A common approach to solving the equation $x(x+1)=y!$ and proving the infinitude of Wilson primes

Apoloniusz Tyszka

Abstract

For a positive integer x, let $\Gamma(x)$ denote $(x-1)$!. Let $\Gamma^{-1}:\{1,2,6,24, \ldots\} \rightarrow \mathbb{N} \backslash\{0\}$ denote the inverse function that satisfies $\Gamma^{-1}(1)=2$. For a positive integer n, by a Γ-computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $x_{j} \cdot x_{k}$, or $\Gamma\left(x_{j}\right)$, or $\Gamma^{-1}\left(x_{j}\right)$. For a positive integer n, by a Q-computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $x_{j} \cdot x_{k}$, or $\frac{x_{j}}{x_{k}}$, or $\Gamma\left(x_{j}\right)$, or $\Gamma^{-1}\left(x_{j}\right)$. Let $f(6)=15$!, and let $f(n+1)=\Gamma(f(n))$ for every integer $n \geqslant 6$. Let $g(6)=24$!, and let $g(n+1)=\Gamma(g(n))$ for every integer $n \geqslant 6$. For an integer $n \geqslant 6$, let Ψ_{n} denote the following statement: if a Γ-computation of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ for every such x. For an integer $n \geqslant 6$, let Φ_{n} denote the following statement: if a Q-computation of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ for every such x. We prove: (1) the statement Ψ_{6} implies that if the equation $x(x+1)=y$! has at most finitely many solutions in positive integers, then each such solution (x, y) belongs to the set $\{(1,2),(2,3)\}$; (2) if $y!+1$ is a square for at most finitely many positive integers y, then the statement Ψ_{8} implies that every such y is smaller than $f(7)$; (3) the statement Φ_{7} implies that the set of Wilson primes is infinite.

2010 Mathematics Subject Classification: 11D85, 11A41.
Key words and phrases: Brocard-Ramanujan equation, Brocard's problem, equation $x(x+1)=y!$, primes of the form $n^{2}+1$, primes of the form $n!+1$, Sophie Germain primes, twin primes, Wilson primes, Wilson's theorem.

For a positive integer x, let $\Gamma(x)$ denote $(x-1)$!. Let $\Gamma^{-1}:\{1,2,6,24, \ldots\} \rightarrow \mathbb{N} \backslash\{0\}$ denote the inverse function that satisfies $\Gamma^{-1}(1)=2$. For positive integers x and y, let rest (x, y) denote the rest from dividing x by y.

Definition 1. For a positive integer n, by a Γ-computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $x_{j} \cdot x_{k}$, or $\Gamma\left(x_{j}\right)$, or $\Gamma^{-1}\left(x_{j}\right)$.

Definition 2. For a positive integer n, by a Q-computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $x_{j} \cdot x_{k}$, or $\frac{x_{j}}{x_{k}}$, or $\Gamma\left(x_{j}\right)$, or $\Gamma^{-1}\left(x_{j}\right)$.

Definition 3. For a positive integer n, by a R-computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $x_{j} \cdot x_{k}$, or $\operatorname{rest}\left(x_{j}, x_{k}\right)$, or $\Gamma\left(x_{j}\right)$, or $\Gamma^{-1}\left(x_{j}\right)$.

Let $f(6)=15!$, and let $f(n+1)=\Gamma(f(n))$ for every integer $n \geqslant 6$. For an integer $n \geqslant 6$, let Ψ_{n} denote the following statement: if a Γ-computation of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ for every such x.

Theorem 1. For every integer $n \geqslant 6$ and for every positive integer x, the following Γ-computation
produces positive integers x_{1}, \ldots, x_{n} if and only if $x=1$. If $x=1$, then $\max \left(x_{1}, \ldots, x_{n}\right)=f(n)$.
Proof. If $x=1$, then $x_{1}=x_{2}=1, x_{3}=2, x_{4}=4, x_{5}=16$, and $x_{i}=f(i)$ for every integer $i \in\{6, \ldots, n\}$. Hence, $\max \left(x_{1}, \ldots, x_{n}\right)=f(n)$. If an integer x is greater than 1 , then the term x_{3} (that is identical to $\Gamma^{-1}\left(x^{2}\right)$) is not a positive integer, see [3] for a more general result.

