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Abstract

For a positive integer x, let I'(x) denote (x — 1)!. Let ':{1,2,6,24,...} - N\ {0}
denote the inverse function that satisfies I"'(1) = 2. For a positive integer n, by a
I'-computation of length n we understand any sequence of terms xi,...,x, such that
x1 is identical to the variable x and for every integer i € {2,...,n} there exist integers
Jok€{l,...,i— 1} such that x; is identical to x; - x;, or I'(x;), or F‘l(xj). Let f(6) = 15!,
and let f(n + 1) = I'(f(n)) for every integer n > 6. For an integer n > 6, let ¥, denote the
following statement: if a I'-computation of length n produces positive integers xi,..., X,
for at most finitely many positive integers x, then max(xy, ..., x,) < f(n) for every such x.
For every integer n > 6, we formulate the statements ®, and ®,. We prove: (1) the
statement W¢ implies that if the equation x(x + 1) = y! has at most finitely many solutions
in positive integers, then each such solution (x, y) belongs to the set {(1,2),(2,3)}; (2) if
y! + 1is a square for at most finitely many positive integers y, then the statement Wg implies
that every such y is smaller than f(7); (3) the statement @7 implies that the set of Wilson
primes is infinite; (4) the statement ®¢ implies that there are infinitely many primes of
the form n? + 1; (5) the statement @4 implies that there are infinitely many primes of the
form n! + 1; (6) the statement ®¢ implies that there are infinitely many primes of the form
n! —1; (7) the statement ®Og implies that any twin prime that is greater than I'(I'(120))
proves that the set of twin primes is infinite.
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For a positive integer x, let ['(x) denote (x — 1)!. Let I'"': {1,2,6,24,...} — N\ {0} denote
the inverse function that satisfies I'"!(1) = 2. For positive integers x and y, let rest(x, y) denote
the rest from dividing x by y.

Definition 1. For a positive integer n, by a I'-computation of length n we understand any
sequence of terms Xi,...,Xx, such that x, is identical to the variable x and for every integer
i €1{2,...,n} there exist integers j,k € {1,...,i— 1} such that x; is identical to x; - x, or I'(x;),
or T71(x)).

Definition 2. For a positive integer n, by a Q-computation of length n we understand any

sequence of terms X, ..., X, such that x, is identical to the variable x and for every integer
x.

i €1{2,...,n} there exist integers j k € {1,...,i— 1} such that x; is identical to x; - x;, or =L or

Xk
['(x;), or I (x;)).



Definition 3. For a positive integer n, by a R-computation of length n we understand any
sequence of terms Xi,...,x, such that x, is identical to the variable x and for every integer
i €{2,...,n} there exist integers j,k €{1,...,i— 1} such that x; is identical to x;-xy, or
rest(x;, xy), or I'(x;), or F‘l(xj).

Let f(6) = 15!, and let f(n + 1) = I'(f(n)) for every integer n > 6. For an integer n > 6, let
Y, denote the following statement: if a I'-computation of length n produces positive integers
X1, ..., X, for at most finitely many positive integers x, then max(xy,...,x,) < f(n) for every
such x.

Theorem 1. For every integer n > 6 and for every positive integer x, the following
I'-computation

X1 = X
X2 = X1 X1
X3 = F_I(XZ)
X4 = X3°X3
X5 = Xq4°X4
Yielo,...,n}x; = I'(x_))
produces positive integers xi, ..., x, if and only if x = 1. If x = 1, then max(xy, ..., x,) = f(n).

Proof. If x=1, then x; =x, =1, x3 =2, x4 =4, x5 =16, and x; = f(i) for every integer

i €{6,...,n}. Hence, max(xy,...,x,) = f(n). If an integer x is greater than 1, then the term x3
(that is identical to I'"!(x?)) is not a positive integer ([4, p. 46]), see also [3], where a more
general problem is solved. O

Theorem 2. For every integer n > 6, the bound f(n) in the statement ¥,, cannot be decreased.
Proof. 1t follows from Theorem I} m|

Let g(6) = 24!, and let g(n + 1) = I'(g(n)) for every integer n > 6. For an integer n > 6, let
®, denote the following statement: if a Q-computation of length n produces positive integers
X1,...,%, for at most finitely many positive integers x, then max(xi,..., x,) < g(n) for every
such x.

Theorem 3. For every integer n > 6 and for every positive integer x, the following
Q-computation

X1 = X

X2 = X1-X

x3 = ()

xy = T(xp)

xs = T'(xg)

X = %

x7 = I'(x3) (fn=7)

Vie{8,....,n}x; := I'(xi.y) (if n>38)

produces positive integers Xxi,...,x, if and only if x € {1,2,3,4,5}. If x€{1,2,3,4}, then
max(xy,...,Xx,) < gn). If x =5, then max(xy,..., x,) = g(n).
Proof. If x=1, then x; =...=x¢=1. Since x3 is a positive integer, we obtain that
X7,...,X, are positive 1ntegers if n>7. Since max(xy,...,xs) <24!, we obtain that

max(xl, cer Xy) < g(n).



