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Abstract

We say that a non-negative integer m is a threshold number of a set X C N, if X is infinite
if and only if X contains an element greater than m. We formulate hypothetical statements
Y3, ..., ¥6. The statement Wy implies that a simple formula computes a gigantic threshold
number of the set of primes of the form n? + 1. The statement W9 implies that a simple
formula computes a gigantic threshold number of the set of primes of the form n! + 1.
The statement W implies that a simple formula computes a gigantic threshold number of
the set of twin primes. The following problem is open: define a set X C N that satisfies the
following conditions: (1) a known algorithm for every n € N decides whether ornotn € X,
(2) a known algorithm returns a threshold number of X, (3) new elements of X are still
discovered, (4) we do not know any algorithm deciding the inequality card(X) < oo.
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1 Introduction

The phrase “we know a non-negative integer n” in the title means that we know an algorithm
which returns n. The title cannot be formalised in ZFC because the phrase “we know a
non-negative integer n” refers to currently known non-negative integers n with some property.
A formally stated title may look like this: On ZFC-formulae ¢(x) for which there exists a
non-negative integer n such that ZFC proves that

cardfx e N: p(x)})) <o = {x e N: p(x)} C{xeN: x<n-1}

Unfortunately, this formulation admits formulae ¢(x) without any known non-negative integer n
such that ZFC proves the above implication.

Lemma 1. For every non-negative integer n, card({x e N: x <n—1}) = n.

Corollary 1. The title altered to “ZFC-formulae ¢(x) for which we know a non-negative
integer n such that card({x € N: ¢(x)}) < n if the set {x € N: ¢(x)} is finite” involves a weaker
assumption on ¢(x).



2 Subsets of N and their threshold numbers

We say that a non-negative integer m is a threshold number of a set X C N, if X is infinite
if and only if X contains an element greater than m, cf. [25] and [26]. If a set X C N
is empty or infinite, then any non-negative integer m is a threshold number of X. If
a set X C N is non-empty and finite, then the all threshold numbers of X form the set
{max(X), max(X) + 1, max(X) + 2,...}.

It is conjectured that the set of prime numbers of the form n?+ 1 is infinite, see
[15! pp. 37-38]. It is conjectured that the set of prime numbers of the form n! + 1 is infinite,
see 3, p. 443]. A twin prime is a prime number that differs from another prime number by 2.
The twin prime conjecture states that the set of twin primes is infinite, see [15, p. 39]. It is
conjectured that the set of composite numbers of the form 22" 4 1is infinite, see [11, p. 23]
and [12, pp. 158-159]. A prime p is said to be a Sophie Germain prime if both p and 2p + 1
are prime, see [23]. It is conjectured that the set of Sophie Germain primes is infinite, see
[18, p. 330]. For each of these sets, we do not know any threshold number.

Open Problem 1. Define a set X C N that satisfies the following conditions: (1) a known
algorithm for every n € N decides whether or not n € X, (2) a known algorithm returns a
threshold number of X, (3) new elements of X are still discovered, (4) we do not know any
algorithm deciding the inequality card(X) < oo.

The following statement:

for every non-negative integer n there exist
prime numbers p and g such that p +2 = gand p € [10”, 10"+ 1] (T)

is a II; statement which strengthens the twin prime conjecture, see [4, p. 43]. C. H. Bennett
claims that most mathematical conjectures can be settled indirectly by proving stronger II,
statements, see [1]. The statement (T) is equivalent to the non-halting of a Turing machine.
If a set X € N is computable and we know a threshold number of X, then the infinity of X is
equivalent to the halting of a Turing machine.

The height of a rational number § is denoted by H (’5’) and equals max(|p|, |g|) provided § is
written in lowest terms. The height of a rational tuple (xi, ..., x,) is denoted by H(xy, ..., x,)
and equals max(H(x;), ..., H(x,)).

Observation 1. The equation x° — x = y* —y has only finitely many rational solutions, see

[U4, p. 212]. The known rational solutions are (x,y) = (—=1,0), (=1,1), (0,0), (0,1), (1,0),
(1.1), (2,-5), (2,6), (3,-15), (3,16), (30,-4929), (30,4930), (1. 8), (}.43) (-2.-1&)
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(—ﬁ, W)’ and the existence of other solutions is an open question, see [19, pp. 223-224].

Corollary 2. The set
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7 = {n € N : the equation x’ — x = y* — y has a rational solution of height n}

is finite. We know an algorithm which for every n € N decides whether or not n € 7. We do not
know any algorithm which returns a threshold number of T.



