On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\{x \in \mathbb{N} : \varphi(x)\} \subseteq \{x \in \mathbb{N} : x \leq n-1\}$ if the set $\{x \in \mathbb{N} : \varphi(x)\}$ is finite

Apoloniusz Tyszka University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl

Abstract. Let g(3) = 4, and let g(n+1) = g(n)! for every integer $n \ge 3$. For an integer $n \in \{3, \ldots, 16\}$, let Ψ_n denote the following state- $\text{ment: if a system of equations } \mathcal{S} \subseteq \Big\{ x_i! = x_k : (i,k \in \{1,\ldots,n\}) \land (i \neq$ $k) \Big\} \cup \Big\{ x_i \cdot x_j = x_k : i,j,k \in \{1,\ldots,n\} \Big\} \text{ has only finitely many solutions in }$ positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq g(n)$. For every statement Ψ_n , the bound g(n) cannot be decreased. The author's hypothesis says that the statements $\Psi_3, \ldots, \Psi_{16}$ hold true. We say that a non-negative integer m is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than m. The following problem is open: define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the following conditions: (1) a known algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$. (2) a known algorithm returns a threshold number of \mathcal{X} , (3) new elements of \mathcal{X} are still discovered, (4) we do not know any algorithm deciding the inequality $\operatorname{card}(\mathcal{X}) < \infty$. We define a computable set $\mathcal{X} \subseteq \mathbb{N}$ which satisfies conditions (2)-(4). The statement Ψ_9 implies that the set of primes of the form $n^2 + 1$ solves the problem and the set of primes of the form n! + 1 solves the problem. The statement Ψ_{16} implies that the set of twin primes solves the problem.

²⁰¹⁰ Mathematics Subject Classification: 03D20, 11A41

Key words and phrases: arithmetical consistency of ZFC, composite Fermat numbers, finiteness of a set, incompleteness of ZFC, infiniteness of a set, oracle for the halting problem, prime numbers of the form $n^2 + 1$, prime numbers of the form n! + 1, twin primes, Sophie Germain primes

1 Introduction

The phrase "we know a non-negative integer n" in the title means that we know an algorithm which returns n. The title cannot be formalised in ZFC because the phrase "we know a non-negative integer n" refers to currently known non-negative integers n with some property. A formally stated title may look like this: On ZFC-formulae $\varphi(x)$ for which there exists a non-negative integer n such that ZFC proves that

$$\operatorname{card}(\{x \in \mathbb{N} \colon \varphi(x)\}) < \infty \Longrightarrow \{x \in \mathbb{N} \colon \varphi(x)\} \subseteq \{x \in \mathbb{N} \colon x \leqslant n-1\}$$

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer n such that ZFC proves the above implication.

Lemma 1 For every non-negative integer n, $card({x \in \mathbb{N} : x \leq n-1}) = n$.

Corollary 1 The title altered to "On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\operatorname{card}(\{x \in \mathbb{N} : \varphi(x)\}) \leq n$ if the set $\{x \in \mathbb{N} : \varphi(x)\}$ is finite" involves a weaker assumption on $\varphi(x)$.

2 Subsets of \mathbb{N} and their threshold numbers

We say that a non-negative integer \mathfrak{m} is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than \mathfrak{m} , cf. [25] and [26]. If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer \mathfrak{m} is a threshold number of \mathcal{X} . If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $\{\max(\mathcal{X}), \max(\mathcal{X}) + 1, \max(\mathcal{X}) + 2, \ldots\}$.

It is conjectured that the set of prime numbers of the form $n^2 + 1$ is infinite, see [15, pp. 37–38]. It is conjectured that the set of prime numbers of the form n! + 1 is infinite, see [3, p. 443]. A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that the set of twin primes is infinite, see [15, p. 39]. It is conjectured that the set of composite numbers of the form $2^{2^n} + 1$ is infinite, see [11, p. 23] and [12, pp. 158–159]. A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [23]. It is conjectured that the set of Sophie Germain primes is infinite, see [18, p. 330]. For each of these sets, we do not know any threshold number.

Open Problem 1 Define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the following conditions: (1) a known algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$,

3

- (2) a known algorithm returns a threshold number of \mathcal{X} ,
- (3) new elements of \mathcal{X} are still discovered,
- (4) we do not know any algorithm deciding the inequality $\operatorname{card}(\mathcal{X}) < \infty$.

The following statement: for every non-negative integer n there exist

prime numbers p and q such that p + 2 = q and $p \in \left[10^n, 10^{n+1}\right]$ (T)

is a Π_1 statement which strengthens the twin prime conjecture, see [4, p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_1 statements, see [1]. The statement (T) is equivalent to the non-halting of a Turing machine. If a set $\mathcal{X} \subseteq \mathbb{N}$ is computable and we know a threshold number of \mathcal{X} , then the infinity of \mathcal{X} is equivalent to the halting of a Turing machine.

The height of a rational number $\frac{p}{q}$ is denoted by $H\left(\frac{p}{q}\right)$ and equals $\max(|p|, |q|)$ provided $\frac{p}{q}$ is written in lowest terms. The height of a rational tuple (x_1, \ldots, x_n) is denoted by $H(x_1, \ldots, x_n)$ and equals $\max(H(x_1), \ldots, H(x_n))$.

