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Abstract

For a positive integer x, let Γ(x) denote (x − 1)!. Let Γ−1 : {1, 2, 6, 24, . . .} → N \ {0}
denote the inverse function that satisfies Γ−1(1) = 2. For a positive integer n, by a
Γ-computation of length n we understand any sequence of terms x1, . . . , xn such that
x1 is identical to the variable x and for every integer i ∈ {2, . . . , n} there exist integers
j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or Γ(x j), or Γ−1(x j). Let f (6) = 15!,
and let f (n + 1) = Γ( f (n)) for every integer n > 6. For an integer n > 6, let Ψn denote the
following statement: if a Γ-computation of length n produces positive integers x1, . . . , xn

for at most finitely many positive integers x, then max(x1, . . . , xn) 6 f (n) for every such x.
For every integer n > 6, we formulate the statements Φn and Θn. We prove: (1) the
statement Ψ6 implies that if the equation x(x + 1) = y! has at most finitely many solutions
in positive integers, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}; (2) if
y! + 1 is a square for at most finitely many positive integers y, then the statement Ψ8 implies
that every such y is smaller than f (7); (3) the statement Φ7 implies that the set of Wilson
primes is infinite; (4) the statement Θ6 implies that there are infinitely many primes of
the form n2 + 1; (5) the statement Θ6 implies that there are infinitely many primes of the
form n! + 1; (6) the statement Θ6 implies that there are infinitely many primes of the form
n! − 1; (7) the statement Θ8 implies that any twin prime that is greater than Γ(Γ(120))
proves that the set of twin primes is infinite.
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For a positive integer x, let Γ(x) denote (x − 1)!. Let Γ−1 : {1, 2, 6, 24, . . .} → N \ {0} denote
the inverse function that satisfies Γ−1(1) = 2. For positive integers x and y, let rest(x, y) denote
the rest from dividing x by y.

Definition 1. For a positive integer n, by a Γ-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or Γ(x j),
or Γ−1(x j).

Definition 2. For a positive integer n, by a Q-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or

x j
xk

, or
Γ(x j), or Γ−1(x j).
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Definition 3. For a positive integer n, by a R-computation of length n we understand any
sequence of terms x1, . . . , xn such that x1 is identical to the variable x and for every integer
i ∈ {2, . . . , n} there exist integers j, k ∈ {1, . . . , i − 1} such that xi is identical to x j · xk, or
rest(x j, xk), or Γ(x j), or Γ−1(x j).

Let f (6) = 15!, and let f (n + 1) = Γ( f (n)) for every integer n > 6. For an integer n > 6, let
Ψn denote the following statement: if a Γ-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 f (n) for every
such x.

Theorem 1. For every integer n > 6 and for every positive integer x, the following
Γ-computation 

x1 := x
x2 := x1 · x1

x3 := Γ−1(x2)
x4 := x3 · x3

x5 := x4 · x4

∀i ∈ {6, . . . , n} xi := Γ(xi−1)

produces positive integers x1, . . . , xn if and only if x = 1. If x = 1, then max(x1, . . . , xn) = f (n).

Proof. If x = 1, then x1 = x2 = 1, x3 = 2, x4 = 4, x5 = 16, and xi = f (i) for every integer
i ∈ {6, . . . , n}. Hence, max(x1, . . . , xn) = f (n). If an integer x is greater than 1, then the term x3

(that is identical to Γ−1(x2)) is not a positive integer ([4, p. 46]), see also [5], where a more
general problem is solved. �

Theorem 2. For every integer n > 6, the bound f (n) in the statement Ψn cannot be decreased.

Proof. It follows from Theorem 1. �

Let g(6) = 24!, and let g(n + 1) = Γ(g(n)) for every integer n > 6. For an integer n > 6, let
Φn denote the following statement: if a Q-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 g(n) for every
such x.