Theorem 2. For every integer $n \geqslant 6$, the bound $f(n)$ in the statement Ψ_{n} cannot be decreased.
Proof. It follows from Theorem 1.
Let $g(6)=24!$, and let $g(n+1)=\Gamma(g(n))$ for every integer $n \geqslant 6$. For an integer $n \geqslant 6$, let Φ_{n} denote the following statement: if a Q-computation of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ for every such x.

Theorem 3. For every integer $n \geqslant 6$ and for every positive integer x, the following Q-computation

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=x_{1} \cdot x_{1} \\
x_{3} & :=\Gamma\left(x_{2}\right) \\
x_{4} & :=\Gamma\left(x_{1}\right) \\
x_{5} & :=\Gamma\left(x_{4}\right) \\
x_{6} & :=\frac{x_{3}}{x_{5}} \\
x_{7} & :=\Gamma\left(x_{3}\right)(\text { if } n \geqslant 7) \\
\forall i \in\{8, \ldots, n\} x_{i} & :=\Gamma\left(x_{i-1}\right)(\text { if } n \geqslant 8)
\end{aligned}\right.
$$

produces positive integers x_{1}, \ldots, x_{n} if and only if $x \in\{1,2,3,4,5\}$. If $x \in\{1,2,3,4\}$, then $\max \left(x_{1}, \ldots, x_{n}\right)<g(n)$. If $x=5$, then $\max \left(x_{1}, \ldots, x_{n}\right)=g(n)$.

Proof. If $x=1$, then $x_{1}=\ldots=x_{6}=1$. Since x_{3} is a positive integer, we obtain that x_{7}, \ldots, x_{n} are positive integers, if $n \geqslant 7$. Since $\max \left(x_{1}, \ldots, x_{6}\right)<24$!, we obtain that $\max \left(x_{1}, \ldots, x_{n}\right)<g(n)$.
If $x=2$, then $x_{1}=2, x_{2}=4, x_{3}=6, x_{4}=1, x_{5}=1, x_{6}=6$. Since x_{3} is a positive integer, we obtain that x_{7}, \ldots, x_{n} are positive integers, if $n \geqslant 7$. Since $\max \left(x_{1}, \ldots, x_{6}\right)<24$!, we obtain that $\max \left(x_{1}, \ldots, x_{n}\right)<g(n)$.

If $x=3$, then $x_{1}=3, x_{2}=9, x_{3}=8!, x_{4}=2, x_{5}=1, x_{6}=8$!. Since x_{3} is a positive integer, we obtain that x_{7}, \ldots, x_{n} are positive integers, if $n \geqslant 7$. Since $\max \left(x_{1}, \ldots, x_{6}\right)<24$!, we obtain that $\max \left(x_{1}, \ldots, x_{n}\right)<g(n)$.
If $x=4$, then $x_{1}=4, x_{2}=16, x_{3}=15!, x_{4}=6, x_{5}=120, x_{6}=\frac{15!}{120}=10897286400$. Since x_{3} is a positive integer, we obtain that x_{7}, \ldots, x_{n} are positive integers, if $n \geqslant 7$. Since $\max \left(x_{1}, \ldots, x_{6}\right)<24$!, we obtain that $\max \left(x_{1}, \ldots, x_{n}\right)<g(n)$.
If $x=5$, then

$$
\begin{aligned}
x_{1} & =5 \\
x_{2} & =x_{1} \cdot x_{1}=25 \\
x_{3} & =\Gamma\left(x_{2}\right)=24! \\
x_{4} & =\Gamma\left(x_{1}\right)=24 \\
x_{5} & =\Gamma\left(x_{4}\right)=23! \\
x_{6} & =\frac{x_{3}}{x_{5}}=\frac{24!}{23!}=24
\end{aligned}
$$

Since x_{3} is a positive integer, we obtain that x_{7}, \ldots, x_{n} are positive integers, if $n \geqslant 7$. Since $x_{3}=\max \left(x_{1}, \ldots, x_{6}\right)=24$!, we obtain that $\max \left(x_{1}, \ldots, x_{n}\right)=g(n)$.
If an integer x is greater than 5 , then

$$
x_{6}=\frac{x_{3}}{x_{5}}=\frac{\Gamma\left(x^{2}\right)}{\Gamma(\Gamma(x))}<1
$$

Theorem 4. For every integer $n \geqslant 6$, the bound $g(n)$ in the statement Φ_{n} cannot be decreased.
Proof. It follows from Theorem 3 .
Let $h(6)=119!$, and let $h(n+1)=\Gamma(h(n))$ for every integer $n \geqslant 6$. For an integer $n \geqslant 6$, let Θ_{n} denote the following statement: if a R-computation of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant h(n)$ for every such x.