Observation 1 The equation $x^5 - x = y^2 - y$ has only finitely many rational solutions, see [14, p. 212]. The known rational solutions are (x, y) = (-1, 0), $(-1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, -5), (2, 6), (3, -15), (3, 16), (30, -4929), (30, 4930), <math>(\frac{1}{4}, \frac{15}{32}), (\frac{1}{4}, \frac{17}{32}), (-\frac{15}{16}, -\frac{185}{1024}), (-\frac{15}{16}, \frac{1209}{1024}), and the existence of other solutions is an open question, see [19, pp. 223-224].$

Corollary 2 The set $\mathcal{T} = \{n \in \mathbb{N} : \text{the equation } x^5 - x = y^2 - y \text{ has a rational solution of height } n\}$ is finite. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{T}$. We do not know any algorithm which returns a threshold number of \mathcal{T} .

Let \mathcal{L} denote the following system of equations:

$$\left\{ \begin{array}{rrrr} x^2+y^2&=&s^2\\ x^2+z^2&=&t^2\\ y^2+z^2&=&u^2\\ x^2+y^2+z^2&=&v^2 \end{array} \right.$$

Let $\mathcal{F} = \left\{ n \in \mathbb{N} \setminus \{0\} : \left(\text{the system } \mathcal{L} \text{ has no solutions in } \{1, \dots, n\}^7 \right) \land \left(\text{the system } \mathcal{L} \text{ has a solution in } \{1, \dots, n+1\}^7 \right) \right\}$. A perfect cuboid is a cuboid having integer side lengths, integer face diagonals, and an integer space diagonal.

Observation 2 ([22]) No perfect cuboids are known.

Corollary 3 We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{F}$. ZFC proves that $card(\mathcal{F}) \in \{0, 1\}$. We do not know any algorithm which returns $card(\mathcal{F})$. We do not know any algorithm which returns a threshold number of \mathcal{F} .

Let

$$\mathcal{H} = \left\{ \begin{array}{l} \mathbb{N}, \ \mathrm{if} \ \sin\left(9^{9^{9^{9^{9}}}}\right) < 0 \\ \\ \mathbb{N} \cap \left[0, \ \sin\left(9^{9^{9^{9^{9}}}}\right) \cdot 9^{9^{9^{9}}}\right) \ \mathrm{otherwise} \end{array} \right.$$

We do not know whether or not the set \mathcal{H} is finite.

Observation 3 The number $9^{9^{9^{\prime}}}$ is a threshold number of \mathcal{H} . We know an algorithm which decides the equality $\mathcal{H} = \mathbb{N}$. If $\mathcal{H} \neq \mathbb{N}$, then the set \mathcal{H} consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{H}$.

Let

$$\mathcal{K} = \begin{cases} \{n\}, \text{ if } (n \in \mathbb{N}) \land \left(2^{\aleph_0} = \aleph_{n+1}\right) \\ \{0\}, \text{ if } 2^{\aleph_0} \geqslant \aleph_{\omega} \end{cases}$$

Theorem 1 ZFC proves that $card(\mathcal{K}) = 1$. If ZFC is consistent, then for every $n \in \mathbb{N}$ the sentences "n is a threshold number of \mathcal{K} " and "n is not a threshold number of \mathcal{K} " are not provable in ZFC. If ZFC is consistent, then for every $n \in \mathbb{N}$ the sentences " $n \in \mathcal{K}$ " and " $n \notin \mathcal{K}$ " are not provable in ZFC.

Proof. It suffices to observe that 2^{\aleph_0} can attain every value from the set $\{\aleph_1, \aleph_2, \aleph_3, \ldots\}$, see [7] and [10, p. 232].

3 A Diophantine equation whose non-solvability expresses the consistency of ZFC

Gödel's second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 2 ([5, p. 35]) There exists a polynomial $D(x_1, \ldots, x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sen-"The equation $D(x_1, \ldots, x_m) = 0$ is solvable in non-negative tencesintegers" and "The equation $D(x_1, \ldots, x_m) = 0$ is not solvable in non-negative integers" are not provable in ZFC.

Observation 4 ([9, p. 53]) The polynomial $D(x_1, \ldots, x_m)$ is not effectively known.

Let \mathcal{Y} denote the set of all non-negative integers k such that the equation $D(x_1,\ldots,x_m)=0$ has no solutions in $\{0,\ldots,k\}^m.$ Since the set $\{0,\ldots,k\}^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{Y}$. Theorem 2 implies the next theorem.

Theorem 3 For every $n \in \mathbb{N}$, ZFC proves that $n \in \mathcal{Y}$. If ZFC is arithmetically consistent, then the sentences " $\mathcal Y$ is finite" and " $\mathcal Y$ is infinite" are not provable in ZFC. If ZFC is arithmetically consistent, then for every ${\mathfrak n}\in{\mathbb N}$ the sentences " ${\mathfrak n}$ is a threshold number of ${\mathcal Y}$ " and " ${\mathfrak n}$ is not a threshold number of \mathcal{Y} " are not provable in ZFC.

