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Abstract

For a positive integer x, let I'(x) denote (x — 1)!. Let I'"!: {1,2,6,24,...} - N\ {0}
denote the inverse function that satisfies I''(1) = 2. For a positive integer n, by a
I'-computation of length n we understand any sequence of terms xi,...,Xx, such that
x1 is identical to the variable x and for every integer i € {2,...,n} there exist integers
J-k€f{l,...,i— 1} such that x; is identical to x; - xt, or I'(x;), or F‘l(xj). For a positive
integer n, by a Q-computation of length n we understand any sequence of terms xi, ..., X,
such that x; is identical to the variable x and for every integer i € {2,...,n} there exist
integers j,k € {1,...,i— 1} such that x; is identical to x; - x, or jg—]’( or I'(x;), or F‘l(xj).
Let f(6) = 15!, and let f(n+ 1) =I'(f(n)) for every integer n > 6. Let g(6) = 24!, and
let g(n + 1) =I'(g(n)) for every integer n > 6. For an integer n > 6, let ¥,, denote the
following statement: if a I'-computation of length n produces positive integers xi, ..., X,
for at most finitely many positive integers x, then max(xy, ..., x,) < f(n) for every such x.
For an integer n > 6, let ®,, denote the following statement: if a Q-computation of length n
produces positive integers xi,...,x, for at most finitely many positive integers x, then
max(xp, ..., Xx,) < g(n) for every such x. We prove: (1) the statement Wg implies that if the
equation x(x + 1) = y! has at most finitely many solutions in positive integers, then each
such solution (x,y) belongs to the set {(1,2),(2,3)}; (2) if y! + 1 is a square for at most
finitely many positive integers y, then the statement g implies that every such y is smaller
than f(7); (3) the statement @7 implies that the set of Wilson primes is infinite.
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For a positive integer x, let ['(x) denote (x — 1)!. Let I'': {1,2,6,24,...} — N\ {0} denote
the inverse function that satisfies I'"!(1) = 2. For positive integers x and y, let rest(x, y) denote
the rest from dividing x by y.

Definition 1. For a positive integer n, by a I'-computation of length n we understand any

sequence of terms Xi,...,x, such that x, is identical to the variable x and for every integer
i €{2,...,n} there exist integers j k € {1,...,i— 1} such that x; is identical to x; - x, or I'(x;),
orI''(x i)



Definition 2. For a positive integer n, by a Q-computation of length n we understand any

sequence of terms Xi,...,x, such that x, is identical to the variable x and for every integer
. .o . . .. . X
i €{2,...,n} there exist integers j,k € {1,...,i— 1} such that x; is identical to x; - xi, or o O

['(x;), or r-! (x)).

Definition 3. For a positive integer n, by a R-computation of length n we understand any
sequence of terms Xy, ..., X, such that x, is identical to the variable x and for every integer
i€1{2,...,n} there exist integers j,k € {l,...,i—1} such that x; is identical to x;-x, or
rest(x;, x), or [(x;), or T7(x;).

Let f(6) = 15!, and let f(n + 1) = I'(f(n)) for every integer n > 6. For an integer n > 6, let
Y, denote the following statement: if a ['-computation of length n produces positive integers
X1,...,X, for at most finitely many positive integers x, then max(xy,...,x,) < f(n) for every
such x.

Theorem 1. For every integer n > 6 and for every positive integer x, the following
I'-computation

X1 = X
X2 = X1 X1
X3 = F_I(X2)
X4 = X3°X3
X5 = Xq4°X4
Yielfo,...,n}x; = I'(x_))
produces positive integers xi,...,x, if and only if x = 1. If x = 1, then max(xy, ..., x,) = f(n).

Proof. If x=1, then xy =x, =1, x3 =2, x4 =4, x5 =16, and x; = f(i) for every integer
i €{6,...,n}. Hence, max(xy,...,x,) = f(n). If an integer x is greater than 1, then the term x3
(that is identical to I'"!(x?)) is not a positive integer, see [3]] for a more general result. O

Theorem 2. For every integer n > 6, the bound f(n) in the statement \¥,, cannot be decreased.
Proof. Tt follows from Theorem I} m]

Let g(6) = 24!, and let g(n + 1) = I'(g(n)) for every integer n > 6. For an integer n > 6, let
®, denote the following statement: if a Q-computation of length n produces positive integers
X1,...,X, for at most finitely many positive integers x, then max(xy,..., x,) < g(n) for every
such x.

Theorem 3. For every integer n > 6 and for every positive integer x, the following
Q-computation

X1 = X

X2 = X1-X

x3 = T'(x)

xy = T(xp)

x5 = T'(xg)

_ X3

X6 = X_S

x7 = I'(x3) (fn=7)
Viels,...,n}x; = TI'(x_y) (if n>=8)

produces positive integers Xxi,...,Xx, if and only if x € {1,2,3,4,5}. If x€{1,2,3,4}, then
max(xy,...,x,) < gn). If x =5, then max(xy,...,x,) = g(n).



Proof. If x=1, then x| = x¢ = 1. Since x3 is a positive integer, we obtain that
X7,...,X, are positive 1ntegers if n>7. Since max(x,...,xs) <24!, we obtain that
max(xl, cer Xy) < g(n).

If x=2,then x; =2, x, =4, x3 =6, x4 =1, x5 = 1, x¢ = 6. Since x3 is a positive integer, we
obtain that x7, ..., x, are positive integers, if n > 7. Since max(xy,..., xs) < 24!, we obtain that
max(xp,...,x,) < gn).

Ifx=3,thenx; =3, x =9, x3 =8!, x4 =2, x5 = 1, x4 = 8!. Since x3 is a positive integer, we

obtain that x7, ..., x, are positive integers, if n > 7. Since max(xy, ..., xs) < 24!, we obtain that
max(xy,...,x,) < gn).
If x = 4, then x; =4, x» = 16, x3 = 15!, x4 = 6, x5 = 120, x¢ = 113(‘) = 10897286400. Since
X3 1s a positive integer, we obtain that x7,...,x, are positive integers, if n > 7. Since
max(xy,...,Xs) < 24!, we obtain that max(x, ..., x,) < g(n).
If x =5, then

X = 5

X = Xx1-x1=25

X3 = F(Xg) = 24!

X4 = F(xl) = 24

X5 = F(X4) = 23!

v = B=34=24
Since x3 is a positive integer, we obtain that x7, ..., x, are positive integers, if n > 7. Since
X3 = max(xy, ..., Xs) = 24!, we obtain that max(xy, ..., x,) = g(n).

If an integer x is greater than 5, then

X3 _ r'(x%) -
x5 T(T(x)

Xe =

O
Theorem 4. For every integer n > 6, the bound g(n) in the statement ®,, cannot be decreased.
Proof. Tt follows from Theorem [3] o

Let h(6) = 119!, and let h(n + 1) = I'(h(n)) for every integer n > 6. For an integer n > 6, let
®, denote the following statement: if a R-computation of length n produces positive integers
X1, ..., X, for at most finitely many positive integers x, then max(x, ..., x,) < h(n) for every
such x.

Lemma 1. ([[7, pp. 214-215]) . For every positive integer x, x does not divide I'(x) if and only
if x =4 or x is prime.

Theorem 5. For every integer n > 6 and for every positive integer x, the following
R-computation

X1 = X
X2 = XX
x3 = T(x)
Xq = I‘GSt(X3, Xz)
xs = T'(x3)
Yiel6,...,n}x; = T'(xi_p)
produces positive integers xi, ..., X, if and only if x = 2. If x = 2, then max(xy, ..., x,) = h(n).
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Proof. If x=1,thenx; =x; =x3=1landx;, =0. If x =2,thenx; =2, x, =4, x3 = 6, x4 = 2,
x5 = 120, and x; = h(i) for every integer i € {6, ..., n}. Therefore, max(xy,..., x,) = h(n). If an
integer x is greater than 2, then x? is composite and greater than 4. By Lemma

x4 = rest(xsz, xp) = rest(I'(x,), x,) = rest (F(xz), xz) =0
O
Theorem 6. For every integer n > 6, the bound h(n) in the statement ®,, cannot be decreased.
Proof. 1t follows from Theorem [3] m|

Lemma 2. For every positive integer n, there are only finitely many I'-computations of length n.
For every positive integer n, there are only finitely many Q-computations of length n. For every
positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer n > 6, the statement \V,, is true with an unknown integer bound
that depends on n. For every integer n > 6, the statement ®, is true with an unknown integer
bound that depends on n. For every integer n > 6, the statement ©®, is true with an unknown
integer bound that depends on n.

Proof. Tt follows from Lemma m|

Theorem 8. For every integer n > 6, the statement ¥, implies the statement \¥,. For every
integer n > 6, the statement ®,,, implies the statement ®,. For every integer n > 6, the
statement ©,,,1 implies the statement ©,,.

Proof. We present only the proof for the statement ¥, as the proofs for the statements ®,,,;
and O, are essentially the same. Letn € {6,7,8,...}. Let us assume that a ['-computation ‘W

of length n produces positive integers xi, ..., x, for at most finitely many positive integers x.
This implies that for every integer i € {1,...,n} the I'-computation ‘W with added instruction
Xn11 := ['(x;) produces positive integers xi, .. ., x,.1 for at most finitely many positive integers x.

The statement ‘¥,,,.; implies that

Viel{l,....,n} T(x)) = xp1 < f(n+1) =T(f(n))
Since f(n) > 1, we obtain that x; < f(n) for every integer i € {1,...,n}. O
Lemma 3. For every positive integer x, the term T~ (x - T'(x)) represents x + 1.

Lemma 4. For every positive integer x, x(x + 1) is a factorial of a positive integer if and only
if the following T'-computation ‘A

X1 = X

X = I(x))
X3 = XX
xy = T l(x3)
X5 = X1 X4
x6 = I (xs)

produces positive integers xi,. . . , Xe.



Proof. By Lemma/3] for every positive integer x the terms xy, ..., xs represent positive integers
and x5 = x(x + 1). Hence, x¢ that is identical to I'"!(xs) represents a positive integer if and only
if I~!(x(x + 1)) represents a positive integer. The last means that x(x + 1) equals y! for some
positive integer y. O

Theorem 9. The statement ¢ implies that if the equation x(x + 1) = y! has at most finitely many
solutions in positive integers, then each such solution (x,y) belongs to the set {(1,2), (2, 3)}.

Proof. Let us assume that the equation x(x + 1) = y! has at most finitely many solutions in
positive integers. By Lemma [] the I'-computation A produces positive integers xj,.. ., X¢
for at most finitely many positive integers x. We take positive integers n and m that satisfy
n(n+1)=m!. By Lemma the I'-computation A for x = n produces positive integers
X1,...,Xs. The statement W implies that x, = I'(n) < f(6) = I'(16). Since 16 > 1, we obtain
that n < 16. For every integer n € {1,..., 16}, n(n + 1) is a factorial of a positive integer if and
only if n € {1,2}. O

The question of solving the equation x(x + 1) = y! was posed by P. Erdés, see [[1]. F. Luca
proved that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many
solutions in positive integers, see [3].

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
equation y! + 1 = x?, see [6]. Let

Fy={yeN\{0}:dxe N\ {0} y!+ 1=
It is conjectured that F; = {4,5,7}, see [9} p. 297].
Lemma 5. The set F is is finite if and only if the set
Fr ={xeN\{0}: dy e N\ {0} x(x+2)=y!}
is finite.

Proof. If y!+1=x% then x>5 and (x—D((x—1)+2)=y!. If x(x+2)=y!, then
yl+1=(x+1)>% |

Lemma 6. For every positive integer x, the following I'-computation B

X1 = X

xp = Txn)

X3 = XX

xg = Tl(x)

X5 = X4 X3

xg = T (xs)

X7 = X1t Xe

xg = I'''(x7)
produces positive integers X, ..., xg if and only if x(x + 2) is a factorial of a positive integer.
Proof. By Lemma3] for every positive integer x, the terms xj, .. ., x; represent positive integers
and x7 = x - (x + 2). The term xg (that is identical to I'"!(x(x + 2))) represents a positive integer
if and only if x(x + 2) is a factorial of a positive integer. O



Theorem 10. If y! + 1 is a square for at most finitely many positive integers y, then the
statement Yy implies that every such y is smaller than f(7).

Proof. If positive integers n and m satisfy n! + 1 = m?, then m > 5 and
m—-1)-(m-1)+2)=I'(n+1)

By this and Lemmal6] the I'-computation 8 produces for x = m — 1 positive integers xi, .. ., xs.
The antecedent and Lemma [5] imply that the set F, is finite. Therefore, the statement ¥g

guarantees that I'(n + 1) = x; < f(8) = I'(f(7)). Since f(7) > 1, we obtain that n + 1 < f(7).
Thus, n < f(7). O

Lemma 7. (Wilson’s theorem, [4} p. 89]). For every positive integer x, x divides I'(x) + 1 if and
only if x = 1 or x is prime.

A Wilson prime is a prime number p such that p? divides (p — 1)! + 1. It is conjectured that
the set of Wilson primes is infinite, see [2].

Lemma 8. For every positive integer x, the following Q-computation C

X = X
xp = T(x)
x3 = T(x)
X4 = X2°X3
— 7!
X5 = r (X4)
= X5
Xe = X
= X
X7 = X
produces positive integers X, ..., x7 if and only if x = 1 or x is a Wilson prime.
Proof. By Lemma[3] for every positive integer x, the terms x;, . . ., x5 represent positive integers

and x5 = I'(x) + 1. By Lemma(7} the term x¢ (that is identical to f+1

X
%) represent positive integers if and only if x = 1 or x is a Wilson prime. O

) and the term x7 (that is
identical to

Theorem 11. The statement ®; implies that the set of Wilson primes is infinite.

Proof. The number 563 is a Wilson prime, see [2] and [8]. By Lemma [§] for x = 563 the

Q-computation C produces positive integers xi, ..., x;. We have:

x; = 563
x, = TI'(563)
x3 = I'(I'(563))
xy = T(563)-TT'(563)) =T'(I(563) + 1)
xs = I'(563)+1

_ T(563)+1
ST
X, = F(56g) +1

5632

Since max(xy,...,x7) = x4 = T(563)+ 1) > T1'(24!) =T'(g(6)) = g(7), the statement O
implies that the Q-computation C produces positive integers x,...,x; for infinitely many
positive integers x. By Lemma |8 we obtain that the set of Wilson primes is infinite. m|
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Let
71 ={neN\({0}: n!+1is prime}

T, ={neN\{0}: (nisprime) A (n! + 1 is prime)}
T3 ={neN\{0}: (nisprime) A (n + 2 is prime)}
T4 =1{n €N\ {0} : n*+ 1is prime}
Ts={neN\{0}: (n*+ 1isprime) A (n* + 3 is prime)}
Te={neN\{0}: (nisprime) A (2n + 1 is prime)}

It is commonly conjectured that the sets 771, ..., 7 are infinite.

Theorem 12. For every integeri € {1, ..., 6} we can compute positive integers j and k such that
the statement @ ; implies that any element of T; that is greater than k proves that the set T; is
infinite.

Proof. The proof is left to the reader, because for every integer i € {1,...,6} the proof
essentially goes as in the proof of Theorem [T 1] O

Lemma 9. For every positive integer x, the following R-computation D

X1 = X
X = X1-X1
x3 = I(x)
X4 = X2-X3
xs = T7'(x)
Xg = rest(xy, Xxs5)
produces positive integers x,, . . ., X¢ if and only if x* + 1 is prime.
Proof. It follows from Lemmall|because x> + 1 # 4. O

Theorem 13. The statement O implies that there are infinitely many primes of the form n* + 1.

Proof. The number 14% + 1 is prime. By Lemma@, for x = 14 the R-computation D produces
positive integers xi, . .., X¢. Since x; = ['(14> + 1) > ['(120) = h(6), the statement @4 guarantees
that the R-computation 9 produces positive integers xi,...,Xs for infinitely many positive
integers x. By Lemma@ we obtain that there are infinitely many primes of the formn*> + 1. O

Lemma 10. For every positive integer x, the following R-computation &

X1 = X
X, = I'(x)
x; = [(x)
X4 = X2-X3
xs = T7'(x)
Xg = rest(xy, Xxs5)
produces positive integers Xy, . .., x¢ if and only if I'(x) + 1 is prime.
Proof. 1t follows from Lemma [I| because I'(x) + 1 # 4. O



Theorem 14. The statement O implies that there are infinitely many primes of the form n! + 1.

Proof. The number I'(12) + 1 is prime. By Lemma for x = 12 the R-computation &
produces positive integers xi,...,Xg. Since x4 =T'T°(12) + 1) > I'(120) = h(6), the

statement ®¢ guarantees that the R-computation & produces positive integers xi,...,xs for
infinitely many positive integers x. By Lemma [0 we obtain that there are infinitely many
primes of the form I'(x) + 1. O

Lemma 11. For every positive integer x, the following R-computation

X1 = X
Xy = I'(xp)
X3 = X1-X2
xg = T7(x3)
X5 = X4°X3
xe = I '(xs)
X7 = rest(xz, xl)
xg = rest(xs, Xg)
produces positive integers xi, ..., xg if and only if x = 2 or both x and x + 2 are prime.
Proof. It follows from Lemma m|

Theorem 15. The statement Og implies that any twin prime greater than h(7)-2 proves that the
set of twin primes is infinite.

Proof. The proof is based on Lemma [[T| We omit this proof because is similar to the proof of
Theorem m|
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