Theorem 3. For every integer n > 6 and for every positive integer x, the following
Q-computation 

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := Γ(x1)
x5 := Γ(x4)
x6 := x3

x5
x7 := Γ(x3) (if n > 7)

∀i ∈ {8, . . . , n} xi := Γ(xi−1) (if n > 8)

produces positive integers x1, . . . , xn if and only if x ∈ {1, 2, 3, 4, 5}. If x ∈ {1, 2, 3, 4}, then
max(x1, . . . , xn) < g(n). If x = 5, then max(x1, . . . , xn) = g(n).

Proof. If x = 1, then x1 = . . . = x6 = 1. Since x3 is a positive integer, we obtain that
x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).
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If x = 2, then x1 = 2, x2 = 4, x3 = 6, x4 = 1, x5 = 1, x6 = 6. Since x3 is a positive integer, we
obtain that x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).

If x = 3, then x1 = 3, x2 = 9, x3 = 8!, x4 = 2, x5 = 1, x6 = 8!. Since x3 is a positive integer, we
obtain that x7, . . . , xn are positive integers, if n > 7. Since max(x1, . . . , x6) < 24!, we obtain that
max(x1, . . . , xn) < g(n).

If x = 4, then x1 = 4, x2 = 16, x3 = 15!, x4 = 6, x5 = 120, x6 = 15!
120 = 10897286400. Since

x3 is a positive integer, we obtain that x7, . . . , xn are positive integers, if n > 7. Since
max(x1, . . . , x6) < 24!, we obtain that max(x1, . . . , xn) < g(n).

If x = 5, then
x1 = 5
x2 = x1 · x1 = 25
x3 = Γ(x2) = 24!
x4 = Γ(x1) = 24
x5 = Γ(x4) = 23!
x6 =

x3
x5

= 24!
23! = 24

Since x3 is a positive integer, we obtain that x7, . . . , xn are positive integers, if n > 7. Since
x3 = max(x1, . . . , x6) = 24!, we obtain that max(x1, . . . , xn) = g(n).

If an integer x is greater than 5, then

x6 =
x3

x5
=

Γ(x2)
Γ(Γ(x))

< 1

�

Theorem 4. For every integer n > 6, the bound g(n) in the statement Φn cannot be decreased.

Proof. It follows from Theorem 3. �

Let h(6) = 119!, and let h(n + 1) = Γ(h(n)) for every integer n > 6. For an integer n > 6, let
Θn denote the following statement: if a R-computation of length n produces positive integers
x1, . . . , xn for at most finitely many positive integers x, then max(x1, . . . , xn) 6 h(n) for every
such x.

Lemma 1. ([10, pp. 214–215]) . For every positive integer x, x does not divide Γ(x) if and only
if x = 4 or x is prime.

Theorem 5. For every integer n > 6 and for every positive integer x, the following
R-computation 

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := rest(x3, x2)
x5 := Γ(x3)

∀i ∈ {6, . . . , n} xi := Γ(xi−1)

produces positive integers x1, . . . , xn if and only if x = 2. If x = 2, then max(x1, . . . , xn) = h(n).
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Proof. If x = 1, then x1 = x2 = x3 = 1 and x4 = 0. If x = 2, then x1 = 2, x2 = 4, x3 = 6, x4 = 2,
x5 = 120, and xi = h(i) for every integer i ∈ {6, . . . , n}. Therefore, max(x1, . . . , xn) = h(n). If an
integer x is greater than 2, then x2 is composite and greater than 4. By Lemma 1,

x4 = rest(x3, x2) = rest(Γ(x2), x2) = rest
(
Γ(x2), x2

)
= 0

�

Theorem 6. For every integer n > 6, the bound h(n) in the statement Θn cannot be decreased.

Proof. It follows from Theorem 5. �

Lemma 2. For every positive integer n, there are only finitely many Γ-computations of length n.
For every positive integer n, there are only finitely many Q-computations of length n. For every
positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer n > 6, the statement Ψn is true with an unknown integer bound
that depends on n. For every integer n > 6, the statement Φn is true with an unknown integer
bound that depends on n. For every integer n > 6, the statement Θn is true with an unknown
integer bound that depends on n.