Ifx=2,then x; =2, x, =4, x3=6, x4 =1, x5 = 1, x¢ = 6. Since x3 is a positive integer, we
obtain that x7, ..., x, are positive integers, if n > 7. Since max(xy,..., xs) < 24!, we obtain that
max(xp,...,x,) < gn).

Ifx=3,thenx; =3,x, =9, x3 =8!, x4 =2, x5 =1, x¢ = 8!. Since x3 is a positive integer, we

obtain that x7, ..., x, are positive integers, if n > 7. Since max(xy, ..., xs) < 24!, we obtain that
max(xp,...,x,) < gn).
If x=4, then x; =4, x, = 16, x3 = 15!, x4 = 6, x5 = 120, x = 1175(’) — 10897286400. Since
X3 1S a positive integer, we obtain that x7,...,x, are positive integers, if n > 7. Since
max(xy,...,Xs) < 24!, we obtain that max(x,..., x,) < g(n).
If x = 5, then

X1 = 5

Xo = X1+°X1 = 25

X3 = F(XZ) = 24!

xy = I'(x)) =24

X5 = F(X4) = 23!

!

Since xj3 is a positive integer, we obtain that x7, ..., x, are positive integers, if n > 7. Since
X3 = max(xy, ..., Xs) = 24!, we obtain that max(xy, ..., x,) = g(n).

If an integer x is greater than 5, then

_x r'(x%) -
T s T TaTW)

O

Theorem 4. For every integer n > 6, the bound g(n) in the statement ®,, cannot be decreased.
Proof. Tt follows from Theorem o

Let h(6) = 119!, and let h(n + 1) = I'(h(n)) for every integer n > 6. For an integer n > 6, let
0, denote the following statement: if a R-computation of length n produces positive integers
X1,...,X, for at most finitely many positive integers x, then max(xi,..., x,) < h(n) for every
such x.

Lemma 1. ([10, pp. 214-215]) . For every positive integer x, x does not divide I'(x) if and only
if x =4 or x is prime.

Theorem 5. For every integer n > 6 and for every positive integer x, the following
R-computation

X1 = X
Xp = XX
x3 = I(x)
Xq4 = I'CSt()C3, Xz)
xs = T'(x3)
Yiefo,...,n}x; = I'(xi.y)
produces positive integers X, ..., x, if and only if x = 2. If x = 2, then max(xy, ..., x,) = h(n).



Proof. If x=1,thenx; =x; =x3=1landx;, =0. If x =2,thenx; =2, x, =4, x3 = 6, x4 = 2,
x5 = 120, and x; = h(i) for every integer i € {6, ..., n}. Therefore, max(xy,..., x,) = h(n). If an
integer x is greater than 2, then x? is composite and greater than 4. By Lemma

x4 = rest(xs, xp) = rest(I'(x,), x,) = rest (l"(xz), xz) =0
O
Theorem 6. For every integer n > 6, the bound h(n) in the statement ®,, cannot be decreased.
Proof. It follows from Theorem 5] m|

Lemma 2. For every positive integer n, there are only finitely many I'-computations of length n.
For every positive integer n, there are only finitely many Q-computations of length n. For every
positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer n > 6, the statement \V,, is true with an unknown integer bound
that depends on n. For every integer n > 6, the statement ®, is true with an unknown integer
bound that depends on n. For every integer n > 6, the statement ©®, is true with an unknown
integer bound that depends on n.

Proof. 1t follows from Lemma 2} |

Theorem 8. For every integer n > 6, the statement Y, ,, implies the statement ¥,. For every
integer n > 6, the statement ®,,, implies the statement ®,. For every integer n > 6, the
statement ©,,,| implies the statement ©,,.

Proof. We present only the proof for the statement ¥, ; as the proofs for the statements @,
and ®,, are essentially the same. Letn € {6,7,8,...}. Let us assume that a I'-computation W

of length n produces positive integers xi, ..., x, for at most finitely many positive integers x.
This implies that for every integer i € {1,...,n} the ['-computation ‘W with added instruction
Xn11 := ['(x;) produces positive integers xi, .. ., X,.1 for at most finitely many positive integers x.

The statement ¥,,,.; implies that
Viell,...,n} I'(x)) = xp01 < f(n+ 1) =T(f(n))
Since f(n) > 1, we obtain that x; < f(n) for every integer i € {1,...,n}. O
Hypothesis. The statements Vg, ©;, and ®g are true.
Lemma 3. For every positive integer x, the term I (x - T'(x)) represents x + 1.

