A new approach to solving number theoretic problems

Apoloniusz Tyszka

Abstract

For a positive integer x, let $\Gamma(x)$ denote (x-1)!. Let Γ^{-1} : $\{1, 2, 6, 24, \ldots\} \rightarrow \mathbb{N} \setminus \{0\}$ denote the inverse function that satisfies $\Gamma^{-1}(1) = 2$. For a positive integer *n*, by a Γ -computation of length *n* we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, ..., n\}$ there exist integers $j, k \in \{1, \dots, i-1\}$ such that x_i is identical to $x_i \cdot x_k$, or $\Gamma(x_i)$, or $\Gamma^{-1}(x_i)$. Let f(6) = 15!, and let $f(n + 1) = \Gamma(f(n))$ for every integer $n \ge 6$. For an integer $n \ge 6$, let Ψ_n denote the following statement: if a Γ -computation of length *n* produces positive integers x_1, \ldots, x_n for at most finitely many positive integers x, then $\max(x_1, \ldots, x_n) \leq f(n)$ for every such x. For every integer $n \ge 6$, we formulate the statements Φ_n and Θ_n . We prove: (1) the statement Ψ_6 implies that if the equation x(x + 1) = y! has at most finitely many solutions in positive integers, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$; (2) if y! + 1 is a square for at most finitely many positive integers y, then the statement Ψ_8 implies that every such y is smaller than f(7); (3) the statement Φ_7 implies that the set of Wilson primes is infinite; (4) the statement Θ_6 implies that there are infinitely many primes of the form $n^2 + 1$; (5) the statement Θ_6 implies that there are infinitely many primes of the form n! + 1; (6) the statement Θ_6 implies that there are infinitely many primes of the form n! - 1; (7) the statement Θ_8 implies that any twin prime that is greater than $\Gamma(\Gamma(120))$ proves that the set of twin primes is infinite.

2010 Mathematics Subject Classification: 11A41, 11D85, 68Q05.

Key words and phrases: Brocard-Ramanujan equation, Brocard's problem, equation x(x + 1) = y!, primes of the form $n^2 + 1$, primes of the form n! + 1, primes of the form n! - 1, twin primes, Wilson primes, Wilson's theorem.

For a positive integer x, let $\Gamma(x)$ denote (x - 1)!. Let Γ^{-1} : $\{1, 2, 6, 24, ...\} \rightarrow \mathbb{N} \setminus \{0\}$ denote the inverse function that satisfies $\Gamma^{-1}(1) = 2$. For positive integers x and y, let rest(x, y) denote the rest from dividing x by y.

Definition 1. For a positive integer n, by a Γ -computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, \ldots, n\}$ there exist integers $j, k \in \{1, \ldots, i-1\}$ such that x_i is identical to $x_j \cdot x_k$, or $\Gamma(x_j)$, or $\Gamma^{-1}(x_j)$.

Definition 2. For a positive integer n, by a Q-computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, \ldots, n\}$ there exist integers $j, k \in \{1, \ldots, i-1\}$ such that x_i is identical to $x_j \cdot x_k$, or $\frac{x_j}{x_k}$, or $\Gamma(x_j)$, or $\Gamma^{-1}(x_j)$.

Definition 3. For a positive integer n, by a R-computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, \ldots, n\}$ there exist integers $j, k \in \{1, \ldots, i-1\}$ such that x_i is identical to $x_j \cdot x_k$, or rest (x_j, x_k) , or $\Gamma(x_j)$, or $\Gamma^{-1}(x_j)$.

Let f(6) = 15!, and let $f(n + 1) = \Gamma(f(n))$ for every integer $n \ge 6$. For an integer $n \ge 6$, let Ψ_n denote the following statement: if a Γ -computation of length n produces positive integers x_1, \ldots, x_n for at most finitely many positive integers x, then $\max(x_1, \ldots, x_n) \le f(n)$ for every such x.

Theorem 1. For every integer $n \ge 6$ and for every positive integer *x*, the following Γ -computation

$$\begin{cases} x_1 := x \\ x_2 := x_1 \cdot x_1 \\ x_3 := \Gamma^{-1}(x_2) \\ x_4 := x_3 \cdot x_3 \\ x_5 := x_4 \cdot x_4 \\ \forall i \in \{6, \dots, n\} x_i := \Gamma(x_{i-1}) \end{cases}$$

produces positive integers x_1, \ldots, x_n if and only if x = 1. If x = 1, then $\max(x_1, \ldots, x_n) = f(n)$.