Lemma 1. ([7] pp.214-215]). For every positive integer x, x does not divide $\Gamma(x)$ if and only if $x=4$ or x is prime.

Theorem 5. For every integer $n \geqslant 6$ and for every positive integer x, the following R-computation

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=x_{1} \cdot x_{1} \\
x_{3} & :=\Gamma\left(x_{2}\right) \\
x_{4} & :=\operatorname{rest}\left(x_{3}, x_{2}\right) \\
x_{5} & :=\Gamma\left(x_{3}\right) \\
\forall i \in\{6, \ldots, n\} x_{i} & :=\Gamma\left(x_{i-1}\right)
\end{aligned}\right.
$$

produces positive integers x_{1}, \ldots, x_{n} if and only if $x=2$. If $x=2$, then $\max \left(x_{1}, \ldots, x_{n}\right)=h(n)$.

Proof. If $x=1$, then $x_{1}=x_{2}=x_{3}=1$ and $x_{4}=0$. If $x=2$, then $x_{1}=2, x_{2}=4, x_{3}=6, x_{4}=2$, $x_{5}=120$, and $x_{i}=h(i)$ for every integer $i \in\{6, \ldots, n\}$. Therefore, $\max \left(x_{1}, \ldots, x_{n}\right)=h(n)$. If an integer x is greater than 2 , then x^{2} is composite and greater than 4 . By Lemma 1 ,

$$
x_{4}=\operatorname{rest}\left(x_{3}, x_{2}\right)=\operatorname{rest}\left(\Gamma\left(x_{2}\right), x_{2}\right)=\operatorname{rest}\left(\Gamma\left(x^{2}\right), x^{2}\right)=0
$$

Theorem 6. For every integer $n \geqslant 6$, the bound $h(n)$ in the statement Θ_{n} cannot be decreased.
Proof. It follows from Theorem 5 .
Lemma 2. For every positive integer n, there are only finitely many Γ-computations of length n. For every positive integer n, there are only finitely many Q-computations of length n. For every positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer $n \geqslant 6$, the statement Ψ_{n} is true with an unknown integer bound that depends on n. For every integer $n \geqslant 6$, the statement Φ_{n} is true with an unknown integer bound that depends on n. For every integer $n \geqslant 6$, the statement Θ_{n} is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2 .
Theorem 8. For every integer $n \geqslant 6$, the statement Ψ_{n+1} implies the statement Ψ_{n}. For every integer $n \geqslant 6$, the statement Φ_{n+1} implies the statement Φ_{n}. For every integer $n \geqslant 6$, the statement Θ_{n+1} implies the statement Θ_{n}.

Proof. We present only the proof for the statement Ψ_{n+1} as the proofs for the statements Φ_{n+1} and Θ_{n+1} are essentially the same. Let $n \in\{6,7,8, \ldots\}$. Let us assume that a Γ-computation \mathcal{W} of length n produces positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x. This implies that for every integer $i \in\{1, \ldots, n\}$ the Γ-computation \mathcal{W} with added instruction $x_{n+1}:=\Gamma\left(x_{i}\right)$ produces positive integers x_{1}, \ldots, x_{n+1} for at most finitely many positive integers x. The statement Ψ_{n+1} implies that

$$
\forall i \in\{1, \ldots, n\} \Gamma\left(x_{i}\right)=x_{n+1} \leqslant f(n+1)=\Gamma(f(n))
$$

Since $f(n)>1$, we obtain that $x_{i} \leqslant f(n)$ for every integer $i \in\{1, \ldots, n\}$.
Lemma 3. For every positive integer x, the term $\Gamma^{-1}(x \cdot \Gamma(x))$ represents $x+1$.
Lemma 4. For every positive integer $x, x(x+1)$ is a factorial of a positive integer if and only if the following Γ-computation \mathcal{A}

$$
\left\{\begin{array}{l}
x_{1}:=x \\
x_{2}:=\Gamma\left(x_{1}\right) \\
x_{3}:=x_{1} \cdot x_{2} \\
x_{4}:=\Gamma^{-1}\left(x_{3}\right) \\
x_{5}:=x_{1} \cdot x_{4} \\
x_{6}:=\Gamma^{-1}\left(x_{5}\right)
\end{array}\right.
$$

produces positive integers x_{1}, \ldots, x_{6}.