Lemma 4. For every positive integer x, x(x + 1) is a factorial of a positive integer if and only
if the following I'-computation ‘A

X1 = X

xy = I'(xy)
X3 = X1-°-X2
xg = I(x)
X5 = X1-X4
Xe = F_I(X5)

produces positive integers xi, . . . , Xg.



Proof. By Lemma/3] for every positive integer x the terms xy, ..., xs represent positive integers
and x5 = x(x + 1). Hence, x4 (that is identical to I'"!(xs)) represents a positive integer if and
only if I'"!(x(x + 1)) represents a positive integer. The last means that x(x + 1) equals y! for
some positive integer y. O

Theorem 9. The statement ¢ implies that if the equation x(x + 1) = y! has at most finitely many
solutions in positive integers, then each such solution (x,y) belongs to the set {(1,2), (2, 3)}.

Proof. Let us assume that the equation x(x + 1) = y! has at most finitely many solutions in
positive integers. By Lemma |4 the I'-computation A produces positive integers xi, ..., Xq
for at most finitely many positive integers x. We take positive integers n and m that satisfy
n(n+1)=m!. By Lemma [] the I'-computation A for x = n produces positive integers
X1, ..., Xe. The statement W¢ implies that

x3=n-T(n)=T'(n+1) < f(6) =T(16)

Since 16 > 1, we obtain that n+1<16. Consequently, n <15. For every integer
ne{l,..., 15}, n(n + 1) is a factorial of a positive integer if and only if n € {1, 2}. O

The question of solving the equation x(x + 1) = y! was posed by P. Erdds, see [1]]. F. Luca
proved that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many
solutions in positive integers, see [7]].

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
equation y! + 1 = x?, see [9]. Let

Fi={yeN\{0}: Ire N\ {0} y! + 1 =}
It is conjectured that F; = {4,5,7}, see [14, p. 297].
Lemma 5. The set F, is is finite if and only if the set
Fr={xeN\{0}:dye N\ {0} x(x+2)=y!}
is finite.

Proof. If y!+1=x% then x>5 and (x—1)((x—1)+2)=y!. If x(x+2)=y!, then
yl+1=(x+1)>% o

Lemma 6. For every positive integer x, the following I'-computation B

X1 = X

xy = T(xp)

X3 = XX

xy = Tl(x3)

X5 = X4 X3

x6 = I (xs)

X7 = X1 Xe

xg = T(x7)
produces positive integers x, . .., xg if and only if x(x + 2) is a factorial of a positive integer.
Proof. By Lemma[3] for every positive integer x, the terms x;, . . ., x; represent positive integers
and x7 = x - (x + 2). The term xg (that is identical to I'"!(x(x + 2))) represents a positive integer
if and only if x(x + 2) is a factorial of a positive integer. m|
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Theorem 10. If y! + 1 is a square for at most finitely many positive integers y, then the
statement Yy implies that every such y is smaller than f(7).

Proof. If positive integers n and m satisfy n! + 1 = m?, then m > 5 and
m—-1)-(m-1)+2)=I'(n+1)

By this and Lemmal6] the I'-computation 8 produces for x = m — 1 positive integers xi, . . ., xs.
The antecedent and Lemma [5] imply that the set F, is finite. Therefore, the statement ¥g
guarantees that I'(n + 1) = x; < f(8) = I'(f(7)). Since f(7) > 1, we obtain that n + 1 < f(7).
Thus, n < f(7). |

Lemma 7. (Wilson’s theorem, [6, p. 89]). For every positive integer x, x divides I'(x) + 1 if and
only if x = 1 or x is prime.

A Wilson prime is a prime number p such that p? divides (p — 1)! + 1. It is conjectured that
the set of Wilson primes is infinite, [2l] and [13]].

Lemma 8. For every positive integer x, the following Q-computation C

X1 = X
xy = I'(xy)
x3 = I'(x)
X4 = X2+ X3
X5 = F_l(.X4)
. X5
X6 = -x_l
_ X6
X7 = X_]
produces positive integers xi, ..., x7 if and only if x = 1 or x is a Wilson prime.
Proof. By Lemma for every positive integer x, the terms xi, ..., X5 represent positive integers
and xs = I'(x) + 1. By Lemma the term x4 (that is identical to %H) and the term x7 (that is

identical to %) represent positive integers if and only if x = 1 or x is a Wilson prime. O

Theorem 11. The statement ©; implies that the set of Wilson primes is infinite.