Let £ denote the following system of equations:

2+ =
X¥+z2 = 7
Vi = i
Ry = 3

Let
F = {n e N\ {0} : (the system £ has no solutions in {1, ..., n}7) A
(the system £ has a solution in {1,...,n + 1}7)}
A perfect cuboid is a cuboid having integer side lengths, integer face diagonals, and an integer
space diagonal.

Observation 2. ([/22l]) No perfect cuboids are known.

Corollary 3. We know an algorithm which for every n € N decides whether or not n € ¥. ZFC
proves that card(F) € {0, 1}. We do not know any algorithm which returns card(¥). We do not
know any algorithm which returns a threshold number of F.
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N, if sin [9 ] <0
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0, sin [9 ]'9 ] otherwise

We do not know whether or not the set H is finite.

99
Observation 3. The number 92 is a threshold number of H. We know an algorithm which
decides the equality H =N. If H # N, then the set H consists of all integers from 0 to a
non-negative integer which can be computed by a known algorithm. We know an algorithm
which for every n € N decides whether or not n € H.

Let

NN

Let
o | it e a(2M=x,.))
{0}, it 280 > Xy,
Theorem 1. ZFC proves that card(K) = 1. If ZFC is consistent, then for every n € N

the sentences ’n is a threshold number of K™ and “n is not a threshold number of K> are not
provable in ZFC.

Proof. It suffices to observe that 2o can attain every value from the set {N, N,, N3, ...}, see [7]
and [10, p. 232]. O



3 A Diophantine equation whose non-solvability expresses
the consistency of ZFC

Godel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich
theorem imply the following theorem.

Theorem 2. (/5 p. 35]) There exists a polynomial D(x,, ..., x,,) with integer coefficients such
that if ZFC is arithmetically consistent, then the sentences "The equation D(xy,..., x,) =0 is
solvable in non-negative integers” and ”The equation D(xy,..., x,,) = 0 is not solvable in non-

negative integers” are not provable in ZFC.
Observation 4. (/9, p. 53]) The polynomial D(xy, ..., x,,) is not effectively known.

Let Y denote the set of all non-negative integers k such that the equation D(x, ..., x,,) =0
has no solutions in {0, ..., k}". Since the set {0, ..., k}" is finite, there exists an algorithm which
for every n € N decides whether or not n € Y. Theorem [2|implies the next theorem.

Theorem 3. For every n € N, ZFC proves that n € Y. If ZFC is arithmetically consistent, then
the sentences “Y is finite” and “Y is infinite” are not provable in ZFC. If ZFC is arithmetically
consistent, then for every n € N the sentences “n is a threshold number of Y and “n is not a
threshold number of Y are not provable in ZFC.

Let & denote the set of all non-negative integers k such that the equation D(xy,...,x,) =0
has a solution in {0, ..., k}". Since the set {0,...,k}" is finite, there exists an algorithm which
for every n € N decides whether or not n € &. Theorem [2]implies the next theorem.

Theorem 4. The set & is empty or infinite. In both cases, every non-negative integer n is a
threshold number of &. If ZFC is arithmetically consistent, then the sentences “E is empty”,
“&1s not empty”, “& is finite”, and “&E is infinite” are not provable in ZFC.

Let

V= {n eN: (the polynomial D(xy,..., x,,) has no solutions in {0, ..., n}m) A

(the polynomial D(x,..., x,,) has a solution in {0, ...,n + 1}’")}

Since the sets {0, ...,n}" and {0, ...,n + 1} are finite, there exists an algorithm which for every
n € N decides whether or not n € V. According to Observation 4} at present we are not able to
write a computer program that realizes such an algorithm. Theorem [2]implies the next theorem.

Theorem 5. (5) ZFC proves that card(V) € {0,1}. (6) For every n € N, ZFC proves that
n ¢ V. (7) ZFC does not prove the emptiness of V, if ZFC is arithmetically consistent. (8) For
every n € N, the sentence “n is a threshold number of V” is not provable in ZFC, if ZFC is
arithmetically consistent. (9) For every n € N, the sentence “n is not a threshold number of V"
is not provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 2. Define a simple algorithm A such that A returns 0 or 1 on every input k € N
and the set
V ={k € N : the program A returns 1 on input k}

satisfies conditions (5)-(9).



4 Number-theoretic lemmas
Lemma 2. For every positive integers x and y, x! -y = y! if and only if
x+l=y)vx=y=1
Let I'(k) denote (kK — 1)!.
Lemma 3. For every positive integers x and y, x - I'(x) = I'(y) if and only if
(x+l=y)vix=y=1
Lemma 4. For every non-negative integers b and ¢, b + 1 = c if and only if 22b . 22b = 220.

