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Abstract

For a positive integer x, let Γ(x) denote (x − 1)!. Let Γ−1 : {1, 2, 6, 24, . . .} → N \ {0}
denote the inverse function that satisfies Γ−1(1) = 2. For a positive integer n, by a
Γ-computation of length n we understand any sequence of terms x1, . . . , xn such that
x1 is identical to the variable x and for every integer i ∈ {2, . . . , n} there exist integers
j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or Γ(x j), or Γ−1(x j). For a positive
integer n, by a Q-computation of length n we understand any sequence of terms x1, . . . , xn

such that x1 is identical to the variable x and for every integer i ∈ {2, . . . , n} there exist
integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or

x j
xk

, or Γ(x j), or Γ−1(x j).
Let f (6) = 15!, and let f (n + 1) = Γ( f (n)) for every integer n > 6. Let g(6) = 24!, and
let g(n + 1) = Γ(g(n)) for every integer n > 6. For an integer n > 6, let Ψn denote the
following statement: if a Γ-computation of length n produces positive integers x1, . . . , xn

for at most finitely many positive integers x, then max(x1, . . . , xn) 6 f (n) for every such x.
For an integer n > 6, let Φn denote the following statement: if a Q-computation of length n
produces positive integers x1, . . . , xn for at most finitely many positive integers x, then
max(x1, . . . , xn) 6 g(n) for every such x. We prove: (1) the statement Ψ6 implies that if the
equation x(x + 1) = y! has at most finitely many solutions in positive integers, then each
such solution (x, y) belongs to the set {(1, 2), (2, 3)}; (2) if y! + 1 is a square for at most
finitely many positive integers y, then the statement Ψ8 implies that every such y is smaller
than f (7); (3) the statement Φ7 implies that the set of Wilson primes is infinite.
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For a positive integer x, let Γ(x) denote (x − 1)!. Let Γ−1 : {1, 2, 6, 24, . . .} → N \ {0} denote
the inverse function that satisfies Γ−1(1) = 2. For positive integers x and y, let rest(x, y) denote
the rest from dividing x by y.

Definition 1. For a positive integer n, by a Γ-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or Γ(x j),
or Γ−1(x j).
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Definition 2. For a positive integer n, by a Q-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or

x j
xk

, or
Γ(x j), or Γ−1(x j).

Definition 3. For a positive integer n, by a R-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or
rest(x j, xk), or Γ(x j), or Γ−1(x j).

Let f (6) = 15!, and let f (n + 1) = Γ( f (n)) for every integer n > 6. For an integer n > 6, let
Ψn denote the following statement: if a Γ-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 f (n) for every
such x.

Theorem 1. For every integer n > 6 and for every positive integer x, the following
Γ-computation 

x1 := x
x2 := x1 · x1

x3 := Γ−1(x2)
x4 := x3 · x3

x5 := x4 · x4

∀i ∈ {6, . . . , n} xi := Γ(xi−1)

produces positive integers x1, . . . , xn if and only if x = 1. If x = 1, then max(x1, . . . , xn) = f (n).

Proof. If x = 1, then x1 = x2 = 1, x3 = 2, x4 = 4, x5 = 16, and xi = f (i) for every integer
i ∈ {6, . . . , n}. Hence, max(x1, . . . , xn) = f (n). If an integer x is greater than 1, then the term x3

(that is identical to Γ−1(x2)) is not a positive integer, see [3] for a more general result. �

Theorem 2. For every integer n > 6, the bound f (n) in the statement Ψn cannot be decreased.

Proof. It follows from Theorem 1. �

Let g(6) = 24!, and let g(n + 1) = Γ(g(n)) for every integer n > 6. For an integer n > 6, let
Φn denote the following statement: if a Q-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 g(n) for every
such x.

Theorem 3. For every integer n > 6 and for every positive integer x, the following
Q-computation 

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := Γ(x1)
x5 := Γ(x4)
x6 := x3

x5
x7 := Γ(x3) (if n > 7)

∀i ∈ {8, . . . , n} xi := Γ(xi−1) (if n > 8)

produces positive integers x1, . . . , xn if and only if x ∈ {1, 2, 3, 4, 5}. If x ∈ {1, 2, 3, 4}, then
max(x1, . . . , xn) < g(n). If x = 5, then max(x1, . . . , xn) = g(n).
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Proof. If x = 1, then x1 = . . . = x6 = 1. Since x3 is a positive integer, we obtain that
x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).