Let \mathcal{E} denote the set of all non-negative integers k such that the equation $D(x_1,\ldots,x_m) = 0$ has a solution in $\{0,\ldots,k\}^m$. Since the set $\{0,\ldots,k\}^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{E}$. Theorem 2 implies the next theorem.

Theorem 4 The set \mathcal{E} is empty or infinite. In both cases, every non-negative integer \mathfrak{n} is a threshold number of \mathcal{E} . If ZFC is arithmetically consistent, then the sentences " \mathcal{E} is empty", " \mathcal{E} is not empty", " \mathcal{E} is finite", and " \mathcal{E} is infinite" are not provable in ZFC.

Let \mathcal{P} denote the set of prime numbers, and let \mathcal{X} denote the set $\mathcal{E} \cup$ $[2,9^{9^{9^{9^{9^{9}}}}] \cap \mathcal{P}$. The following observation partially solves Open Problem 1.

Observation 5 The set \mathcal{X} is computable and satisfies conditions (2)-(4). Observation 4 implies that the set \mathcal{X} does not satisfy condition (1).

Let \mathcal{V} denote the set

 $\Big\{ n \in \mathbb{N} : \Big(\mathrm{the \ polynomial} \ D(x_1, \ldots, x_m) \ \mathrm{has \ no \ solutions \ in} \ \{0, \ldots, n\}^m \Big) \ \land$ $(\text{the polynomial } D(x_1, \ldots, x_m) \text{ has a solution in } \{0, \ldots, n+1\}^m) \}.$

Since the sets $\{0, \ldots, n\}^m$ and $\{0, \ldots, n+1\}^m$ are finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{V}$. According to Observation 4, at present we are not able to write a computer program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5 (5) ZFC proves that $\operatorname{card}(\mathcal{V}) \in \{0, 1\}$. (6) For every $n \in \mathbb{N}$, ZFC proves that $n \notin \mathcal{V}$. (7) ZFC does not prove the emptiness of \mathcal{V} , if ZFC is arithmetically consistent. (8) For every $n \in \mathbb{N}$, the sentence "n is a threshold number of \mathcal{V} " is not provable in ZFC, if ZFC is arithmetically consistent. (9) For every $n \in \mathbb{N}$, the sentence "n is not a threshold number of \mathcal{V} " is not provable in ZFC, if a threshold number of \mathcal{V} " is not provable in ZFC.

Open Problem 2 Define a simple algorithm A such that A returns 0 or 1 on every input $k \in \mathbb{N}$ and the set

 $\mathcal{V} = \{k \in \mathbb{N} : \text{ the program } A \text{ returns } 1 \text{ on input } k\}$

satisfies conditions (5)-(9).

4 Basic lemmas and hypothetical statements $\Psi_3, \ldots, \Psi_{16}$

Lemma 2 For every positive integers x and y, $x! \cdot y = y!$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Let $\Gamma(k)$ denote (k-1)!.

Lemma 3 For every positive integers x and y, $x \cdot \Gamma(x) = \Gamma(y)$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Lemma 4 For every non-negative integers b and $c, \ b+1=c$ if and only if

$$2^{2^{b}} \cdot 2^{2^{b}} = 2^{2^{c}}$$

Lemma 5 (Wilson's theorem, [8, p. 89]). For every positive integer x, x divides (x - 1)! + 1 if and only if x = 1 or x is prime.

For an integer $n \ge 3$, let \mathcal{U}_n denote the following system of equations:

$$\left\{ \begin{array}{rrrr} \forall i \in \{1, \dots, n-1\} \setminus \{2\} \; x_i! &=& x_{i+1} \\ & & x_1 \cdot x_2 &=& x_3 \\ & & x_2 \cdot x_2 &=& x_3 \end{array} \right.$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_n .

7

$$\begin{array}{c|c} & \underline{x_1 \cdot x_2 = x_3} \text{ squaring} & \underline{!} & \underline{.} \\ \hline x_1 & \underline{.} & \underline{.} \\ x_2 & \underline{.} & x_3 & \underline{.} \\ \hline x_4 & \underline{.} & \underline{.} \\ \hline x_{n-1} & \underline{.} \\ x_n \end{array}$$

Fig. 1 Construction of the system \mathcal{U}_n

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer $n \ge 3$.

Lemma 6 For every integer $n \ge 3$, the system U_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(2, 2, g(3), \ldots, g(n))$.

Let

$$B_n = \Big\{ x_i! = x_k: (i, k \in \{1, \dots, n\}) \land (i \neq k) \Big\} \cup \Big\{ x_i \cdot x_j = x_k: i, j, k \in \{1, \dots, n\} \Big\}$$

For an integer $n \ge 3$, let Ψ_n denote the following statement: if a system of equations $S \subseteq B_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \le g(n)$. The statement Ψ_n says that for subsystems of B_n the largest known solution is indeed the largest possible.

Hypothesis 1 The statements $\Psi_3, \ldots, \Psi_{16}$ are true.

Lemma 7 Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B_n has a finite number of subsystems.

Lemma 8 For every statement Ψ_n , the bound g(n) cannot be decreased.

Proof. It follows from Lemma 6 because $\mathcal{U}_n \subseteq B_n$.

5 The Brocard-Ramanujan equation $x! + 1 = y^2$

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

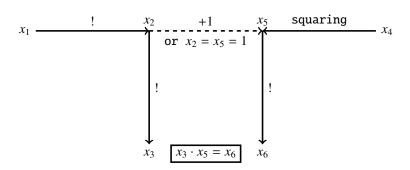


Fig. 2 Construction of the system \mathcal{A}

Lemma 9 For every $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$\begin{array}{rcl} x_2 &=& x_1! \\ x_3 &=& (x_1!)! \\ x_5 &=& x_1!+1 \\ x_6 &=& (x_1!+1)! \end{array}$$

Proof. It follows from Lemma 2.

It is conjectured that x! + 1 is a perfect square only for $x \in \{4, 5, 7\}$, see [21, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x! + 1 = y^2$, see [16].

Theorem 6 If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Ψ_6 guarantees that each such solution (x_1, x_4) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$.

Proof. Suppose that the antecedent holds. Let positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 9, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 . Since $\mathcal{A} \subseteq B_6$, the statement Ψ_6 implies that $x_6 = (x_1! + 1)! \leq g(6) = g(5)!$. Hence, $x_1! + 1 \leq g(5) = g(4)!$. Consequently, $x_1 < g(4) = 24$. If $x_1 \in \{1, \ldots, 23\}$, then $x_1! + 1$ is a perfect square only for $x_1 \in \{4, 5, 7\}$.

6 Are there infinitely many prime numbers of the form $n^2 + 1$? Are there infinitely many prime numbers of the form n! + 1?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [15, pp. 37–38]. Let \mathcal{B} denote the following system of

9

equations:

$$\begin{cases} x_2! = x_3 & x_1 \cdot x_1 = x_2 \\ x_3! = x_4 & x_3 \cdot x_5 = x_6 \\ x_5! = x_6 & x_4 \cdot x_8 = x_9 \\ x_8! = x_9 & x_5 \cdot x_7 = x_8 \end{cases}$$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

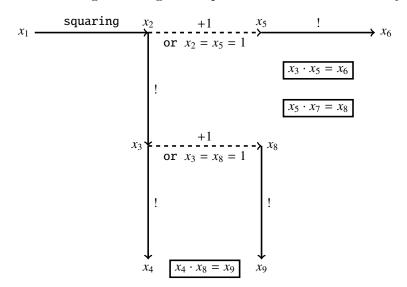


Fig. 3 Construction of the system \mathcal{B}

Lemma 10 For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

		x_1^2			$(x_1^2)! + 1$
x_3	=	$(x_1^2)!$	χ_7	=	$\frac{(x_1)!+1}{x_1^2+1}$
χ_4	=	$((x_1^2)!)!$	X -		
χ_5	=	$x_1^2 + 1$			$(x_1^2)! + 1$
		$(x_1^2 + 1)!$	X9	=	$((x_1^2)! + 1)!$

Proof. By Lemma 2, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 10 follows from Lemma 5.

Lemma 11 There are only finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ which solve the system \mathcal{B} and satisfy $x_1 = 1$.

Proof. If a tuple $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ solves the system \mathcal{B} and $x_1 = 1$, then $x_1, \ldots, x_9 \leq 2$. Indeed, $x_1 = 1$ implies that $x_2 = x_1^2 = 1$. Hence, for example, $x_3 = x_2! = 1$. Therefore, $x_8 = x_3 + 1 = 2$ or $x_8 = 1$. Consequently, $x_9 = x_8! \leq 2$.

Theorem 7 The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \ge 2$ such that $x_1^2 + 1$ is prime and greater than g(7), then there are infinitely many primes of the form $n^2 + 1$.

Proof. Suppose that the antecedent holds. By Lemma 10, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B} . Since $x_1^2 + 1 > g(7)$, we obtain that $x_1^2 \ge g(7)$. Hence, $(x_1^2)! \ge g(7)! = g(8)$. Consequently,

$$x_9 = ((x_1^2)! + 1)! \ge (g(8) + 1)! > g(8)! = g(9)$$

Since $\mathcal{B} \subseteq B_9$, the statement Ψ_9 and the inequality $x_9 > g(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 10 and 11, there are infinitely many primes of the form $n^2 + 1$.

Corollary 4 Let \mathcal{X}_9 denote the set of primes of the form $n^2 + 1$. The statement Ψ_9 implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_9 , and this number equals $\max(\mathcal{X}_9)$, if \mathcal{X}_9 is finite. Assuming the statement Ψ_9 , a single query to an oracle for the halting problem decides the infinity of \mathcal{X}_9 . Assuming the statement Ψ_9 , the infinity of \mathcal{X}_9 is decidable in the limit.

Proof. We consider an algorithm which computes $\max(\mathcal{X}_{9} \cap [1, q(7)])$.

It is conjectured that there are infinitely many primes of the form n! + 1, see [3, p. 443].

Theorem 8 (cf. Theorem 12). The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \ge g(6)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader.

7 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [15, p. 39]. Let C denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_4! = x_5 \\ x_6! = x_7 \\ x_7! = x_8 \\ x_9! = x_{10} \\ x_{12}! = x_{13} \\ x_{15}! = x_{16} \end{cases} \begin{array}{c} x_2 \cdot x_4 = x_5 \\ x_5 \cdot x_6 = x_7 \\ x_7 \cdot x_9 = x_{10} \\ x_4 \cdot x_{11} = x_{12} \\ x_3 \cdot x_{12} = x_{13} \\ x_9 \cdot x_{14} = x_{15} \\ x_8 \cdot x_{15} = x_{16} \end{cases}$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

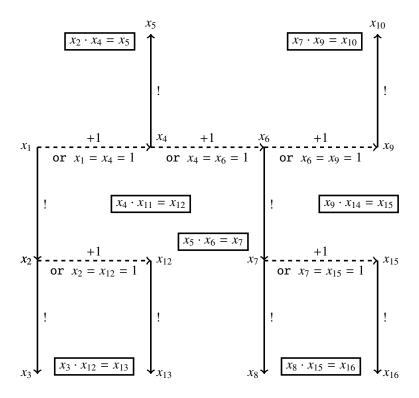


Fig. 4 Construction of the system C

Lemma 12 For every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

x_1	=	$x_4 - 1$			$(x_{1} - 1)! + 1$
\mathbf{x}_2	=	$(x_4 - 1)!$	x_{11}	=	$\frac{(x_4-1)!+1}{x_4}$
x 3	=	$((x_4 - 1)!)!$	x_{12}	=	$(x_4 - 1)! + 1$
χ_5	=	$x_4!$			$((x_4 - 1)! + 1)!$
\mathbf{x}_{6}	=	$x_{9} - 1$	X14	=	$\frac{(x_9-1)!+1}{x_9}$
χ_7	=	$(x_9 - 1)!$			
X.	_	$((x_9 - 1)!)!$	χ_{15}	=	$(x_9 - 1)! + 1$
0			X16	=	$((x_9 - 1)! + 1)!$
x_{10}	=	x9!	10		

Proof. By Lemma 2, for every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$(x_4 + 2 = x_9) \land (x_4 | (x_4 - 1)! + 1) \land (x_9 | (x_9 - 1)! + 1)$$

Hence, the claim of Lemma 12 follows from Lemma 5.

Lemma 13 There are only finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy $(x_4 \in \{1, 2\}) \vee (x_9 \in \{1, 2\})$.

Proof. If a tuple $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ solves the system C and $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$, then $x_1, \ldots, x_{16} \leq 7!$. Indeed, for example, if $x_4 = 2$ then $x_6 = x_4 + 1 = 3$. Hence, $x_7 = x_6! = 6$. Therefore, $x_{15} = x_7 + 1 = 7$. Consequently, $x_{16} = x_{15}! = 7!$.

Theorem 9 The statement Ψ_{16} proves the following implication: if there exists a twin prime greater than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > g(14)$. Hence, $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$. By Lemma 12, there exists a unique tuple

 $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}$

such that the tuple (x_1, \ldots, x_{16}) solves the system C. Since $x_9 > g(14)$, we obtain that $x_9 - 1 \ge g(14)$. Therefore, $(x_9 - 1)! \ge g(14)! = g(15)$. Hence, $(x_9 - 1)! + 1 > g(15)$. Consequently,

$$x_{16} = ((x_9 - 1)! + 1)! > g(15)! = g(16)$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16} > g(16)$ imply that the system C has infinitely many solutions in positive integers x_1, \ldots, x_{16} . According to Lemmas 12 and 13, there are infinitely many twin primes.

Corollary 5 (cf. [6]). Let \mathcal{X}_{16} denote the set of twin primes. The statement Ψ_{16} implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_{16} , and this number equals $\max(\mathcal{X}_{16})$, if \mathcal{X}_{16} is finite. Assuming the statement Ψ_{16} , a single query to an oracle for the halting problem decides the infinity of \mathcal{X}_{16} . Assuming the statement Ψ_{16} , the infinity of \mathcal{X}_{16} is decidable in the limit.

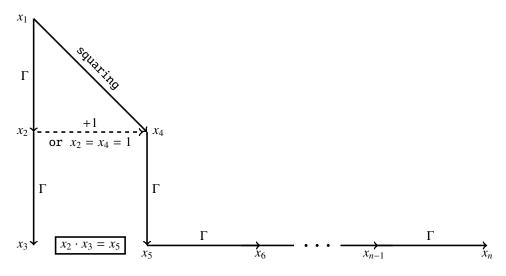
Proof. We consider an algorithm which computes $\max(\mathcal{X}_{16} \cap [1, g(14)])$.

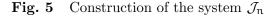
8 Hypothetical statements $\Delta_5, \ldots, \Delta_{14}$ and their consequences

Let $\lambda(5) = \Gamma(25)$, and let $\lambda(n+1) = \Gamma(\lambda(n))$ for every integer $n \ge 5$. For an integer $n \ge 5$, let \mathcal{J}_n denote the following system of equations:

$$\left\{ \begin{array}{rcl} \forall i \in \{1, \dots, n-1\} \setminus \{3\} \; \Gamma(x_i) &=& x_{i+1} \\ & x_1 \cdot x_1 &=& x_4 \\ & x_2 \cdot x_3 &=& x_5 \end{array} \right.$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system \mathcal{J}_n .





For every integer $n \ge 5$, the system \mathcal{J}_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(5, 24, 23!, 25, \lambda(5), \ldots, \lambda(n))$. For an integer $n \geq 5$, let Δ_n denote the following statement: if a system of equations $S \subseteq$

 $\begin{cases} \Gamma(x_i) = x_k : i, k \in \{1, \dots, n\} \\ \} \cup \\ \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \\ \text{ has only } \\ \text{ finitely many solutions in positive integers } x_1, \dots, x_n, \text{ then each such solution } \\ (x_1, \dots, x_n) \text{ satisfies } x_1, \dots, x_n \leqslant \lambda(n). \end{cases}$

Hypothesis 2 The statements $\Delta_5, \ldots, \Delta_{14}$ are true.

Lemmas 3 and 5 imply that the statements Δ_n have similar consequences as the statements Ψ_n .

Theorem 10 The statement Δ_6 implies that any prime number $p \ge 25$ proves the infinitude of primes.

Proof. It follows from Lemmas 3 and 5. We leave the details to the reader.

9 Hypothetical statements $\Sigma_3, \ldots, \Sigma_{16}$ and their consequences

Let $\Gamma_n(k)$ denote (k-1)!, where $n \in \{3, \ldots, 16\}$ and $k \in \{2\} \cup [2^{2^{n-3}}+1, \infty) \cap \mathbb{N}$. For an integer $n \in \{3, \ldots, 16\}$, let

 $Q_n = \{\Gamma_n(x_i) = x_k: i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k: i, j, k \in \{1, \dots, n\}\}$

For an integer $n \in \{3, \ldots, 16\}$, let P_n denote the following system of equations:

$$\begin{cases} x_1 \cdot x_1 &= x_1 \\ \Gamma_n(x_2) &= x_1 \\ \forall i \in \{2, \dots, n-1\} x_i \cdot x_i &= x_{i+1} \end{cases}$$

Lemma 14 For every integer $n \in \{3, ..., 16\}$, $P_n \subseteq Q_n$ and the system P_n with Γ instead of Γ_n has exactly one solution in positive integers $x_1, ..., x_n$, namely $(1, 2^{2^0}, 2^{2^1}, 2^{2^2}, ..., 2^{2^{n-2}})$.

For an integer $n \in \{3, \ldots, 16\}$, let Σ_n denote the following statement: if a system of equations $S \subseteq Q_n$ with Γ instead of Γ_n has only finitely many solutions in positive integers x_1, \ldots, x_n , then every tuple $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$ that solves the original system S satisfies $x_1, \ldots, x_n \leqslant 2^{2^{n-2}}$.

Hypothesis 3 The statements $\Sigma_3, \ldots, \Sigma_{16}$ are true.

Lemma 15 (cf. Lemma 3). For every integer $n \in \{4, ..., 16\}$ and for every positive integers x and y, $x \cdot \Gamma_n(x) = \Gamma_n(y)$ if and only if $(x + 1 = y) \land (x \ge 2^{2^{n-3}} + 1)$.

Let $\mathbb{Z}_9 \subseteq \mathbb{Q}_9$ be the system of equations in Figure 6.

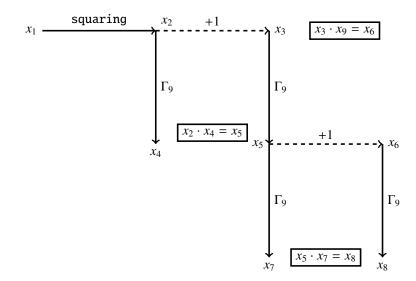


Fig. 6 Construction of the system Z_9

Lemma 16 For every positive integer x_1 , the system Z_9 is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1 > 2^{2^{9-4}}$ and $x_1^2 + 1$ is prime. In this case, positive integers x_2, \ldots, x_9 are uniquely determined by x_1 . For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ begin with n and solve the system \mathbb{Z}_9 with Γ instead of Γ_9 .

Proof. It follows from Lemmas 3, 5, and 15.

Lemma 17 ([20]). The number $(13!)^2 + 1 = 38775788043632640001$ is prime. Lemma 18 $((13!)^2 \ge 2^{2^{9-3}} + 1 = 18446744073709551617) \land (\Gamma_9((13!)^2) > 2^{9-3}$ $2^{2^{9-2}}$).

Theorem 11 The statement Σ_9 implies the infinitude of primes of the form $n^2 + 1$.

Proof. It follows from Lemmas 16–18.

Theorem 12 (cf. Theorem 8). The statement Σ_9 implies that any prime of the form n! + 1 with $n \ge 2^{2^{9-3}}$ proves the infinitude of primes of the form n! + 1.

Proof. We leave the proof to the reader.

Corollary 6 Let \mathcal{Y}_9 denote the set of primes of the form n! + 1. The statement Σ_9 implies that we know an algorithm such that it returns a threshold number of \mathcal{Y}_9 , and this number equals $\max(\mathcal{Y}_9)$, if \mathcal{Y}_9 is finite. Assuming the statement Σ_9 , a single query to an oracle for the halting problem decides the infinity of \mathcal{Y}_9 . Assuming the statement Σ_9 , the infinity of \mathcal{Y}_9 is decidable in the limit.

Proof. We consider an algorithm which computes $\max(\mathcal{Y}_{9} \cap [1, (2^{2^{9-3}} - 1)! + 1]).$

Let $\mathcal{Z}_{14} \subseteq Q_{14}$ be the system of equations in Figure 7.

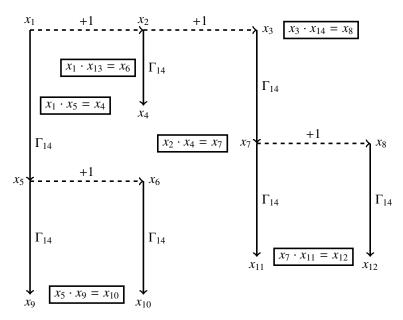


Fig. 7 Construction of the system \mathcal{Z}_{14}

Lemma 19 For every positive integer x_1 , the system Z_{14} is solvable in positive integers x_2, \ldots, x_{14} if and only if x_1 and $x_1 + 2$ are prime and $x_1 \ge 2^{2^{14-3}} + 1$. In this case, positive integers x_2, \ldots, x_{14} are uniquely determined by x_1 . For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_{14}) \in (\mathbb{N} \setminus \{0\})^{14}$ begin with n and solve the system Z_{14} with Γ instead of Γ_{14} .

Proof. It follows from Lemmas 3, 5, and 15.

16

Lemma 20 ([24, p. 87]). The numbers $459 \cdot 2^{8529} - 1$ and $459 \cdot 2^{8529} + 1$ are prime (Harvey Dubner).

Lemma 21 $459 \cdot 2^{8529} - 1 > 2^{2^{14-2}} = 2^{4096}$.

Theorem 13 The statement Σ_{14} implies the infinitude of twin primes.

Proof. It follows from Lemmas 19–21.

A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [23]. It is conjectured that there are infinitely many Sophie Germain primes, see [18, p. 330]. Let $\mathcal{Z}_{16} \subseteq Q_{16}$ be the system of equations in Figure 8.

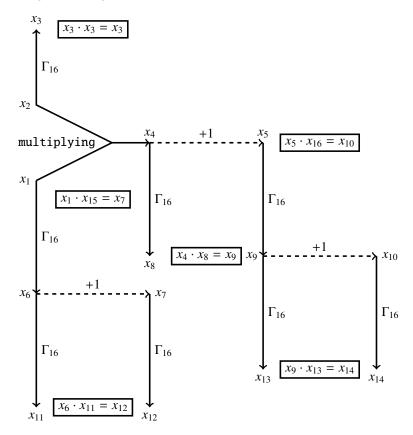


Fig. 8 Construction of the system \mathcal{Z}_{16}

Lemma 22 For every positive integer x_1 , the system Z_{16} is solvable in positive integers x_2, \ldots, x_{16} if and only if x_1 is a Sophie Germain prime and

 $x_1 \ge 2^{2^{16-3}} + 1$. In this case, positive integers x_2, \ldots, x_{16} are uniquely determined by x_1 . For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ begin with n and solve the system \mathcal{Z}_{16} with Γ instead of Γ_{16} .

Proof. It follows from Lemmas 3, 5, and 15.

Lemma 23 ([18, p. 330]). $8069496435 \cdot 10^{5072} - 1$ is a Sophie Germain prime (Harvey Dubner).

Lemma 24 8069496435 $\cdot 10^{5072} - 1 > 2^{2^{16-2}}$

Theorem 14 The statement Σ_{16} implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas 22–24.

Theorem 15 The statement Σ_6 proves the following implication: if the equation x(x + 1) = y! has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$.

Proof. We leave the proof to the reader.

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [2]. F. Luca proved that the *abc* conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive integers, see [13].

Theorem 16 The statement Σ_6 proves the following implication: if the equation $x! + 1 = y^2$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$.

Proof. We leave the proof to the reader.

10 Hypothetical statements $\Omega_3, \ldots, \Omega_{16}$ and their consequences

For an integer $n \in \{3, ..., 16\}$, let Ω_n denote the following statement: if a system of equations $S \subseteq \{\Gamma(x_i) = x_k : i, k \in \{1, ..., n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$ has a solution in integers $x_1, ..., x_n$ greater than $2^{2^{n-2}}$, then S has infinitely many solutions in positive integers $x_1, ..., x_n$. For every $n \in \{3, ..., 16\}$, the statement Σ_n implies the statement Ω_n .

Lemma 25 The number $(65!)^2 + 1$ is prime and $65! > 2^{2^{9-2}}$.

Proof. The following PARI/GP ([17]) command

(04:04) gp > isprime((65!)^2+1,{flag=2}) %1 = 1

is shown together with its output. This command performs the APRCL primality test, the best deterministic primality test algorithm ([24, p. 226]). It rigorously shows that the number $(65!)^2 + 1$ is prime.

Lemma 26 If positive integers x_1, \ldots, x_9 solve the system \mathbb{Z}_9 and $x_1 > 2^{2^{9-2}}$, then $x_1 = \min(x_1, \ldots, x_9)$.

Theorem 17 The statement Ω_9 implies the infinitude of primes of the form $n^2 + 1$.

Proof. It follows from Lemmas 16 and 25–26.

Lemma 27 If positive integers x_1, \ldots, x_{14} solve the system \mathcal{Z}_{14} and $x_1 > 2^{2^{14-2}}$, then $x_1 = \min(x_1, \ldots, x_{14})$.

Theorem 18 The statement Ω_{14} implies the infinitude of twin primes.

Proof. It follows from Lemmas 19–21 and 27.

11 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [12, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [12, p. 1].

Open Problem 3 ([12, p. 159]) Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \ge 5$, see [11, p. 23]. Let

$$H_{n} = \left\{ x_{i} \cdot x_{j} = x_{k} : i, j, k \in \{1, \dots, n\} \right\} \cup \left\{ 2^{2^{X_{i}}} = x_{k} : i, k \in \{1, \dots, n\} \right\}$$

Let h(1) = 1, and let $h(n+1) = 2^{2^{h(n)}}$ for every positive integer n.

Lemma 28 The following subsystem of H_n

$$\begin{cases} x_1 \cdot x_1 &= x_1 \\ \forall i \in \{1, \dots, n-1\} \ 2^{2^{X_i}} &= x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \ldots, h(n))$.

For a positive integer n, let ξ_n denote the following statement: if a system of equations $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(n)$. The statement ξ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 4 The statements ξ_1, \ldots, ξ_{13} are true.

Lemma 29 Every statement ξ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H_n has a finite number of subsystems.

Theorem 19 The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2^{z}} + 1$ is composite and greater than h(12), then $2^{2^{z}} + 1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^2} + 1$$
 (E)

in positive integers. By Lemma 4, we can transform the equation (E) into an equivalent system of equations \mathcal{G} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2\alpha} = \gamma$, see the diagram in Figure 9.

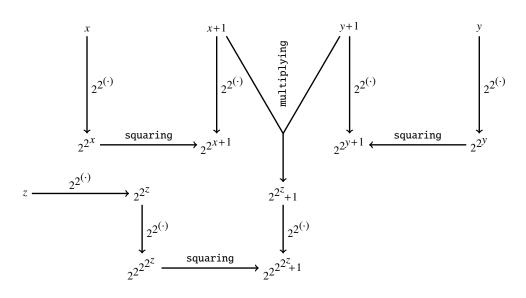


Fig. 9 Construction of the system \mathcal{G}

Since $2^{2^{z}} + 1 > h(12)$, we obtain that $2^{2^{2^{z}} + 1} > h(13)$. By this, the statement ξ_{13} implies that the system \mathcal{G} has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers.

Corollary 7 Let W_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of W_{13} , and this number equals $\max(W_{13})$, if W_{13} is finite. Assuming the statement ξ_{13} , a single query to an oracle for the halting problem decides the infinity of W_{13} . Assuming the statement ξ_{13} , the infinity of W_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(W_{13} \cap [1, h(12)])$.

References

- C. H. Bennett, Chaitin's Omega, in: Fractal music, hypercards, and more ... (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307–319.
- [2] D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741–1779.

- [3] C. K. Caldwell and Y. Gallot, On the primality of n! ± 1 and 2×3×5×···× p±1, Math. Comp. 71 (2002), no. 237, 441–448, http://doi.org/10.1090/S0025-5718-01-01315-1.
- [4] C. S. Calude, H. Jürgensen, S. Legg, Solving problems with finite test sets, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), 39–52, Springer, London, 2000.
- [5] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first series, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
- [6] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/ 71050.
- [7] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139–178.
- [8] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- H. Friedman, The incompleteness phenomena, in: Proceedings of the AMS Centennial Symposium 1988, 49–84, Amer. Math. Soc., Providence, RI, 1992.
- [10] T. Jech, Set theory, Springer, Berlin, 2003.
- [11] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
- [12] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
- [13] F. Luca, The Diophantine equation P(x) = n! and a result of M. Overholt, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269–273
- [14] M. Mignotte and A. Pethő, On the Diophantine equation $x^p x = y^q y$, Publ. Mat. 43 (1999), no. 1, 207–216.
- [15] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.

- [16] M. Overholt, The Diophantine equation $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [17] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/ dochtml/html/Arithmetic_functions.html.
- [18] P. Ribenboim, The new book of prime number records, Springer, New York, 1996, http://doi.org/10.1007/978-1-4612-0759-7.
- S. Siksek, Chabauty and the Mordell-Weil Sieve, in: Advances on Superelliptic Curves and Their Applications (eds. L. Beshaj, T. Shaska, E. Zhupa), 194-224, IOS Press, Amsterdam, 2015, http://dx.doi.org/10.3233/978-1-61499-520-3-194.
- [20] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Smallest prime factor of A020549(n) = $(n!)^2 + 1$, http://oeis.org/A282706.
- [21] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [22] Wolfram MathWorld, Perfect Cuboid, http://mathworld.wolfram.com/ PerfectCuboid.html.
- [23] Wolfram MathWorld, Sophie Germain prime, http://mathworld. wolfram.com/SophieGermainPrime.html.
- [24] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
- [25] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http://www.bu.edu/wcp/Papers/Logi/LogiZenk. htm.
- [26] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20–26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.