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Abstract

Let Piyin denote the set of twin primes, and let M denote the set of multiples of twin primes
99

99 99 . . o

greater than 9 . The set X = ([2,9 ] N thin)UM satisfies the following conditions:
(1) a known and simple algorithm for every n € N decides whether or not n € X, (2) a known
and simple algorithm returns an integer »n such that X is infinite if and only if X contains an element
greater than n, (3) new elements of X are still discovered, (4) it is conjectured that X is infinite
although we do not know any algorithm deciding the infiniteness of X. The following problem
is open: define a set X C N such that X satisfies conditions (1)-(4) and some simple formula
¢(x) of Peano arithmetic satisfies {n € N : ¢(n)} = X and ¢(n) has the same intuitive meaning
for every n € N (5). The problem remains open if condition (2) states that a known and simple
algorithm returns an integer n such that X is infinite if and only if card(X) > n. Let g(3) = 4, and let
g(n + 1) = g(n)! for every integer n > 3. For an integer n € {3, ..., 16}, let ¥, denote the following

statement: if a system of equations S C {xi! =x:(Lkefl,....nh) AN # k)} U {xi S X=Xl

i, ,kell,.. .,n}} has only finitely many solutions in positive integers xi,..., Xx,, then each such
solution (xi,...,x,) satisfies xi, ..., x, < g(n). For every statement ¥,, the bound g(n) cannot be
decreased. The author’s guess is that the statements ¥, ..., ¥4 are true. The statement Wo implies

that the set of primes of the form n> + 1 and the set of primes of the form n! + 1 satisfy conditions
(1)-(5). The statement ¥4 implies that the set of twin primes satisfies conditions (1) -(5).

Key words and phrases: finiteness of a set, incompleteness of ZF C, infiniteness of a set, prime numbers
of the form n% + 1, prime numbers of the form n! + 1, twin primes.
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1 Introduction and basic lemmas

The phrase "we know a non-negative integer n" in the title means that we know an algorithm
which returns n. The title cannot be formalised in ZF C because the phrase "we know a non-negative
integer n" refers to currently known non-negative integers n with some property. A formally stated
title may look like this: On ZFC-formulae ¢(x) for which there exists a non-negative
integer n such that ZFC proves that

card{x e N: p(x)}) <co = {x e N: p(x)} C{xeN: x<n-1}

Unfortunately, this formulation admits formulae ¢(x) without any known non-negative integer n such
that ZFC proves the above implication.
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Lemma 1. For every non-negative integer n, card({x e N: x <n—-1}) = n.

Corollary 1. The title altered to "On ZFC-formulae ¢(x) for which we know a non-negative
integer n such that card({x € N: ¢(x)}) < n if the set {x € N: ¢(x)} is finite" involves
a weaker assumption on ¢(x).

Lemma 2. For every positive integers x and y, x! -y = y! if and only if
x+l=yVvix=y=1
Lemma 3. For every non-negative integers b and ¢, b + 1 = c if and only if

220 2b ¢

Lemma 4. (Wilson’s theorem, [I8, p. 89]). For every positive integer x, x divides (x — 1)! + 1 if and only
if x =1 or x is prime.

2 Subsets of N and their threshold numbers

Definition 1. We say that an integer m € [—1, ) is a threshold number of a set X C N, if X is infinite if
and only if X contains an element greater than m, cf. [22l] and [23]].

If a set XCN is empty or infinite, then any m € [-1,0c0) NZ is a threshold number of X.
If a set XCN is non-empty and finite, then the all threshold numbers of X form the set
{max(X), max(X) + 1, max(X) + 2,...}.

Definition 2. We say that a non-negative integer m is a weak threshold number of a set X C N, if X is
infinite if and only if card(X) > m.

Proposition 1. For every X C N, if an integer m € [—1, ) is a threshold number of X, then m + 1 is a
weak threshold number of X.

Proof. Forevery X C N, if m € [-1,00) N Z and card(X) > m + 1, then X N [m + 1, 00) # 0. O

It is conjectured that the set of prime numbers of the form n> + 1 is infinite, see [15} pp. 37-38]. It is
conjectured that the set of prime numbers of the form n! + 1 is infinite, see [2, p. 443]. A twin prime is
a prime number that differs from another prime number by 2. The twin prime conjecture states that the
set of twin primes is infinite, see [[15, p. 39]. It is conjectured that the set of composite numbers of the
form 22" + 1 is infinite, see [[11, p. 23] and [12, pp. 158-159]. A prime p is said to be a Sophie Germain
prime if both p and 2p + 1 are prime, see [21]]. It is conjectured that the set of Sophie Germain primes is
infinite, see [17, p. 330]. For each of these sets, we do not know any weak threshold number.

Open Problem 1. Define a set X C N that satisfies the following conditions:

(al) a known and simple algorithm for every n € N decides whether or not n € X,

(b1) a known and simple algorithm returns an integer n such that X is infinite if and only if card(X) > n,

(c1) new elements of X are still discovered,

(d1) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness
of X,

(el) some simple formula ¢(x) of Peano arithmetic satisfies {n € N : ¢(n)} = X and ¢(n) has the same
intuitive meaning for every n € N.

The following statement: for every non-negative integer n there exist

prime numbers p and q such that p+2 =qand p € [10", 10"t 1] M

is a I1; statement which strengthens the twin prime conjecture, see [3, p. 43]. C. H. Bennett claims that
most mathematical conjectures can be settled indirectly by proving stronger I1; statements, see [[1]. The



statement (T) is equivalent to the non-halting of a Turing machine. If a set X C N is computable and we
know a threshold number of X, then the infiniteness of X is equivalent to the halting of a Turing machine.

The height of a rational number [é is denoted by H (5) and equals max(|p|, |g|) provided [é is written
in lowest terms. The height of a rational tuple (xi,...,x,) is denoted by H(xy,...,x,) and equals
max(H(xy), ..., H(x,)).

Proposition 2. The equation x> — x = y* — y has only finitely many rational solutions, see [I4) p. 212].
The known rational solutions are (x,y) = (—1,0), (=1,1), (0,0), (0,1), (1,0), (1,1), (2,-5), (2,6),
(3,-15), (3,16), (30,-4929), (30,4930), (. 3), (1 52) (-12.-15) (-12. 12%3). and the existence
of other solutions is an open question, see [|18| pp. 223-224].

Proposition 3. The set T = {n € N : the equation x> — x = y> — y has a rational solution of height n} is

finite. We know an algorithm which for every n € N decides whether or not n € 7. We do not know any
algorithm which returns a threshold number of T.

Open Problem 2. Define a set X C N that satisfies the following conditions:

(a2) a known and simple algorithm for every n € N decides whether or not n € X,

(b2) a known and simple algorithm returns an integer n such that X is infinite if and only if X contains
an element greater than n,

(c2) new elements of X are still discovered,

(d2) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness
of X,

(e2) some simple formula ¢(x) of Peano arithmetic satisfies {n € N : ¢(n)} = X and ¢(n) has the same
intuitive meaning for every n € N.

Let Ptyin denote the set of twin primes, and let M denote the set of multiples of twin primes greater

99
than 999
99
Proposition 4. The set X = ([2, 999 ] ) thin)uM satisfies conditions (a2)-(d2).
09’
Proof. The largest known twin prime is much smaller than 99 . O

Let
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N, if sin]|99 ]<o
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0, sin|9 -9 otherwise

We do not know whether or not the set H is finite.

NN

99
Proposition 5. The number 999 is a threshold number of H. We know an algorithm which decides
the equality H = N. If H # N, then the set H consists of all integers from 0 to a non-negative integer
which can be computed by a known algorithm. We know an algorithm which for every n € N decides
whether or not n € H.

Let
s | ifmem (2?"0 - Nn+1)
(0}, if 280 > R,



Theorem 1. ZFC proves that card(K)=1. If ZFC is consistent, then for every n €N the
sentences "n is a threshold number of K" and "n is not a threshold number of K"
are not provable in ZFC. If ZFC is consistent, then for every n € N the sentences "n € K" and "n ¢ K"
are not provable in ZFC.

Proof. 1t suffices to observe that ZNO can attain every value from the set {§;,N,,N3,...}, see [7] and
[10, p. 232]. O

3 A Diophantine equation whose non-solvability expresses the
consistency of ZFC

Godel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply
the following theorem.

Theorem 2. (/5 p. 35]). There exists a polynomial D(xy, ..., x,) with integer coefficients such that if
ZFC is arithmetically consistent, then the sentences "The equation D(xi,...,x,;) =0 is solvable
in non-negative integers" and "The equation D(xj,...,x,;) =0 is not solvable in
non-negative integers" are not provable in ZFC.

Remark 1. (/4)], [9, p. 53]). The polynomial D(xy, ..., X,,) is very complicated.

Let Y denote the set of all non-negative integers k such that the equation D(x,..., x,) = 0 has no
solutions in {0, .. ., k}"™. Since the set {0, ..., k}" is finite, there exists an algorithm which for every n € N
decides whether or not n € Y. Theorem [2|implies the next theorem.

Theorem 3. For every n € N, ZFC proves that n € Y. If ZFC is arithmetically consistent, then the
sentences "Y is finite" and "Y is infinite" are not provable in ZFC. If ZFC is arithmetically
consistent, then for every n € N the sentences "'n is a threshold number of Y" and "n is not
a threshold number of Y" are not provable in ZFC.

Let & denote the set of all non-negative integers k such that the equation D(xy,...,x,) = O has a
solution in {0, ..., k}™. Since the set {0, ..., k}" is finite, there exists an algorithm which for every n € N
decides whether or not n € &. Theorem [2]implies the next theorem.

Theorem 4. The set & is empty or infinite. In both cases, every non-negative integer n is a threshold
number of & If ZFC is arithmetically consistent, then the sentences "& is empty", "€ is not
empty", "E is finite", and "E is infinite" are not provable in ZFC.

Let V denote the set

{k eN: (the polynomial D(xy, ..., Xx;) has no solutions in {0,.. ., k}m) A

(the polynomial D(xy, ..., x,) has a solution in {0, ...,k + 1}’”)}.

Since the sets {0, ...,k}" and {0, ...,k + 1}"" are finite, there exists an algorithm which for every n € N
decides whether or not n € V. According to Remark [I] at present we do not know a simple computer
program that realizes such an algorithm. Theorem [2]implies the next theorem.

Theorem 5. (6) ZFC proves that card(V) € {0,1}. (7) For every n € N, ZFC proves that n ¢ V.
(8) ZFC does not prove the emptiness of V, if ZFC is arithmetically consistent. (9) For every n € N,
the sentence "n is a threshold number of V" is not provable in ZFC, if ZFC is arithmetically
consistent. (10) For every n € N, the sentence "n is not a threshold number of V" is not
provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 3. Define a simple algorithm A such that A returns 0 or 1 on every input k € N and the
set
V = {k € N : the program A returns 1 on input k}

satisfies conditions (6)-(10).



4 Hypothetical statements V;,..., ¥

For an integer n > 3, let U,, denote the following system of equations:

Vie{l,...,n=1}\ {2} xi! = xi4
X1X1 = X3
X2+-Xp = X3

The diagram in Figure 1 illustrates the construction of the system U4,.

X1

squaring

[\ e [\ [\
7 7 7 7

X2 X3 X4 Xn—-1 Xn

Fig. 1 Construction of the system U,

Let g(3) =4, and let g(n + 1) = g(n)! for every integer n > 3.

Lemma 5. For every integer n > 3, the system U, has exactly two solutions in positive integers, namely

(1,....1) and (2,2,803).....8(n))

Let
By={x!=xc: Gike{l,....nhAG# R U{xi-x;=xc: i jkell,....n}

For an integer n > 3, let ¥, denote the following statement: if a system of equations S C B, has

only finitely many solutions in positive integers xi, ..., x,, then each such solution (x1,...,x,) satisfies
X1, ..., X, < g(n). The statement ¥, says that for subsystems of B, the largest known solution is indeed
the largest possible.

Hypothesis 1. The statements Y3, ...,¥Y ¢ are true.

Lemma 6. Every statement \V,, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Lemma 7. For every statement ¥, the bound g(n) cannot be decreased.

Proof. 1t follows from Lemma [5|because U, C B,,. O

Remark 2. By Lemma [2] and algebraic lemmas in [[19 p. 110], the statement ¥n € N\ {0, 1,2} ¥,
implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns
an integer such that this integer is greater than the solutions in positive integers, if these solutions form
a finite set. This conclusion is unbelievable because a computable upper bound on non-negative integer
solutions does not exist for exponential Diophantine equations with a finite number of solutions, see
[13l p. 300]. Therefore, the statement ¥n € N\ {0, 1,2} ¥, seems to be false.



5 The Brocard-Ramanujan equation x! + 1 = y?

Let A denote the following system of equations:

x1! = x
XQ! = X3
X5! = X6
X4-X4 = Xj5
X3:X5 = Xg

Lemma|2]and the diagram in Figure 2 explain the construction of the system A.

! X +1 X5 squaring
X —— S e e e e - - == - X4

L 4 L 4

X3 | X3 X5 = X6 | Xg

Fig. 2 Construction of the system A

Lemma 8. For every x1, x4 € N\ {0, 1}, the system A is solvable in positive integers x», x3, X5, X¢ if and

only if x;! +1 = xi. In this case, the integers x3, X3, X5, X¢ are uniquely determined by the following

equalities:

X2 = x1!
x3 = (!
X5 = xl! +1
x6 = (x!'+ 1)
Proof. Tt follows from Lemma 2l O

It is conjectured that x! + 1 is a perfect square only for x € {4, 5,7}, see [20, p. 297]. A weak form
of Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?,
see [16].

Theorem 6. If the equation x;! +1 = xﬁ has only finitely many solutions in positive integers, then the
statement WY¢ guarantees that each such solution (x1, x4) belongs to the set {(4,5),(5,11),(7,71)}.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 = xi. Then,
x1,x4 € N\ {0,1}. By Lemmal8 the system A is solvable in positive integers x;, x3, X5, Xg. Since
A C Bg, the statement Wg implies that xg = (x1! + 1)! < g(6) = g(5)!. Hence, x;! + 1 < g(5) = g(4)!.
Consequently, x; <g(4)=24. If x;€{l,...,23}, then x;! + 1 is a perfect square only for
x1 €{4,5,7}. O

6 Are there infinitely many prime numbers of the form n? + 1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n® + 1, see
[15, pp. 37-38]. Let B denote the following system of equations:

Xz! = X3 X1-X1 = X2
x3! = xy X3+-X5 = Xg
X5! = X6 X4-Xg = Xo
xg! = xo X5-X7 = Xg

Lemma[2]and the diagram in Figure 3 explain the construction of the system 8.



squaring xp +1 X5 !
X ———————— == > > X6

or xp=x5=1
X3+ X5 = Xg
X5+ X7 = X3

D R A n X8
or X3 = Xg = 1

L 4 L 4

Xg | X4 Xg = Xo | X9

Fig. 3 Construction of the system 8

Lemma 9. For every integer x| > 2, the system B is solvable in positive integers xa, . .., X9 if and only if
x% + 1 is prime. In this case, the integers xy, . .., X9 are uniquely determined by the following equalities:

n = x5 A+ 1

3= () x7 L

2 xy+1
o= (! ;)
2 xg = (PI+1

xs = x+1 Y = (D) + 1)

X6 = (Z+1)! O
Proof. By Lemma[2] for every integer x; > 2, the system 8 is solvable in positive integers x», ..., xg if
and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemmal?]follows from Lemma O
Lemma 10. There are only finitely many tuples (xi, . ..,x9) € (N\ {0)° which solve the system B and
satisfy x; = 1.

Proof. 1f a tuple (xq,...,x9) € N\ {0})? solves the system B and x; = 1, then x1,...,x9 < 2. Indeed,
x1 = 1 implies that x; = x% = 1. Hence, for example, x3 = x;! = 1. Therefore, x3 = x3+1 =2 or xg = 1.
Consequently, xg = xg! < 2. O

Theorem 7. The statement Yy proves the following implication: if there exists an integer x| > 2 such
that x% + 1 is prime and greater than g(7), then there are infinitely many primes of the form n> + 1.

Proof. Suppose that the antecedent holds. By Lemmald] there exists a unique tuple (x2,...,x9) €
(N \ {0})® such that the tuple (xq, x2,...,X9) solves the system B. Since x% + 1 > g(7), we obtain that
x2 > g(7). Hence, (x})! > g(7)! = g(8). Consequently,

X9 = (D! + D! > (28) + 1! > ¢(8)! = g(9)

Since B C By, the statement W9 and the inequality xg9 > g(9) imply that the system $ has infinitely many
solutions (xp, ..., x9) € (N'\ {0})°. According to Lemmas[Qland[I0} there are infinitely many primes of
the form n? + 1. O

Corollary 2. Let Xo denote the set of primes of the form n> + 1. The statement Wy implies that we
know an algorithm such that it returns a threshold number of Xo, and this number equals max(Xo), if
KXo is finite. Assuming the statement Yo, a single query to an oracle for the halting problem decides the
infiniteness of Xg. Assuming the statement Yo, the infiniteness of X is decidable in the limit.

Proof. We consider an algorithm which computes max(Xo N [1, g(7)]). O



7 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443].

Theorem 8. The statement Wy proves the following implication: if there exists an integer x; > g(6) such
that x\! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. O

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [13, p. 39]. Let C denote the following system of
equations:

x1! = x
X2 X4 = Xj5
X! = x3
X5-X6 = X7
X=X X7+ X X
7" = 1
Xﬁ! = X7 ? 0
| X4 X111 = X12
X7. = X8
P X3-X12 = X3
X9: = X10 _
T X9 - X14 = Xi15
X12: = X13 _
. Xg-X1s = X6
X15° = X16

Lemma [2]and the diagram in Figure 4 explain the construction of the system C.

X5 X10

X2+ Xq = X5 [T X7-X9 =X10|T

Xl pemmm==mmmmmm-- Pmmmmmmmmmmmm yo--mmmmmms--- Y X9
or X1:X4:1 or X4:X6:1 or X6:X9:1

! Xq* X11 = X12 ! Xg * X14 = X15
X5+ Xg = X7
e [ X5 - Xo = X7 | 1

PR A N X12 R A N X15
OI'.X2:X12:1 OI'X7:X15:1

X3V X3 X12 = X13 x5 xg ¥ Xg * X15 = X16 ¥ X6

Fig. 4 Construction of the system C

Lemma 11. For every x4,x9 € N\{0,1,2}, the system C is solvable in positive integers
X1, X2, X3, X5, X6, X7, X8, X10> X11, X12, X13, X14, X15, X16 If and only if x4 and x9 are prime and x4 + 2 = Xxo.
In this case, the integers x|, X2, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 are uniquely determined
by the following equalities:



x1 = x4-—1

x o= (u-1) = Gemitl
x = ((u-DH! x2 = (u-Di+1
x5 = xal xi3 = ((xg— DI+ D)
X6 = x9-—1 X1 = %
X7 = (% - D! x5 = (xg—1D!+1
% = (=D xig = (9= D!+ 1)!
X110 = XQ!

Proof. By Lemma@, for every x4, x9 € N'\ {0, 1,2}, the system C is solvable in positive integers x1, xp,
X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = x0) A (xal(xg = D!+ 1) A (ol (o = 1)1 + 1)
Hence, the claim of Lemma|[IT]follows from Lemma [} mi

Lemma 12. There are only finitely many tuples (x1, ..., x16) € (N '\ {ON'6 which solve the system C and
satisfy (x4 € {1,2}) V (x9 € {1,2}).

Proof. 1If a tuple (x1,...,x16) € (N'\ {0})16 solves the system C and (x4 € {1,2}) V (x9 € {1,2}), then
X1,...,X16 < 7!. Indeed, for example, if x4 = 2 then x¢ = x4 + 1 = 3. Hence, x; = x5! = 6.
Therefore, x15 = x7 + 1 = 7. Consequently, x;6 = x5! = 7!. O

Theorem 9. The statement Y16 proves the following implication: if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such that xg =
x4 +2 > g(14). Hence, x4, x9 € N'\ {0, 1,2}. By Lemma([l1] there exists a unique tuple

14
(x1, x2, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16) € (N \ {O})

such that the tuple (xi,..., x1¢) solves the system C. Since xg9 > g(14), we obtain that x¢ — 1 > g(14).
Therefore, (xg — 1)! > g(14)! = g(15). Hence, (x9 — 1)! + 1 > g(15). Consequently,

xi6 = (9 = DI+ D! > g(15)! = g(16)

Since C C Bjg, the statement ¥ and the inequality x;¢ > g(16) imply that the system C has infinitely
many solutions in positive integers xi,...,x16. According to Lemmas [IT] and [I2] there are infinitely
many twin primes. O

Corollary 3. (cf. [6]). Let X1 denote the set of twin primes. The statement ¥ |¢ implies that we know
an algorithm such that it returns a threshold number of X6, and this number equals max(Xie), if X16
is finite. Assuming the statement W16, a single query to an oracle for the halting problem decides the
infiniteness of X1¢. Assuming the statement ¥ 1¢, the infiniteness of Xi¢ is decidable in the limit.

Proof. We consider an algorithm which computes max(X16 N [1, g(14)]). O

9 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" 4 1 are called Fermat numbers. Primes of the form 22 + 1 are called Fermat

n
primes, as Fermat conjectured that every integer of the form 22" 4 1is prime, see [12 p. 1]. Fermat

20 21 22 23 24
correctly remarked that 2< +1=3,2 +1=5,2 +1=17,2¢ +1=257,and2* +1 = 65537
are all prime, see [12, p. 1].

Open Problem 4. (/12| p. 159]). Are there infinitely many composite numbers of the form 22n +1?



n
Most mathematicians believe that 22 + 1 is composite for every integer n > 5, see [L1, p. 23]. Let

Hn:{x,--xj:xk: i,j,ke{l,...,n}}U{Zz)Ci = X : i,ke{l,...,n}}

h
Leth(l)=1,andlet i(n + 1) = 22 ) for every positive integer n.

Lemma 13. The following subsystem of H,

X1

X1+ X1

; 2Xi
Yie{l,...,n—=1}2 Xit1

has exactly one solution (xi, ..., x,) € (N \ {0})", namely (h(1), ..., h(n)).

For a positive integer n, let &, denote the following statement: if a system of equations S C H, has

only finitely many solutions in positive integers xi, ..., X,, then each such solution (x1,...,x,) satisfies
X1, ..., X, < h(n). The statement &, says that for subsystems of H,, the largest known solution is indeed
the largest possible.

Hypothesis 2. The statements &1, ..., &13 are true.
Lemma 14. Every statement &, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H,, has a finite number of subsystems. O

Z
Theorem 10. The statement £13 proves the following implication: if z € N\ {0} and 22" 4 1is composite
and greater than h(12), then 22" 4 1is composite for infinitely many positive integers z.

Proof. Let us consider the equation
Z
x+Dy+1) =22 +1 (E)

in positive integers. By Lemma [3] we can transform the equation (E) into an equivalent system of
equations G which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of

a
the forms a - 8 = y and 227 = v, see the diagram in Figure 5.

10



X x+1 y+1 y

(@)}
<
i
=
Q,
.
. . H . .
22( ) 22( ) .é 22( ) 22( )
Y squaring M M squaring .
22x 3 22x+1 22y+1 ¢ 22y
2() L 4
2
22(') 22(')
2 squaring . o

Fig. 5 Construction of the system G

2Z
2+1
Since 22Z + 1 > h(12), we obtain that 22 > h(13). By this, the statement &3 implies that the
system G has infinitely many solutions in positive integers. It means that there are infinitely many

composite Fermat numbers. O

Corollary 4. Let ‘W13 denote the set of composite Fermat numbers. The statement &3 implies that we
know an algorithm such that it returns a threshold number of ‘W3, and this number equals max(“W3),
if W3 is finite. Assuming the statement €13, a single query to an oracle for the halting problem decides
the infiniteness of W3. Assuming the statement &13, the infiniteness of ‘W13 is decidable in the limit.

Proof. We consider an algorithm which computes max(‘Wy3 N [1, A(12)]). O
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