If x = 2, then x1 = 2, x2 = 4, x3 = 6, x4 = 1, x5 = 1, x6 = 6. Since x3 is a positive integer, we
obtain that x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).

If x = 3, then x1 = 3, x2 = 9, x3 = 8!, x4 = 2, x5 = 1, x6 = 8!. Since x3 is a positive integer, we
obtain that x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).

If x = 4, then x1 = 4, x2 = 16, x3 = 15!, x4 = 6, x5 = 120, x6 = 15!
120 = 10897286400. Since

x3 is a positive integer, we obtain that x7, . . . , xn are positive integers, if n > 7. Since
max(x1, . . . , x6) < 24!, we obtain that max(x1, . . . , xn) < g(n).

If x = 5, then
x1 = 5
x2 = x1 · x1 = 25
x3 = Γ(x2) = 24!
x4 = Γ(x1) = 24
x5 = Γ(x4) = 23!
x6 =

x3
x5

= 24!
23! = 24

Since x3 is a positive integer, we obtain that x7, . . . , xn are positive integers, if n > 7. Since
x3 = max(x1, . . . , x6) = 24!, we obtain that max(x1, . . . , xn) = g(n).

If an integer x is greater than 5, then

x6 =
x3

x5
=

Γ(x2)
Γ(Γ(x))

< 1

�

Theorem 4. For every integer n > 6, the bound g(n) in the statement Φn cannot be decreased.

Proof. It follows from Theorem 3. �

Let h(6) = 119!, and let h(n + 1) = Γ(h(n)) for every integer n > 6. For an integer n > 6, let
Θn denote the following statement: if a R-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 h(n) for every
such x.

Lemma 1. ([7, pp. 214–215]) . For every positive integer x, x does not divide Γ(x) if and only
if x = 4 or x is prime.

Theorem 5. For every integer n > 6 and for every positive integer x, the following
R-computation 

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := rest(x3, x2)
x5 := Γ(x3)

∀i ∈ {6, . . . , n} xi := Γ(xi−1)

produces positive integers x1, . . . , xn if and only if x = 2. If x = 2, then max(x1, . . . , xn) = h(n).
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Proof. If x = 1, then x1 = x2 = x3 = 1 and x4 = 0. If x = 2, then x1 = 2, x2 = 4, x3 = 6, x4 = 2,
x5 = 120, and xi = h(i) for every integer i ∈ {6, . . . , n}. Therefore, max(x1, . . . , xn) = h(n). If an
integer x is greater than 2, then x2 is composite and greater than 4. By Lemma 1,

x4 = rest(x3, x2) = rest(Γ(x2), x2) = rest
(
Γ(x2), x2

)
= 0

�

Theorem 6. For every integer n > 6, the bound h(n) in the statement Θn cannot be decreased.

Proof. It follows from Theorem 5. �

Lemma 2. For every positive integer n, there are only finitely many Γ-computations of length n.
For every positive integer n, there are only finitely many Q-computations of length n. For every
positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer n > 6, the statement Ψn is true with an unknown integer bound
that depends on n. For every integer n > 6, the statement Φn is true with an unknown integer
bound that depends on n. For every integer n > 6, the statement Θn is true with an unknown
integer bound that depends on n.

Proof. It follows from Lemma 2. �

Theorem 8. For every integer n > 6, the statement Ψn+1 implies the statement Ψn. For every
integer n > 6, the statement Φn+1 implies the statement Φn. For every integer n > 6, the
statement Θn+1 implies the statement Θn.

Proof. We present only the proof for the statement Ψn+1 as the proofs for the statements Φn+1

and Θn+1 are essentially the same. Let n ∈ {6, 7, 8, . . .}. Let us assume that a Γ-computationW
of length n produces positive integers x1, . . . , xn for at most finitely many positive integers x.
This implies that for every integer i ∈ {1, . . . , n} the Γ-computationW with added instruction
xn+1 := Γ(xi) produces positive integers x1, . . . , xn+1 for at most finitely many positive integers x.
The statement Ψn+1 implies that

∀i ∈ {1, . . . , n} Γ(xi) = xn+1 6 f (n + 1) = Γ( f (n))

Since f (n) > 1, we obtain that xi 6 f (n) for every integer i ∈ {1, . . . , n}. �

Lemma 3. For every positive integer x, the term Γ−1(x · Γ(x)) represents x + 1.