Proof. It follows from Lemma 2. �

Theorem 8. For every integer n > 6, the statement Ψn+1 implies the statement Ψn. For every
integer n > 6, the statement Φn+1 implies the statement Φn. For every integer n > 6, the
statement Θn+1 implies the statement Θn.

Proof. We present only the proof for the statement Ψn+1 as the proofs for the statements Φn+1

and Θn+1 are essentially the same. Let n ∈ {6, 7, 8, . . .}. Let us assume that a Γ-computationW
of length n produces positive integers x1, . . . , xn for at most finitely many positive integers x.
This implies that for every integer i ∈ {1, . . . , n} the Γ-computationW with added instruction
xn+1 := Γ(xi) produces positive integers x1, . . . , xn+1 for at most finitely many positive integers x.
The statement Ψn+1 implies that

∀i ∈ {1, . . . , n} Γ(xi) = xn+1 6 f (n + 1) = Γ( f (n))

Since f (n) > 1, we obtain that xi 6 f (n) for every integer i ∈ {1, . . . , n}. �

Hypothesis. The statements Ψ8, Φ7, and Θ8 are true.

Lemma 3. For every positive integer x, the term Γ−1(x · Γ(x)) represents x + 1.

Lemma 4. For every positive integer x, x(x + 1) is a factorial of a positive integer if and only
if the following Γ-computationA 

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x1 · x4

x6 := Γ−1(x5)

produces positive integers x1, . . . , x6.
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Proof. By Lemma 3, for every positive integer x the terms x1, . . . , x5 represent positive integers
and x5 = x(x + 1). Hence, x6 (that is identical to Γ−1(x5)) represents a positive integer if and
only if Γ−1(x(x + 1)) represents a positive integer. The last means that x(x + 1) equals y! for
some positive integer y. �

Theorem 9. The statement Ψ6 implies that if the equation x(x + 1) = y! has at most finitely many
solutions in positive integers, then each such solution (x, y) belongs to the set {(1, 2), (2, 3)}.

Proof. Let us assume that the equation x(x + 1) = y! has at most finitely many solutions in
positive integers. By Lemma 4, the Γ-computationA produces positive integers x1, . . . , x6

for at most finitely many positive integers x. We take positive integers n and m that satisfy
n(n + 1) = m!. By Lemma 4, the Γ-computationA for x = n produces positive integers
x1, . . . , x6. The statement Ψ6 implies that

x3 = n · Γ(n) = Γ(n + 1) 6 f (6) = Γ(16)

Since 16 > 1, we obtain that n + 1 6 16. Consequently, n 6 15. For every integer
n ∈ {1, . . . , 15}, n(n + 1) is a factorial of a positive integer if and only if n ∈ {1, 2}. �

The question of solving the equation x(x + 1) = y! was posed by P. Erdős, see [1]. F. Luca
proved that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many
solutions in positive integers, see [7].

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
equation y! + 1 = x2, see [9]. Let

F1 =
{
y ∈ N \ {0} : ∃x ∈ N \ {0} y! + 1 = x2

}
It is conjectured that F1 = {4, 5, 7}, see [14, p. 297].

Lemma 5. The set F1 is is finite if and only if the set

F2 = {x ∈ N \ {0} : ∃y ∈ N \ {0} x(x + 2) = y!}

is finite.

Proof. If y! + 1 = x2, then x > 5 and (x − 1)((x − 1) + 2) = y!. If x(x + 2) = y!, then
y! + 1 = (x + 1)2. �

Lemma 6. For every positive integer x, the following Γ-computation B

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x4 · x3

x6 := Γ−1(x5)
x7 := x1 · x6

x8 := Γ−1(x7)

produces positive integers x1, . . . , x8 if and only if x(x + 2) is a factorial of a positive integer.

