On *ZFC*-formulae $\varphi(x)$ for which we know a non-negative integer *n* such that $\{x \in \mathbb{N} : \varphi(x)\} \subseteq \{x \in \mathbb{N} : x \leq n-1\}$ if the set $\{x \in \mathbb{N} : \varphi(x)\}$ is finite

Apoloniusz Tyszka

University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl http://www.cyf-kr.edu.pl/~rttyszka http://orcid.org/0000-0002-2770-5495

Abstract

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer $n \ge 3$. For an integer $n \in \{3, ..., 16\}$, let Ψ_n denote the following statement: *if a system of equations* $S \subseteq \{x_i! = x_k : (i, k \in \{1, ..., n\}) \land (i \ne k)\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$ has only finitely many solutions in positive integers $x_1, ..., x_n$, then each such solution $(x_1, ..., x_n)$ satisfies $x_1, ..., x_n \le g(n)$. For every statement Ψ_n , the bound g(n) cannot be decreased. The author's hypothesis says that the statements $\Psi_3, ..., \Psi_{16}$ hold true. We say that a non-negative integer *m* is a threshold number of a set $X \subseteq \mathbb{N}$, if *X* is infinite if and only if *X* contains an element greater than *m*. The following problem is open: *define a set* $X \subseteq \mathbb{N}$ *that satisfies the following conditions:* (1) the relation $n \in X$ has the same intuitive meaning for every $n \in \mathbb{N}$, (2) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in X$, (3) a known and simple algorithm returns a threshold number of X, (4) new elements of X are still discovered, (5) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness of X. We define a set $X \subseteq \mathbb{N}$ that satisfies conditions (2)–(5). The statement Ψ_9 implies that the set of primes of the form $n^2 + 1$ and the set of primes of the form n! + 1 satisfy conditions (1)–(5).

Keywords: finiteness of a set, incompleteness of *ZFC*, infiniteness of a set, prime numbers of the form $n^2 + 1$, prime numbers of the form n! + 1, twin primes.

2010 Mathematics Subject Classification: 03D20, 11A41.

1 Introduction

The phrase "we know a non-negative integer n" in the title means that we know an algorithm which returns n. The title cannot be formalised in *ZFC* because the phrase "we know a non-negative integer n" refers to currently known non-negative integers n with some property. A formally stated title may look like this: On *ZFC*-formulae $\varphi(x)$ for which there exists a non-negative integer n such that *ZFC* proves that

$$\operatorname{card}(\{x \in \mathbb{N} : \varphi(x)\}) < \infty \Longrightarrow \{x \in \mathbb{N} : \varphi(x)\} \subseteq \{x \in \mathbb{N} : x \le n-1\}$$

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer *n* such that *ZFC* proves the above implication.

Lemma 1. For every non-negative integer n, card($\{x \in \mathbb{N} : x \leq n-1\}$) = n.

Corollary 1. The title altered to "On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer *n* such that $card(\{x \in \mathbb{N} : \varphi(x)\}) \leq n$ if the set $\{x \in \mathbb{N} : \varphi(x)\}$ is finite" involves a weaker assumption on $\varphi(x)$.

2 Subsets of \mathbb{N} and their threshold numbers

We say that a non-negative integer *m* is a threshold number of a set $X \subseteq \mathbb{N}$, if *X* is infinite if and only if *X* contains an element greater than *m*, cf. [22] and [23]. If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer *m* is a threshold number of *X*. If a set $X \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of *X* form the set {max(*X*), max(*X*) + 1, max(*X*) + 2, ...}.

It is conjectured that the set of prime numbers of the form $n^2 + 1$ is infinite, see [15, pp. 37–38]. It is conjectured that the set of prime numbers of the form n! + 1 is infinite, see [2, p. 443]. A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that the set of twin primes is infinite, see [15, p. 39]. It is conjectured that the set of composite numbers of the form $2^{2^n} + 1$ is infinite, see [11, p. 23] and [12, pp. 158–159]. A prime p is said to be a Sophie Germain prime if both p and 2p + 1 are prime, see [21]. It is conjectured that the set of Sophie Germain primes is infinite, see [17, p. 330]. For each of these sets, we do not know any threshold number.

The following statement: for every non-negative integer n there exist

prime numbers p and q such that
$$p + 2 = q$$
 and $p \in \lfloor 10^n, 10^{n+1} \rfloor$ (T)

is a Π_1 statement which strengthens the twin prime conjecture, see [3, p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_1 statements, see [1]. The statement (T) is equivalent to the non-halting of a Turing machine. If a set $X \subseteq \mathbb{N}$ is computable and we know a threshold number of X, then the infiniteness of X is equivalent to the halting of a Turing machine.

The height of a rational number $\frac{p}{q}$ is denoted by $H\left(\frac{p}{q}\right)$ and equals $\max(|p|, |q|)$ provided $\frac{p}{q}$ is written in lowest terms. The height of a rational tuple (x_1, \ldots, x_n) is denoted by $H(x_1, \ldots, x_n)$ and equals $\max(H(x_1), \ldots, H(x_n))$.

Proposition 1. The equation $x^5 - x = y^2 - y$ has only finitely many rational solutions, see [14, p. 212]. The known rational solutions are $(x, y) = (-1, 0), (-1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, -5), (2, 6), (3, -15), (3, 16), (30, -4929), (30, 4930), <math>(\frac{1}{4}, \frac{15}{32}), (\frac{1}{4}, \frac{17}{32}), (-\frac{15}{16}, -\frac{185}{1024}), (-\frac{15}{16}, \frac{1209}{1024})$, and the existence of other solutions is an open question, see [18, pp. 223–224].

Corollary 2. The set $\mathcal{T} = \{n \in \mathbb{N} : \text{the equation } x^5 - x = y^2 - y \text{ has a rational solution of height } n\}$ is finite. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{T}$. We do not know any algorithm which returns a threshold number of \mathcal{T} .

Open Problem 1. Define a set $X \subseteq \mathbb{N}$ that satisfies the following conditions:

(1) the relation $n \in X$ has the same intuitive meaning for every $n \in \mathbb{N}$,

(2) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in X$,

(3) a known and simple algorithm returns a threshold number of X,

(4) new elements of X are still discovered,

(5) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness of X.

Let \mathcal{F} denote the set of all multiples of twin primes greater than 9^{99^9} , and let \mathcal{P} denote the set of prime numbers.

Proposition 2. The set
$$\mathcal{J} \cup ([2,9^{999}] \cap \mathcal{P})$$
 satisfies conditions (2)-(5).

Let

$$\mathcal{H} = \begin{cases} \mathbb{N}, \text{ if } \sin\left(9^{99^9}\right) < 0\\ \mathbb{N} \cap \left[0, \sin\left(9^{99^9}\right) \cdot 9^{99^9}\right] \text{ otherwise} \end{cases}$$

We do not know whether or not the set \mathcal{H} is finite.

Proposition 3. The number 9^{999} the equality 2^{100} is a threshold number of H. We know an algorithm which decides the equality $\mathcal{H} = \mathbb{N}$. If $\mathcal{H} \neq \mathbb{N}$, then the set \mathcal{H} consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{H}$.

Let

$$\mathcal{K} = \begin{cases} \{n\}, \text{ if } (n \in \mathbb{N}) \land \left(2^{\aleph_0} = \aleph_{n+1}\right) \\ \{0\}, \text{ if } 2^{\aleph_0} \ge \aleph_{\omega} \end{cases}$$

Theorem 1. *ZFC proves that* $card(\mathcal{K}) = 1$. *If ZFC is consistent, then for every* $n \in \mathbb{N}$ *the sentences* "*n* is a threshold number of \mathcal{K} " and "n is not a threshold number of \mathcal{K} " are not provable in ZFC. If ZFC is consistent, then for every $n \in \mathbb{N}$ the sentences " $n \in \mathcal{K}$ " and " $n \notin \mathcal{K}$ " are not provable in ZFC.

Proof. It suffices to observe that 2^{\aleph_0} can attain every value from the set $\{\aleph_1, \aleph_2, \aleph_3, \ldots\}$, see [7] and [10, p. 232].

3 Diophantine equation whose non-solvability Α expresses the consistency of ZFC

Gödel's second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 2. ([5, p. 35]). There exists a polynomial $D(x_1, \ldots, x_m)$ with integer coefficients such that if *ZFC is arithmetically consistent, then the sentences* "The equation $D(x_1, \ldots, x_m) = 0$ is solvable in non-negative integers" and "The equation $D(x_1, \ldots, x_m) = 0$ is not solvable in non-negative integers" are not provable in ZFC.

Remark 1. ([4], [9, p. 53]). The polynomial $D(x_1, \ldots, x_m)$ is very complicated.

Let \mathcal{Y} denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $\{0, \ldots, k\}^m$. Since the set $\{0, \ldots, k\}^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{Y}$. Theorem 2 implies the next theorem.

Theorem 3. For every $n \in \mathbb{N}$, ZFC proves that $n \in \mathcal{Y}$. If ZFC is arithmetically consistent, then the sentences " \mathcal{Y} is finite" and " \mathcal{Y} is infinite" are not provable in ZFC. If ZFC is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences "n is a threshold number of \mathcal{Y} " and "n is not a threshold number of \mathcal{Y} " are not provable in ZFC.

Let \mathcal{E} denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has a solution in $\{0, \ldots, k\}^m$. Since the set $\{0, \ldots, k\}^m$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{E}$. Theorem 2 implies the next theorem.

Theorem 4. The set \mathcal{E} is empty or infinite. In both cases, every non-negative integer n is a threshold number of \mathcal{E} . If ZFC is arithmetically consistent, then the sentences " \mathcal{E} is empty", " \mathcal{E} is not empty", "& is finite", and "& is infinite" are not provable in ZFC.

Let $\mathcal V$ denote the set

 $\{k \in \mathbb{N} : (\text{the polynomial } D(x_1, \ldots, x_m) \text{ has no solutions in } \{0, \ldots, k\}^m) \land$

(the polynomial $D(x_1, \ldots, x_m)$ has a solution in $\{0, \ldots, k+1\}^m$).

Since the sets $\{0, ..., k\}^m$ and $\{0, ..., k+1\}^m$ are finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{V}$. According to Remark 1, at present we do not know a simple computer program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5. (6) ZFC proves that $card(\mathcal{V}) \in \{0, 1\}$. (7) For every $n \in \mathbb{N}$, ZFC proves that $n \notin \mathcal{V}$. (8) ZFC does not prove the emptiness of \mathcal{V} , if ZFC is arithmetically consistent. (9) For every $n \in \mathbb{N}$, the sentence "n is a threshold number of \mathcal{V} " is not provable in ZFC, if ZFC is arithmetically consistent. (10) For every $n \in \mathbb{N}$, the sentence "n is not a threshold number of \mathcal{V} " is not provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 2. Define a simple algorithm A such that A returns 0 or 1 on every input $k \in \mathbb{N}$ and the set

 $\mathcal{V} = \{k \in \mathbb{N} : \text{ the program } A \text{ returns } 1 \text{ on input } k\}$

satisfies conditions (6)-(10).

4 Basic lemmas

Lemma 2. For every positive integers x and y, $x! \cdot y = y!$ if and only if

$$(x + 1 = y) \lor (x = y = 1)$$

Lemma 3. For every non-negative integers b and c, b + 1 = c if and only if

$$2^{2^b} \cdot 2^{2^b} = 2^{2^c}$$

Lemma 4. (Wilson's theorem, [8, p. 89]). For every positive integer x, x divides (x - 1)! + 1 if and only if x = 1 or x is prime.

5 Hypothetical statements $\Psi_3, \ldots, \Psi_{16}$

For an integer $n \ge 3$, let \mathcal{U}_n denote the following system of equations:

$$\begin{cases} \forall i \in \{1, \dots, n-1\} \setminus \{2\} \ x_i! = x_{i+1} \\ x_1 \cdot x_1 = x_3 \\ x_2 \cdot x_2 = x_3 \end{cases}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_n .

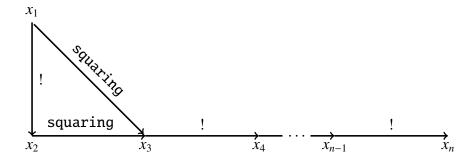


Fig. 1 Construction of the system \mathcal{U}_n

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer $n \ge 3$.

Lemma 5. For every integer $n \ge 3$, the system \mathcal{U}_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(2, 2, g(3), \ldots, g(n))$.

Let

$$B_n = \left\{ x_i! = x_k : (i, k \in \{1, \dots, n\}) \land (i \neq k) \right\} \cup \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\}$$

For an integer $n \ge 3$, let Ψ_n denote the following statement: *if a system of equations* $S \subseteq B_n$ *has only finitely many solutions in positive integers* x_1, \ldots, x_n , *then each such solution* (x_1, \ldots, x_n) *satisfies* $x_1, \ldots, x_n \le g(n)$. The statement Ψ_n says that for subsystems of B_n the largest known solution is indeed the largest possible.

Hypothesis 1. *The statements* $\Psi_3, \ldots, \Psi_{16}$ *are true.*

Lemma 6. Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer *n*, the system B_n has a finite number of subsystems. \Box

Lemma 7. For every statement Ψ_n , the bound g(n) cannot be decreased.

Proof. It follows from Lemma 5 because $\mathcal{U}_n \subseteq B_n$.

Remark 2. By Lemma 2 and algebraic lemmas in [19, p. 110], the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n$ implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is unbelievable because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [13, p. 300]. Therefore, the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n$ seems to be false.

6 The Brocard-Ramanujan equation $x! + 1 = y^2$

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

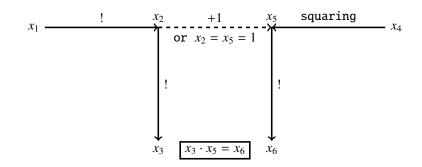


Fig. 2 Construction of the system \mathcal{A}

Lemma 8. For every $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$x_{2} = x_{1}!$$

$$x_{3} = (x_{1}!)!$$

$$x_{5} = x_{1}! + 1$$

$$x_{6} = (x_{1}! + 1)!$$

Proof. It follows from Lemma 2.

It is conjectured that x! + 1 is a perfect square only for $x \in \{4, 5, 7\}$, see [20, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x! + 1 = y^2$, see [16].

Theorem 6. If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Ψ_6 guarantees that each such solution (x_1, x_4) belongs to the set {(4, 5), (5, 11), (7, 71)}.

Proof. Suppose that the antecedent holds. Let positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 8, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 . Since $\mathcal{A} \subseteq B_6$, the statement Ψ_6 implies that $x_6 = (x_1! + 1)! \leq g(6) = g(5)!$. Hence, $x_1! + 1 \leq g(5) = g(4)!$. Consequently, $x_1 < g(4) = 24$. If $x_1 \in \{1, \dots, 23\}$, then $x_1! + 1$ is a perfect square only for $x_1 \in \{4, 5, 7\}$.

7 Are there infinitely many prime numbers of the form $n^2 + 1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [15, pp. 37–38]. Let \mathcal{B} denote the following system of equations:

 $\begin{cases} x_2! = x_3 & x_1 \cdot x_1 = x_2 \\ x_3! = x_4 & x_3 \cdot x_5 = x_6 \\ x_5! = x_6 & x_4 \cdot x_8 = x_9 \\ x_8! = x_9 & x_5 \cdot x_7 = x_8 \end{cases}$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

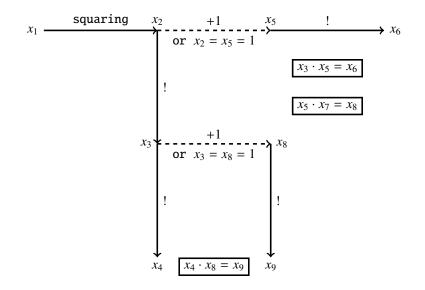


Fig. 3 Construction of the system \mathcal{B}

Lemma 9. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

$$\begin{array}{rcl} x_2 &=& x_1^2 \\ x_3 &=& (x_1^2)! \\ x_4 &=& ((x_1^2)!)! \\ x_5 &=& x_1^2 + 1 \\ x_6 &=& (x_1^2 + 1)! \end{array} \qquad \begin{array}{rcl} x_7 &=& \frac{(x_1^2)! + 1}{x_1^2 + 1} \\ x_8 &=& (x_1^2)! + 1 \\ x_9 &=& ((x_1^2)! + 1)! \end{array}$$

Proof. By Lemma 2, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 9 follows from Lemma 4.

Lemma 10. There are only finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ which solve the system \mathcal{B} and satisfy $x_1 = 1$.

Proof. If a tuple $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ solves the system \mathcal{B} and $x_1 = 1$, then $x_1, \ldots, x_9 \leq 2$. Indeed, $x_1 = 1$ implies that $x_2 = x_1^2 = 1$. Hence, for example, $x_3 = x_2! = 1$. Therefore, $x_8 = x_3 + 1 = 2$ or $x_8 = 1$. Consequently, $x_9 = x_8! \leq 2$.

Theorem 7. The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \ge 2$ such that $x_1^2 + 1$ is prime and greater than g(7), then there are infinitely many primes of the form $n^2 + 1$.

Proof. Suppose that the antecedent holds. By Lemma 9, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B} . Since $x_1^2 + 1 > g(7)$, we obtain that $x_1^2 \ge g(7)$. Hence, $(x_1^2)! \ge g(7)! = g(8)$. Consequently,

$$x_9 = ((x_1^2)! + 1)! \ge (g(8) + 1)! > g(8)! = g(9)$$

Since $\mathcal{B} \subseteq B_9$, the statement Ψ_9 and the inequality $x_9 > g(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 9 and 10, there are infinitely many primes of the form $n^2 + 1$.

Corollary 3. Let X_9 denote the set of primes of the form $n^2 + 1$. The statement Ψ_9 implies that we know an algorithm such that it returns a threshold number of X_9 , and this number equals $\max(X_9)$, if X_9 is finite. Assuming the statement Ψ_9 , a single query to an oracle for the halting problem decides the infiniteness of X_9 . Assuming the statement Ψ_9 , the infiniteness of X_9 is decidable in the limit.

Proof. We consider an algorithm which computes $\max(X_9 \cap [1, g(7)])$.

8 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443].

Theorem 8. The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \ge g(6)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader.

9 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [15, p. 39]. Let C denote the following system of equations:

$\begin{bmatrix} x_1 \end{bmatrix}$	=	x_2	ro · r	_	<i>r</i> -
$x_2!$	=	x_3	$x_2 \cdot x_4$		-
$x_4!$	=	<i>X</i> 5	$x_5 \cdot x_6$	=	x_7
$x_6!$		-	$x_7 \cdot x_9$	=	x_{10}
· ·			$x_4 \cdot x_{11}$	=	<i>x</i> ₁₂
$x_7!$		-	$x_3 \cdot x_{12}$	=	x_{13}
<i>x</i> 9!	=	x_{10}	$x_9 \cdot x_{14}$		
$x_{12}!$	=	<i>x</i> ₁₃	, <u>.</u> .		
$x_{15}!$	=	x_{16}	$x_8 \cdot x_{15}$	_	л16

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

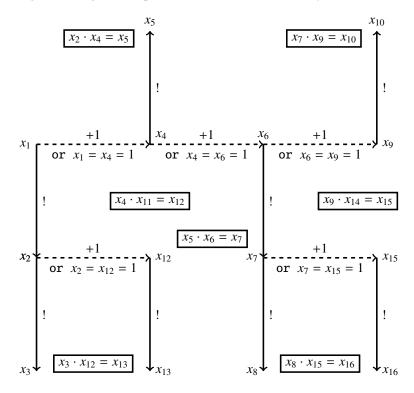


Fig. 4 Construction of the system C

Lemma 11. For every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system *C* is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

x_1	=	$x_4 - 1$			$(r_{i} - 1)! \pm 1$
x_2	=	$(x_4 - 1)!$	x_{11}	=	$\frac{(x_4-1)!+1}{x_4}$
<i>x</i> ₃	=	$((x_4 - 1)!)!$	x_{12}	=	$(x_4 - 1)! + 1$
<i>x</i> ₅	=	$x_4!$			$((x_4 - 1)! + 1)!$
x_6	=	$x_9 - 1$	<i>x</i> ₁₄	=	$\frac{(x_9-1)!+1}{x_9}$
<i>x</i> ₇	=	$(x_9 - 1)!$			$(x_9 - 1)! + 1$
x_8	=	$((x_9 - 1)!)!$			$((x_9 - 1)! + 1)!$
x_{10}	=	$x_9!$	10		((())) 1)(1)(

Proof. By Lemma 2, for every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system *C* is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$(x_4 + 2 = x_9) \land (x_4 | (x_4 - 1)! + 1) \land (x_9 | (x_9 - 1)! + 1)$$

Hence, the claim of Lemma 11 follows from Lemma 4.

Lemma 12. There are only finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$.

Proof. If a tuple $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ solves the system *C* and $(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$, then $x_1, \ldots, x_{16} \le 7!$. Indeed, for example, if $x_4 = 2$ then $x_6 = x_4 + 1 = 3$. Hence, $x_7 = x_6! = 6$. Therefore, $x_{15} = x_7 + 1 = 7$. Consequently, $x_{16} = x_{15}! = 7!$.

Theorem 9. The statement Ψ_{16} proves the following implication: if there exists a twin prime greater than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > g(14)$. Hence, $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$. By Lemma 11, there exists a unique tuple

$$(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}$$

such that the tuple $(x_1, ..., x_{16})$ solves the system *C*. Since $x_9 > g(14)$, we obtain that $x_9 - 1 \ge g(14)$. Therefore, $(x_9 - 1)! \ge g(14)! = g(15)$. Hence, $(x_9 - 1)! + 1 > g(15)$. Consequently,

$$x_{16} = ((x_9 - 1)! + 1)! > g(15)! = g(16)$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16} > g(16)$ imply that the system *C* has infinitely many solutions in positive integers x_1, \ldots, x_{16} . According to Lemmas 11 and 12, there are infinitely many twin primes.

Corollary 4. (cf. [6]). Let X_{16} denote the set of twin primes. The statement Ψ_{16} implies that we know an algorithm such that it returns a threshold number of X_{16} , and this number equals $\max(X_{16})$, if X_{16} is finite. Assuming the statement Ψ_{16} , a single query to an oracle for the halting problem decides the infiniteness of X_{16} . Assuming the statement Ψ_{16} , the infiniteness of X_{16} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(X_{16} \cap [1, g(14)])$.

10 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [12, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [12, p. 1].

Open Problem 3. ([12, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \ge 5$, see [11, p. 23]. Let

$$H_n = \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\} \cup \left\{ 2^{2^{X_i}} = x_k : i, k \in \{1, \dots, n\} \right\}$$

Let h(1) = 1, and let $h(n + 1) = 2^{2^{h(n)}}$ for every positive integer *n*.

Lemma 13. The following subsystem of H_n

$$\begin{cases} x_1 \cdot x_1 = x_1 \\ \forall i \in \{1, \dots, n-1\} \ 2^{2^{x_i}} = x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \ldots, h(n))$.

For a positive integer *n*, let ξ_n denote the following statement: if a system of equations $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(n)$. The statement ξ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 2. *The statements* ξ_1, \ldots, ξ_{13} *are true.*

Lemma 14. Every statement ξ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H_n has a finite number of subsystems.

Theorem 10. The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2^{z}} + 1$ is composite and greater than h(12), then $2^{2^{z}} + 1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^{Z}} + 1$$
 (E)

in positive integers. By Lemma 3, we can transform the equation (E) into an equivalent system of equations \mathcal{G} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^{\alpha}} = \gamma$, see the diagram in Figure 5.

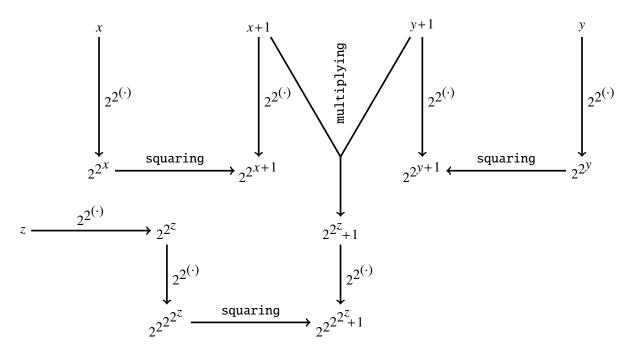


Fig. 5 Construction of the system G

Since $2^{2^z} + 1 > h(12)$, we obtain that $2^{2^{2^z}+1} > h(13)$. By this, the statement ξ_{13} implies that the system \mathcal{G} has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers.

Corollary 5. Let W_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of W_{13} , and this number equals $\max(W_{13})$, if W_{13} is finite. Assuming the statement ξ_{13} , a single query to an oracle for the halting problem decides the infiniteness of W_{13} . Assuming the statement ξ_{13} , the infiniteness of W_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(W_{13} \cap [1, h(12)])$.

References

- C. H. Bennett, *Chaitin's Omega*, in: *Fractal music, hypercards, and more* ... (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307–319.
- [2] C. K. Caldwell and Y. Gallot, On the primality of n! ± 1 and 2 × 3 × 5 × ··· × p ± 1, Math. Comp. 71 (2002), no. 237, 441–448, http://doi.org/10.1090/S0025-5718-01-01315-1.
- [3] C. S. Calude, H. Jürgensen, S. Legg, Solving problems with finite test sets, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), 39–52, Springer, London, 2000.
- [4] M. Carl and B. Z. Moroz, On a Diophantine representation of the predicate of provability, Journal of Mathematical Sciences, vol. 199 (2014), no. 1, 36-52.
- [5] N. C. A. da Costa and F. A. Doria, *On the foundations of science (LIVRO): essays, first series,* E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
- [6] F. G. Dorais, *Can the twin prime problem be solved with a single use of a halting oracle?* July 23, 2011, http://mathoverflow.net/questions/71050.
- [7] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139–178.

- [8] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [9] H. Friedman, *The incompleteness phenomena*, in: Proceedings of the AMS Centennial Symposium 1988, 49–84, Amer. Math. Soc., Providence, RI, 1992.
- [10] T. Jech, Set theory, Springer, Berlin, 2003.
- [11] J.-M. De Koninck and F. Luca, *Analytic number theory: Exploring the anatomy of integers*, American Mathematical Society, Providence, RI, 2012.
- [12] M. Křížek, F. Luca, L. Somer, *17 lectures on Fermat numbers: from number theory to geometry,* Springer, New York, 2001.
- [13] Yu. Matiyasevich, Existence of noneffectivizable estimates in the theory of exponential Diophantine equations, J. Sov. Math. vol. 8, no. 3, 1977, 299–311, http://dx.doi.org/10.1007/bf01091549.
- [14] M. Mignotte and A. Pethő, On the Diophantine equation $x^p x = y^q y$, Publ. Mat. 43 (1999), no. 1, 207–216.
- [15] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [16] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [17] P. Ribenboim, The new book of prime number records, Springer, New York, 1996, http://doi. org/10.1007/978-1-4612-0759-7.
- [18] S. Siksek, Chabauty and the Mordell-Weil Sieve, in: Advances on Superelliptic Curves and Their Applications (eds. L. Beshaj, T. Shaska, E. Zhupa), 194–224, IOS Press, Amsterdam, 2015, http: //dx.doi.org/10.3233/978-1-61499-520-3-194.
- [19] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109–114, http://doi.org/ 10.1515/comp-2018-0012.
- [20] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [21] Wolfram MathWorld, *Sophie Germain prime*, http://mathworld.wolfram.com/ SophieGermainPrime.html.
- [22] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10–15, 1998, http://www.bu.edu/wcp/ Papers/Logi/LogiZenk.htm.
- [23] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20–26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.