Proof. By Lemma 3, for every positive integer x the terms x_{1}, \ldots, x_{5} represent positive integers and $x_{5}=x(x+1)$. Hence, x_{6} that is identical to $\Gamma^{-1}\left(x_{5}\right)$ represents a positive integer if and only if $\Gamma^{-1}(x(x+1))$ represents a positive integer. The last means that $x(x+1)$ equals y ! for some positive integer y.

Theorem 9. The statement Ψ_{6} implies that if the equation $x(x+1)=y$! has at most finitely many solutions in positive integers, then each such solution (x, y) belongs to the set $\{(1,2),(2,3)\}$.

Proof. Let us assume that the equation $x(x+1)=y$! has at most finitely many solutions in positive integers. By Lemma 4, the Γ-computation \mathcal{A} produces positive integers x_{1}, \ldots, x_{6} for at most finitely many positive integers x. We take positive integers n and m that satisfy $n(n+1)=m!$. By Lemma 4, the Γ-computation \mathcal{A} for $x=n$ produces positive integers x_{1}, \ldots, x_{6}. The statement Ψ_{6} implies that $x_{2}=\Gamma(n) \leqslant f(6)=\Gamma(16)$. Since $16>1$, we obtain that $n \leqslant 16$. For every integer $n \in\{1, \ldots, 16\}, n(n+1)$ is a factorial of a positive integer if and only if $n \in\{1,2\}$.

The question of solving the equation $x(x+1)=y$! was posed by P. Erdős, see [1]. F. Luca proved that the $a b c$ conjecture implies that the equation $x(x+1)=y$! has only finitely many solutions in positive integers, see [5].

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $y!+1=x^{2}$, see [6]. Let

$$
F_{1}=\left\{y \in \mathbb{N} \backslash\{0\}: \exists x \in \mathbb{N} \backslash\{0\} y!+1=x^{2}\right\}
$$

It is conjectured that $F_{1}=\{4,5,7\}$, see [9, p. 297].
Lemma 5. The set F_{1} is is finite if and only if the set

$$
F_{2}=\{x \in \mathbb{N} \backslash\{0\}: \exists y \in \mathbb{N} \backslash\{0\} x(x+2)=y!\}
$$

is finite.
Proof. If $y!+1=x^{2}$, then $x \geqslant 5$ and $(x-1)((x-1)+2)=y!$. If $x(x+2)=y!$, then $y!+1=(x+1)^{2}$.

Lemma 6. For every positive integer x, the following Γ-computation \mathcal{B}

$$
\begin{cases}x_{1} & :=x \\ x_{2} & :=\Gamma\left(x_{1}\right) \\ x_{3} & :=x_{1} \cdot x_{2} \\ x_{4} & :=\Gamma^{-1}\left(x_{3}\right) \\ x_{5} & :=x_{4} \cdot x_{3} \\ x_{6} & :=\Gamma^{-1}\left(x_{5}\right) \\ x_{7} & :=x_{1} \cdot x_{6} \\ x_{8} & :=\Gamma^{-1}\left(x_{7}\right)\end{cases}
$$

produces positive integers x_{1}, \ldots, x_{8} if and only if $x(x+2)$ is a factorial of a positive integer.
Proof. By Lemma3, for every positive integer x, the terms x_{1}, \ldots, x_{7} represent positive integers and $x_{7}=x \cdot(x+2)$. The term x_{8} (that is identical to $\Gamma^{-1}(x(x+2))$) represents a positive integer if and only if $x(x+2)$ is a factorial of a positive integer.

Theorem 10. If $y!+1$ is a square for at most finitely many positive integers y, then the statement Ψ_{8} implies that every such y is smaller than $f(7)$.