Proof. By Lemma 3, for every positive integer x, the terms x1, . . . , x7 represent positive integers
and x7 = x · (x + 2). The term x8 (that is identical to Γ−1(x(x + 2))) represents a positive integer
if and only if x(x + 2) is a factorial of a positive integer. �
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Theorem 10. If y! + 1 is a square for at most finitely many positive integers y, then the
statement Ψ8 implies that every such y is smaller than f (7).

Proof. If positive integers n and m satisfy n! + 1 = m2, then m > 5 and

(m − 1) · ((m − 1) + 2) = Γ(n + 1)

By this and Lemma 6, the Γ-computation B produces for x = m − 1 positive integers x1, . . . , x8.
The antecedent and Lemma 5 imply that the set F2 is finite. Therefore, the statement Ψ8

guarantees that Γ(n + 1) = x7 6 f (8) = Γ( f (7)). Since f (7) > 1, we obtain that n + 1 6 f (7).
Thus, n < f (7). �

Lemma 7. (Wilson’s theorem, [6, p. 89]). For every positive integer x, x divides Γ(x) + 1 if and
only if x = 1 or x is prime.

A Wilson prime is a prime number p such that p2 divides (p − 1)! + 1. It is conjectured that
the set of Wilson primes is infinite, [2] and [13].

Lemma 8. For every positive integer x, the following Q-computation C

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := x5

x1
x7 := x6

x1

produces positive integers x1, . . . , x7 if and only if x = 1 or x is a Wilson prime.

Proof. By Lemma 3, for every positive integer x, the terms x1, . . . , x5 represent positive integers
and x5 = Γ(x) + 1. By Lemma 7, the term x6 (that is identical to Γ(x) + 1

x ) and the term x7 (that is

identical to Γ(x) + 1
x2 ) represent positive integers if and only if x = 1 or x is a Wilson prime. �

Theorem 11. The statement Φ7 implies that the set of Wilson primes is infinite.

Proof. The number 563 is a Wilson prime, see [2] and [13]. By Lemma 8, for x = 563 the
Q-computation C produces positive integers x1, . . . , x7. We have:

x1 = 563
x2 = Γ(563)
x3 = Γ(Γ(563))
x4 = Γ(563) · Γ(Γ(563)) = Γ(Γ(563) + 1)
x5 = Γ(563) + 1

x6 =
Γ(563) + 1

563
x7 =

Γ(563) + 1
5632

Since max(x1, . . . , x7) = x4 = Γ(Γ(563) + 1) > Γ(24!) = Γ(g(6)) = g(7), the statement Φ7

implies that the Q-computation C produces positive integers x1, . . . , x7 for infinitely many
positive integers x. By Lemma 8, we obtain that the set of Wilson primes is infinite. �
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Lemma 9. For every positive integer x, the following R-computationD

x1 := x
x2 := x1 · x1

x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := rest(x4, x5)

produces positive integers x1, . . . , x6 if and only if x2 + 1 is prime.

Proof. It follows from Lemma 1 because x2 + 1 , 4. �

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1,
see [8, pp. 37–38].

Theorem 12. The statement Θ6 implies that there are infinitely many primes of the form n2 + 1.

Proof. The number 142 + 1 is prime. By Lemma 9, for x = 14 the R-computationD produces
positive integers x1, . . . , x6. Since x4 = Γ(142 + 1) > Γ(120) = h(6), the statement Θ6 guarantees
that the R-computationD produces positive integers x1, . . . , x6 for infinitely many positive
integers x. By Lemma 9, we obtain that there are infinitely many primes of the form n2 + 1. �

Lemma 10. For every positive integer x, the following R-computation E

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := x2 · x3

x5 := Γ−1(x4)
x6 := rest(x4, x5)

produces positive integers x1, . . . , x6 if and only if Γ(x) + 1 is prime.

Proof. It follows from Lemma 1 because Γ(x) + 1 , 4. �

It is conjectured that there are infinitely many primes of the form n! + 1, see [3, p. 443]
and [11].