Proof. If x = 1, then $x_1 = x_2 = 1$, $x_3 = 2$, $x_4 = 4$, $x_5 = 16$, and $x_i = f(i)$ for every integer $i \in \{6, ..., n\}$. Hence, $\max(x_1, ..., x_n) = f(n)$. If an integer x is greater than 1, then the term x_3 (that is identical to $\Gamma^{-1}(x^2)$) is not a positive integer ([4, p. 46]), see also [5], where a more general problem is solved.

Theorem 2. For every integer $n \ge 6$, the bound f(n) in the statement Ψ_n cannot be decreased.

Proof. It follows from Theorem 1.

Let g(6) = 24!, and let $g(n + 1) = \Gamma(g(n))$ for every integer $n \ge 6$. For an integer $n \ge 6$, let Φ_n denote the following statement: if a Q-computation of length *n* produces positive integers x_1, \ldots, x_n for at most finitely many positive integers *x*, then $\max(x_1, \ldots, x_n) \le g(n)$ for every such *x*.

Theorem 3. For every integer $n \ge 6$ and for every positive integer *x*, the following *Q*-computation

$$\begin{cases} x_1 := x \\ x_2 := x_1 \cdot x_1 \\ x_3 := \Gamma(x_2) \\ x_4 := \Gamma(x_1) \\ x_5 := \Gamma(x_4) \\ x_6 := \frac{x_3}{x_5} \\ x_7 := \Gamma(x_3) \text{ (if } n \ge 7) \\ \forall i \in \{8, \dots, n\} x_i := \Gamma(x_{i-1}) \text{ (if } n \ge 8) \end{cases}$$

produces positive integers $x_1, ..., x_n$ if and only if $x \in \{1, 2, 3, 4, 5\}$. If $x \in \{1, 2, 3, 4\}$, then $\max(x_1, ..., x_n) < g(n)$. If x = 5, then $\max(x_1, ..., x_n) = g(n)$.

Proof. If x = 1, then $x_1 = ... = x_6 = 1$. Since x_3 is a positive integer, we obtain that $x_7, ..., x_n$ are positive integers, if $n \ge 7$. Since $\max(x_1, ..., x_6) < 24!$, we obtain that $\max(x_1, ..., x_n) < g(n)$.

If x = 2, then $x_1 = 2$, $x_2 = 4$, $x_3 = 6$, $x_4 = 1$, $x_5 = 1$, $x_6 = 6$. Since x_3 is a positive integer, we obtain that x_7, \ldots, x_n are positive integers, if $n \ge 7$. Since $\max(x_1, \ldots, x_6) < 24!$, we obtain that $\max(x_1, \ldots, x_n) < g(n)$.

If x = 3, then $x_1 = 3$, $x_2 = 9$, $x_3 = 8!$, $x_4 = 2$, $x_5 = 1$, $x_6 = 8!$. Since x_3 is a positive integer, we obtain that x_7, \ldots, x_n are positive integers, if $n \ge 7$. Since $\max(x_1, \ldots, x_6) < 24!$, we obtain that $\max(x_1, \ldots, x_n) < g(n)$.

If x = 4, then $x_1 = 4$, $x_2 = 16$, $x_3 = 15!$, $x_4 = 6$, $x_5 = 120$, $x_6 = \frac{15!}{120} = 10897286400$. Since x_3 is a positive integer, we obtain that x_7, \ldots, x_n are positive integers, if $n \ge 7$. Since $\max(x_1, \ldots, x_6) < 24!$, we obtain that $\max(x_1, \ldots, x_n) < g(n)$.

If x = 5, then

 $\begin{aligned} x_1 &= 5 \\ x_2 &= x_1 \cdot x_1 = 25 \\ x_3 &= \Gamma(x_2) = 24! \\ x_4 &= \Gamma(x_1) = 24 \\ x_5 &= \Gamma(x_4) = 23! \\ x_6 &= \frac{x_3}{x_5} = \frac{24!}{23!} = 24 \end{aligned}$

Since x_3 is a positive integer, we obtain that x_7, \ldots, x_n are positive integers, if $n \ge 7$. Since $x_3 = \max(x_1, \ldots, x_6) = 24!$, we obtain that $\max(x_1, \ldots, x_n) = g(n)$.

If an integer x is greater than 5, then

$$x_6 = \frac{x_3}{x_5} = \frac{\Gamma(x^2)}{\Gamma(\Gamma(x))} < 1$$

Theorem 4. For every integer $n \ge 6$, the bound g(n) in the statement Φ_n cannot be decreased.