Proof. If positive integers n and m satisfy $n!+1=m^{2}$, then $m \geqslant 5$ and

$$
(m-1) \cdot((m-1)+2)=\Gamma(n+1)
$$

By this and Lemma 6, the Γ-computation \mathcal{B} produces for $x=m-1$ positive integers x_{1}, \ldots, x_{8}. The antecedent and Lemma 5 imply that the set F_{2} is finite. Therefore, the statement Ψ_{8} guarantees that $\Gamma(n+1)=x_{7} \leqslant f(8)=\Gamma(f(7))$. Since $f(7)>1$, we obtain that $n+1 \leqslant f(7)$. Thus, $n<f(7)$.

Lemma 7. (Wilson's theorem, [4] p. 89]). For every positive integer x, x divides $\Gamma(x)+1$ if and only if $x=1$ or x is prime.

A Wilson prime is a prime number p such that p^{2} divides $(p-1)!+1$. It is conjectured that the set of Wilson primes is infinite, see [2].

Lemma 8. For every positive integer x, the following Q-computation C

$$
\left\{\begin{array}{l}
x_{1}:=x \\
x_{2}:=\Gamma\left(x_{1}\right) \\
x_{3}:=\Gamma\left(x_{2}\right) \\
x_{4}:=x_{2} \cdot x_{3} \\
x_{5}:=\Gamma^{-1}\left(x_{4}\right) \\
x_{6}:=\frac{x_{5}}{x_{1}} \\
x_{7}:=\frac{x_{6}}{x_{1}}
\end{array}\right.
$$

produces positive integers x_{1}, \ldots, x_{7} if and only if $x=1$ or x is a Wilson prime.
Proof. By Lemma3, for every positive integer x, the terms x_{1}, \ldots, x_{5} represent positive integers and $x_{5}=\Gamma(x)+1$. By Lemma7, the term x_{6} (that is identical to $\frac{\Gamma(x)+1}{x}$) and the term x_{7} (that is identical to $\frac{\Gamma(x)+1}{x^{2}}$) represent positive integers if and only if $x=1$ or x is a Wilson prime.

Theorem 11. The statement Φ_{7} implies that the set of Wilson primes is infinite.
Proof. The number 563 is a Wilson prime, see [2] and [8]. By Lemma 8, for $x=563$ the Q -computation C produces positive integers x_{1}, \ldots, x_{7}. We have:

$$
\begin{aligned}
& x_{1}=563 \\
& x_{2}=\Gamma(563) \\
& x_{3}=\Gamma(\Gamma(563)) \\
& x_{4}=\Gamma(563) \cdot \Gamma(\Gamma(563))=\Gamma(\Gamma(563)+1) \\
& x_{5}=\Gamma(563)+1 \\
& x_{6}=\frac{\Gamma(563)+1}{563} \\
& x_{7}=\frac{\Gamma(563)+1}{563^{2}}
\end{aligned}
$$

Since $\max \left(x_{1}, \ldots, x_{7}\right)=x_{4}=\Gamma(\Gamma(563)+1)>\Gamma(24!)=\Gamma(g(6))=g(7)$, the statement Φ_{7} implies that the Q -computation C produces positive integers x_{1}, \ldots, x_{7} for infinitely many positive integers x. By Lemma 8 , we obtain that the set of Wilson primes is infinite.

Let

$$
\begin{gathered}
\mathcal{T}_{1}=\{n \in \mathbb{N} \backslash\{0\}: n!+1 \text { is prime }\} \\
\mathcal{T}_{2}=\{n \in \mathbb{N} \backslash\{0\}:(n \text { is prime }) \wedge(n!+1 \text { is prime })\} \\
\mathcal{T}_{3}=\{n \in \mathbb{N} \backslash\{0\}:(n \text { is prime }) \wedge(n+2 \text { is prime })\} \\
\mathcal{T}_{4}=\left\{n \in \mathbb{N} \backslash\{0\}: n^{2}+1 \text { is prime }\right\} \\
\mathcal{T}_{5}=\left\{n \in \mathbb{N} \backslash\{0\}:\left(n^{2}+1 \text { is prime }\right) \wedge\left(n^{2}+3 \text { is prime }\right)\right\} \\
\mathcal{T}_{6}=\{n \in \mathbb{N} \backslash\{0\}:(n \text { is prime }) \wedge(2 n+1 \text { is prime })\}
\end{gathered}
$$

It is commonly conjectured that the sets $\mathcal{T}_{1}, \ldots, \mathcal{T}_{6}$ are infinite.
Theorem 12. For every integer $i \in\{1, \ldots, 6\}$ we can compute positive integers j and k such that the statement Φ_{j} implies that any element of \mathcal{T}_{i} that is greater than k proves that the set \mathcal{T}_{i} is infinite.

Proof. The proof is left to the reader, because for every integer $i \in\{1, \ldots, 6\}$ the proof essentially goes as in the proof of Theorem 11

Lemma 9. For every positive integer x, the following R-computation \mathcal{D}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=x_{1} \cdot x_{1} \\
x_{3} & :=\Gamma\left(x_{2}\right) \\
x_{4} & :=x_{2} \cdot x_{3} \\
x_{5} & :=\Gamma^{-1}\left(x_{4}\right) \\
x_{6} & :=\operatorname{rest}\left(x_{4}, x_{5}\right)
\end{aligned}\right.
$$

produces positive integers x_{1}, \ldots, x_{6} if and only if $x^{2}+1$ is prime.
Proof. It follows from Lemma 1 because $x^{2}+1 \neq 4$.
Theorem 13. The statement Θ_{6} implies that there are infinitely many primes of the form $n^{2}+1$.
Proof. The number $14^{2}+1$ is prime. By Lemma 9 , for $x=14$ the R -computation \mathcal{D} produces positive integers x_{1}, \ldots, x_{6}. Since $x_{4}=\Gamma\left(14^{2}+1\right)>\Gamma(120)=h(6)$, the statement Θ_{6} guarantees that the R-computation \mathcal{D} produces positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 9 , we obtain that there are infinitely many primes of the form $n^{2}+1$.

Lemma 10. For every positive integer x, the following R-computation \mathcal{E}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\Gamma\left(x_{1}\right) \\
x_{3} & :=\Gamma\left(x_{2}\right) \\
x_{4} & :=x_{2} \cdot x_{3} \\
x_{5} & :=\Gamma^{-1}\left(x_{4}\right) \\
x_{6} & :=\operatorname{rest}\left(x_{4}, x_{5}\right)
\end{aligned}\right.
$$

produces positive integers x_{1}, \ldots, x_{6} if and only if $\Gamma(x)+1$ is prime.
Proof. It follows from Lemma 1 because $\Gamma(x)+1 \neq 4$.

Theorem 14. The statement Θ_{6} implies that there are infinitely many primes of the form $n!+1$.
Proof. The number $\Gamma(12)+1$ is prime. By Lemma 10, for $x=12$ the R-computation \mathcal{E} produces positive integers x_{1}, \ldots, x_{6}. Since $x_{4}=\Gamma(\Gamma(12)+1)>\Gamma(120)=h(6)$, the statement Θ_{6} guarantees that the R -computation \mathcal{E} produces positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 10, we obtain that there are infinitely many primes of the form $\Gamma(x)+1$.

Lemma 11. For every positive integer x, the following R-computation

$$
\left\{\begin{aligned}
& x_{1}:=x \\
& x_{2}:= \\
& x_{3}\left.:=x_{1}\right) \\
& x_{4}:=x_{2} \\
& x_{5}:=x_{4}\left(x_{3}\right) \\
& x_{6}:=x_{3} \\
& x_{7}\left(x_{5}\right) \\
& x_{7}:= \\
& r_{8} e s t\left(x_{2}, x_{1}\right) \\
& x_{8}:= \\
& \operatorname{rest}\left(x_{5}, x_{6}\right)
\end{aligned}\right.
$$

produces positive integers x_{1}, \ldots, x_{8} if and only if $x=2$ or both x and $x+2$ are prime.
Proof. It follows from Lemma 1 .
Theorem 15. The statement Θ_{8} implies that any twin prime greater than $h(7)-2$ proves that the set of twin primes is infinite.

Proof. The proof is based on Lemma 11. We omit this proof because is similar to the proof of Theorem 11 .

References

[1] D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741-1779.
[2] C. K. Caldwell, The Prime Glossary: Wilson prime, http://primes.utm.edu/ glossary/xpage/WilsonPrime.html
[3] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
[4] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[5] F. Luca, The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269-273.
[6] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
[7] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN (Polish Scientific Publishers) and North-Holland, Warsaw-Amsterdam, 1987.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A007540, Wilson primes: primes p such that $(p-1)!\equiv-1\left(\bmod p^{2}\right)$, http://oeis.org/A007540
[9] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

