On $Z F C$-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\{x \in \mathbb{N}: \varphi(x)\} \subseteq\{x \in \mathbb{N}: x \leqslant n-1\}$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

Abstract

Let \mathcal{P} denote the set of prime numbers, and let \mathcal{F} denote the set of multiples of twin primes greater than $9^{9^{9^{9}}}$. The set $\left(\left[2,9^{9^{9^{9}}}\right] \cap \mathcal{P}\right) \cup \mathcal{F}$ sasfies the following conditions: (1) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$, (2) a known and simple algorithm returns an integer n such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than n, (3) new elements of \mathcal{X} are still discovered, (4) it is conjectured that \mathcal{X} is infinite although we do not know any algorithm deciding the infiniteness of \mathcal{X}. The following problem is open: define a set $\mathcal{X} \subseteq \mathbb{N}$ such that \mathcal{X} satisfies conditions (1)-(4) and

the formula $n \in \mathcal{X}$ has the same intuitive meaning for every $n \in \mathbb{N}$

The problem remains open if condition (2) states that a known and simple algorithm returns an integer n such that \mathcal{X} is infinite if and only if $\operatorname{card}(\mathcal{X})>n$. Let $g(3)=4$, and let $g(n+1)=g(n)!$ for every integer $n \geqslant 3$. For an integer $n \in\{3, \ldots, 16\}$, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq\left\{x_{i}!=x_{k}:(i, k \in\{1, \ldots, n\}) \wedge(i \neq k)\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution (x_{1}, \ldots, x_{n}) satisfies $x_{1}, \ldots, x_{n} \leqslant g(n)$. For every statement Ψ_{n}, the bound $g(n)$ cannot be decreased. The author's guess is that the statements $\Psi_{3}, \ldots, \Psi_{16}$ are true. The statement Ψ_{9} implies that the set of primes of the form $n^{2}+1$ and the set of primes of the form $n!+1$ satisfy conditions (1)-(5). The statement Ψ_{16} implies that the set of twin primes satisfies conditions (1)-(5).

Key words and phrases: finiteness of a set, incompleteness of $Z F C$, infiniteness of a set, prime numbers of the form $n^{2}+1$, prime numbers of the form $n!+1$, twin primes.

2010 Mathematics Subject Classification: 03D20, 11A41.

1 Introduction and basic lemmas

The phrase "we know a non-negative integer n " in the title means that we know an algorithm which returns n. The title cannot be formalised in ZFC because the phrase "we know a non-negative integer n " refers to currently known non-negative integers n with some property. A formally stated title may look like this: On ZFC-formulae $\varphi(x)$ for which there exists a non-negative integer n such that $Z F C$ proves that

$$
\operatorname{card}(\{x \in \mathbb{N}: \varphi(x)\})<\infty \Longrightarrow\{x \in \mathbb{N}: \varphi(x)\} \subseteq\{x \in \mathbb{N}: x \leqslant n-1\}
$$

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer n such that $Z F C$ proves the above implication.

Lemma 1. For every non-negative integer $n, \operatorname{card}(\{x \in \mathbb{N}: x \leqslant n-1\})=n$.
Corollary 1. The title altered to "On $Z F C$-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\operatorname{card}(\{x \in \mathbb{N}: \varphi(x)\}) \leqslant n$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite" involves a weaker assumption on $\varphi(x)$.

Lemma 2. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 3. For every non-negative integers b and $c, b+1=c$ if and only if

$$
2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}
$$

Lemma 4. (Wilson's theorem, [8] $p .89$]). For every positive integer x, x divides $(x-1)!+1$ if and only if $x=1$ or x is prime.

2 Subsets of \mathbb{N} and their threshold numbers

Definition 1. We say that an integer $m \in[-1, \infty)$ is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than m, cf. [22] and [23].

If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any $m \in[-1, \infty) \cap \mathbb{Z}$ is a threshold number of \mathcal{X}. If a set $X \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $\{\max (\mathcal{X}), \max (\mathcal{X})+1, \max (\mathcal{X})+2, \ldots\}$.

Definition 2. We say that a non-negative integer m is a weak threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if $\operatorname{card}(\mathcal{X})>m$.

Proposition 1. For every $\mathcal{X} \subseteq \mathbb{N}$, if an integer $m \in[-1, \infty)$ is a threshold number of \mathcal{X}, then $m+1$ is a weak threshold number of \mathcal{X}.

Proof. For every $\mathcal{X} \subseteq \mathbb{N}$, if $m \in[-1, \infty) \cap \mathbb{Z}$ and $\operatorname{card}(\mathcal{X})>m+1$, then $\mathcal{X} \cap[m+1, \infty) \neq \emptyset$.
It is conjectured that the set of prime numbers of the form $n^{2}+1$ is infinite, see [15], pp. 37-38]. It is conjectured that the set of prime numbers of the form $n!+1$ is infinite, see [2, p. 443]. A twin prime is a prime number that differs from another prime number by 2 . The twin prime conjecture states that the set of twin primes is infinite, see [15, p. 39]. It is conjectured that the set of composite numbers of the form $2^{2^{n}}+1$ is infinite, see [11, p. 23] and [12, pp. 158-159]. A prime p is said to be a Sophie Germain prime if both p and $2 p+1$ are prime, see [21]. It is conjectured that the set of Sophie Germain primes is infinite, see [17, p. 330]. For each of these sets, we do not know any weak threshold number.

Open Problem 1. Define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the following conditions:
(a1) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$,
(b1) a known and simple algorithm returns an integer n such that \mathcal{X} is infinite if and only if $\operatorname{card}(\mathcal{X})>n$,
(c1) new elements of \mathcal{X} are still discovered,
(d1) it is conjectured that \mathcal{X} is infinite although we do not know any algorithm deciding the infiniteness of \mathcal{X},
(e1) the formula $n \in \mathcal{X}$ has the same intuitive meaning for every $n \in \mathbb{N}$.
The following statement: for every non-negative integer n there exist

$$
\begin{equation*}
\text { prime numbers } p \text { and } q \text { such that } p+2=q \text { and } p \in\left[10^{n}, 10^{n+1}\right] \tag{T}
\end{equation*}
$$

is a Π_{1} statement which strengthens the twin prime conjecture, see [3, p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_{1} statements, see [1]. The
statement (T) is equivalent to the non-halting of a Turing machine. If a set $\mathcal{X} \subseteq \mathbb{N}$ is computable and we know a threshold number of \mathcal{X}, then the infiniteness of \mathcal{X} is equivalent to the halting of a Turing machine.

The height of a rational number $\frac{p}{q}$ is denoted by $H\left(\frac{p}{q}\right)$ and equals $\max (|p|,|q|)$ provided $\frac{p}{q}$ is written in lowest terms. The height of a rational tuple $\left(x_{1}, \ldots, x_{n}\right)$ is denoted by $H\left(x_{1}, \ldots, x_{n}\right)$ and equals $\max \left(H\left(x_{1}\right), \ldots, H\left(x_{n}\right)\right)$.

Proposition 2. The equation $x^{5}-x=y^{2}-y$ has only finitely many rational solutions, see [14] p. 212]. The known rational solutions are $(x, y)=(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5),(2,6)$, $(3,-15),(3,16),(30,-4929),(30,4930),\left(\frac{1}{4}, \frac{15}{32}\right),\left(\frac{1}{4}, \frac{17}{32}\right),\left(-\frac{15}{16},-\frac{185}{1024}\right),\left(-\frac{15}{16}, \frac{1209}{1024}\right)$, and the existence of other solutions is an open question, see [18 pp. 223-224].
Proposition 3. The set $\mathcal{T}=\left\{n \in \mathbb{N}\right.$: the equation $x^{5}-x=y^{2}-y$ has a rational solution of height $\left.n\right\}$ is finite. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{T}$. We do not know any algorithm which returns a threshold number of \mathcal{T}.

Open Problem 2. Define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the following conditions:
(a2) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$,
(b2) a known and simple algorithm returns an integer n such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than n,
(c2) new elements of X are still discovered,
(d2) it is conjectured that \mathcal{X} is infinite although we do not know any algorithm deciding the infiniteness of X,
(e2) the formula $n \in \mathcal{X}$ has the same intuitive meaning for every $n \in \mathbb{N}$.
Let \mathcal{P} denote the set of prime numbers, and let \mathcal{F} denote the set of multiples of twin primes greater than $9^{9} 9^{9}$.
Proposition 4. The $\operatorname{set}\left(\left[2,9^{9^{9}}{ }^{9}\right] \cap \mathcal{P}\right) \cup \mathcal{F}$ satisfies conditions $(\mathrm{a} 2)-(\mathrm{d} 2)$.
Let

$$
\mathcal{H}=\left\{\begin{array}{l}
\mathbb{N}, \text { if } \sin \left(9^{9^{9}}\right)<0 \\
\mathbb{N} \cap\left[0, \sin \left(9^{9} 9^{9^{9}}\right) \cdot 9^{9^{9}}\right) \text { otherwise }
\end{array}\right.
$$

We do not know whether or not the set \mathcal{H} is finite.
Proposition 5. The number $99^{9^{9}}$ is a threshold number of \mathcal{H}. We know an algorithm which decides the equality $\mathcal{H}=\mathbb{N}$. If $\mathcal{H} \neq \mathbb{N}$, then the set \mathcal{H} consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{H}$.

Let

$$
\mathcal{K}=\left\{\begin{array}{l}
\{n\}, \text { if }(n \in \mathbb{N}) \wedge\left(2^{\boldsymbol{\aleph}_{0}}=\boldsymbol{\aleph}_{n+1}\right) \\
\{0\}, \text { if } 2^{\boldsymbol{\aleph}_{0}} \geqslant \boldsymbol{\aleph}_{\omega}
\end{array}\right.
$$

Theorem 1. $Z F C$ proves that $\operatorname{card}(\mathcal{K})=1$. If $Z F C$ is consistent, then for every $n \in \mathbb{N}$ the sentences " n is a threshold number of \mathcal{K} " and " n is not a threshold number of \mathcal{K} " are not provable in ZFC. If ZFC is consistent, then for every $n \in \mathbb{N}$ the sentences " $n \in \mathcal{K}$ " and " $n \notin \mathcal{K}$ " are not provable in ZFC .

Proof. It suffices to observe that $2^{\boldsymbol{N}_{0}}$ can attain every value from the set $\left\{\boldsymbol{\aleph}_{1}, \boldsymbol{N}_{2}, \boldsymbol{N}_{3}, \ldots\right\}$, see [7] and [10, p. 232].

3 A Diophantine equation whose non-solvability expresses the consistency of $Z F C$

Gödel's second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 2. ([5] p. 35]). There exists a polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that if $Z F C$ is arithmetically consistent, then the sentences "The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is solvable in non-negative integers" and "The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is not solvable in non-negative integers" are not provable in ZFC.

Remark 1. ([4], [9] p.53]). The polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ is very complicated.
Let y denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has no solutions in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{Y}$. Theorem 2 implies the next theorem.

Theorem 3. For every $n \in \mathbb{N}, Z F C$ proves that $n \in \mathcal{Y}$. If $Z F C$ is arithmetically consistent, then the sentences " Y is finite" and " Y is infinite" are not provable in $Z F C$. If ZFC is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences " n is a threshold number of y " and " n is not a threshold number of $y^{\prime \prime}$ are not provable in $Z F C$.

Let \mathcal{E} denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has a solution in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{E}$. Theorem 2 implies the next theorem.

Theorem 4. The set \mathcal{E} is empty or infinite. In both cases, every non-negative integer n is a threshold number of \mathcal{E}. If $Z F C$ is arithmetically consistent, then the sentences " \mathcal{E} is empty", " \mathcal{E} is not empty", " \mathcal{E} is finite", and " \mathcal{E} is infinite" are not provable in $Z F C$.

Let \mathcal{V} denote the set

$$
\left\{k \in \mathbb{N}:\left(\text { the polynomial } D\left(x_{1}, \ldots, x_{m}\right) \text { has no solutions in }\{0, \ldots, k\}^{m}\right) \wedge\right.
$$

(the polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ has a solution in $\left.\left.\{0, \ldots, k+1\}^{m}\right)\right\}$.
Since the sets $\{0, \ldots, k\}^{m}$ and $\{0, \ldots, k+1\}^{m}$ are finite, there exists an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{V}$. According to Remark 1, at present we do not know a simple computer program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5. (6) $Z F C$ proves that $\operatorname{card}(\mathcal{V}) \in\{0,1\}$. (7) For every $n \in \mathbb{N}, Z F C$ proves that $n \notin \mathcal{V}$. (8) ZFC does not prove the emptiness of \mathcal{V}, if $Z F C$ is arithmetically consistent. (9) For every $n \in \mathbb{N}$, the sentence " n is a threshold number of \mathcal{V} " is not provable in ZFC, if ZFC is arithmetically consistent. (10) For every $n \in \mathbb{N}$, the sentence " n is not a threshold number of \mathcal{V} " is not provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 3. Define a simple algorithm A such that A returns 0 or 1 on every input $k \in \mathbb{N}$ and the set

$$
\mathcal{V}=\{k \in \mathbb{N}: \text { the program A returns } 1 \text { on input } k\}
$$

satisfies conditions (6)-(10).

4 Hypothetical statements $\Psi_{3}, \ldots, \Psi_{16}$

For an integer $n \geqslant 3$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
\forall i \in\{1, \ldots, n-1\} \backslash\{2\} x_{i}! & =x_{i+1} \\
x_{1} \cdot x_{1} & =x_{3} \\
x_{2} \cdot x_{2} & =x_{3}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 1 Construction of the system \mathcal{U}_{n}
Let $g(3)=4$, and let $g(n+1)=g(n)!$ for every integer $n \geqslant 3$.
Lemma 5. For every integer $n \geqslant 3$, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(2,2, g(3), \ldots, g(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{k}:(i, k \in\{1, \ldots, n\}) \wedge(i \neq k)\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For an integer $n \geqslant 3$, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant g(n)$. The statement Ψ_{n} says that for subsystems of B_{n} the largest known solution is indeed the largest possible.

Hypothesis 1. The statements $\Psi_{3}, \ldots, \Psi_{16}$ are true.
Lemma 6. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.
Lemma 7. For every statement Ψ_{n}, the bound $g(n)$ cannot be decreased.
Proof. It follows from Lemma 5 because $\mathcal{U}_{n} \subseteq B_{n}$.
Remark 2. By Lemma 2 and algebraic lemmas in [19] p. 110], the statement $\forall n \in \mathbb{N} \backslash\{0,1,2\} \Psi_{n}$ implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is unbelievable because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [13] p. 300]. Therefore, the statement $\forall n \in \mathbb{N} \backslash\{0,1,2\} \Psi_{n}$ seems to be false.

5 The Brocard-Ramanujan equation $x!+1=y^{2}$

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 8. For every $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$, the system \mathcal{A} is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$ if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

Proof. It follows from Lemma2,
It is conjectured that $x!+1$ is a perfect square only for $x \in\{4,5,7\}$, see [20, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x!+1=y^{2}$, see [16].

Theorem 6. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement Ψ_{6} guarantees that each such solution $\left(x_{1}, x_{4}\right)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$.
Proof. Suppose that the antecedent holds. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 8 , the system \mathcal{A} is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$. Since $\mathcal{A} \subseteq B_{6}$, the statement Ψ_{6} implies that $x_{6}=\left(x_{1}!+1\right)!\leqslant g(6)=g(5)!$. Hence, $x_{1}!+1 \leqslant g(5)=g(4)!$. Consequently, $x_{1}<g(4)=24$. If $x_{1} \in\{1, \ldots, 23\}$, then $x_{1}!+1$ is a perfect square only for $x_{1} \in\{4,5,7\}$.

6 Are there infinitely many prime numbers of the form $n^{2}+1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [15, pp. 37-38]. Let \mathcal{B} denote the following system of equations:

$$
\begin{cases}x_{2}!=x_{3} & x_{1} \cdot x_{1}=x_{2} \\ x_{3}!=x_{4} & x_{3} \cdot x_{5}=x_{6} \\ x_{5}!=x_{6} & x_{4} \cdot x_{8}=x_{9} \\ x_{8}!=x_{9} & x_{5} \cdot x_{7}=x_{8}\end{cases}
$$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 9. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{array}{lll}
x_{2}=x_{1}^{2} & \\
x_{3}=\left(x_{1}^{2}\right)! & x_{7}=\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{4}=\left(\left(x_{1}^{2}\right)!\right)! & x_{8}=\left(x_{1}^{2}\right)!+1 \\
x_{5}=x_{1}^{2}+1 & x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)! \\
x_{6}=\left(x_{1}^{2}+1\right)! &
\end{array}
$$

Proof. By Lemma 2, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 9 follows from Lemma 4 .

Lemma 10. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ which solve the system \mathcal{B} and satisfy $x_{1}=1$.

Proof. If a tuple $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ solves the system \mathcal{B} and $x_{1}=1$, then $x_{1}, \ldots, x_{9} \leqslant 2$. Indeed, $x_{1}=1$ implies that $x_{2}=x_{1}^{2}=1$. Hence, for example, $x_{3}=x_{2}!=1$. Therefore, $x_{8}=x_{3}+1=2$ or $x_{8}=1$. Consequently, $x_{9}=x_{8}!\leqslant 2$.

Theorem 7. The statement Ψ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $g(7)$, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Suppose that the antecedent holds. By Lemma 9 there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in$ $(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Since $x_{1}^{2}+1>g(7)$, we obtain that $x_{1}^{2} \geqslant g(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant g(7)!=g(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(g(8)+1)!>g(8)!=g(9)
$$

Since $\mathcal{B} \subseteq B_{9}$, the statement Ψ_{9} and the inequality $x_{9}>g(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 9 and 10 there are infinitely many primes of the form $n^{2}+1$.

Corollary 2. Let \mathcal{X}_{9} denote the set of primes of the form $n^{2}+1$. The statement Ψ_{9} implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_{9}, and this number equals $\max \left(\mathcal{X}_{9}\right)$, if \mathcal{X}_{9} is finite. Assuming the statement Ψ_{9}, a single query to an oracle for the halting problem decides the infiniteness of \mathcal{X}_{9}. Assuming the statement Ψ_{9}, the infiniteness of \mathcal{X}_{9} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(X_{9} \cap[1, g(7)]\right)$.

7 Are there infinitely many prime numbers of the form $n!+1$?

It is conjectured that there are infinitely many primes of the form $n!+1$, see [2] p. 443].
Theorem 8. The statement Ψ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant g(6)$ such that $x_{1}!+1$ is prime, then there are infinitely many primes of the form $n!+1$.

Proof. We leave the analogous proof to the reader.

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2 . The twin prime conjecture states that there are infinitely many twin primes, see [15, p. 39]. Let \mathcal{C} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}!=x_{2} & x_{2} \cdot x_{4}=x_{5} \\
x_{2}!=x_{3} & x_{5} \cdot x_{6}=x_{7} \\
x_{4}!=x_{5} & x_{7} \cdot x_{9}=x_{10} \\
x_{6}!=x_{7} & x_{4} \cdot x_{11}=x_{12} \\
x_{7}!=x_{8} & x_{3} \cdot x_{12}=x_{13} \\
x_{9}!=x_{10} & x_{9} \cdot x_{14}=x_{15} \\
x_{12}!=x_{13} & x_{8} \cdot x_{15}=x_{16}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

Fig. 4 Construction of the system C
Lemma 11. For every $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$, the system C is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 & & \\
x_{2} & =\left(x_{4}-1\right)! & x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! & x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{5} & =x_{4}! & x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{6} & =x_{9}-1 & x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{7} & =\left(x_{9}-1\right)! & x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! & x_{16} & =\left(\left(x_{9}-1\right)!+1\right)! \\
x_{10} & =x_{9}! & &
\end{aligned}
$$

Proof. By Lemma2, for every $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$, the system C is solvable in positive integers x_{1}, x_{2}, $x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 11 follows from Lemma 4.
Lemma 12. There are only finitely many tuples $\left(x_{1}, \ldots, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{16}$ which solve the system C and satisfy $\left(x_{4} \in\{1,2\}\right) \vee\left(x_{9} \in\{1,2\}\right)$.

Proof. If a tuple $\left(x_{1}, \ldots, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{16}$ solves the system C and $\left(x_{4} \in\{1,2\}\right) \vee\left(x_{9} \in\{1,2\}\right)$, then $x_{1}, \ldots, x_{16} \leqslant 7$!. Indeed, for example, if $x_{4}=2$ then $x_{6}=x_{4}+1=3$. Hence, $x_{7}=x_{6}$! $=6$. Therefore, $x_{15}=x_{7}+1=7$. Consequently, $x_{16}=x_{15}!=7!$.

Theorem 9. The statement Ψ_{16} proves the following implication: if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=$ $x_{4}+2>g(14)$. Hence, $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$. By Lemma 11 , there exists a unique tuple

$$
\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{14}
$$

such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Since $x_{9}>g(14)$, we obtain that $x_{9}-1 \geqslant g(14)$. Therefore, $\left(x_{9}-1\right)!\geqslant g(14)!=g(15)$. Hence, $\left(x_{9}-1\right)!+1>g(15)$. Consequently,

$$
x_{16}=\left(\left(x_{9}-1\right)!+1\right)!>g(15)!=g(16)
$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16}>g(16)$ imply that the system C has infinitely many solutions in positive integers x_{1}, \ldots, x_{16}. According to Lemmas 11 and 12 , there are infinitely many twin primes.

Corollary 3. (cf. [6]). Let \mathcal{X}_{16} denote the set of twin primes. The statement Ψ_{16} implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_{16}, and this number equals $\max \left(\mathcal{X}_{16}\right)$, if \mathcal{X}_{16} is finite. Assuming the statement Ψ_{16}, a single query to an oracle for the halting problem decides the infiniteness of \mathcal{X}_{16}. Assuming the statement Ψ_{16}, the infiniteness of \mathcal{X}_{16} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(\mathcal{X}_{16} \cap[1, g(14)]\right)$.

9 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^{n}}+1$ are called Fermat numbers. Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [12, p. 1]. Fermat correctly remarked that $2^{2^{0}}+1=3,2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [12, p.1].

Open Problem 4. ([]12] p.159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$?

Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [11, p. 23]. Let

$$
H_{n}=\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

Let $h(1)=1$, and let $h(n+1)=2^{2^{h(n)}}$ for every positive integer n.
Lemma 13. The following subsystem of H_{n}

$$
\left\{\begin{aligned}
x_{1} \cdot x_{1} & =x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & =x_{i+1}
\end{aligned}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(h(1), \ldots, h(n))$.
For a positive integer n, let ξ_{n} denote the following statement: if a system of equations $S \subseteq H_{n}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant h(n)$. The statement ξ_{n} says that for subsystems of H_{n} the largest known solution is indeed the largest possible.

Hypothesis 2. The statements $\xi_{1}, \ldots, \xi_{13}$ are true.
Lemma 14. Every statement ξ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system H_{n} has a finite number of subsystems.
Theorem 10. The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \backslash\{0\}$ and $2^{2^{z}}+1$ is composite and greater than $h(12)$, then $2^{2^{z}}+1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{E}
\end{equation*}
$$

in positive integers. By Lemma 3, we can transform the equation (E) into an equivalent system of equations \mathcal{G} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 5.

Fig. 5 Construction of the system \mathcal{G}
Since $2^{2^{z}}+1>h(12)$, we obtain that $2^{2^{2^{z}}+1}>h(13)$. By this, the statement ξ_{13} implies that the system \mathcal{G} has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers.

Corollary 4. Let \mathcal{W}_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of \mathcal{W}_{13}, and this number equals $\max \left(\mathcal{W}_{13}\right)$, if \mathcal{W}_{13} is finite. Assuming the statement ξ_{13}, a single query to an oracle for the halting problem decides the infiniteness of \mathcal{W}_{13}. Assuming the statement ξ_{13}, the infiniteness of \mathcal{W}_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(\mathcal{W}_{13} \cap[1, h(12)]\right)$.

References

[1] C. H. Bennett, Chaitin's Omega, in: Fractal music, hypercards, and more ... (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307-319.
[2] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448, http://doi.org/10.1090/S0025-5718-01-01315-1.
[3] C. S. Calude, H. Jürgensen, S. Legg, Solving problems with finite test sets, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), 39-52, Springer, London, 2000.
[4] M. Carl and B. Z. Moroz, On a Diophantine representation of the predicate of provability, Journal of Mathematical Sciences, vol. 199 (2014), no. 1, 36-52.
[5] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first series, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
[6] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/71050.
[7] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
[8] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[9] H. Friedman, The incompleteness phenomena, in: Proceedings of the AMS Centennial Symposium 1988, 49-84, Amer. Math. Soc., Providence, RI, 1992.
[10] T. Jech, Set theory, Springer, Berlin, 2003.
[11] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[12] M. Křižek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[13] Yu. Matiyasevich, Existence of noneffectivizable estimates in the theory of exponential Diophantine equations, J. Sov. Math. vol. 8, no. 3, 1977, 299-311, http://dx.doi.org/10.1007/ bf01091549.
[14] M. Mignotte and A. Pethő, On the Diophantine equation $x^{p}-x=y^{q}-y$, Publ. Mat. 43 (1999), no. 1, 207-216.
[15] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[16] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
[17] P. Ribenboim, The new book of prime number records, Springer, New York, 1996, http://doi. org/10.1007/978-1-4612-0759-7
[18] S. Siksek, Chabauty and the Mordell-Weil Sieve, in: Advances on Superelliptic Curves and Their Applications (eds. L. Beshaj, T. Shaska, E. Zhupa), 194-224, IOS Press, Amsterdam, 2015, http: //dx.doi.org/10.3233/978-1-61499-520-3-194.
[19] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109-114, http://doi. org/ 10.1515/comp-2018-0012
[20] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[21] Wolfram MathWorld, Sophie Germain prime, http://mathworld.wolfram.com/ SophieGermainPrime.html
[22] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http://www.bu.edu/wcp/ Papers/Logi/LogiZenk.htm.
[23] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