Lemma 5. (Wilson’s theorem, [8, p. 89]). For every positive integer x, x divides (x — 1)! + 1 if
and only if x = 1 or x is prime.

5 Hypothetical statements V5, ..., ¥

For an integer n > 3, let U, denote the following system of equations:

Yie{l,....n—1}\ {2} x;! = x;1
X1-X2 = X3
X2 X2 = X3

The diagram in Figure 1 illustrates the construction of the system U,,.

X1
X1 X2 = X3
!
squaring ! !
X2 X3 X4 Xn—-1 Xn

Fig. 1 Construction of the system U,
Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3.

Lemma 6. For every integer n > 3, the system U, has exactly two solutions in positive integers,
namely (1,...,1) and (2,2,8(3)..... g(n)).

Let
B,={x!=x: (ke(l,...nhAG#R}U{xx;=x:ijkefl,. . . n}

For an integer n > 3, let ¥,, denote the following statement: if a system of equations S C B, has
only finitely many solutions in positive integers xi, ..., X,, then each such solution (xi,..., x,)
satisfies xi,...,x, < g(n). The statement ¥, says that for subsystems of B, the largest known
solution is indeed the largest possible.



Hypothesis 1. The statements Y5, ..., VY ¢ are true.

Lemma 7. Every statement Y, is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Lemma 8. For every statement VY, the bound g(n) cannot be decreased.

Proof. 1t follows from Lemma [6|because U, C B,,. O

6 The Brocard-Ramanujan equation x! + 1 = y?

Let A denote the following system of equations:

X! = x
XZ! = X3
X5 ! = X6
X4+ X4 = X5
X3+X5 = Xg

Lemma 2] and the diagram in Figure 2 explain the construction of the system A.

! X3 +1 X5 squaring
X| — e o m - - X4
or x, =x5 =1

v v

X3 X3+ X5 = Xg X6

Fig. 2 Construction of the system A

Lemma 9. For every x|, x4 € N\ {0, 1}, the system A is solvable in positive integers x,, x3, Xs,
X if and only if x;! + 1 = xi. In this case, the integers x,, X3, X5, X¢ are uniquely determined by
the following equalities:

X2 = X !
x3 = (xh!
x5 = x!+1
X = (x!+ 1)
Proof. 1t follows from Lemma 2] m|

It is conjectured that x! + 1 is a perfect square only for x € {4, 5, 7}, see [21}, p. 297]. A weak
form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation
x! + 1 =y?, see [16].

Theorem 6. If the equation x,! + 1 = x; has only finitely many solutions in positive integers,
then the statement W¢ guarantees that each such solution (xi,x,) belongs to the set
{(4,5),(5,11), (7, 7T1)}.



Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 =
xi. Then, x,x; € N\ {0,1}. By Lemmal9l the system A is solvable in positive integers
X2, X3, X5, Xg.  Since A C Bg, the statement W¢ implies that xq = (x;! + 1)! < g(6) = g(5)!.
Hence, x;! + 1 < g(5) = g(4)!. Consequently, x; < g(4) =24. If x; € {1,...,23}, then x;! + 1 is
a perfect square only for x; € {4,5,7}. O

7 Are there infinitely many prime numbers of the form
2
n-+1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
[15, pp. 37-38]. Let B denote the following system of equations:

Xz! = X3
X3! = X4
X5! = Xp
Xg! = X9
X1-X1T = X
X3-X5 = Xg
Xg4-Xg = X9
X5 X7 = X8

Lemma 2] and the diagram in Figure 3 explain the construction of the system 8.

squaring X +1 Xs !
X] ————————————— s e e e e m - - - - > > X6

or X2=)C5:1
X5 X7 = X3

X3 fmmmmm e e e e m = » X3

v v

Fig. 3 Construction of the system 8

Lemma 10. For every integer x; > 2, the system B is solvable in positive integers x», ..., Xq if
and only if x3 + 1 is prime. In this case, the integers x,, ..., Xxq are uniquely determined by the



following equalities:
2

Xy = xl

x3 = (&)

xu o= (@)Y

X5 = .X% +1

X = (x% + 1)!

v = (xf)! +1

T x? +1

xg = (DI+1

X9 = ((x%)! + 1)!
Proof. By Lemma |2} for every integer x; > 2, the system B is solvable in positive integers
X2, ..., X if and only if x7 + 1 divides (x})! + 1. Hence, the claim of Lemma follows from
Lemmal[3l O
Lemma 11. There are only finitely many tuples (xi, ..., xo) € (N \ {0})° which solve the system
B and satisfy x; = 1.
Proof. If a tuple (x,...,xy) € (N \ {0})° solves the system B and x; = 1, then xi,...,x <
2. Indeed, x; = 1 implies that x, = x% = 1. Hence, for example, x3 = x,! = 1. Therefore,
xg = x3+ 1 =2 or xg = 1. Consequently, xg = xg! < 2. O

Theorem 7. The statement ¥y proves the following implication: if there exists an integer x| > 2
Sthch that x3 + 1 is prime and greater than g(7), then there are infinitely many primes of the form
n-+ 1.

