
squaring ! !
> > s > >
X2 X3 X4 Xn—-1 Xn

Fig. 1 Construction of the system U,

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3.



Lemma 7. For every integer n > 3, the system U, has exactly two solutions in positive integers, namely
(1,.... 1) and (2,2,803).....8(n))

Let
By={x!=xc: (bke(l,....aDAG#R|U{xi-x;=x: i jike(l,....n)}

For an integer n > 3, let ¥, denote the following statement: if a system of equations S C B, has
only finitely many solutions in positive integers xi, ..., x,, then each such solution (x,...,x,) satis-
fies x1,...,x, < g(n). The statement ¥, says that for subsystems of B, the largest known solution is
indeed the largest possible.

Hypothesis 1. The statements Y3, ...,¥Y ¢ are true.

Proposition 2. Every statement V), is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Proposition 3. For every statement V,,, the bound g(n) cannot be decreased.

Proof. 1t follows from Lemmabecause U, C B,. O

5 The Brocard-Ramanujan equation x! + 1 = y?

Let A denote the following system of equations:

x1! = x
)Cz! = X3
x5! = xg
X4 X4 = X5
X3:X5 = Xg

Lemmal I]and the diagram in Figure 2 explain the construction of the system A.

! X +1 Xs squaring
X ——— ) - == e e e e - - X4
or X = X5 = 1

L 4 L 4

X3 | X3 X5 = X6 | Xg

Fig. 2 Construction of the system A

Lemma 8. For every x1, x4 € N\ {0, 1}, the system A is solvable in positive integers x», x3, X5, X¢ if and

only if xi!+1 = xi. In this case, the integers x3, X3, X5, X¢ are uniquely determined by the following

equalities:

X2 = X !
x3 = (!
xs = xi!+1
X6 = (xl! + 1)!
Proof. 1t follows from LemmalIl O

It is conjectured that x! + 1 is a perfect square only for x € {4, 5,7}, see [16, p. 297]. A weak form
of Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?,
see [10].



Theorem 4. If the equation x|! +1 = xi has only finitely many solutions in positive integers, then the
statement WY¢ guarantees that each such solution (x1, x4) belongs to the set {(4,5), (5, 11),(7,71)}.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 = xi. Then,
x1,x4 € N\ {0,1}. By Lemmal[8 the system A is solvable in positive integers x;, x3, x5, Xg. Since
A C Bg, the statement Wg implies that xg = (x1! + 1)! < g(6) = g(5)!. Hence, x;! + 1 < g(5) = g(4)!.
Consequently, x; <g(4)=24. If x;€{l,...,23}, then x;! + 1 is a perfect square only for
x1 € {4,5,7}. O

6 Are there infinitely many prime numbers of the form n> + 1?

Let 8 denote the following system of equations:

XQ! = X3
x3! = x4
x5! = xg
Xg! = X9
XXl = X2
X3+-X5 = Xg
X4+Xg = Xg
X5-X7 = X§

LemmalI]and the diagram in Figure 3 explain the construction of the system B.

squaring x; +1 Xs !
X] ——— - - - - > > Xg

or X2:X5:1
X3+ X5 = Xg
X5+ X7 = X3

D R A N X8

L 4 L 4

Xg | X4 Xg = Xo | Xg

Fig. 3 Construction of the system B

Lemma 9. For every integer x| > 2, the system B is solvable in positive integers xa, . .., X9 if and only if
x% + 1 is prime. In this case, the integers xy, . .., X9 are uniquely determined by the following equalities:

Xy = x%

x3 = (D!

xo= (@)

X5 = x% + 1

x6 = (2 +1)!

a (x%)! +1

o= x% +1

xg o= ()l+1

x9 = (D! + D)

5



Proof. By Lemmall] for every integer x; > 2, the system 8 is solvable in positive integers xa, . .., xg if
and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemma@follows from Lemma O

Lemma 10. There are only finitely many tuples (x1,...,x9) € (N '\ {0))? which solve the system B and
satisfy x; = 1.

Proof. If a tuple (x1,...,x9) € (N'\ {0})° solves the system B and x| = 1, then x{,...,x9 < 2. Indeed,
x1 = 1 implies that x, = x% = 1. Hence, for example, x3 = x! = 1. Therefore, x3 = x3+ 1 =2orxg = 1.
Consequently, xg = xg! < 2. O

Edmund Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
(9, pp. 37-38].