Proof. The number 563 is a Wilson prime, see [2] and [13]. By Lemma 8| for x = 563 the

Q-computation C produces positive integers xi, ..., x;. We have:
x; = 563
x; = I'(563)
x3 = I'T(563))
xy = I'(563)-T'T(563)) =TT(563)+ 1)
x5 = I'(563)+1
_ I'(563)+ 1
Yo = 303
X = I'(563) + 1
5632
Since max(xy,...,x7) = x4 = T(563)+ 1) > T1'(24!) =T(g(6)) = g(7), the statement O,
implies that the Q-computation C produces positive integers xi,...,x; for infinitely many
positive integers x. By Lemma (8] we obtain that the set of Wilson primes is infinite. O
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Lemma 9. For every positive integer x, the following R-computation 9

X1 = X
X2 = XX
x; = I'(x)
X4 = Xy X3
xs = T7'(x)
Xg = rest(xy, Xs)
produces positive integers x,, . .. , X¢ if and only if x* + 1 is prime.
Proof. Tt follows from Lemmall|because x> + 1 # 4. O

Edmund Landau’s conjecture states that there are infinitely many primes of the form n” + 1,
see [8, pp. 37-38].

Theorem 12. The statement Qg implies that there are infinitely many primes of the form n* + 1.

Proof. The number 14% + 1 is prime. By Lemma@ for x = 14 the R-computation D produces
positive integers x, . . ., Xg. Since x4 = (14 + 1) > I'(120) = h(6), the statement O guarantees
that the R-computation 9 produces positive integers xi,...,Xs for infinitely many positive
integers x. By Lemma@, we obtain that there are infinitely many primes of the formn*> + 1. O

Lemma 10. For every positive integer x, the following R-computation &

X1 = X
Xy = F(X 1)
x3 = I'(x)
X4 = X2 X3
xs = T7'(xw)
Xg = rest(xs, Xxs5)
produces positive integers Xy, . .., X¢ if and only if I'(x) + 1 is prime.
Proof. Tt follows from Lemma[I|because I'(x) + 1 # 4. O

It is conjectured that there are infinitely many primes of the form n! + 1, see [3, p. 443]
and [[11].

Theorem 13. The statement ¢ implies that there are infinitely many primes of the form n! + 1.

Proof. The number I'(12) + 1 is prime, see [3) p. 441] and [11]. By Lemma for x =12
the R-computation & produces positive integers xi, . . ., Xg. Since x4 = ['(I'(12) + 1) > I'(120) =

h(6), the statement ®¢ guarantees that the R-computation & produces positive integers xi, . . ., Xq
for infinitely many positive integers x. By Lemma we obtain that there are infinitely many
primes of the form I'(x) + 1. O

Let # denote the set of prime numbers, and let U = {I'(n) — 1 : n € N\ {0}}.

Lemma 11. For every positive integer x, the following R-computation ¥

Xy = X

X = I(x)

X3 = XX

xs = Tl(xs3)

xs = T7'(x)

Xg = rest(xy,x1)
produces positive integers X, ..., X¢ if and only if x e PN U.
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Proof. By Lemmal(l], for every positive integer x,
xe = rest(xp, x;) = rest(I'(x), x) e N\ {0} &= x € 4} UP
By Lemma[3] x, = x + 1. Hence, for every positive integer x,
xs=T'x)=T'x+1)eN\{0} = x+1e{l(n): neN\{0}} = xeU

Since 4 ¢ U, we get ({4} UP)N U =P N U, which completes the proof. O

It is conjectured that there are infinitely many primes of the form n! — 1, see [3} p. 443]
and [[12].

Theorem 14. The statement Oq implies that there are infinitely many primes of the form n! — 1.

Proof. The number 719 =I'(7) —1 belongs to PNU. By Lemma for x =719 the
R-computation ¥ produces positive integers xi, .. ., Xs. Since

xy =1(719) > 119! = h(6)

the statement ®¢ guarantees that the R-computation F produces positive integers xi, .. ., x¢ for
infinitely many positive integers x. By Lemma|l 1] we obtain that the set # N U is infinite. O

Lemma 12. For every positive integer x, the following R-computation H

X = X
X, = I'(x)
X3 = XX
xy = T l(x3)
X5 = X4 X3
xe = I'(xs)
x7 = rest(xy, x1)
xg = rest(xs, xg)
produces positive integers Xy, ..., xg if and only if x = 2 or both x and x + 2 are prime.
Proof. It follows from Lemma m|

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [8, p. 39].

Theorem 15. The statement @g implies that any twin prime that is greater than h(7) proves that
the set of twin primes is infinite.

Proof. Let us assume that there exists a twin prime that is greater than A(7). Then, there exists
a positive integer n such that both n and n + 2 are prime and n + 2 > h(7). By Lemma for
x = n the R-computation H produces positive integers xi, . .., xg. Since

xs =I'(n+2)>T(h(7)) = h(8)

the statement @g guarantees that the R-computation H produces positive integers xi, .. ., xg for
infinitely many positive integers x. By Lemma|I2] we obtain that there are infinitely many twin
primes. O
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