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Abstract

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3. For an integer n ∈ {3, . . . , 16}, let
Ψn denote the following statement: if a system of equations S ⊆

{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i ,

k)
}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
has only finitely many solutions in positive integers x1, . . . , xn,

then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 g(n). For every statement Ψn, the bound
g(n) cannot be decreased. The author’s hypothesis says that the statements Ψ3, . . . ,Ψ16 hold true.
The following problem is open: define a set X ⊆ N that satisfies the following conditions: (1) the
formula n ∈ X has the same intuitive meaning for every n ∈ N, (2) a known and simple algorithm for
every n ∈ N decides whether or not n ∈ X, (3) a known and simple algorithm returns an integer n
such that X is infinite if and only if X contains an element greater than n, (4) new elements of X
are still discovered, (5) it is conjectured that X is infinite although we do not know any algorithm
deciding the infiniteness of X. The problem remains open if condition(3) states that a known and
simple algorithm returns an integer n such that X is infinite if and only if card(X) > n. We define a
set X ⊆ N that satisfies conditions (2)-(5). The statement Ψ9 implies that the set of primes of the
form n2 + 1 and the set of primes of the form n! + 1 satisfy conditions (1)-(5). The statement Ψ16
implies that the set of twin primes satisfies conditions (1)-(5).

Keywords: finiteness of a set, incompleteness of ZFC, infiniteness of a set, prime numbers of the form
n2 + 1, prime numbers of the form n! + 1, twin primes.
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1 Introduction and basic lemmas

The phrase "we know a non-negative integer n" in the title means that we know an algorithm
which returns n. The title cannot be formalised in ZFC because the phrase "we know a non-negative
integer n" refers to currently known non-negative integers n with some property. A formally stated
title may look like this: On ZFC-formulae ϕ(x) for which there exists a non-negative
integer n such that ZFC proves that

card({x ∈ N : ϕ(x)}) < ∞ =⇒ {x ∈ N : ϕ(x)} ⊆ {x ∈ N : x 6 n − 1}

Unfortunately, this formulation admits formulae ϕ(x) without any known non-negative integer n such
that ZFC proves the above implication.

Lemma 1. For every non-negative integer n, card({x ∈ N : x 6 n − 1}) = n.
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Corollary 1. The title altered to "On ZFC-formulae ϕ(x) for which we know a non-negative
integer n such that card({x ∈ N : ϕ(x)}) 6 n if the set {x ∈ N : ϕ(x)} is finite" involves
a weaker assumption on ϕ(x).

Lemma 2. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 3. For every non-negative integers b and c, b + 1 = c if and only if

22b · 22b
= 22c

Lemma 4. (Wilson’s theorem, [8, p. 89]). For every positive integer x, x divides (x − 1)! + 1 if and only
if x = 1 or x is prime.

2 Subsets of N and their threshold numbers

Definition 1. We say that an integer m ∈ [−1,∞) is a threshold number of a set X ⊆ N, if X is infinite if
and only if X contains an element greater than m, cf. [22] and [23].

If a set X ⊆ N is empty or infinite, then any m ∈ [−1,∞) ∩ Z is a threshold number of X.
If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
{max(X),max(X) + 1,max(X) + 2, . . .}.
Definition 2. We say that a non-negative integer m is a weak threshold number of a set X ⊆ N, if X is
infinite if and only if card(X) > m.

Proposition 1. For every X ⊆ N, if an integer m ∈ [−1,∞) is a threshold number of X, then m + 1 is a
weak threshold number of X.

Proof. For every X ⊆ N, if m ∈ [−1,∞) ∩ Z and card(X) > m + 1, then X ∩ [m + 1,∞) , ∅. �

It is conjectured that the set of prime numbers of the form n2 + 1 is infinite, see [15, pp. 37–38]. It is
conjectured that the set of prime numbers of the form n! + 1 is infinite, see [2, p. 443]. A twin prime is
a prime number that differs from another prime number by 2. The twin prime conjecture states that the
set of twin primes is infinite, see [15, p. 39]. It is conjectured that the set of composite numbers of the
form 22n

+ 1 is infinite, see [11, p. 23] and [12, pp. 158–159]. A prime p is said to be a Sophie Germain
prime if both p and 2p + 1 are prime, see [21]. It is conjectured that the set of Sophie Germain primes is
infinite, see [17, p. 330]. For each of these sets, we do not know any weak threshold number.

Open Problem 1. Define a set X ⊆ N that satisfies the following conditions:
(a1) the formula n ∈ X has the same intuitive meaning for every n ∈ N,
(b1) a known and simple algorithm for every n ∈ N decides whether or not n ∈ X,
(c1) a known and simple algorithm returns an integer n such thatX is infinite if and only if card(X) > n,
(d1) new elements of X are still discovered,
(e1) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness

of X.

The following statement: for every non-negative integer n there exist

prime numbers p and q such that p + 2 = q and p ∈
[
10n, 10n + 1

]
(T)

is a Π1 statement which strengthens the twin prime conjecture, see [3, p. 43]. C. H. Bennett claims that
most mathematical conjectures can be settled indirectly by proving stronger Π1 statements, see [1]. The
statement (T) is equivalent to the non-halting of a Turing machine. If a set X ⊆ N is computable and we
know a threshold number ofX, then the infiniteness ofX is equivalent to the halting of a Turing machine.
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The height of a rational number p
q is denoted by H

(
p
q

)
and equals max(|p|, |q|) provided p

q is written
in lowest terms. The height of a rational tuple (x1, . . . , xn) is denoted by H(x1, . . . , xn) and equals
max(H(x1), . . . ,H(xn)).

Proposition 2. The equation x5 − x = y2 − y has only finitely many rational solutions, see [14, p. 212].
The known rational solutions are (x, y) = (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5), (2, 6),
(3,−15), (3, 16), (30,−4929), (30, 4930),

(
1
4 ,

15
32

)
,
(

1
4 ,

17
32

)
,
(
−15

16 ,− 185
1024

)
,
(
− 15

16 ,
1209
1024

)
, and the existence

of other solutions is an open question, see [18, pp. 223–224].

Proposition 3. The set T = {n ∈ N : the equation x5 − x = y2 − y has a rational solution of height n} is
finite. We know an algorithm which for every n ∈ N decides whether or not n ∈ T . We do not know any
algorithm which returns a threshold number of T .

Open Problem 2. Define a set X ⊆ N that satisfies the following conditions:
(a2) the formula n ∈ X has the same intuitive meaning for every n ∈ N,
(b2) a known and simple algorithm for every n ∈ N decides whether or not n ∈ X,
(c2) a known and simple algorithm returns an integer n such that X is infinite if and only if X contains

an element greater than n,
(d2) new elements of X are still discovered,
(e2) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness

of X.

Let F denote the set of all multiples of twin primes greater than 99999
, and let P denote the set of

prime numbers.

Proposition 4. The set J ∪
([

2, 99999 ]
∩ P

)
satisfies conditions (b2)-(e2).

Let

H =


N, if sin

99999  < 0

N ∩
0, sin

99999  · 99999  otherwise

We do not know whether or not the setH is finite.

Proposition 5. The number 99999
is a threshold number of H . We know an algorithm which decides

the equality H = N. If H , N, then the set H consists of all integers from 0 to a non-negative integer
which can be computed by a known algorithm. We know an algorithm which for every n ∈ N decides
whether or not n ∈ H .

Let

K =

 {n}, if (n ∈ N) ∧
(
2ℵ0 = ℵn+1

)
{0}, if 2ℵ0 > ℵω

Theorem 1. ZFC proves that card(K) = 1. If ZFC is consistent, then for every n ∈ N the
sentences "n is a threshold number of K" and "n is not a threshold number of K"
are not provable in ZFC. If ZFC is consistent, then for every n ∈ N the sentences "n ∈ K" and "n < K"
are not provable in ZFC.

Proof. It suffices to observe that 2ℵ0 can attain every value from the set {ℵ1,ℵ2,ℵ3, . . .}, see [7] and
[10, p. 232]. �
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3 A Diophantine equation whose non-solvability expresses the
consistency of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply
the following theorem.

Theorem 2. ([5, p. 35]). There exists a polynomial D(x1, . . . , xm) with integer coefficients such that if
ZFC is arithmetically consistent, then the sentences "The equation D(x1, . . . , xm) = 0 is solvable
in non-negative integers" and "The equation D(x1, . . . , xm) = 0 is not solvable in
non-negative integers" are not provable in ZFC.

Remark 1. ([4], [9, p. 53]). The polynomial D(x1, . . . , xm) is very complicated.

Let Y denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0 has no
solutions in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, there exists an algorithm which for every n ∈ N
decides whether or not n ∈ Y. Theorem 2 implies the next theorem.

Theorem 3. For every n ∈ N, ZFC proves that n ∈ Y. If ZFC is arithmetically consistent, then the
sentences "Y is finite" and "Y is infinite" are not provable in ZFC. If ZFC is arithmetically
consistent, then for every n ∈ N the sentences "n is a threshold number of Y" and "n is not
a threshold number of Y" are not provable in ZFC.

Let E denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0 has a
solution in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, there exists an algorithm which for every n ∈ N
decides whether or not n ∈ E. Theorem 2 implies the next theorem.

Theorem 4. The set E is empty or infinite. In both cases, every non-negative integer n is a threshold
number of E. If ZFC is arithmetically consistent, then the sentences "E is empty", "E is not
empty", "E is finite", and "E is infinite" are not provable in ZFC.

LetV denote the set{
k ∈ N :

(
the polynomial D(x1, . . . , xm) has no solutions in {0, . . . , k}m

)
∧(

the polynomial D(x1, . . . , xm) has a solution in {0, . . . , k + 1}m
)}
.

Since the sets {0, . . . , k}m and {0, . . . , k + 1}m are finite, there exists an algorithm which for every n ∈ N
decides whether or not n ∈ V. According to Remark 1, at present we do not know a simple computer
program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5. (6) ZFC proves that card(V) ∈ {0, 1}. (7) For every n ∈ N, ZFC proves that n < V.
(8) ZFC does not prove the emptiness of V, if ZFC is arithmetically consistent. (9) For every n ∈ N,
the sentence "n is a threshold number of V" is not provable in ZFC, if ZFC is arithmetically
consistent. (10) For every n ∈ N, the sentence "n is not a threshold number of V" is not
provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 3. Define a simple algorithm A such that A returns 0 or 1 on every input k ∈ N and the
set

V = {k ∈ N : the program A returns 1 on input k}
satisfies conditions (6)-(10).
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4 Hypothetical statements Ψ3, . . . ,Ψ16

For an integer n > 3, letUn denote the following system of equations:
∀i ∈ {1, . . . , n − 1} \ {2} xi! = xi+1

x1 · x1 = x3
x2 · x2 = x3

The diagram in Figure 1 illustrates the construction of the systemUn.

x1

!

x2

squaring

x3

squaring

!
x4

. . .
xn−1

!
xn

Fig. 1 Construction of the systemUn

Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3.

Lemma 5. For every integer n > 3, the systemUn has exactly two solutions in positive integers, namely
(1, . . . , 1) and

(
2, 2, g(3), . . . , g(n)

)
.

Let
Bn =

{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i , k)

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For an integer n > 3, let Ψn denote the following statement: if a system of equations S ⊆ Bn has
only finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 g(n). The statement Ψn says that for subsystems of Bn the largest known solution is indeed
the largest possible.

Hypothesis 1. The statements Ψ3, . . . ,Ψ16 are true.

Lemma 6. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

Lemma 7. For every statement Ψn, the bound g(n) cannot be decreased.

Proof. It follows from Lemma 5 becauseUn ⊆ Bn. �

Remark 2. By Lemma 2 and algebraic lemmas in [19, p. 110], the statement ∀n ∈ N \ {0, 1, 2} Ψn

implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns
an integer such that this integer is greater than the solutions in positive integers, if these solutions form
a finite set. This conclusion is unbelievable because a computable upper bound on non-negative integer
solutions does not exist for exponential Diophantine equations with a finite number of solutions, see
[13, p. 300]. Therefore, the statement ∀n ∈ N \ {0, 1, 2} Ψn seems to be false.
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5 The Brocard-Ramanujan equation x! + 1 = y2

LetA denote the following system of equations:

x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 2 and the diagram in Figure 2 explain the construction of the systemA.

x1
! x2 x4

squaringx5+1
or x2 = x5 = 1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA
Lemma 8. For every x1, x4 ∈ N \ {0, 1}, the systemA is solvable in positive integers x2, x3, x5, x6 if and
only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are uniquely determined by the following
equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

Proof. It follows from Lemma 2. �

It is conjectured that x! + 1 is a perfect square only for x ∈ {4, 5, 7}, see [20, p. 297]. A weak form
of Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y2,
see [16].

Theorem 6. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers, then the

statement Ψ6 guarantees that each such solution (x1, x4) belongs to the set {(4, 5), (5, 11), (7, 71)}.
Proof. Suppose that the antecedent holds. Let positive integers x1 and x4 satisfy x1! + 1 = x2

4. Then,
x1, x4 ∈ N \ {0, 1}. By Lemma 8, the system A is solvable in positive integers x2, x3, x5, x6. Since
A ⊆ B6, the statement Ψ6 implies that x6 = (x1! + 1)! 6 g(6) = g(5)!. Hence, x1! + 1 6 g(5) = g(4)!.
Consequently, x1 < g(4) = 24. If x1 ∈ {1, . . . , 23}, then x1! + 1 is a perfect square only for
x1 ∈ {4, 5, 7}. �

6 Are there infinitely many prime numbers of the form n2 + 1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[15, pp. 37–38]. Let B denote the following system of equations:

x2! = x3 x1 · x1 = x2
x3! = x4 x3 · x5 = x6
x5! = x6 x4 · x8 = x9
x8! = x9 x5 · x7 = x8

Lemma 2 and the diagram in Figure 3 explain the construction of the system B.
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x1
squaring x2 +1

or x2 = x5 = 1

x5 ! x6

!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B
Lemma 9. For every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if and only if
x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 2, for every integer x1 > 2, the system B is solvable in positive integers x2, . . . , x9 if
and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 9 follows from Lemma 4. �

Lemma 10. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 which solve the system B and
satisfy x1 = 1.

Proof. If a tuple (x1, . . . , x9) ∈ (N \ {0})9 solves the system B and x1 = 1, then x1, . . . , x9 6 2. Indeed,
x1 = 1 implies that x2 = x2

1 = 1. Hence, for example, x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1.
Consequently, x9 = x8! 6 2. �

Theorem 7. The statement Ψ9 proves the following implication: if there exists an integer x1 > 2 such
that x2

1 + 1 is prime and greater than g(7), then there are infinitely many primes of the form n2 + 1.

Proof. Suppose that the antecedent holds. By Lemma 9, there exists a unique tuple (x2, . . . , x9) ∈
(N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system B. Since x2

1 + 1 > g(7), we obtain that
x2

1 > g(7). Hence, (x2
1)! > g(7)! = g(8). Consequently,

x9 = ((x2
1)! + 1)! > (g(8) + 1)! > g(8)! = g(9)

Since B ⊆ B9, the statement Ψ9 and the inequality x9 > g(9) imply that the system B has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 9 and 10, there are infinitely many primes of
the form n2 + 1. �

Corollary 2. Let X9 denote the set of primes of the form n2 + 1. The statement Ψ9 implies that we
know an algorithm such that it returns a threshold number of X9, and this number equals max(X9), if
X9 is finite. Assuming the statement Ψ9, a single query to an oracle for the halting problem decides the
infiniteness of X9. Assuming the statement Ψ9, the infiniteness of X9 is decidable in the limit.

Proof. We consider an algorithm which computes max(X9 ∩ [1, g(7)]). �
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7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443].

Theorem 8. The statement Ψ9 proves the following implication: if there exists an integer x1 > g(6) such
that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. �

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [15, p. 39]. Let C denote the following system of
equations: 

x1! = x2
x2! = x3
x4! = x5
x6! = x7
x7! = x8
x9! = x10

x12! = x13
x15! = x16

x2 · x4 = x5
x5 · x6 = x7
x7 · x9 = x10

x4 · x11 = x12
x3 · x12 = x13
x9 · x14 = x15
x8 · x15 = x16

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

!

x5

!

x10

x1
+1

or x1 = x4 = 1

x4 +1
or x4 = x6 = 1

x6 +1
or x6 = x9 = 1

x9

x2
+1

or x2 = x12 = 1
x12

+1
or x7 = x15 = 1

x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 4 Construction of the system C
Lemma 11. For every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers
x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if x4 and x9 are prime and x4 + 2 = x9.
In this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 are uniquely determined
by the following equalities:
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x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

Proof. By Lemma 2, for every x4, x9 ∈ N \ {0, 1, 2}, the system C is solvable in positive integers x1, x2,
x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 if and only if(

x4 + 2 = x9
)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)
Hence, the claim of Lemma 11 follows from Lemma 4. �

Lemma 12. There are only finitely many tuples (x1, . . . , x16) ∈ (N \ {0})16 which solve the system C and
satisfy (x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2}).
Proof. If a tuple (x1, . . . , x16) ∈ (N \ {0})16 solves the system C and (x4 ∈ {1, 2}) ∨ (x9 ∈ {1, 2}), then
x1, . . . , x16 6 7!. Indeed, for example, if x4 = 2 then x6 = x4 + 1 = 3. Hence, x7 = x6! = 6.
Therefore, x15 = x7 + 1 = 7. Consequently, x16 = x15! = 7!. �

Theorem 9. The statement Ψ16 proves the following implication: if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such that x9 =

x4 + 2 > g(14). Hence, x4, x9 ∈ N \ {0, 1, 2}. By Lemma 11, there exists a unique tuple

(x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0})14

such that the tuple (x1, . . . , x16) solves the system C. Since x9 > g(14), we obtain that x9 − 1 > g(14).
Therefore, (x9 − 1)! > g(14)! = g(15). Hence, (x9 − 1)! + 1 > g(15). Consequently,

x16 = ((x9 − 1)! + 1)! > g(15)! = g(16)

Since C ⊆ B16, the statement Ψ16 and the inequality x16 > g(16) imply that the system C has infinitely
many solutions in positive integers x1, . . . , x16. According to Lemmas 11 and 12, there are infinitely
many twin primes. �

Corollary 3. (cf. [6]). Let X16 denote the set of twin primes. The statement Ψ16 implies that we know
an algorithm such that it returns a threshold number of X16, and this number equals max(X16), if X16
is finite. Assuming the statement Ψ16, a single query to an oracle for the halting problem decides the
infiniteness of X16. Assuming the statement Ψ16, the infiniteness of X16 is decidable in the limit.

Proof. We consider an algorithm which computes max(X16 ∩ [1, g(14)]). �

9 Are there infinitely many composite Fermat numbers?

Integers of the form 22n
+ 1 are called Fermat numbers. Primes of the form 22n

+ 1 are called Fermat
primes, as Fermat conjectured that every integer of the form 22n

+ 1 is prime, see [12, p. 1]. Fermat

correctly remarked that 220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257, and 224
+ 1 = 65537

are all prime, see [12, p. 1].

Open Problem 4. ([12, p. 159]). Are there infinitely many composite numbers of the form 22n
+ 1?
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Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [11, p. 23]. Let

Hn =
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}

Let h(1) = 1, and let h(n + 1) = 22h(n)
for every positive integer n.

Lemma 13. The following subsystem of Hn x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (h(1), . . . , h(n)).

For a positive integer n, let ξn denote the following statement: if a system of equations S ⊆ Hn has
only finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 h(n). The statement ξn says that for subsystems of Hn the largest known solution is indeed
the largest possible.

Hypothesis 2. The statements ξ1, . . . , ξ13 are true.

Lemma 14. Every statement ξn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Hn has a finite number of subsystems. �

Theorem 10. The statement ξ13 proves the following implication: if z ∈ N \ {0} and 22z
+ 1 is composite

and greater than h(12), then 22z
+ 1 is composite for infinitely many positive integers z.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (E)

in positive integers. By Lemma 3, we can transform the equation (E) into an equivalent system of
equations G which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of
the forms α · β = γ and 22α = γ, see the diagram in Figure 5.
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Fig. 5 Construction of the system G

Since 22z
+ 1 > h(12), we obtain that 2222z

+1
> h(13). By this, the statement ξ13 implies that the

system G has infinitely many solutions in positive integers. It means that there are infinitely many
composite Fermat numbers. �

Corollary 4. LetW13 denote the set of composite Fermat numbers. The statement ξ13 implies that we
know an algorithm such that it returns a threshold number ofW13, and this number equals max(W13),
ifW13 is finite. Assuming the statement ξ13, a single query to an oracle for the halting problem decides
the infiniteness ofW13. Assuming the statement ξ13, the infiniteness ofW13 is decidable in the limit.

Proof. We consider an algorithm which computes max(W13 ∩ [1, h(12)]). �
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