Theorem 5. The statement WYy proves the following implication: if there exists an integer x| > 2 such
that x% + 1 is prime and greater than g(7), then there are infinitely many primes of the form n> + 1.

Proof. Suppose that the antecedent holds. By Lemma[)] there exists a unique tuple
(x2,...,x9) € (N\ {0})® such that the tuple (x1,x2,...,X9) solves the system B. Since x% +1>g(7),
we obtain that x% > g(7). Hence, (x%)! > g(7)! = g(8). Consequently,

X9 = (D! + D! > (2(8) + 1! > ¢(8)! = g(9)

Since B C By, the statement W9 and the inequality xg > g(9) imply that the system $ has infinitely many
solutions (xp, ..., x9) € (N \ {0})°. According to Lemmas[Qand[1Q] there are infinitely many primes of
the form n? + 1. O

Corollary 3. Let Xy denote the set of primes of the form n> + 1. The statement Wy implies that we know
an algorithm such that it returns a threshold number of Xy, and this number equals max(Xy), if Xg is
finite.

Proof. We consider an algorithm which computes max(Xo N [1, g(7)]). O

7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and [14].

Theorem 6. (cf. Theorem[I0). The statement Wy proves the following implication: if there exists an
integer x| > g(6) such that x! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. O

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [9} p. 39]. Let C denote the following system of



equations:

xl! = X2
X! = x3
X4! = X5
xXg! = x7
)C7! = X3
x9! = Xy
xpp! = X3
xis! = xi6
X2 X4 = X5
X5-X6 = X7
X7+X9 = X10
X4-X11 = X12
X3-X12 = X13
X9 X14 = XI5
Xg X155 = Xi6

Lemma[Iland the diagram in Figure 4 explain the construction of the system C.

X1

Xs

X2+ X4 = X5 1

or x;=x4=1

or x2:x12=1

X3

Lemma 11. For every x4,x9 € N\ {0,1,2},

X4 - X11 = X12

X10
‘ ~
! !
X4 +1 X6 +1
-------------- bR R R E) )
or x4 =x¢=1 or xg=x9 =1
! X9 * X14 = X15
+1
X12 R R L » X15

or )C7=)C15=1

|, | X3 X12 = X13 ]

¥ X13 Xg

| | X8 X5 = Xi6| |

Fig. 4 Construction of the system C

the system C 1is solvable in positive

" X16

integers

X1, X2, X3, X5, X6, X7, X8, X105 X11, X12, X13, X14, X15, X16 If and only if x4 and x9 are prime and x4 + 2 = xo.
In this case, the integers x1, X3, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 are uniquely determined by



the following equalities:

xp = x-—1

X2 = (xg—1D)!
xo= ((g-DY!
X5 = X4!

X6 = Xx9—1

X7 = ()Cg— 1)!

xg = ((xo—-DH!
X110 = X9!

oy = GazDivl
X12 = ()C4 - 1)! +1
x13 = (g - D+ D!
e = 09 —xlg)! +1
X5 = ()Cg - 1)! +1

xt6 = ((xo =D+ 1)!

Proof. By Lemmam for every x4, x9 € N'\ {0, 1,2}, the system C is solvable in positive integers xi, xp,
X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = x0) A (xalxa = D!+ 1) A (xol(xo = 1)1 + 1)
Hence, the claim of Lemma L] follows from Lemma 4] |

Lemma 12. There are only finitely many tuples (x1, . .., x16) € (N \ {0)! which solve the system C and
satisfy (x4 € {1,2}) V (x9 € {1,2}).

Proof. If a tuple (x1,...,x16) € (N {0})16 solves the system C and (x4 € {1,2}) V (x9 € {1,2}), then
X1,...,X16 < 7!. Indeed, for example, if x4 = 2 then x¢ = x4 + 1 = 3. Hence, x; = x5! = 6. Therefore,
x15 = x7 + 1 = 7. Consequently, x16 = x15! = 7. O

Theorem 7. The statement Y16 proves the following implication: if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and xg such
that xo = x4 + 2 > g(14). Hence, x4, € N\{0,1,2}. By Lemma there exists a
unique tuple (X1, X2, X3, X5, X6, X7, X8, X105 X11, X125 X13, X14, X15, X16) € (N \ {OD!* such that the tuple
(x1,...,x16) solves the system C. Since x9 > g(14), we obtain that x9 — 1 > g(14). Therefore,
(xg — 1)! > g(14)! = g(15). Hence, (x9 — 1)! + 1 > g(15). Consequently,

x16 = ((xg — D!+ 1)! > g(15)! = g(16)

Since C C Bjg, the statement W6 and the inequality x;¢ > g(16) imply that the system C has infinitely
many solutions in positive integers xi, ..., xj6. According to Lemmas [l 1| and there are infinitely
many twin primes. o

Corollary 4. Let X6 denote the set of twin primes. The statement Y16 implies that we know an algorithm
such that it returns a threshold number of X6, and this number equals max(Xy), if X1¢ is finite.

Proof. We consider an algorithm which computes max(X6 N [1, g(14)]). O



9 Hypothetical statements As, ..., A4 and their consequences

Let A(5) = T'(25), and let A(n + 1) = I'(A(n)) for every integer n > 5. For an integer n > 5, let J,, denote
the following system of equations:

X1 X1 X4

\/ie{l,...,n—l}\{3}1“(xi) = Xi+1
{ X2-X3 = X5

Lemma [2and the diagram in Figure 5 explain the construction of the system 7,.

X1
r
X2 3

or xp»=x4=1

I I

r r
X3V | X2 X3 = X5 X > ° o o > >
X5 X6 Xn—-1 Xn

Fig. 5 Construction of the system 7,

For every integer n > 5, the system J, has exactly two solutions in positive integers, namely
(1,...,1) and (5,24,23!,25, A(5),...,A(n)). For an integer n > 5, let A, denote the following state-
ment: if a system of equations S C {F(x,-) =x;:Lk€ {1,...,n}} U {x,- “Xj=xc i, k€ {1,...,n}} has
only finitely many solutions in positive integers xi, ..., x,, then each such solution (x1,...,x,) satisfies
X150, X, < A(0).

Hypothesis 2. The statements As, ..., A4 are true.
Lemmas 2] and 4] imply that the statements A, have similar consequences as the statements \P,,.
Theorem 8. The statement Ag implies that any prime number p > 25 proves the infinitude of primes.

Proof. Tt follows from Lemmas [2]and i] We leave the details to the reader. |

10 Hypothetical statements X5, ..., X;c and their consequences

n-3
Let I',,(k) denote (k—1)!, where n€{3,...,16} and k€ {2} U [22 +1,00) NN. For an integer
nef{3,...,16}, let

On={Tn(x)=xc: Lke{l,...,n}}U{xi-xj=xc: i, ,ke{l,...,n}}

For an integer n € {3, ..., 16}, let P, denote the following system of equations:
Xp-Xp = X
Fa(x2) = x
Yiel2,....n=1}x;-x; = Xis1



Lemma 13. Foreveryintegern € {3,...,16}, P, C Q, and the system P, with I instead of I, has exactly

0 17 52 n—-2
one solution in positive integers xi, . . ., X,, namely (1, 22 R 22 ,22 e, 22 )

For an integer n € {3,..., 16}, let £, denote the following statement: if a system of equations S C Q,,
with I instead of [, has only finitely many solutions in positive integers xi,..., X,, then every tuple

n-2

(x1,...,x,) € N\ {0})" that solves the original system S satisfies xp, ..., x, < 2
Hypothesis 3. The statements X, . .., X6 are true.

Lemma 14. (¢f. Lemma[2). For every integer n € {4,...,16} and for every positive integers x and y,
-3
x-Ty(x) =T,(y) if and only if (x + 1 = y) A (x >22"7 4 1)'

Let Zo € Qg be the system of equations in Figure 6.

squaring X +1

o9 LR *

.
A 4 A 4

XsFmmmmmmmmmmm- X X6
X4

Fig. 6 Construction of the system Zg

Lemma 15. For every positive integer x|, the system Zg is solvable in positive integers x, . . ., X9 if and

9-4
only if x; > 227" and x% + 1 is prime. In this case, positive integers x3, . .., X9 are uniquely determined
by xi. For every positive integer n, at most finitely many tuples (x1, . .., x9) € (N \ {0})° begin with n and
solve the system Zq with I instead of T'.

Proof. 1t follows from Lemmas and o

Lemma 16. (/[15]). The number (131) + 1 = 38775788043632640001 is prime.
) 29—3 ) 29—2
Lemma 17. ((13!) >2 +1= 18446744073709551617) A (Fg((13!) )>2 )

Theorem 9. The statement Xo implies the infinitude of primes of the form n* + 1.

Proof. 1t follows from Lemmas O

9-3
Theorem 10. (c¢f. Theorem El) The statement Lo implies that any prime of the formn! + 1 withn > 22
proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. O

Corollary 5. Let Yy denote the set of primes of the form n! + 1. The statement X9 implies that we know
an algorithm such that it returns a threshold number of Yo, and this number equals max(Yy), if Yo is
finite.

10



9-3
Proof. We consider an algorithm which computes max(Yo N [1, (22 - D!+ 1]). O
Let Z14 C Q14 be the system of equations in Figure 7.

X1 +1 X2 +1
--------------------------- y
X1 x13=X6| |14

I4
X4
— 1 +1
i T - "
xs¥ooo X
5 N X6
|V T4
Iy I'4

+ X7+ X11 = X12 2
X11 X12

4 X5+ X9 = X10 ¥
X9 X10

Fig. 7 Construction of the system Z4

Lemma 18. For every positive integer xi, the system Z14 is solvable in positive integers xa, ..., X4

14-3
if and only if x; and x| +2 are prime and x| > 22 + 1. In this case, positive integers
X2,...,X14 are uniquely determined by x1. For every positive integer n, at most finitely many tuples
(X1, ..., x14) € N\ {OD* begin with n and solve the system Z 14 with T instead of T4.

Proof. 1t follows from Lemmas 2] 4] and [14] O

Lemma 19. (/19 p. 87]). The numbers 459 - 28529 _ 1 and 459 - 28529 4 1 are prime (Harvey Dub-
ner).

Lemma 20. 459 - 28529 _ | 5 92'%7% _ 24096

Theorem 11. The statement 14 implies the infinitude of twin primes.

Proof. It follows from Lemmas O

A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [18]. Let
Z16 € Q16 be the system of equations in Figure 8.

11



A2

. . X4 +1 X5
multiplying >——r-=-=-=-=-ccca--- Y X5+ X16 = X10
X1
P i
I'i6
+1
M 200 PO R 3 10
X3
l +1
XoFmmmmmmmmmmm- N X7
BT Ii6
Iis I'is
X13 X14

A 4 x6 . xll = x12 A 4
X11 X12

Fig. 8 Construction of the system Z1¢

Lemma 21. For every positive integer x1, the system Zi¢ is solvable in positive integers xa, ..., X16

16-3
if and only if x1 is a Sophie Germain prime and x| > 22 + 1. In this case, positive integers
X2,...,X16 are uniquely determined by xi. For every positive integer n, at most finitely many tuples
(x1,...,x16) € N\ {O)'6 begin with n and solve the system Z16 with T instead of T 16.

Proof. 1t follows from Lemmas and mi

Lemma 22. ([12) p. 330]). 8069496435 - 105072 — 1 is a Sophie Germain prime (Harvey Dubner).

Lemma 23. 8069496435 - 105072 _ 1 5 22'°7,

Theorem 12. The statement X1 implies the infinitude of Sophie Germain primes.
Proof. 1t follows from Lemmas ]

Theorem 13. The statement g proves the following implication: if the equation x(x + 1) = y! has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set

{(1,2),(2,3)}.
Proof. We leave the proof to the reader. O

The question of solving the equation x(x + 1) = y! was posed by P. Erdos, see [1]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive
integers, see [7].

Theorem 14. The statement Xg proves the following implication: if the equation x! + 1 = y* has only
finitely many solutions in positive integers x and y, then each such solution (x,y) belongs to the set
{(4,5),(5,11),(7,71)}.

Proof. We leave the proof to the reader. O
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11 Hypothetical statements (3, ..., Qs and their consequences

For an integer n € {3,...,16}, let Q, denote the following statement: if a system of equations S C
{F(xi) =x;: 0L,k € {1,...,n}} U {x,' “Xj =Xl i, k€ {1,...,n}} has a solution in integers xi, ..., X,

-2
greater than 22" , then S has infinitely many solutions in positive integers xi,...,x,. For every
n € {3,..., 16}, the statement X, implies the statement €.
9-2
Lemma 24. The number (65!)* + 1 is prime and 65! > 2277

Proof. The following PARI/GP ([11]) command
(04:04) gp > isprime((65!)72+1,{flag=2})
1

is shown together with its output. This command performs the APRCL primality test, the best deterministic
primality test algorithm ([[19], p. 226]). It rigorously shows that the number (6512 + 11is prime. O

9-2 )
Lemma 25. If positive integers x1, . .., X9 solve the system Zg9 and x; > 22 , then x; = min(xy, ..., X9).

Theorem 15. The statement Qq implies the infinitude of primes of the form n* + 1.

Proof. 1t follows from Lemmas [I5]and 24H25] i
14-2

Lemma 26. If positive integers xi,...,X14 solve the system Zi4 and x| > 22 , then x| =

min(xy,...,Xi4).

Theorem 16. The statement Q14 implies the infinitude of twin primes.

Proof. It follows from Lemmas and O

12 Are there infinitely many composite Fermat numbers?

Integers of the form 22n + 1 are called Fermat numbers. Primes of the form 2211 + 1 are called Fermat

n
primes, as Fermat conjectured that every integer of the form 22" 4 1is prime, see [6, p. 1]. Fermat

20 21 22 23 24
correctly remarked that 2© +1=3,2¢ +1=5,2% +1=17,2¢ +1=257,and2* +1 = 65537
are all prime, see [6} p. 1].

n
Open Problem. ([6, p. 159]). Are there infinitely many composite numbers of the form 227 412

n
Most mathematicians believe that 22 + 1 is composite for every integer n > 5, see [15 p. 23]. Let

Hy={xx;=x: ke (L. om)u22 = x:ikel,... m)

h(n
Leth(l)=1,andleth(n + 1) = 22 ) for every positive integer n.

Lemma 27. The following subsystem of H,

X1

Xi+1

X1 - X1
Vie{l,....n—1)22"

has exactly one solution (xi, ..., x;) € N\ {0})", namely (h(1), ..., h(n)).

13



For a positive integer n, let &, denote the following statement: if a system of equations S C H, has

only finitely many solutions in positive integers xi, ..., x,, then each such solution (x1,...,x,) satisfies
X1, ..., X, < h(n). The statement &, says that for subsystems of H,, the largest known solution is indeed
the largest possible.

Hypothesis 4. The statements &, ...,&13 are true.

Proposition 4. Every statement &, is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system H,, has a finite number of subsystems. O
<
Theorem 17. The statement &3 proves the following implication: if 7 € N \ {0} and 22" 4 lis composite
Z
and greater than h(12), then 22° 4 1is composite for infinitely many positive integers z.

Proof. Let us consider the equation
z
x+Dy+1) =22 +1 (1)

in positive integers. By Lemma[3] we can transform equation (IJ) into an equivalent system of equations G
which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms

a-fB=7vyand 22a = v, see the diagram in Figure 9.

X x+1 y+1 y

()}
5
4

. . - . .

22( ) 22( ) 5 22( ) 22( )
g

2 squaring , 22x+ ! 22y+ P squaring 2
22() I 2Z 22
Z 72 2% +1
22(') 22(')
squaring M
2% > 22%1
2 2

Fig. 9 Construction of the system G
2<
. 22 . 227 +1 . . .
Since 2 + 1 > h(12), we obtain that 2 > h(13). By this, the statement &3 implies that the
system G has infinitely many solutions in positive integers. It means that there are infinitely many
composite Fermat numbers. O

Corollary 6. Let W13 denote the set of composite Fermat numbers. The statement £13 implies that we
know an algorithm such that it returns a threshold number of ‘W3, and this number equals max(‘W'3),
if W3 is finite.

14



Proof. We consider an algorithm which computes max(‘W3 N [1, h(12)]). O
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