Lemma 4. For every positive integer x, x(x + 1) is a factorial of a positive integer if and only
if the following Γ-computationA 

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x1 · x4

x6 := Γ−1(x5)

produces positive integers x1, . . . , x6.
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Proof. By Lemma 3, for every positive integer x the terms x1, . . . , x5 represent positive integers
and x5 = x(x + 1). Hence, x6 that is identical to Γ−1(x5) represents a positive integer if and only
if Γ−1(x(x + 1)) represents a positive integer. The last means that x(x + 1) equals y! for some
positive integer y. �

Theorem 9. The statement Ψ6 implies that if the equation x(x + 1) = y! has at most finitely many
solutions in positive integers, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}.

Proof. Let us assume that the equation x(x + 1) = y! has at most finitely many solutions in
positive integers. By Lemma 4, the Γ-computationA produces positive integers x1, . . . , x6

for at most finitely many positive integers x. We take positive integers n and m that satisfy
n(n + 1) = m!. By Lemma 4, the Γ-computationA for x = n produces positive integers
x1, . . . , x6. The statement Ψ6 implies that x2 = Γ(n) 6 f (6) = Γ(16). Since 16 > 1, we obtain
that n 6 16. For every integer n ∈ {1, . . . , 16}, n(n + 1) is a factorial of a positive integer if and
only if n ∈ {1, 2}. �

The question of solving the equation x(x + 1) = y! was posed by P. Erdős, see [1]. F. Luca
proved that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many
solutions in positive integers, see [5].

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
equation y! + 1 = x2, see [6]. Let

F1 =
{
y ∈ N \ {0} : ∃x ∈ N \ {0} y! + 1 = x2

}
It is conjectured that F1 = {4, 5, 7}, see [9, p. 297].

Lemma 5. The set F1 is is finite if and only if the set

F2 = {x ∈ N \ {0} : ∃y ∈ N \ {0} x(x + 2) = y!}

is finite.

Proof. If y! + 1 = x2, then x > 5 and (x − 1)((x − 1) + 2) = y!. If x(x + 2) = y!, then
y! + 1 = (x + 1)2. �

Lemma 6. For every positive integer x, the following Γ-computation B

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x4 · x3

x6 := Γ−1(x5)
x7 := x1 · x6

x8 := Γ−1(x7)

produces positive integers x1, . . . , x8 if and only if x(x + 2) is a factorial of a positive integer.

Proof. By Lemma 3, for every positive integer x, the terms x1, . . . , x7 represent positive integers
and x7 = x · (x + 2). The term x8 (that is identical to Γ−1(x(x + 2))) represents a positive integer
if and only if x(x + 2) is a factorial of a positive integer. �

5



Theorem 10. If y! + 1 is a square for at most finitely many positive integers y, then the
statement Ψ8 implies that every such y is smaller than f (7).

Proof. If positive integers n and m satisfy n! + 1 = m2, then m > 5 and

(m − 1) · ((m − 1) + 2) = Γ(n + 1)

By this and Lemma 6, the Γ-computation B produces for x = m − 1 positive integers x1, . . . , x8.
The antecedent and Lemma 5 imply that the set F2 is finite. Therefore, the statement Ψ8

guarantees that Γ(n + 1) = x7 6 f (8) = Γ( f (7)). Since f (7) > 1, we obtain that n + 1 6 f (7).
Thus, n < f (7). �

Lemma 7. (Wilson’s theorem, [4, p. 89]). For every positive integer x, x divides Γ(x) + 1 if and
only if x = 1 or x is prime.

A Wilson prime is a prime number p such that p2 divides (p − 1)! + 1. It is conjectured that
the set of Wilson primes is infinite, see [2].

Lemma 8. For every positive integer x, the following Q-computation C

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := x5

x1
x7 := x6

x1

produces positive integers x1, . . . , x7 if and only if x = 1 or x is a Wilson prime.