Proof. It follows from Theorem 3.

Let h(6) = 119!, and let $h(n + 1) = \Gamma(h(n))$ for every integer $n \ge 6$. For an integer $n \ge 6$, let Θ_n denote the following statement: if a R-computation of length *n* produces positive integers x_1, \ldots, x_n for at most finitely many positive integers *x*, then $\max(x_1, \ldots, x_n) \le h(n)$ for every such *x*.

Lemma 1. ([10, pp. 214–215]). For every positive integer x, x does not divide $\Gamma(x)$ if and only if x = 4 or x is prime.

Theorem 5. For every integer $n \ge 6$ and for every positive integer x, the following *R*-computation

$$\begin{array}{rcl}
x_1 & := & x \\
x_2 & := & x_1 \cdot x_1 \\
x_3 & := & \Gamma(x_2) \\
x_4 & := & \operatorname{rest}(x_3, x_2) \\
x_5 & := & \Gamma(x_3) \\
\forall i \in \{6, \dots, n\} x_i & := & \Gamma(x_{i-1})
\end{array}$$

produces positive integers x_1, \ldots, x_n if and only if x = 2. If x = 2, then $\max(x_1, \ldots, x_n) = h(n)$.

ι. □

Proof. If x = 1, then $x_1 = x_2 = x_3 = 1$ and $x_4 = 0$. If x = 2, then $x_1 = 2$, $x_2 = 4$, $x_3 = 6$, $x_4 = 2$, $x_5 = 120$, and $x_i = h(i)$ for every integer $i \in \{6, ..., n\}$. Therefore, $\max(x_1, ..., x_n) = h(n)$. If an integer x is greater than 2, then x^2 is composite and greater than 4. By Lemma 1,

$$x_4 = \operatorname{rest}(x_3, x_2) = \operatorname{rest}(\Gamma(x_2), x_2) = \operatorname{rest}(\Gamma(x^2), x^2) = 0$$

Theorem 6. For every integer $n \ge 6$, the bound h(n) in the statement Θ_n cannot be decreased.

Proof. It follows from Theorem 5.

Lemma 2. For every positive integer n, there are only finitely many Γ -computations of length n. For every positive integer n, there are only finitely many Q-computations of length n. For every positive integer n, there are only finitely many R-computations of length n.

Theorem 7. For every integer $n \ge 6$, the statement Ψ_n is true with an unknown integer bound that depends on n. For every integer $n \ge 6$, the statement Φ_n is true with an unknown integer bound that depends on n. For every integer $n \ge 6$, the statement Θ_n is true with an unknown integer integer bound that depends on n.

Proof. It follows from Lemma 2.

Theorem 8. For every integer $n \ge 6$, the statement Ψ_{n+1} implies the statement Ψ_n . For every integer $n \ge 6$, the statement Φ_{n+1} implies the statement Φ_n . For every integer $n \ge 6$, the statement Θ_{n+1} implies the statement Θ_n .

Proof. We present only the proof for the statement Ψ_{n+1} as the proofs for the statements Φ_{n+1} and Θ_{n+1} are essentially the same. Let $n \in \{6, 7, 8, \ldots\}$. Let us assume that a Γ -computation W of length n produces positive integers x_1, \ldots, x_n for at most finitely many positive integers x. This implies that for every integer $i \in \{1, \ldots, n\}$ the Γ -computation W with added instruction $x_{n+1} := \Gamma(x_i)$ produces positive integers x_1, \ldots, x_{n+1} for at most finitely many positive integers x. The statement Ψ_{n+1} implies that

$$\forall i \in \{1, \dots, n\} \ \Gamma(x_i) = x_{n+1} \leq f(n+1) = \Gamma(f(n))$$

Since f(n) > 1, we obtain that $x_i \leq f(n)$ for every integer $i \in \{1, ..., n\}$.

Hypothesis. The statements Ψ_8 , Φ_7 , and Θ_8 are true.

Lemma 3. For every positive integer x, the term $\Gamma^{-1}(x \cdot \Gamma(x))$ represents x + 1.

Lemma 4. For every positive integer x, x(x + 1) is a factorial of a positive integer if and only if the following Γ -computation \mathcal{A}

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := x_1 \cdot x_2 \\ x_4 := \Gamma^{-1}(x_3) \\ x_5 := x_1 \cdot x_4 \\ x_6 := \Gamma^{-1}(x_5) \end{cases}$$

produces positive integers x_1, \ldots, x_6 .