Theorem 13. The statement Θ6 implies that there are infinitely many primes of the form n! + 1.

Proof. The number Γ(12) + 1 is prime, see [3, p. 441] and [11]. By Lemma 10, for x = 12
the R-computation E produces positive integers x1, . . . , x6. Since x4 = Γ(Γ(12) + 1) > Γ(120) =

h(6), the statement Θ6 guarantees that the R-computation E produces positive integers x1, . . . , x6

for infinitely many positive integers x. By Lemma 10, we obtain that there are infinitely many
primes of the form Γ(x) + 1. �

Let P denote the set of prime numbers, and let U = {Γ(n) − 1 : n ∈ N \ {0}}.

Lemma 11. For every positive integer x, the following R-computation F

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := Γ−1(x4)
x6 := rest(x2, x1)

produces positive integers x1, . . . , x6 if and only if x ∈ P ∩ U.
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Proof. By Lemma 1, for every positive integer x,

x6 = rest(x2, x1) = rest(Γ(x), x) ∈ N \ {0} ⇐⇒ x ∈ {4} ∪ P

By Lemma 3, x4 = x + 1. Hence, for every positive integer x,

x5 = Γ−1(x4) = Γ−1(x + 1) ∈ N \ {0} ⇐⇒ x + 1 ∈ {Γ(n) : n ∈ N \ {0}} ⇐⇒ x ∈ U

Since 4 < U, we get ({4} ∪ P) ∩ U = P ∩ U, which completes the proof. �

It is conjectured that there are infinitely many primes of the form n! − 1, see [3, p. 443]
and [12].

Theorem 14. The statement Θ6 implies that there are infinitely many primes of the form n! − 1.

Proof. The number 719 = Γ(7) − 1 belongs to P ∩ U. By Lemma 11, for x = 719 the
R-computation F produces positive integers x1, . . . , x6. Since

x2 = Γ(719) > 119! = h(6)

the statement Θ6 guarantees that the R-computation F produces positive integers x1, . . . , x6 for
infinitely many positive integers x. By Lemma 11, we obtain that the set P ∩ U is infinite. �

Lemma 12. For every positive integer x, the following R-computationH

x1 := x
x2 := Γ(x1)
x3 := x1 · x2

x4 := Γ−1(x3)
x5 := x4 · x3

x6 := Γ−1(x5)
x7 := rest(x2, x1)
x8 := rest(x5, x6)

produces positive integers x1, . . . , x8 if and only if x = 2 or both x and x + 2 are prime.

Proof. It follows from Lemma 1. �

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [8, p. 39].

Theorem 15. The statement Θ8 implies that any twin prime that is greater than h(7) proves that
the set of twin primes is infinite.

Proof. Let us assume that there exists a twin prime that is greater than h(7). Then, there exists
a positive integer n such that both n and n + 2 are prime and n + 2 > h(7). By Lemma 12, for
x = n the R-computationH produces positive integers x1, . . . , x8. Since

x5 = Γ(n + 2) > Γ(h(7)) = h(8)

the statement Θ8 guarantees that the R-computationH produces positive integers x1, . . . , x8 for
infinitely many positive integers x. By Lemma 12, we obtain that there are infinitely many twin
primes. �
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[10] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN (Polish
Scientific Publishers) and North-Holland, Warsaw-Amsterdam, 1987.

[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n
such that n! + 1 is prime, http://oeis.org/A002981.

[12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n
such that n! − 1 is prime, http://oeis.org/A002982.

[13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A007540, Wilson
primes: primes p such that (p − 1)! ≡ −1 (mod p2), http://oeis.org/A007540.

[14] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman &
Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołła̧taj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

9

http://primes.utm.edu/glossary/xpage/WilsonPrime.html
http://primes.utm.edu/glossary/xpage/WilsonPrime.html
http://oeis.org/A002981
http://oeis.org/A002982
http://oeis.org/A007540
rttyszka@cyf-kr.edu.pl