Proof. Suppose that the antecedent holds. By Lemmal[lQ, there exists a unique tuple
(X2,...,%) € (N \ {0})® such that the tuple (x;,xs,...,X9) solves the system B. Since
x? + 1 > g(7), we obtain that x> > g(7). Hence, (x3)! > g(7)! = g(8). Consequently,

x9 = ((D!H+ D! > (g8) + D! > g(8)! = g(9)

Since B C By, the statement ¥y and the inequality x¢ > g(9) imply that the system B has
infinitely many solutions (x, ..., x9) € (N \ {0})°. According to Lemmas[I0land [TT] there are
infinitely many primes of the form n® + 1. O

Corollary 4. Let Xy denote the set of primes of the form n®> + 1. The statement ¥y implies that
we know an algorithm such that it returns a threshold number of Xo, and this number equals
max(Xy), if Xg is finite. Assuming the statement Yo, a single query to an oracle for the halting
problem decides the infinity of Xy. Assuming the statement Yy, the infinity of X is decidable in
the limit.

Proof. We consider an algorithm which computes max(Xy N [1, g(7)]). O

8 Are there infinitely many prime numbers of the form
n!+1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [3| p. 443].

Theorem 8. (c¢f. Theorem [I2). The statement Yo proves the following implication: if there
exists an integer x| > g(6) such that x;! + 1 is prime, then there are infinitely many primes of
the form n! + 1.

Proof. We leave the analogous proof to the reader. m|

8



9 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime
conjecture states that there are infinitely many twin primes, see [13, p. 39]. Let C denote the
following system of equations:

X! = x
Xz! = X3
X4! = X5
XG! = X7
x7! = xg
Xg! = X
xi2! = xi3
x5! = Xie
X2 X4 = X5
X5+ X = X7
X7+X9 = Xi0
X4 X11 = X12
X3+ X2 = X3
Xg * X14 = Xi5
Xg - X15 = Xi¢

Lemma 2] and the diagram in Figure 4 explain the construction of the system C.

X5 X10

X2 x4 =x5| T x7-x9=x10| T

+1 X4 +1 X6 +1

X| pmmmmmmmm i mm e e M xo
OI‘X]—X4—1 or X4 = X = or Xg = X9 =
! |x4 X11—x12| ! |X9'X14=X15|
X5 - X6 = X7

+1 +1

A A L » X12 X fmmmmm e e » X15
or XQ—xlz—l or X7—X15—1

Xg X155 =X
x3\r rx13 x8\r I 8 15 16 \’xl6

Fig. 4 Construction of the system C



Lemma 12. For every x4,x9 € N\ {0, 1,2}, the system C is solvable in positive integers
X1, X2, X3, X5, X6, X7, Xg, X105 X11, X125 X13, X14, X15, X16 If and only if x4 and x9 are prime and
X4+ 2 = x9. In this case, the integers Xy, Xy, X3, X5, X¢, X7, X85 X10, X115 X125 X13, X145 X15, X16 QT€
uniquely determined by the following equalities:

X1 = X4 -1

Xy = ()C4 - 1)'

x3 = (- DY!

Xs = Xy

X6 = Xo -1

X7 = ()Cg - 1)'

xs = ((xo— D!

X10 = Xg!

o = @=Dhlxl

X1 = (X4 - 1)' +1

xi3 = (= DI+ D!
(=D +1

X4 = X0

X5 = (Xg - 1)' +1

X6 = ((XQ - 1)' + 1)'

Proof. By Lemma[2] for every x4, x9 € N '\ {0, 1,2}, the system C is solvable in positive integers
X1, X2, X3, X5, X6, X7, Xg, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = x0) A (3l = D!+ 1) A (0l = 1)+ 1)
Hence, the claim of Lemma [12] follows from Lemma 3] m|

Lemma 13. There are only finitely many tuples (xi,...,x15) € N\ {OD'® which solve the
system C and satisfy (x4 € {1,2}) V (x9 € {1,2}).

Proof. If a tuple (xi,...,x16) € (N'\ (0D solves the system C and (x4 € {1,2}) V (x9 € {1,2}),
then xi, ..., x;¢ < 7!. Indeed, for example, if x, = 2 then x¢ = x4 + 1 = 3. Hence, x; = x¢! = 6.
Therefore, x5 = x7 + 1 = 7. Consequently, x;5 = x15! = 7!. O

Theorem 9. The statement W proves the following implication: if there exists a twin prime
greater than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x; and x9 such
that xo = x4 +2 > g(14). Hence, x4,x € N\{0,1,2}. By Lemma [I2] there exists
a unique tuple (xq, X2, X3, Xs, X, X7, X3, X10, X11, X12, X13, X14, X15, X16) € (N \ {O})'* such that the
tuple (xp,...,x16) solves the system C. Since x9 > g(14), we obtain that xy — 1 > g(14).
Therefore, (xg — 1)! > g(14)! = g(15). Hence, (x9 — 1)! + 1 > g(15). Consequently,

X6 = ((xo = D!+ 1! > g(15)! = g(16)

Since C C By, the statement Wi and the inequality x4 > g(16) imply that the system C has
infinitely many solutions in positive integers xi,..., Xjs. According to Lemmas and
there are infinitely many twin primes. O

Corollary 5. (cf. [6]). Let X4 denote the set of twin primes. The statement ¢ implies that
we know an algorithm such that it returns a threshold number of X, and this number equals
max(Xye), if X6 is finite. Assuming the statement Y14, a single query to an oracle for the halting
problem decides the infinity of Xi¢. Assuming the statement ¥4, the infinity of Xi¢ is decidable
in the limit.

Proof. We consider an algorithm which computes max(X6 N [1, g(14)]). |

10



10 Hypothetical statements As,...,A;4 and their
consequences

Let A(5) =T'(25), and let A(n + 1) = ['(A(n)) for every integer n > 5. For an integer n > 5, let
9. denote the following system of equations:

X1 X1T = X4
X2+ X3 = X5

{ Vie{l,...,.n=1}\ {3} T(x)) = xiny

Lemma [3|and the diagram in Figure 5 explain the construction of the system 7.

X1

X2

Y

— - —
L4 L4
X5 X6 Xn—1 Xn

Fig. 5 Construction of the system 7,

For every integer n > 5, the system 7, has exactly two solutions in positive integers, namely
(1,...,1) and (5,24,23!,25, A(5), ..., A(n)). For an integer n > 5, let A, denote the following

statement: if a system of equations S C {F(xi) = x : L,k e{l,... ,n}} U {xi “Xj = X o
i, kell,..., n}} has only finitely many solutions in positive integers xi, . .., X,, then each such
solution (xy, ..., x,) satisfies xy,...,x, < A(n).

Hypothesis 2. The statements As, ..., A4 are true.

Lemmas [3] and [5 imply that the statements A, have similar consequences as the
statements ¥,,.

Theorem 10. The statement Ag implies that any prime number p > 25 proves the infinitude of
primes.

Proof. It follows from Lemmas [3|and 5| We leave the details to the reader. m]

11



11 Hypothetical statements 23,...,%Xs and their
consequences
LetI',(k) denote (k — 1)!, wheren € {3,...,16}and k € {2} U [22”73 + 1, 00) N N. For an integer
ne{3,..., 16}, let
O, ={(x)=xc: Lke{l,...,nJJU{x;-xj=xc: 1, 5,ke{l,...,n}}

For an integer n € {3, ..., 16}, let P, denote the following system of equations:

X1 X1 = X

L) = x

Yie {2,...,1’1— l}x,--x,- = Xit+1
Lemma 14. For every integer n € {3,...,16}, P, C Q, and the system P, with I instead of T,
0 1 n2 n-2
has exactly one solution in positive integers xi, ..., X,, namely (1, 22 , 22 , 22 e 22 )
For an integer n € {3,..., 16}, let ¥, denote the following statement: if a system of equations
S ¢ O, with I' instead of ', has only finitely many solutions in positive integers x, . .., X,, then
n—-2

every tuple (xi, ..., x,) € (N\ {0})" that solves the original system & satisfies xi, ..., x, < 22 .
Hypothesis 3. The statements Zs, ..., Y ¢ are true.
Lemma 15. (¢f. Lemma[3). For every integer n € {4, ..., 16} and for every positive integers x

n-3
and y, x - Ty(x) = T,() if and only if (x+ 1 = y) A (x 50270 1).
Let Z9 C Qg be the system of equations in Figure 6.

squaring X3 +1

O RN S S Y

As5Fmmmmmmmmmm == QX6

X7 X8

Fig. 6 Construction of the system Zy

Lemma 16. For every positive integer x|, the system Zq is solvable in positive integers

9-4
X2, ..., Xy if and only if x| > 22 and x% + 1 is prime. In this case, positive integers x,, . .., X9
are uniquely determined by x,. For every positive integer n, at most finitely many tuples
(X1,...,%) € (N \ {0})° begin with n and solve the system Zo with T instead of T.

12



Proof. 1t follows from Lemmas and o
Lemma 17. ([20]). The number (13!)> + 1 = 38775788043632640001 is prime.

Lemma 18. ((13!)2 5027 = 18446744073709551617) A (rg((13!)2) > 229_2).

Theorem 11. The statement Xo implies the infinitude of primes of the form n> + 1.
Proof. Tt follows from Lemmas [T6HI8| o

Theorem 12. (cf. Theorem|8). The statement Xy implies that any prime of the form n! + 1 with
9-3
n> 22 proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader. O

Corollary 6. Let Yo denote the set of primes of the form n! + 1. The statement X9 implies that
we know an algorithm such that it returns a threshold number of Yo, and this number equals
max(Yo), if Yy is finite. Assuming the statement X9, a single query to an oracle for the halting
problem decides the infinity of Yo. Assuming the statement Lo, the infinity of Yy is decidable in
the limit.

9-3
Proof. We consider an algorithm which computes max(Yy N [1, (22 - DI+ 1). |

Let Zi4 C Q4 be the system of equations in Figure 7.

X1 +1 X2 +1
--------------------------- =

[y
X1 X5 = X4
X4
+1
Ty 2 SEEEETATERRES 5 X
+1
X3 mmmmmmmmmm == » X6
['i4 ['i4
[y ['i4
Y | X7 X1 =X ¥
X11 X12

A 4 X5 X9 = X10 A 4
Xg X10

Fig. 7 Construction of the system 4

Lemma 19. For every positive integer xi, the system Zy4 is solvable in positive integers
14-3

X2, ..., X14 if and only if x; and x| + 2 are prime and x; > 22 + 1. In this case, positive

integers x, ..., X14 are uniquely determined by x,. For every positive integer n, at most finitely

many tuples (xi, ..., x14) € (N \ {OD' begin with n and solve the system Z 4 with T instead of
F14.

13



Proof. 1t follows from Lemmas and o

Lemma 20. (/24] p. 87]). The numbers 459 - 28529 _ 1 and 459 - 28529 4+ 1 are prime (Harvey
Dubner).

Lemma 21. 45928529 _ 1 5 22" _ 2409
Theorem 13. The statement X4 implies the infinitude of twin primes.

Proof. It follows from Lemmas O

A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [23]].
It is conjectured that there are infinitely many Sophie Germain primes, see [[18, p. 330]. Let
Z16 € Q16 be the system of equations in Figure 8.

X3
A X3+ X3 = X3
I'e
X2
. . X4 +1 X5
multiplying >——r-====----nuun- N | X5 xi6 = x10
X1
X1 - X15 = X7 I'is I'6
P +1
M 200 T 3 %10
X3
+1
Xofmmmmmm e e m = » X7
I'e I
I'ie I'6
¥ | Xo-X13=X14| ¥
X13 X14

h 4 'x6 . xll = leI h 4
X11 X12

Fig. 8 Construction of the system Z¢

Lemma 22. For every positive integer xy, the system ¢ is solvable in positive integers

6-3

X2, ..., X16 if and only if x, is a Sophie Germain prime and x| > 22 + 1. In this case, positive
integers x, ..., X are uniquely determined by x,. For every positive integer n, at most finitely
many tuples (xi, ..., x16) € (N \ {0))'® begin with n and solve the system Z ¢ with T instead of
I6.

14



Proof. 1t follows from Lemmas 3] [3] and m|

Lemma 23. (/I8 p. 330]). 8069496435 - 100072 _ 1 is a Sophie Germain prime (Harvey
Dubner).

Lemma 24. 8069496435 - 105072 _ 1 > 22!,
Theorem 14. The statement X,¢ implies the infinitude of Sophie Germain primes.
Proof. Tt follows from Lemmas 22}{24] o

Theorem 15. The statement X¢ proves the following implication: if the equation x(x + 1) = y!
has only finitely many solutions in positive integers x and y, then each such solution (x,y)
belongs to the set {(1,2),(2,3)}.

Proof. We leave the proof to the reader. O

The question of solving the equation x(x + 1) = y! was posed by P. Erdos, see [2]]. F. Luca
proved that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many
solutions in positive integers, see [13].

Theorem 16. The statement X proves the following implication: if the equation x! + 1 = y* has
only finitely many solutions in positive integers x and y, then each such solution (x,y) belongs
to the set {(4,5),(5,11),(7,71)}.

Proof. We leave the proof to the reader. O

12 Hypothetical statements 3,...,Qi and their
consequences

For an integer n € {3, ..., 16}, let Q, denote the following statement: if a system of equations
Sc {F(xi) =x,:0L,ke€ {1,...,n}} U {xi “Xj=xp il k€ {1,...,n}} has a solution in integers

n-2
X1,...,X, greater than 22 , then S has infinitely many solutions in positive integers xi, . . . , X,.
For every n € {3, ..., 16}, the statement X, implies the statement €2,,.

Lemma 25. The number (65 + 1 is prime and 65! > 22 .

Proof. The following PARI/GP ([17]) command

(04:04) gp > isprime((65!)72+1,{flag=2})
1

is shown together with its output. This command performs the APRCL primality test, the
best deterministic primality test algorithm ([24} p. 226]). It rigorously shows that the number
(65!)* + 1 is prime. o

9-2
Lemma 26. If positive integers xi,...,x9 solve the system Zo and x| > 22 , then x; =
min(xl, ey Xg).

Theorem 17. The statement Qq implies the infinitude of primes of the form n> + 1.

15



Proof. 1t follows from Lemmas |16|and O

14-2
Lemma 27. If positive integers xi,...,x14 solve the system Zi4 and x; > 22 , then x| =
min(xl, ey X14).

Theorem 18. The statement Q4 implies the infinitude of twin primes.

Proof. It follows from Lemmas and O

13 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" 4 1 are called Fermat numbers. Primes of the form 22 + 1 are

n
called Fermat primes, as Fermat conjectured that every integer of the form 227 + 1is prime,
0 1 2
see [12, p. 1]. Fermat correctly remarked that 22 +1 = 3, 22 +1 =5, 22 +1 =17,
3 4
227 11 =257,and 22" + 1 = 65537 are all prime, see [12, p. 1].

Open Problem 3. ([12, p. 159]) Are there infinitely many composite numbers of the form
27’1
24 412

n
Most mathematicians believe that 22 + 1 is composite for every integer n > 5, see [L1, p. 23].
Let
.. 2Xi .
H, = {xi-xj =x: 1, j,k€ {1,...,n}}U{2 =x: ke {1,...,n}}
2h(n) o
Leth(l)=1,andleth(n + 1) =2 for every positive integer n.
Lemma 28. The following subsystem of H,

X1°X1T = X
. 2Xi
Yie{l,....n—1}2 = Xy
has exactly one solution (x,...,x,) € N\ {0})", namely (h(1),..., h(n)).

For a positive integer n, let &, denote the following statement: if a system of equations
S C H, has only finitely many solutions in positive integers X, . .., X,, then each such solution
(x1,...,X,) satisfies xy,...,x, < h(n). The statement &, says that for subsystems of H, the
largest known solution is indeed the largest possible.

Hypothesis 4. The statements &, ... ,E 3 are true.
Lemma 29. Every statement &, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H,, has a finite number of subsystems. O

Theorem 19. The statement &3 proves the following implication: if z € N\ {0} and 22Z +1

is composite and greater than h(12), then 22° 4 1 s composite for infinitely many positive
integers z.

16



Proof. Let us consider the equation
z
x+Dy+1D=2%+1 (E)

in positive integers. By Lemma] we can transform the equation (E) into an equivalent system
of equations G which has 13 variables (x, y, z, and 10 other variables) and which consists of

a
equations of the forms a - 8 = y and 227 = v, see the diagram in Figure 9.

X x+1 y+1 y
()}
5
>
—
o,
. . - . .
22( ) 22( ) 2 22( ) 22( )
g
e squaring R 22x+ ! 22y+ P squaring 2
22() \ 2Z 2;,
< 72 2<7+1
22(') 22(‘)
squaring >
522 > 52251
2 2

Fig. 9 Construction of the system G
2<
. 22 . 72%+1 . . .
Since 2 + 1 > h(12), we obtain that 2 > h(13). By this, the statement &3 implies that
the system G has infinitely many solutions in positive integers. It means that there are infinitely
many composite Fermat numbers. O

Corollary 7. Let ‘W5 denote the set of composite Fermat numbers. The statement &3 implies
that we know an algorithm such that it returns a threshold number of ‘W3, and this number
equals max(‘W3), if Ws is finite. Assuming the statement &3, a single query to an oracle for
the halting problem decides the infinity of ‘W 5. Assuming the statement &3, the infinity of ‘W3
is decidable in the limit.

Proof. We consider an algorithm which computes max(“W 3 N [1, h(12)]). O

References

[1] C. H. Bennett, Chaitin’s Omega, in: Fractal music, hypercards, and more ... (M. Gardner,
ed.), W. H. Freeman, New York, 1992, 307-319.

17



[2] D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans.
Amer. Math. Soc. 358 (2006), no. 4, 1741-1779.

[3] C. K. Caldwell and Y. Gallot, On the primality of n! + 1 and 2 X3 X5X---Xp=+1,
Math. Comp. 71 (2002), no. 237, 441-448, http://doi.org/10.1090/
S0025-5718-01-01315-1.

[4] C.S. Calude, H. Jiirgensen, S. Legg, Solving problems with finite test sets, in: Finite
versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Paun, eds.), 39-52,
Springer, London, 2000.

[5] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first
series, E-papers Servicos Editoriais Ltda, Rio de Janeiro, 2013.

[6] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle?
July 23, 2011, http://mathoverflow.net/questions/71050.

[7] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.

[8] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press,
Boca Raton, FL, 2016.

[9] H. Friedman, The incompleteness phenomena, in: Proceedings of the AMS Centennial
Symposium 1988, 49-84, Amer. Math. Soc., Providence, RI, 1992.

[10] T. Jech, Set theory, Springer, Berlin, 2003.

[11] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of
integers, American Mathematical Society, Providence, RI, 2012.

Vv

[12] M. Kftizek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to
geometry, Springer, New York, 2001.

[13] F. Luca, The Diophantine equation P(x) = n! and a result of M. Overholt, Glas. Mat. Ser.
III 37 (57) (2002), no. 2, 269-273

[14] M. Mignotte and A. Pethd, On the Diophantine equation x* — x = y? —y, Publ. Mat. 43
(1999), no. 1, 207-216.

[15] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer,
London, 2012.

[16] M. Overholt, The Diophantine equation n! + 1 = m?, Bull. London Math. Soc. 25 (1993),
no. 2, 104.

[17] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml/
html/Arithmetic_functions.html.

[18] P. Ribenboim, The new book of prime number records, Springer, New York, 1996, http:
//doi.org/10.1007/978-1-4612-0759-7.

[19] S. Siksek, Chabauty and the Mordell-Weil Sieve, in: Advances on Superelliptic Curves
and Their Applications (eds. L. Beshaj, T. Shaska, E. Zhupa), 194-224, 1IOS Press,
Amsterdam, 2015, http://dx.doi.org/10.3233/978-1-61499-520-3-194.

18


http://doi.org/10.1090/S0025-5718-01-01315-1
http://doi.org/10.1090/S0025-5718-01-01315-1
http://mathoverflow.net/questions/71050
http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_functions.html
http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_functions.html
http://doi.org/10.1007/978-1-4612-0759-7
http://doi.org/10.1007/978-1-4612-0759-7
http://dx.doi.org/10.3233/978-1-61499-520-3-194

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N.J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Smallest prime factor
of A020549(n) = (n!)* + 1, http://oeis.org/A282706.

E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman &
Hall/CRC, Boca Raton, FL, 2002.

Wolfram MathWorld, Perfect Cuboid,
http://mathworld.wolfram.com/PerfectCuboid.html.

Wolfram MathWorld, Sophie Germain prime,
http://mathworld.wolfram.com/SophieGermainPrime.htmll

S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.

A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity,
Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http:
//www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.

A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a
computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th
International Congress of Logic, Methodology and Philosophy of Science, August 20-26,
1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow,
1999.

Apoloniusz Tyszka

University of Agriculture

Faculty of Production and Power Engineering
Balicka 116B, 30-149 Krakéw, Poland
E-mail: rttyszka@cyf-kr.edu.pl

19


http://oeis.org/A282706
http://mathworld.wolfram.com/PerfectCuboid.html
http://mathworld.wolfram.com/SophieGermainPrime.html
http://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
http://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
rttyszka@cyf-kr.edu.pl

	Introduction
	Subsets of N and their threshold numbers
	A Diophantine equation whose non-solvability expresses the consistency of ZFC
	Number-theoretic lemmas
	Hypothetical statements 3,…,16
	The Brocard-Ramanujan equation x!+1=y2
	Are there infinitely many prime numbers of the form n2+1?
	Are there infinitely many prime numbers of the form n!+1?
	The twin prime conjecture
	Hypothetical statements 5,…,14 and their consequences
	Hypothetical statements 3,…,16 and their consequences
	Hypothetical statements 3,…,16 and their consequences
	Are there infinitely many composite Fermat numbers?