Proof. By Lemma 3, for every positive integer x, the terms x1, . . . , x5 represent positive integers
and x5 = Γ(x) + 1. By Lemma 7, the term x6 (that is identical to Γ(x) + 1

x ) and the term x7 (that is

identical to Γ(x) + 1
x2 ) represent positive integers if and only if x = 1 or x is a Wilson prime. �

Theorem 11. The statement Φ7 implies that the set of Wilson primes is infinite.

Proof. The number 563 is a Wilson prime, see [2] and [8]. By Lemma 8, for x = 563 the
Q-computation C produces positive integers x1, . . . , x7. We have:

x1 = 563
x2 = Γ(563)
x3 = Γ(Γ(563))
x4 = Γ(563) · Γ(Γ(563)) = Γ(Γ(563) + 1)
x5 = Γ(563) + 1

x6 =
Γ(563) + 1

563
x7 =

Γ(563) + 1
5632

Since max(x1, . . . , x7) = x4 = Γ(Γ(563) + 1) > Γ(24!) = Γ(g(6)) = g(7), the statement Φ7

implies that the Q-computation C produces positive integers x1, . . . , x7 for infinitely many
positive integers x. By Lemma 8, we obtain that the set of Wilson primes is infinite. �
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Let
T1 = {n ∈ N \ {0} : n! + 1 is prime}

T2 = {n ∈ N \ {0} : (n is prime) ∧ (n! + 1 is prime)}

T3 = {n ∈ N \ {0} : (n is prime) ∧ (n + 2 is prime)}

T4 = {n ∈ N \ {0} : n2 + 1 is prime}

T5 = {n ∈ N \ {0} : (n2 + 1 is prime) ∧ (n2 + 3 is prime)}

T6 = {n ∈ N \ {0} : (n is prime) ∧ (2n + 1 is prime)}

It is commonly conjectured that the sets T1, . . . ,T6 are infinite.

Theorem 12. For every integer i ∈ {1, . . . , 6} we can compute positive integers j and k such that
the statement Φ j implies that any element of Ti that is greater than k proves that the set Ti is
infinite.

Proof. The proof is left to the reader, because for every integer i ∈ {1, . . . , 6} the proof
essentially goes as in the proof of Theorem 11. �

Lemma 9. For every positive integer x, the following R-computationD

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := rest(x4, x5)

produces positive integers x1, . . . , x6 if and only if x2 + 1 is prime.

Proof. It follows from Lemma 1 because x2 + 1 , 4. �

Theorem 13. The statement Θ6 implies that there are infinitely many primes of the form n2 + 1.

Proof. The number 142 + 1 is prime. By Lemma 9, for x = 14 the R-computationD produces
positive integers x1, . . . , x6. Since x4 = Γ(142 + 1) > Γ(120) = h(6), the statement Θ6 guarantees
that the R-computationD produces positive integers x1, . . . , x6 for infinitely many positive
integers x. By Lemma 9, we obtain that there are infinitely many primes of the form n2 + 1. �

Lemma 10. For every positive integer x, the following R-computation E

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := rest(x4, x5)

produces positive integers x1, . . . , x6 if and only if Γ(x) + 1 is prime.

Proof. It follows from Lemma 1 because Γ(x) + 1 , 4. �
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Theorem 14. The statement Θ6 implies that there are infinitely many primes of the form n! + 1.

Proof. The number Γ(12) + 1 is prime. By Lemma 10, for x = 12 the R-computation E
produces positive integers x1, . . . , x6. Since x4 = Γ(Γ(12) + 1) > Γ(120) = h(6), the
statement Θ6 guarantees that the R-computation E produces positive integers x1, . . . , x6 for
infinitely many positive integers x. By Lemma 10, we obtain that there are infinitely many
primes of the form Γ(x) + 1. �

Lemma 11. For every positive integer x, the following R-computation

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x4 · x3

x6 := Γ−1(x5)
x7 := rest(x2, x1)
x8 := rest(x5, x6)

produces positive integers x1, . . . , x8 if and only if x = 2 or both x and x + 2 are prime.

Proof. It follows from Lemma 1. �

Theorem 15. The statement Θ8 implies that any twin prime greater than h(7)-2 proves that the
set of twin primes is infinite.

Proof. The proof is based on Lemma 11. We omit this proof because is similar to the proof of
Theorem 11. �
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