Proof. By Lemma 3, for every positive integer x the terms x_1, \ldots, x_5 represent positive integers and $x_5 = x(x + 1)$. Hence, x_6 (that is identical to $\Gamma^{-1}(x_5)$) represents a positive integer if and only if $\Gamma^{-1}(x(x + 1))$ represents a positive integer. The last means that x(x + 1) equals y! for some positive integer y.

Theorem 9. The statement Ψ_6 implies that if the equation x(x + 1) = y! has at most finitely many solutions in positive integers, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$.

Proof. Let us assume that the equation x(x + 1) = y! has at most finitely many solutions in positive integers. By Lemma 4, the Γ -computation \mathcal{A} produces positive integers x_1, \ldots, x_6 for at most finitely many positive integers x. We take positive integers n and m that satisfy n(n + 1) = m!. By Lemma 4, the Γ -computation \mathcal{A} for x = n produces positive integers x_1, \ldots, x_6 . The statement Ψ_6 implies that

$$x_3 = n \cdot \Gamma(n) = \Gamma(n+1) \le f(6) = \Gamma(16)$$

Since 16 > 1, we obtain that $n + 1 \le 16$. Consequently, $n \le 15$. For every integer $n \in \{1, ..., 15\}$, n(n + 1) is a factorial of a positive integer if and only if $n \in \{1, 2\}$. \Box

The question of solving the equation x(x + 1) = y! was posed by P. Erdős, see [1]. F. Luca proved that the *abc* conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive integers, see [7].

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $y! + 1 = x^2$, see [9]. Let

$$F_1 = \left\{ y \in \mathbb{N} \setminus \{0\} : \exists x \in \mathbb{N} \setminus \{0\} \ y! + 1 = x^2 \right\}$$

It is conjectured that $F_1 = \{4, 5, 7\}$, see [14, p. 297].

Lemma 5. The set F_1 is is finite if and only if the set

$$F_2 = \{x \in \mathbb{N} \setminus \{0\} : \exists y \in \mathbb{N} \setminus \{0\} \ x(x+2) = y!\}$$

is finite.

Proof. If $y! + 1 = x^2$, then $x \ge 5$ and (x - 1)((x - 1) + 2) = y!. If x(x + 2) = y!, then $y! + 1 = (x + 1)^2$.

Lemma 6. For every positive integer x, the following Γ -computation \mathcal{B}

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := x_1 \cdot x_2 \\ x_4 := \Gamma^{-1}(x_3) \\ x_5 := x_4 \cdot x_3 \\ x_6 := \Gamma^{-1}(x_5) \\ x_7 := x_1 \cdot x_6 \\ x_8 := \Gamma^{-1}(x_7) \end{cases}$$

produces positive integers x_1, \ldots, x_8 if and only if x(x + 2) is a factorial of a positive integer.

Proof. By Lemma 3, for every positive integer *x*, the terms x_1, \ldots, x_7 represent positive integers and $x_7 = x \cdot (x + 2)$. The term x_8 (that is identical to $\Gamma^{-1}(x(x + 2))$) represents a positive integer if and only if x(x + 2) is a factorial of a positive integer.

Theorem 10. If y! + 1 is a square for at most finitely many positive integers y, then the statement Ψ_8 implies that every such y is smaller than f(7).

Proof. If positive integers *n* and *m* satisfy $n! + 1 = m^2$, then $m \ge 5$ and

$$(m-1) \cdot ((m-1)+2) = \Gamma(n+1)$$

By this and Lemma 6, the Γ -computation \mathcal{B} produces for x = m - 1 positive integers x_1, \ldots, x_8 . The antecedent and Lemma 5 imply that the set F_2 is finite. Therefore, the statement Ψ_8 guarantees that $\Gamma(n + 1) = x_7 \leq f(8) = \Gamma(f(7))$. Since f(7) > 1, we obtain that $n + 1 \leq f(7)$. Thus, n < f(7).

Lemma 7. (Wilson's theorem, [6, p. 89]). For every positive integer x, x divides $\Gamma(x) + 1$ if and only if x = 1 or x is prime.

A Wilson prime is a prime number p such that p^2 divides (p-1)! + 1. It is conjectured that the set of Wilson primes is infinite, [2] and [13].

Lemma 8. For every positive integer x, the following Q-computation C

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := \Gamma(x_2) \\ x_4 := x_2 \cdot x_3 \\ x_5 := \Gamma^{-1}(x_4) \\ x_6 := \frac{x_5}{x_1} \\ x_7 := \frac{x_6}{x_1} \end{cases}$$

produces positive integers x_1, \ldots, x_7 if and only if x = 1 or x is a Wilson prime.

Proof. By Lemma 3, for every positive integer *x*, the terms x_1, \ldots, x_5 represent positive integers and $x_5 = \Gamma(x) + 1$. By Lemma 7, the term x_6 (that is identical to $\frac{\Gamma(x) + 1}{x}$) and the term x_7 (that is identical to $\frac{\Gamma(x) + 1}{x^2}$) represent positive integers if and only if x = 1 or *x* is a Wilson prime. \Box

Theorem 11. The statement Φ_7 implies that the set of Wilson primes is infinite.

Proof. The number 563 is a Wilson prime, see [2] and [13]. By Lemma 8, for x = 563 the Q-computation *C* produces positive integers x_1, \ldots, x_7 . We have:

$$\begin{aligned} x_1 &= 563 \\ x_2 &= \Gamma(563) \\ x_3 &= \Gamma(\Gamma(563)) \\ x_4 &= \Gamma(563) \cdot \Gamma(\Gamma(563)) = \Gamma(\Gamma(563) + 1) \\ x_5 &= \Gamma(563) + 1 \\ x_6 &= \frac{\Gamma(563) + 1}{563} \\ x_7 &= \frac{\Gamma(563) + 1}{563^2} \end{aligned}$$

Since $\max(x_1, \ldots, x_7) = x_4 = \Gamma(\Gamma(563) + 1) > \Gamma(24!) = \Gamma(g(6)) = g(7)$, the statement Φ_7 implies that the Q-computation *C* produces positive integers x_1, \ldots, x_7 for infinitely many positive integers *x*. By Lemma 8, we obtain that the set of Wilson primes is infinite. \Box

Lemma 9. For every positive integer x, the following R-computation D

$$\begin{cases} x_1 := x \\ x_2 := x_1 \cdot x_1 \\ x_3 := \Gamma(x_2) \\ x_4 := x_2 \cdot x_3 \\ x_5 := \Gamma^{-1}(x_4) \\ x_6 := \operatorname{rest}(x_4, x_5) \end{cases}$$

produces positive integers x_1, \ldots, x_6 if and only if $x^2 + 1$ is prime.

Proof. It follows from Lemma 1 because $x^2 + 1 \neq 4$.

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [8, pp. 37–38].

Theorem 12. The statement Θ_6 implies that there are infinitely many primes of the form $n^2 + 1$.

Proof. The number $14^2 + 1$ is prime. By Lemma 9, for x = 14 the R-computation \mathcal{D} produces positive integers x_1, \ldots, x_6 . Since $x_4 = \Gamma(14^2 + 1) > \Gamma(120) = h(6)$, the statement Θ_6 guarantees that the R-computation \mathcal{D} produces positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 9, we obtain that there are infinitely many primes of the form $n^2 + 1$. \Box

Lemma 10. For every positive integer x, the following *R*-computation \mathcal{E}

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := \Gamma(x_2) \\ x_4 := x_2 \cdot x_3 \\ x_5 := \Gamma^{-1}(x_4) \\ x_6 := \operatorname{rest}(x_4, x_5) \end{cases}$$

produces positive integers x_1, \ldots, x_6 if and only if $\Gamma(x) + 1$ is prime.

Proof. It follows from Lemma 1 because $\Gamma(x) + 1 \neq 4$.

It is conjectured that there are infinitely many primes of the form n! + 1, see [3, p. 443] and [11].

Theorem 13. The statement Θ_6 implies that there are infinitely many primes of the form n! + 1.

Proof. The number $\Gamma(12) + 1$ is prime, see [3, p. 441] and [11]. By Lemma 10, for x = 12 the R-computation \mathcal{E} produces positive integers x_1, \ldots, x_6 . Since $x_4 = \Gamma(\Gamma(12) + 1) > \Gamma(120) = h(6)$, the statement Θ_6 guarantees that the R-computation \mathcal{E} produces positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 10, we obtain that there are infinitely many primes of the form $\Gamma(x) + 1$.

Let \mathcal{P} denote the set of prime numbers, and let $U = \{\Gamma(n) - 1 : n \in \mathbb{N} \setminus \{0\}\}.$

Lemma 11. For every positive integer x, the following *R*-computation \mathcal{F}

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := x_1 \cdot x_2 \\ x_4 := \Gamma^{-1}(x_3) \\ x_5 := \Gamma^{-1}(x_4) \\ x_6 := \operatorname{rest}(x_2, x_1) \end{cases}$$

produces positive integers x_1, \ldots, x_6 if and only if $x \in \mathcal{P} \cap U$.

Proof. By Lemma 1, for every positive integer *x*,

$$x_6 = \operatorname{rest}(x_2, x_1) = \operatorname{rest}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\} \Longleftrightarrow x \in \{4\} \cup \mathcal{P}$$

By Lemma 3, $x_4 = x + 1$. Hence, for every positive integer *x*,

$$x_5 = \Gamma^{-1}(x_4) = \Gamma^{-1}(x+1) \in \mathbb{N} \setminus \{0\} \Longleftrightarrow x+1 \in \{\Gamma(n): n \in \mathbb{N} \setminus \{0\}\} \Longleftrightarrow x \in U$$

Since $4 \notin U$, we get $(\{4\} \cup \mathcal{P}) \cap U = \mathcal{P} \cap U$, which completes the proof.

It is conjectured that there are infinitely many primes of the form n! - 1, see [3, p. 443] and [12].

Theorem 14. The statement Θ_6 implies that there are infinitely many primes of the form n! - 1.

Proof. The number $719 = \Gamma(7) - 1$ belongs to $\mathcal{P} \cap U$. By Lemma 11, for x = 719 the R-computation \mathcal{F} produces positive integers x_1, \ldots, x_6 . Since

$$x_2 = \Gamma(719) > 119! = h(6)$$

the statement Θ_6 guarantees that the R-computation \mathcal{F} produces positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 11, we obtain that the set $\mathcal{P} \cap U$ is infinite. \Box

Lemma 12. For every positive integer x, the following R-computation H

$$\begin{cases} x_1 := x \\ x_2 := \Gamma(x_1) \\ x_3 := x_1 \cdot x_2 \\ x_4 := \Gamma^{-1}(x_3) \\ x_5 := x_4 \cdot x_3 \\ x_6 := \Gamma^{-1}(x_5) \\ x_7 := \operatorname{rest}(x_2, x_1) \\ x_8 := \operatorname{rest}(x_5, x_6) \end{cases}$$

produces positive integers x_1, \ldots, x_8 if and only if x = 2 or both x and x + 2 are prime.

Proof. It follows from Lemma 1.

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [8, p. 39].

Theorem 15. The statement Θ_8 implies that any twin prime that is greater than h(7) proves that the set of twin primes is infinite.

Proof. Let us assume that there exists a twin prime that is greater than h(7). Then, there exists a positive integer n such that both n and n + 2 are prime and n + 2 > h(7). By Lemma 12, for x = n the R-computation \mathcal{H} produces positive integers x_1, \ldots, x_8 . Since

$$x_5 = \Gamma(n+2) > \Gamma(h(7)) = h(8)$$

the statement Θ_8 guarantees that the R-computation \mathcal{H} produces positive integers x_1, \ldots, x_8 for infinitely many positive integers x. By Lemma 12, we obtain that there are infinitely many twin primes.

References

- [1] D. Berend and J. E. Harmse, *On polynomial-factorial Diophantine equations*, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741–1779.
- [2] C. K. Caldwell, *The Prime Glossary: Wilson prime*, http://primes.utm.edu/glossary/xpage/WilsonPrime.html.
- [3] C. K. Caldwell and Y. Gallot, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441–448.
- [4] J. B. Dence and T. P. Dence, *Elements of the theory of numbers*, Harcourt/Academic Press, San Diego, CA, 1999.
- [5] P. Erdős and J. L. Selfridge, *The product of consecutive integers is never a power*, Illinois J. Math. 19 (1975), 292–301.
- [6] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [7] F. Luca, *The Diophantine equation* P(x) = n! *and a result of M. Overholt*, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269–273.
- [8] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [9] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [10] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN (Polish Scientific Publishers) and North-Holland, Warsaw-Amsterdam, 1987.
- [11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that n! + 1 is prime, http://oeis.org/A002981.
- [12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that n! - 1 is prime, http://oeis.org/A002982.
- [13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A007540, Wilson primes: primes p such that $(p-1)! \equiv -1 \pmod{p^2}$, http://oeis.org/A007540.
- [14] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl