On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\{x \in \mathbb{N}: \varphi(x)\} \subseteq \{x \in \mathbb{N}: x \leq n - 1\}$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite

Apoloniusz Tyszka

Abstract

Let $g(3) = 4$, and let $g(n + 1) = g(n)!$ for every integer $n \geq 3$. For an integer $n \in \{3, \ldots, 16\}$, let

Ψ_n denote the following statement: if a system of equations $S \subseteq \{x_1! = x_k : (i, k \in \{1, \ldots, n\}) \land (i \neq k)\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq g(n)$. For every statement Ψ_n, the bound $g(n)$ cannot be decreased. The author’s hypothesis says that the statements $\Psi_3, \ldots, \Psi_{16}$ hold true. We say that a non-negative integer m is a threshold number of a set $X \subseteq \mathbb{N}$, if X is infinite if and only if X contains an element greater than m. The following problem is open: define a set $X \subseteq \mathbb{N}$ that satisfies the following conditions: (1) the relation $n \in X$ is qualitatively the same for every $n \in \mathbb{N}$, (2) a known algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in X$, (3) a known algorithm returns a threshold number of X, (4) new elements of X are still discovered, (5) we do not know any algorithm deciding the finiteness of X. We define a set $X \subseteq \mathbb{N}$ that satisfies conditions (2)-(5). The statement Ψ_9 implies that the set of primes of the form $n^2 + 1$ solves the problem and the set of primes of the form $n! + 1$ solves the problem. The statement Ψ_{16} implies that the set of twin primes solves the problem.

Key words and phrases: Brocard-Ramanujan equation $x! + 1 = y^2$, composite Fermat numbers, decidability in the limit, finiteness of a set, incompleteness of ZFC, infiniteness of a set, prime numbers of the form $n^2 + 1$, prime numbers of the form $n! + 1$, single query to an oracle for the halting problem, twin primes.

2010 Mathematics Subject Classification: 03D20, 11A41.

1 Introduction

The phrase "we know a non-negative integer $n" in the title means that we know an algorithm which returns n. The title cannot be formalised in ZFC because the phrase "we know a non-negative integer $n" refers to currently known non-negative integers n with some property. A formally stated title may look like this: On ZFC-formulae $\varphi(x)$ for which there exists a non-negative integer n such that ZFC proves that

$$\text{card}((x \in \mathbb{N}: \varphi(x))) < \infty \implies \{x \in \mathbb{N}: \varphi(x)\} \subseteq \{x \in \mathbb{N}: x \leq n - 1\}$$

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer n such that ZFC proves the above implication.

Lemma 1. For every non-negative integer n, $\text{card}((x \in \mathbb{N}: x \leq n - 1)) = n$.

Corollary 1. The title altered to "On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\text{card}((x \in \mathbb{N}: \varphi(x))) \leq n$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite" involves a weaker assumption on $\varphi(x)$.
2 Subsets of \(\mathbb{N} \) and their threshold numbers

We say that a non-negative integer \(m \) is a threshold number of a set \(X \subseteq \mathbb{N} \), if \(X \) is infinite if and only if \(X \) contains an element greater than \(m \), cf. [27] and [28]. If a set \(X \subseteq \mathbb{N} \) is empty or infinite, then any non-negative integer \(m \) is a threshold number of \(X \). If a set \(X \subseteq \mathbb{N} \) is non-empty and finite, then the all threshold numbers of \(X \) form the set \{max(\(X \)), max(\(X \)) + 1, max(\(X \)) + 2, ... \}.

It is conjectured that the set of prime numbers of the form \(n^2 + 1 \) is infinite, see [16] pp. 37–38. It is conjectured that the set of prime numbers of the form \(n! + 1 \) is infinite, see [3] p. 443]. A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that the set of twin primes is infinite, see [16] p. 39. It is conjectured that the set of composite numbers of the form \(2^{2^n} + 1 \) is infinite, see [11] p. 23 and [12] pp. 158–159]. A prime \(p \) is said to be a Sophie Germain prime if both \(p \) and \(2p + 1 \) are prime, see [25]. It is conjectured that the set of Sophie Germain primes is infinite, see [19] p. 330]. For each of these sets, we do not know any threshold number.

The following statement: for every non-negative integer \(n \) there exist

\[
\text{prime numbers } p \text{ and } q \text{ such that } p + 2 = q \text{ and } p \in \left[10^n, 10^{n+1} \right]
\]

is a \(\Pi_1 \) statement which strengthens the twin prime conjecture, see [4] p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger \(\Pi_1 \) statements, see [1]. The statement \((T) \) is equivalent to the non-halting of a Turing machine. If a set \(X \subseteq \mathbb{N} \) is computable and we know a threshold number of \(X \), then the infinity of \(X \) is equivalent to the halting of a Turing machine.

The height of a rational number \(\frac{p}{q} \) is denoted by \(H(\frac{p}{q}) \) and equals max(|\(p \)|, |\(q \)|) provided \(\frac{p}{q} \) is written in lowest terms. The height of a rational tuple \((x_1, \ldots, x_n)\) is denoted by \(H(x_1, \ldots, x_n) \) and equals max(\(H(x_1), \ldots, H(x_n) \)).

Proposition 1. The equation \(x^5 - x = y^2 - y \) has only finitely many rational solutions, see [15] p. 212]. The known rational solutions are \((x, y) = (-1, 0), (-1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, -5), (2, 6), (3, -15), (3, 16), (30, -4929), (30, 4930), (\frac{1}{7}, \frac{15}{7}), (\frac{1}{7}, \frac{17}{7}), (\frac{-15}{16}, -\frac{185}{192}), (\frac{-15}{16}, \frac{1209}{192}), \) and the existence of other solutions is an open question, see [20] pp. 223–224].

Corollary 2. The set \(T = \{ n \in \mathbb{N} : \text{the equation } x^5 - x = y^2 - y \text{ has a rational solution of height } n \} \) is finite. We know an algorithm which for every \(n \in \mathbb{N} \) decides whether or not \(n \in T \). We do not know any algorithm which returns a threshold number of \(T \).

Open Problem 1. (cf. Corollary [3]) Define a set \(X \subseteq \mathbb{N} \) that satisfies the following conditions:

1. the relation \(n \in X \) is qualitatively the same for every \(n \in \mathbb{N} \),
2. a known algorithm for every \(n \in \mathbb{N} \) decides whether or not \(n \in X \),
3. a known algorithm returns a threshold number of \(X \),
4. new elements of \(X \) are still discovered,
5. we do not know any algorithm deciding the finiteness of \(X \).

Let \(\mathcal{L} \) denote the following system of equations:

\[
\begin{align*}
 x^2 + y^2 &= s^2 \\
 x^2 + z^2 &= t^2 \\
 y^2 + z^2 &= u^2 \\
 x^2 + y^2 + z^2 &= v^2
\end{align*}
\]

Let \(\mathcal{F} \) denote the set

\[
\left\{ k \in \mathbb{N} \setminus \{0\} : \left(\text{the system } \mathcal{L} \text{ has no solutions in } \{1, \ldots, k\} \right) \land \\
\left(\text{the system } \mathcal{L} \text{ has a solution in } \{1, \ldots, k+1\} \right) \right\}
\]
Let \(\mathcal{P} \) denote the set of prime numbers, and let \(\mathcal{Z} \) denote the set
\[
\{ k \in \mathbb{N} \setminus \{0\} : \text{the system } \mathcal{L} \text{ has a solution in } \{1, \ldots, k\}^7 \}
\]
A perfect cuboid is a cuboid having integer side lengths, integer face diagonals, and an integer space diagonal.

Proposition 2. (\([24]\)) No perfect cuboids are known.

Corollary 3. (cf. \(\Box\)) The set \(\mathcal{Z} \cup \left([2, 99999] \cap \mathcal{P} \right) \) satisfies conditions (2)-(5).

Corollary 4. We know an algorithm which for every \(n \in \mathbb{N} \) decides whether or not \(n \in \mathcal{F} \). ZFC proves that \(\text{card}(\mathcal{F}) \in \{0, 1\} \). We do not know any algorithm which returns \(\text{card}(\mathcal{F}) \). We do not know any algorithm which returns a threshold number of \(\mathcal{F} \).

Let
\[
\mathcal{H} = \begin{cases}
\mathbb{N}, & \text{if } \sin \left(99999 \right) < 0 \\
\mathbb{N} \cap \left[0, \sin \left(99999 \right) \cdot 99999 \right] & \text{otherwise}
\end{cases}
\]
We do not know whether or not the set \(\mathcal{H} \) is finite.

Proposition 3. The number 99999 is a threshold number of \(\mathcal{H} \). We know an algorithm which decides the equality \(\mathcal{H} = \mathbb{N} \). If \(\mathcal{H} \neq \mathbb{N} \), then the set \(\mathcal{H} \) consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every \(n \in \mathbb{N} \) decides whether or not \(n \in \mathcal{H} \).

Let
\[
\mathcal{K} = \begin{cases}
\{n\}, & \text{if } (n \in \mathbb{N}) \land \left(2^{\aleph_0} = \aleph_{n+1} \right) \\
\{0\}, & \text{if } 2^{\aleph_0} \geq \aleph_\omega
\end{cases}
\]

Theorem 1. ZFC proves that \(\text{card}(\mathcal{K}) = 1 \). If ZFC is consistent, then for every \(n \in \mathbb{N} \) the sentences "\(n \) is a threshold number of \(\mathcal{K} \)" and "\(n \) is not a threshold number of \(\mathcal{K} \)" are not provable in ZFC. If ZFC is consistent, then for every \(n \in \mathbb{N} \) the sentences "\(n \in \mathcal{K} \)" and "\(n \notin \mathcal{K} \)" are not provable in ZFC.

Proof. It suffices to observe that \(2^{\aleph_0} \) can attain every value from the set \(\{\aleph_1, \aleph_2, \aleph_3, \ldots\} \), see \([7]\) and \([10\) p. 232]. \(\square\)

3 A Diophantine equation whose non-solvability expresses the consistency of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 2. (\([5\) p. 35]) There exists a polynomial \(D(x_1, \ldots, x_m) \) with integer coefficients such that if ZFC is arithmetically consistent, then the sentences "The equation \(D(x_1, \ldots, x_m) = 0 \) is solvable in non-negative integers" and "The equation \(D(x_1, \ldots, x_m) = 0 \) is not solvable in non-negative integers" are not provable in ZFC.

Remark 1. (\([9\) p. 53]) The polynomial \(D(x_1, \ldots, x_m) \) is not effectively known.
Let \mathcal{Y} denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $[0, \ldots, k]^m$. Since the set $[0, \ldots, k]^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{Y}$. Theorem 2 implies the next theorem.

Theorem 3. For every $n \in \mathbb{N}$, ZFC proves that $n \in \mathcal{Y}$. If ZFC is arithmetically consistent, then the sentences "\mathcal{Y} is finite" and "\mathcal{Y} is infinite" are not provable in ZFC. If ZFC is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences "n is a threshold number of \mathcal{Y}" and "n is not a threshold number of \mathcal{Y}" are not provable in ZFC.

Let \mathcal{E} denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has a solution in $[0, \ldots, k]^m$. Since the set $[0, \ldots, k]^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{E}$. Theorem 2 implies the next theorem.

Theorem 4. The set \mathcal{E} is empty or infinite. In both cases, every non-negative integer n is a threshold number of \mathcal{E}. If ZFC is arithmetically consistent, then the sentences "\mathcal{E} is empty", "\mathcal{E} is not empty", "\mathcal{E} is finite", and "\mathcal{E} is infinite" are not provable in ZFC.

Let \mathcal{V} denote the set

$$\left\{ k \in \mathbb{N} : \left(\text{the polynomial } D(x_1, \ldots, x_m) \text{ has no solutions in } [0, \ldots, k]^m \right) \land \left(\text{the polynomial } D(x_1, \ldots, x_m) \text{ has a solution in } [0, \ldots, k+1]^m \right) \right\}.$$

Since the sets $[0, \ldots, k]^m$ and $[0, \ldots, k+1]^m$ are finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{V}$. According to Remark 1, at present we are not able to write a computer program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5. (6) ZFC proves that $\text{card}(\mathcal{V}) \in \{0, 1\}$. (7) For every $n \in \mathbb{N}$, ZFC proves that $n \notin \mathcal{V}$. (8) ZFC does not prove the emptiness of \mathcal{V}, if ZFC is arithmetically consistent. (9) For every $n \in \mathbb{N}$, the sentence "n is a threshold number of \mathcal{V}" is not provable in ZFC, if ZFC is arithmetically consistent. (10) For every $n \in \mathbb{N}$, the sentence "n is not a threshold number of \mathcal{V}" is not provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 2. Define a simple algorithm A such that A returns 0 or 1 on every input $k \in \mathbb{N}$ and the set

$$\mathcal{V} = \{ k \in \mathbb{N} : \text{the program } A \text{ returns 1 on input } k \}$$

satisfies conditions (6)–(10).

4 Basic lemmas

Lemma 2. For every positive integers x and y, $x! \cdot y! = y!$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Let $\Gamma(k)$ denote $(k - 1)!$.

Lemma 3. For every positive integers x and y, $x \cdot \Gamma(x) = \Gamma(y)$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Lemma 4. For every non-negative integers b and c, $b + 1 = c$ if and only if $2^{2^b} \cdot 2^{2^b} = 2^{2^c}$

Lemma 5. (Wilson’s theorem, [8] p. 89]) For every positive integer x, x divides $(x - 1)! + 1$ if and only if $x = 1$ or x is prime.
5 Hypothetical statements $\Psi_3, \ldots, \Psi_{16}$

For an integer $n \geq 3$, let \mathcal{U}_n denote the following system of equations:

\[
\begin{aligned}
\forall i \in \{1, \ldots, n-1\} \setminus \{2\} &\ x_i! = x_{i+1} \\
x_1 \cdot x_2 &= x_3 \\
x_2 \cdot x_2 &= x_3
\end{aligned}
\]

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_n.

![Diagram of system \mathcal{U}_n](image)

Fig. 1 Construction of the system \mathcal{U}_n

Let $g(3) = 4$, and let $g(n + 1) = g(n)!$ for every integer $n \geq 3$.

Lemma 6. For every integer $n \geq 3$, the system \mathcal{U}_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(2, 2, g(3), \ldots, g(n))$.

Proof. For every positive integer n, the system \mathcal{U}_n has a finite number of subsystems. □

Hypothesis 1. The statements $\Psi_3, \ldots, \Psi_{16}$ are true.

Remark 2. By Lemma 2 and algebraic lemmas in [22, p. 110], the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \ \Psi_n$ implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [14, p. 300]. Therefore, the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \ \Psi_n$ seems to be false.

Lemma 7. Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system \mathcal{U}_n has a finite number of subsystems. □

Lemma 8. For every statement Ψ_n, the bound $g(n)$ cannot be decreased.

Proof. It follows from Lemma 6 because $\mathcal{U}_n \subseteq B_n$. □
6 The Brocard-Ramanujan equation \(x! + 1 = y^2 \)

Let \(\mathcal{A} \) denote the following system of equations:

\[
\begin{aligned}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_3! &= x_4 \\
 x_4! &= x_5 \\
 x_5 &= x_6
\end{aligned}
\]

Lemma 2 and the diagram in Figure 2 explain the construction of the system \(\mathcal{A} \).

![Fig. 2](image)

Fig. 2 Construction of the system \(\mathcal{A} \)

Lemma 9. For every \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \), the system \(\mathcal{A} \) is solvable in positive integers \(x_2, x_3, x_5, x_6 \) if and only if \(x_1! + 1 = x_4^2 \). In this case, the integers \(x_2, x_3, x_5, x_6 \) are uniquely determined by the following equalities:

\[
\begin{aligned}
 x_2 &= x_1! \\
 x_3 &= (x_1!)! \\
 x_5 &= x_1! + 1 \\
 x_6 &= (x_1! + 1)!
\end{aligned}
\]

Proof. It follows from Lemma 2. \(\square \)

It is conjectured that \(x! + 1 \) is a perfect square only for \(x \in \{4, 5, 7\} \), see [23] p. 297. A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation \(x! + 1 = y^2 \), see [17].

Theorem 6. If the equation \(x! + 1 = x_4^2 \) has only finitely many solutions in positive integers, then the statement \(\Psi_6 \) guarantees that each such solution \((x_1, x_4) \) belongs to the set \(\{4, 5, 11, 71\} \).

Proof. Suppose that the antecedent holds. Let positive integers \(x_1 \) and \(x_4 \) satisfy \(x_1! + 1 = x_4^2 \). Then, \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \). By Lemma 9 the system \(\mathcal{A} \) is solvable in positive integers \(x_2, x_3, x_5, x_6 \). Since \(\mathcal{A} \subseteq B_0 \), the statement \(\Psi_6 \) implies that \(x_6 = (x_1! + 1)! \leq g(6) = g(5)! \). Hence, \(x_1! + 1 \leq g(5) = g(4)! \). Consequently, \(x_1 < g(4) = 24 \). If \(x_1 \in \{1, \ldots, 23\} \), then \(x_1! + 1 \) is a perfect square only for \(x_1 \in \{4, 5, 7\} \). \(\square \)

7 Are there infinitely many prime numbers of the form \(n^2 + 1 \)?

Edmund Landau’s conjecture states that there are infinitely many primes of the form \(n^2 + 1 \), see [16] pp. 37–38. Let \(\mathcal{B} \) denote the following system of equations:

\[
\begin{aligned}
 x_2! &= x_3 \\
 x_3! &= x_4 \\
 x_4! &= x_5 \\
 x_5! &= x_6 \\
 x_6 &= x_8 \\
 x_7 &= x_8
\end{aligned}
\]

Lemma 2 and the diagram in Figure 3 explain the construction of the system \(\mathcal{B} \).
Fig. 3 Construction of the system \mathcal{B}

Lemma 10. For every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 &= x_1^2 \\
 x_3 &= (x_1^2)! \\
 x_4 &= ((x_1^2))! \\
 x_5 &= x_1^2 + 1 \\
 x_6 &= (x_1^2 + 1)! \\
 x_7 &= (x_1^2)! + 1 \\
 x_8 &= ((x_1^2)! + 1) \\
 x_9 &= ((x_1^2)! + 1)! \\
\end{align*}
\]

Proof. By Lemma 2, for every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 10 follows from Lemma 5. □

Lemma 11. There are only finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ which solve the system \mathcal{B} and satisfy $x_1 = 1$.

Proof. If a tuple $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ solves the system \mathcal{B} and $x_1 = 1$, then $x_1, \ldots, x_9 \leq 2$. Indeed, $x_1 = 1$ implies that $x_2 = x_1^2 = 1$. Hence, for example, $x_3 = x_2! = 1$. Therefore, $x_8 = x_3 + 1 = 2$ or $x_8 = 1$. Consequently, $x_9 = x_8! \leq 2$. □

Theorem 7. (cf. Theorem 7) The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \geq 2$ such that $x_1^2 + 1$ is prime and greater than $g(7)$, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Suppose that the antecedent holds. By Lemma 10, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B}. Since $x_1^2 + 1 > g(7)$, we obtain that $x_1^2 > g(7)$. Hence, $(x_1^2)! > g(7)! = g(8)$. Consequently,

\[
x_9 = ((x_1^2)! + 1)! > (g(8) + 1)! > g(8)! = g(9)
\]

Since $\mathcal{B} \subseteq B_9$, the statement Ψ_9 and the inequality $x_9 > g(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 10 and 11, there are infinitely many primes of the form $n^2 + 1$. □

Corollary 5. Let X_9 denote the set of primes of the form $n^2 + 1$. The statement Ψ_9 implies that we know an algorithm such that it returns a threshold number of X_9, and this number equals $\max(X_9)$, if X_9 is finite. Assuming the statement Ψ_9, a single query to an oracle for the halting problem decides the infinity of X_9. Assuming the statement Ψ_9, the infinity of X_9 is decidable in the limit.

Proof. We consider an algorithm which computes $\max(X_9 \cap [1, g(7)])$. □
8 Are there infinitely many prime numbers of the form $n! + 1$?

It is conjectured that there are infinitely many primes of the form $n! + 1$, see [3, p. 443].

Theorem 8. (cf. Theorem 12) The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \geq g(6)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form $n! + 1$.

Proof. We leave the analogous proof to the reader. □

9 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [16, p. 39]. Let C denote the following system of equations:

$$
\begin{align*}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_4! &= x_5 \\
 x_6! &= x_7 \\
 x_7! &= x_8 \\
 x_9! &= x_{10} \\
 x_{12}! &= x_{13} \\
 x_{15}! &= x_{16}
\end{align*}
$$

Lemma 12 and the diagram in Figure 4 explain the construction of the system C.

Lemma 12. For every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:
Lemma 13. There are only finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$.

Proof. By Lemma 12, for every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

\[(x_4 + 2 = x_9) \land (x_4 \mid (x_4 - 1)! + 1) \land (x_9 \mid (x_9 - 1)! + 1)\]

Hence, the claim of Lemma 12 follows from Lemma 5. \hfill \square

Lemma 13. There are only finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$.

Proof. If a tuple $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ solves the system C and $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$, then $x_1, \ldots, x_{16} \leq 7!$. Indeed, for example, if $x_4 = 2$ then $x_6 = x_4 + 1 = 3$. Hence, $x_7 = x_6! = 6$. Therefore, $x_{15} = x_7 + 1 = 7$. Consequently, $x_{16} = x_{15}! = 7!$. \hfill \square

Theorem 9. (cf. Theorem 13) The statement Ψ_{16} proves the following implication: if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > g(14)$. Hence, $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$. By Lemma 12, there exists a unique tuple

\[(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}\]

such that the tuple (x_1, \ldots, x_{16}) solves the system C. Since $x_9 > g(14)$, we obtain that $x_9 - 1 \geq g(14)$. Therefore, $(x_9 - 1)! \geq g(14)! = g(15)$. Hence, $(x_9 - 1)! + 1 > g(15)$. Consequently,

\[x_{16} = ((x_9 - 1)! + 1)! > g(15)! = g(16)\]

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16} > g(16)$ imply that the system C has infinitely many solutions in positive integers x_1, \ldots, x_{16}. According to Lemmas 12 and 13, there are infinitely many twin primes. \hfill \square

Corollary 6. (cf. [10]) Let X_{16} denote the set of twin primes. The statement Ψ_{16} implies that we know an algorithm such that it returns a threshold number of X_{16}, and this number equals $\max(X_{16})$, if X_{16} is finite. Assuming the statement Ψ_{16}, a single query to an oracle for the halting problem decides the infinity of X_{16}. Assuming the statement Ψ_{16}, the infinity of X_{16} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(X_{16} \cap [1, g(14)])$. \hfill \square

10 Hypothetical statements $\Delta_5, \ldots, \Delta_{14}$ and their consequences

Let $\lambda(5) = \Gamma(25)$, and let $\lambda(n + 1) = \Gamma(\lambda(n))$ for every integer $n \geq 5$. For an integer $n \geq 5$, let J_n denote the following system of equations:

\[
\left\{ \begin{array}{l}
\forall i \in [1, \ldots, n - 1] \setminus \{3\} \Gamma(x_i) = x_{i+1} \\
x_1 \cdot x_1 = x_4 \\
x_2 \cdot x_3 = x_5
\end{array} \right.
\]

Lemma 3 and the diagram in Figure 5 explain the construction of the system J_n.

9
For every integer \(n \geq 5 \), the system \(J_n \) has exactly two solutions in positive integers, namely \((1, \ldots, 1)\) and \((5, 24, 23!, 25, \lambda(5), \ldots, \lambda(n))\). For an integer \(n \geq 5 \), let \(\Delta_n \) denote the following statement: if a system of equations \(S \subseteq \{ \Gamma(x_i) = x_k : i, k \in \{1, \ldots, n\} \} \cup \{ x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\} \} \) has only finitely many solutions in positive integers \(x_1, \ldots, x_n \), then each such solution \((x_1, \ldots, x_n)\) satisfies \(x_1, \ldots, x_n \leq \lambda(n) \).

Hypothesis 2. The statements \(\Delta_5, \ldots, \Delta_{14} \) are true.

Proposition 4. Lemmas 3 and 5 imply that the statements \(\Delta_n \) have similar consequences as the statements \(\Psi_n \).

Remark 3. By Lemma 3 and algebraic lemmas in [22, p. 110], the statement \(\forall n \in \mathbb{N} \setminus \{0, 1, 2, 3, 4\} \ \Delta_n \) implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [14, p. 300]. Therefore, the statement \(\forall n \in \mathbb{N} \setminus \{0, 1, 2, 3, 4\} \ \Delta_n \) seems to be false.

Theorem 10. The statement \(\Delta_6 \) implies that any prime number \(p \geq 25 \) proves the infinitude of primes.

Proof. It follows from Lemmas 3 and 5. We leave the details to the reader. \(\square \)

11 Hypothetical statements \(\Sigma_3, \ldots, \Sigma_{16} \) and their consequences

Let \(\Gamma_n(k) \) denote \((k - 1)! \), where \(n \in \{3, \ldots, 16\} \) and \(k \in \{2\} \cup [2^{n-3} + 1, \infty) \cap \mathbb{N} \). For an integer \(n \in \{3, \ldots, 16\} \), let

\[
Q_n = \{ \Gamma_n(x_i) = x_k : i, k \in \{1, \ldots, n\} \} \cup \{ x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\} \}
\]

For an integer \(n \in \{3, \ldots, 16\} \), let \(P_n \) denote the following system of equations:

\[
\begin{align*}
x_1 \cdot x_1 & = x_1 \\
\Gamma_n(x_2) & = x_1 \\
\forall i \in \{2, \ldots, n - 1\} \ x_i \cdot x_i & = x_{i+1}
\end{align*}
\]

Lemma 14. For every integer \(n \in \{3, \ldots, 16\} \), \(P_n \subseteq Q_n \) and the system \(P_n \) with \(\Gamma \) instead of \(\Gamma_n \) has exactly one solution in positive integers \(x_1, \ldots, x_n \), namely \((1, 2^{2^0}, 2^{2^1}, 2^{2^2}, \ldots, 2^{2^{n-2}}) \).
For an integer $n \in \{3, \ldots, 16\}$, let Σ_n denote the following statement: if a system of equations $S \subseteq \mathcal{Q}_n$ with Γ instead of Γ_n has only finitely many solutions in positive integers x_1, \ldots, x_n, then every tuple $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$ that solves the original system S satisfies $x_1, \ldots, x_n \leq 2^{2n-2}$.

Hypothesis 3. The statements $\Sigma_3, \ldots, \Sigma_{16}$ are true.

Lemma 15. (cf. Lemma 3) For every integer $n \in \{4, \ldots, 16\}$ and for every positive integers x and y, $x \cdot \Gamma_n(x) = \Gamma_n(y)$ if and only if $(x + 1 = y) \land (x \geq 2^{2n-3} + 1)$.

Let $\mathcal{Z}_9 \subseteq \mathcal{Q}_9$ be the system of equations in Figure 6.

![Fig. 6 Construction of the system \mathcal{Z}_9](image)

Lemma 16. For every positive integer x_1, the system \mathcal{Z}_9 is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1 > 2^{29-4}$ and $x_1^2 + 1$ is prime. In this case, positive integers x_2, \ldots, x_9 are uniquely determined by x_1. For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ begin with n and solve the system \mathcal{Z}_9 with Γ instead of Γ_9.

Proof. It follows from Lemmas 3, 5, and 15.

Lemma 17. (cf. Lemma 3) The number $(13!)^2 + 1 = 3877588043632640001$ is prime.

Lemma 18. $(13!)^2 + 1 = 18446744073709551617 \land \left((13!)^2 > 2^{29-3} \right)$.

Theorem 11. (cf. Theorem 7) The statement Σ_9 implies the infinitude of primes of the form $n^2 + 1$.

Proof. It follows from Lemmas 16–18.

Theorem 12. (cf. Theorem 8) The statement Σ_9 implies that any prime of the form $n! + 1$ with $n \geq 2^{29-3}$ proves the infinitude of primes of the form $n! + 1$.

Proof. We leave the proof to the reader.

Corollary 7. Let \mathcal{Y}_9 denote the set of primes of the form $n! + 1$. The statement Σ_9 implies that we know an algorithm such that it returns a threshold number of \mathcal{Y}_9, and this number equals $\max(\mathcal{Y}_9)$, if \mathcal{Y}_9 is finite. Assuming the statement Σ_9, a single query to an oracle for the halting problem decides the infinity of \mathcal{Y}_9. Assuming the statement Σ_9, the infinity of \mathcal{Y}_9 is decidable in the limit.

Proof. We consider an algorithm which computes $\max(\mathcal{Y}_9 \cap [1, (2^{29-3} - 1)! + 1])$.

Let $Z_{14} \subseteq Q_{14}$ be the system of equations in Figure 7.

Fig. 7 Construction of the system Z_{14}

Lemma 19. For every positive integer x_1, the system Z_{14} is solvable in positive integers x_2, \ldots, x_{14} if and only if x_1 and $x_1 + 2$ are prime and $x_1 \geq 2^{14 - 3} + 1$. In this case, positive integers x_2, \ldots, x_{14} are uniquely determined by x_1. For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_{14}) \in (\mathbb{N} \setminus \{0\})^{14}$ begin with n and solve the system Z_{14} with Γ instead of Γ_{14}.

Proof. It follows from Lemmas 3, 5, and 15. □

Lemma 20. ([26, p. 87]) The numbers $459 \cdot 2^{8529} - 1$ and $459 \cdot 2^{8529} + 1$ are prime (Harvey Dubner).

Lemma 21. $459 \cdot 2^{8529} - 1 > 2^{2^{14 - 2}} = 2^{4096}$.

Theorem 13. (cf. Theorem 9) The statement Σ_{14} implies the infinitude of twin primes.

Proof. It follows from Lemmas 19–21. □

A prime p is said to be a Sophie Germain prime if both p and $2p + 1$ are prime, see [25]. It is conjectured that there are infinitely many Sophie Germain primes, see [19, p. 330]. Let $Z_{16} \subseteq Q_{16}$ be the system of equations in Figure 8.
Lemma 22. For every positive integer x_1, the system \mathbb{Z}_{16} is solvable in positive integers x_2, \ldots, x_{16} if and only if x_1 is a Sophie Germain prime and $x_1 \geq 2^{16-3} + 1$. In this case, positive integers x_2, \ldots, x_{16} are uniquely determined by x_1. For every positive integer n, at most finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ begin with n and solve the system \mathbb{Z}_{16} with Γ instead of Γ_{16}.

Proof. It follows from Lemmas 3, 5, and 15. □

Lemma 23. (\cite[p. 330]{19}) $8069496435 \cdot 10^{5072} - 1$ is a Sophie Germain prime (Harvey Dubner).

Lemma 24. $8069496435 \cdot 10^{5072} - 1 > 2^{16-2}$.

Theorem 14. The statement Σ_{16} implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas 22,24. □

Theorem 15. The statement Σ_{6} proves the following implication: if the equation $x(x + 1) = y!$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$.

Proof. We leave the proof to the reader. □

The question of solving the equation $x(x + 1) = y!$ was posed by P. Erdős, see \cite{2}. F. Luca proved that the abc conjecture implies that the equation $x(x + 1) = y!$ has only finitely many solutions in positive integers, see \cite{13}.

Theorem 16. The statement Σ_{6} proves the following implication: if the equation $x^2 + 1 = y^2$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$.

Proof. We leave the proof to the reader. □
12 Hypothetical statements $\Omega_3, \ldots, \Omega_{16}$ and their consequences

For an integer $n \in \{3, \ldots, 16\}$, let Ω_n denote the following statement: if a system of equations $S \subseteq \{\Gamma(x_i) = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$ has a solution in integers x_1, \ldots, x_n greater than 2^{2n-2}, then S has infinitely many solutions in positive integers x_1, \ldots, x_n. For every $n \in \{3, \ldots, 16\}$, the statement Σ_n implies the statement Ω_n.

Lemma 25. The number $(65!)^2 + 1$ is prime and $65! > 2^{29-2}$.

Proof. The following PARI/GP ([18]) command

```
(04:04) gp > isprime((65!)^2+1,{flag=2})
%1 = 1
```

is shown together with its output. This command performs the APRCL primality test, the best deterministic primality test algorithm ([26], p. 226). It rigorously shows that the number $(65!)^2 + 1$ is prime. □

Lemma 26. If positive integers x_1, \ldots, x_9 solve the system Z_9 and $x_1 > 2^{9-2}$, then $x_1 = \min(x_1, \ldots, x_9)$.

Theorem 17. The statement Ω_9 implies the infinitude of primes of the form $n^2 + 1$.

Proof. It follows from Lemmas [16] and [25–26]. □

Lemma 27. If positive integers x_1, \ldots, x_{14} solve the system Z_{14} and $x_1 > 2^{14-2}$, then $x_1 = \min(x_1, \ldots, x_{14})$.

Theorem 18. The statement Ω_{14} implies the infinitude of twin primes.

Proof. It follows from Lemmas [19–21] and [27]. □

13 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [12], p. 1. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [12], p. 1.

Open Problem 3. ([12], p. 159) Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \geq 5$, see [11], p. 23. Let

$$H_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{2^{2^{x_j}} = x_k : i, k \in \{1, \ldots, n\}\}$$

Let $h(1) = 1$, and let $h(n+1) = 2^{2^{h(n)}}$ for every positive integer n.

Lemma 28. The following subsystem of H_n

$$\begin{cases} x_1 \cdot x_1 = x_1 \\ \forall i \in \{1, \ldots, n-1\} \quad 2^{2^{x_i}} = x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \ldots, h(n))$.

14
For a positive integer n, let ξ_n denote the following statement: if a system of equations $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(n)$. The statement ξ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 4. The statements ξ_1, \ldots, ξ_{13} are true.

Lemma 29. Every statement ξ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H_n has a finite number of subsystems. \qed

Theorem 19. The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2z} + 1$ is composite and greater than $h(12)$, then $2^{2z} + 1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$(x + 1)(y + 1) = 2^{2z} + 1$$

in positive integers. By Lemma 4, we can transform the equation (E) into an equivalent system of equations G which has 13 variables ($x, y, z,$ and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2\alpha} = \gamma$, see the diagram in Figure 9.

![Fig. 9 Construction of the system G](image)

Since $2^{2z} + 1 > h(12)$, we obtain that $2^{2^{2z}} + 1 > h(13)$. By this, the statement ξ_{13} implies that the system G has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers. \qed

Corollary 8. Let \mathcal{W}_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of \mathcal{W}_{13}, and this number equals $\max(\mathcal{W}_{13})$, if \mathcal{W}_{13} is finite. Assuming the statement ξ_{13}, a single query to an oracle for the halting problem decides the infinity of \mathcal{W}_{13}. Assuming the statement ξ_{13}, the infinity of \mathcal{W}_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(\mathcal{W}_{13} \cap [1, h(12)])$. \qed
References

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl