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Abstract In this article I develop an elementary system of axioms for Euclidean

geometry. On one hand, the system is based on the symmetry principles which

express our a priori ignorant approach to space: all places are the same to us (the

homogeneity of space), all directions are the same to us (the isotropy of space) and

all units of length we use to create geometric figures are the same to us (the scale

invariance of space). On the other hand, through the process of algebraic simpli-

fication, this system of axioms directly provides the Weyl’s system of axioms for

Euclidean geometry. The system of axioms, together with its a priori interpretation,

offers new views to philosophy and pedagogy of mathematics: (1) it supports the

thesis that Euclidean geometry is a priori, (2) it supports the thesis that in modern

mathematics the Weyl’s system of axioms is dominant to the Euclid’s system

because it reflects the a priori underlying symmetries, (3) it gives a new and

promising approach to learn geometry which, through the Weyl’s system of axioms,

leads from the essential geometric symmetry principles of the mathematical nature

directly to modern mathematics.
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1 Introduction

The connection of Euclidean geometry with symmetries has a long history. I will be

concerned here with the three symmetry principles: (1) the homogeneity of space: all

places are the same, (2) the isotropy of space: all directions are the same, (3) the scale

invariance of space: all units of length we use to create geometric figures are the same.

In 17th century JohnWallis proved, assuming other Euclid’s postulates, that the scale

invariance principle ‘‘For every figure there exists similar figure of arbitrary

magnitude.’’ is equivalent to the Euclid’s fifth postulate (Wallis 1695–1699). Wallis

considered his postulate to be more convincing than Euclid’s fifth postulate. Tracing

back to the famous Riemann lecture at Göttingen in 1854 ‘‘Über die Hypothesen

welche derGeometrie zuGrunde liegen’’ (Riemann 1867), it is well known that among

all Riemann manifolds Euclidean geometry is characterized by the three symmetry

principles. However, this characterisation is not an elementary one because it

presupposes the whole machinery of Riemann manifolds. The descriptions based on

Klein’s program of characterizing geometries by their principal groups of transfor-

mations (Klein 1872) also have non elementary character. As I am aware, there is no an

elementary description (a description in terms of intuitive relations between points) of

Euclidean geometry that is based on the three symmetry principles. Here I develop a

system of axioms that provides such an elementary description.

The importance and validity of the three symmetry principles has been

recognized a long time ago. I offer a new interpretation of these principles.

Clifford (1873, 1885) considers the three symmetry principles as the most essential

geometrical assumptions. He considers that the principles are based on observations

of the real space. Von Helmholtz (1868) has the same opinion for the first two

symmetry principles which he unifies in his principle of the free mobility of rigid

bodies. Henri Poincaré, in his analysis of the real space (Poincare 1902), comes to

the conclusion that the first two symmetry principles are the most essential

properties of the so called geometric space which for him is not the real space but a

’’conventional space’’—the most convenient description of the real space. An

interesting explanation of the validity of the three symmetry principles comes from

Delboeuf (1860). He considers what remains when we ignore all differences of

things caused by their movements and mutual interactions. According to Delboeuf,

in the ultimate abstraction from all diversities of real things we gain the

homogeneous, isotropic, and scale invariant space - the true geometric space which

is Euclidean and which is different from the real space. My view on the principles is

a different one: they are not a posteriori, the result of analysing the real space, but

they are a priori. However, in my interpretation they are not a priori in Kant’s sense,

as an a priori form of rational cognition, but in a sense of our a priori ignorant

approach to space: all places are the same to us (the homogeneity of space), all

directions are the same to us (the isotropy of space) and all units of length we use for

constructions in space are the same to us (the scale invariance of space). Because the

system of axioms I develop here is based on the three symmetry principles and

because it is equivalent to other systems of axioms for Euclidean geometry, under

my a priori interpretation of the principles, the system supports the thesis that
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Euclidean geometry is a priori, in the same way as number systems are a priori, the

result of modelling, not the world, but our activities in the world. This conclusion

could satisfy Gauss who expressed his dissatisfaction with the epistemic status of

Euclidean geometry in a letter to Olbers (Gauss 1900): ‘‘I am ever more convinced

that the necessity of our geometry cannot be proved, at least not by, and not for, our

human understanding. Maybe in another life we shall attain insights into the essence

of space which are now beyond our reach. Until then we should class geometry not

with arithmetic, which stands purely a priori, but, say, with mechanics.’’

The system of axioms I develop here directly provides, through the process of

algebraic simplification, the Weyl’s system of axioms for Euclidean geometry (Weyl

1918).1 Thus, the system of axioms I develop here, together with my a priori

interpretation of the system, offers an explanation of the fact that in modern

mathematics the Weyl’s system of axioms is dominant to the Euclid’s system.

Although the Euclid’s system of axioms for Euclidean geometry is thought in school,

theWeyl’s system of axioms is used inmodernmathematics, physics and engineering.

Only through the Weyl’s system of axioms do we find the Euclidean structure in

complex mathematical structures, and this enables us to make our reasoning about

them more visual and efficient. Today, the Weyl’s system of axioms is one of the

essential synthesizing tools of modern mathematics while Euclid’s system is of a

secondary importance. My thesis is that this happens because the original Euclidean

system of axioms reflects a posteriori intuition (hence physical intuition) about

Euclidean geometry while the Weyl’s system of axioms reflects a priori intuition

(hence mathematical intuition) about the underlying symmetries.

The system of axioms I develop here also gives a new and promising approach to

learn Euclidean geometry because (1) it gives an elementary and essential

description of Euclidean geometry, (2) it gives, through the process of algebraic

simplification, the Weyl’s system of axioms for Euclidean geometry which is

essential for modern mathematics. Therefore, it opens the possibility to learn

geometry in a way which leads from the essential geometric symmetry principles

(and these are of the mathematical nature) directly to modern mathematics.

I gradually introduce a system of axioms about points labelled with letter ‘‘A’’,

which have an immediate justification in intuitive ideas about relations between

points and in the three symmetry principles supported by an idea of continuity of

space. Then, I deduce from them The Weyl’s system of axioms about points and

vectors labelled with letter ‘‘W’’, which are indeed equivalent to A—axioms. The

complete list of axioms is displayed in the ‘‘Appendix’’.

The primitive terms of the system of axioms are: (1) equivalence of pairs of

points (arrows), (2) multiplication of a pair of points by a real number and (3)

distance between points. The multiplication could be avoided. However, the

procedure to define the multiplication is somewhat lengthy and I prefer to introduce

the multiplication as a new primitive term. Also, it is more simple to introduce the

distance function (to add an arbitrary unit of measurement) as a new primitive than

to introduce congruence between pairs of points as a new primitive term and define

the distance function relative to the choice of a unit of measurement.

1 brief description of the Weyl’s system is on pages 16 and 30.
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2 Equivalence of Pairs of Points

Geometrical space S will be modelled as a non empty set of objects termed points.
The basic geometrical relation is the position of one point relative to another (not

necessarily different) point. That the position of a point B relative to a point A is the

same as the position of a point B0 relative to a point A0 we will denote AB�A0B0 and
we will say that pairs or arrows AB and A0B0 are equivalent. This is the first

primitive term of our system. It expresses a basic intuitive idea about relation of two

points. The idea itself to be in the same relative position implies that it is a relation

of equivalence. This is the content of the first axiom.

Axiom A1 � is an equivalence relation.

In more detail, it means:

Axiom A1.1 AB�AB (reflexivity)

Axiom A1.2 AB�A0B0 ! A0B0 �AB (symmetry)

Axiom A1.3 AB�A0B0 ^ A0B0 �A00B00 ! AB�A00B00 (transitivity)

Because of an elementary character of these properties of � , usually I will not

mention them in proofs of theorems.

Concerning a fixed point A we can easily describe the equivalance relation � : by

the very idea of the relative position of points, different points have different

relative positions to A:

Axiom A2 AB�AC ! B ¼ C.

Fundamental operations with arrows are to invert an arrow and to add an arrow to

another arrow. The definitions follow:

inverting arrow AB 7! � AB ¼ BA

addition of arrows AB; BC 7! ABþ BC ¼ AC

Because of Axiom A2 we can extend addition of arrows:

generalized addition of arrows ABþ CD ¼ ABþ BX, where BX�CD, under

the condition that there is such a point X.

By the homogeneity principle, the operations are invariant under the equivalence

of arrows:

Axiom A3.1 AB�A0B0 ! BA�B0A0.

Axiom A3.2 AB�A0B0 ^ BC�B0C0 ! AC�A0C0

Until now, we know only that AB is equivalent to itself (reflexivity of � ) and to

no other arrow from the point A (Axiom A2). All other axioms are conditional

statements. It remains to describe the equivalence of arrows originating from

different points.
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3 Multiplication of an Arrow by a Number

In the next section I will sketch how can we define the multiplication of an arrow by

a number and establish basic properties of the operation. Although such approach is

conceptually more satisfactory, it is technically very lengthy. Instead, I will directly

postulate the properties of multiplication of arrows by real numbers, without losing

a clear basis of the three symmetry principles. I introduce multiplication of an
arrow by a real number as a new primitive operation based on an idea of

stretching arrows and of an idea of iterative addition of the same arrow (numbers

will be labelled with letters from the Greek alphabet):

� : R� S2 ! S2 k;A;B 7! k � AB

Sometimes, since it is a common convention, we will not write the multiplication

sign at all.

The very idea of the multiplication as stretching arrows is formulated in the next

axiom:

Axiom A4 8k;A;B 9C k � AB ¼ AC.

By the homogeneity principle, multiplication of an arrow by a number is

invariant under the equivalence of arrows:

Axiom A5 AB�CD ! kAB� kCD.

For a point C such that AC ¼ k � AB we will say that it is along AB. Also, for

arrow AC we will say that it is along AB.

The very idea of the multiplication as addition of the same arrow leads to the next

axiom:

Axiom A6.1 1 � AB ¼ AB.

By the homogeneity principle, we can translate any arrow along AB to any point

along AB. So, we can add such arrows. Specially, we can add k � AB and l � AB and

the result will be k � ABþ l � AB ¼ m � AB for some number m: Moreover, by the

very idea of the multiplication as iterative addition of the same arrow m ¼ kþ l.
This is the content of the next axiom:

Axiom A6.2 k � ABþ l � AB ¼ ðkþ lÞ � AB.

Let’s note that with this equation we postulate also that the left side of the

equation is defined.

If we stretch an arrow along AB the result will be an arrow along AB, too. So,

k � ðl � ABÞ ¼ m � AB, for some number m. Moreover, by the very idea of the

multiplication as iterative addition of the same (stretched) arrow m ¼ k � l. This is
the content of the next axiom:

Axiom A6.3 k � ðl � ABÞ ¼ ðk � lÞ � AB.

Let’s note that with this equation we postulate also that k � ðl � ABÞ is along AB.

Later, we will need to translate an arrow on its both sides:
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Corollary A04 8A;B 9D AB�BD.

Proof 2 � AB ¼ ð1þ 1Þ � AB ¼ ðbyA6:2Þ1 � ABþ 1 � AB ¼ ðbyA6:1ÞABþ AB.

By the meaning of addition there is the point D such that AB�BD. h

Corollary C1 8A;B 9C CA�AB.

Proof Applying A’4 on BA we can find the point C such that BA�AC. Because

inverting arrows is invariant under � (A3.1) it follows that AB�CA. h

The last axiom expresses the scale invariance principle.

Axiom A7 (the scale invariance axiom) If AC ¼ k � AB and AC0 ¼ k � AB0 then
CC0 � k � BB0 (Fig. 1).

Corollary C2 k � ðABþ BB0Þ ¼ k � ABþ k � BB0.

Proof By A4 there are points C and C0 such that k � AB ¼ AC and k � AB0 ¼ AC0.
Then, by Axiom A7, CC0 � k � BB0. Now, we calculate: k � ABþ k � BB0 ¼
AC þ CC0 ¼ AC0 ¼ k � AB0 ¼ k � ðABþ BB0Þ. h

Of the special interest is a somewhat modified special case of the scale invariance

axiom, for k ¼ 2:

Theorem A05 (the elementary scale invariance law) AB�BC and AB0 �B0C0 !
9 P CP�PC0 �BB0 (Fig. 2).

Proof Suppose that AB�BC and AB0 �B0C0. Then AC ¼ ABþ BC�ABþ AB ¼
ðbyA6:1Þ1 � ABþ 1 � AB ¼ ðbyA6:2Þ2 � AB. In the same way we prove that

AC0 ¼ 2 � AB0. Then, by A7, CC0 � 2 � BB0. Multiplying this relation with 1
2
, by

A5 and A6.3, it follows that BB0 � 1
2
� CC0. By A4, there is the point P such that

1
2
� CC0 ¼ CP. Therefore, CP�PC0 �BB0. h

This theorem has two important consequences.

Theorem T3 (the unique translation of arrows law) 8A;B;A0 9!B0 AB�A0B0.

Proof We will accomodate notation to the elementary scale invariance law. We

will prove that for all B;B0;C there exists the unique point P such that BB0 �CP. By

C1 there is the point A such that AB�BC. By A’4 there is the point C’ such that

AB0 �B0C0. By A’5 there is the point P such that BB0 �CP. The point P is a unique

such point. If there were another point P0 such that BB0 �CP0, then by symmetry

(A1.2) and transitivity (A1.3) of � , we infer CP0 �CP. From this statement, by A2,

it follows that P0 ¼ P. h

The unique translation of arrows law enables us to add arbitrary arrows, without

any condition, as we have done before.

ABþ CD ¼ ABþ BX; where BX�CD

Theorem T4 (the parallelogram law) AB�A0B0 ! AA0 �BB0 (Fig. 3).
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Proof We will accomodate notation to the elementary scale invariance axiom. We

will prove that if BB0 �CP then BC�B0P. By C1 there is the point A such that

AB�BC. By A’4 there is the point C0 such that AB0 �B0C0. By A’5 there is the

point P0 such that CP0 �P0C0 �BB0. By transitivity of � , we infer CP0 �CP. So, by

A2, P ¼ P0. Therefore, BB0 �PC. Now,we calculate: BC�AB ¼ AB0þ
B0B� ðbyA3Þ B0C0 þ C0P�B0P h

Remark 1 Assuming only Axioms A1 to A3 and Corollary A’4, without any axiom

on the multiplication, we can prove that the elementary scale invariance axiom is

equivalent to the conjunction of the unique translation of arrows law and

parallelogram law.

Fig. 1 Illustration for the scale invariance axiom

Fig. 2 Illustration for the elementary scale invariance law

Fig. 3 Illustration for the
parallelogram law
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Remark 2 Until now we haven’t used Axiom A1.1 (reflexivity). Indeed we

can prove it: by the unique translation of arrows law T3, for given points A and

B there is the unique C such that AB�AC. From A2 it follows B ¼ C. Therefore,

AB�AB.

Remark 3 The parallelogram law is very efficient algebraically in proofs. For

example, assuming only the parallelogram law, we can prove the equivalence of:

(i) A1.1 (reflexivity of � ) and the next corrolary C5 (all arrows of the type AA are

equivalent), (ii) A1.2 (symmetry of � ) and A3.1 (invariance under � of inverting

arrows) , (iii) A1.3 (transitivity of � ) and A3.2 (invariance under � of adding

arrows).

Corollary C5 8A;B AA�BB.

Proof From reflexivity of � , we infer AB�AB. By the parallelogram law, it

follows that AA�BB. h

4 Elimination of the Multiplication of an Arrow by a Number

Here, I will sketch how can we define the multiplication of an arrow by a number

and establish basic properties of the operation. I continue exposition from the

second section, based on Axioms A1 to A3, neglecting the third section. In the

second section we have described the relation � between arrows originating from

the same point. How can we compare arrows originating from different points?

There is an obvious case: we can translate an arrow AB along itself. In that way, by

the homogeneity principle, we can reproduce the position of B relative to A in the

point B. This is the content of the Axiom A’4 (which we have proved in the second

section from the multiplication axioms).

Axiom A04 8A;B 9C AB�BC.

An immediate consequence is that we can translate AB in the opposite direction:

Corollary C1 8A;B 9D DA�AB

We have proved this in the previous section using only A’4, A3.2 and A1.2.

As the next axiom we will use the elementary scale invariance axiom (which we

have also proved in the previous section from the multiplication axioms)

Axiom A05 (the elementary scale invariance axiom) AB�BC and

AB0 �B0C0 ! 9 P CP�PC0 �BB0.

These two axioms and Axioms A1 to A3 yield the unique translation of arrows

law T3 and the parallelogram law T4. I have used nothing else in the proofs of these

laws in the previous section.

Because the unique translation of arrows law enables us to add arbitrary arrows,

we can add an arrow to itself, as a special case. It enables us to multiply the arrow

by a positive natural number:
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1 � AB ¼ AB; 2 � AB ¼ ABþ AB; 3 � AB ¼ 2 � ABþ AB; . . .

In that way we can define recursively the multiplication of an arrow by an arbitrary

positive natural number. Then, we can define the multiplication of an arrow by an

arbitrary integer:

0 � AB ¼ AA; ð�nÞ � AB ¼ n � ð�ABÞ

where n is a positive natural number.

Furthermore, we can introduce axiomatically (and justify it by the symmetry

principles and an idea of divisibility of space) the existence of the midpoint P of an

arrow AB, as the point for which AP�PB,

Axiom A06 8A;B 9!P AP�PB.

and then define multiplication of the arrow by 1
2
:

1

2
� AB ¼ AP

By repeating bisection we can define recursively multiplication of an arrow by 1
2n
.

On that basis we can define multiplication of an arrow by an arbitrary rational

number of the form m
2n
, where m is an integer and n is a positive natural number.

We can extend the multiplication to all real numbers using an appropriate axiom

of continuity. For example,

Axiom A07 Let p2ðA;BÞ, for A 6¼ B, be the set of all points C such that

AC ¼ k � AB, where k is rational number of the form m
2n
. Let’s define the order

relation \2 on p2ðA;BÞ: for AC ¼ kC � AB and AD ¼ kD � AB;C\D $ kC\kD.
Then there is the unique linearly ordered extension p(A, B) of p2ðA;BÞ such that

every bounded above non empty subset of p(A, B) has supremum.

Now, we can define multiplication of an arrow by an arbitrary real number k.
Because for every k[ 0 there exists the unique strictly increasing sequence mn

2n
such

that k ¼ limn!1
mn

2n
, we define

k � AB ¼ A supfCnjACn ¼
mn

2n
� ABg

ð�kÞ � AB ¼ �ðkÞ � AB

By the homogeneity principle, all these operations are invariant under � :

Axiom A08 The operations of bisection and supremum are invariant under � .

From these axioms all the axioms for the multiplication can be proved.

5 Vectors

Axiom A1 enables us to define vectors. Since, by A1, � is an equivalence relation,

it classifies arrows (pairs of points) into classes of mutually equivalent arrows. We
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define vectors as these equivalence classes. The set of all vectors will be denoted

S
!
. To every pair of points AB we will associate the vector AB

�!
, the equivalence

class to which AB belongs:

AB
�! ¼ fCDjCD�ABg

So, ! maps pairs of points to vectors: !: S2 ! S
!
.

For every pair of points (arrows) from a vector (an equivalence class) we say that

it represents the vector. Thus, for example, a pair AB represents the vector AB
�!

.

Theorem W1 For every point A the function X 7! AX
�!

is a bijection from set of

points S onto set of vectors S
!
.

Proof The claim is an immediate consequence of the unique translation of arrows

law (T3) h .

For a given point A the inverse function of bijection X 7! AX
�! ¼ x! maps every

vector x! to the point X which we will denote X ¼ Aþ x!. Thus,

Aþ x!¼ X $ AX
�! ¼ x!

We will transfer operations with arrows into operations with corresponding

vectors, in a way invariant under relation � .

null vector 0
!¼ AA

�!

By Corollary C5, the definition is correct because it does not depend on the

choice of a point A.

inverse vector �AB
�! ¼ BA

�!

By Axiom A3.1 (invariance under � of inverting arrows), the definition is

correct because it does not depend on the choice of an arrow AB.

Addition of vectors (W2) AB
�!þ BC

�! ¼ AC
�!

By Axiom A3.2 (invariance under � of addition of arrows) the definition is

correct because it does not depend on the choice of arrows which represent vectors.

Vectors will be denoted by letters with ‘‘arrows’’, for example, a!.

Theorem W3 Addition of vectors makes set of all vectors into a commutative

group:

1. ð a!þ b
!Þ þ c!¼ a!þ ð b!þ c!Þ

2. a!þ 0
!¼ a!

3. a!þ ð� a!Þ ¼ 0
!

4. a!þ b
!¼ b

!þ a!
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Proof We will represent vectors by the corresponding arrows. Let a!¼ AB; b
!¼

BC and c!¼ CD. By the definitions of addition of vectors, null vector and inverse

vector, the claims we want to prove follow from the corresponding claims about

arrows. h

1. ðABþ BCÞ þ CD ¼ AC þ CD ¼ CD;ABþ ðBC þ CDÞ ¼ ABþ BD ¼ CD

2. ABþ BB ¼ AB

3. ABþ ð�ABÞ ¼ ABþ BA ¼ AA

4. Commutativity of vector addition is a consequence of the parallelogram law

(T4). Let’s choose a point D such that AD�BC. By the parallelogram law, then

AB�DC (Fig. 4).

Now, we will calculate the left and right side of the identity we want to prove by

‘‘going’’ along the sides of the parallelogram from the vertex A to the opposite

vertex C in two different ways, via the point B and via the point D:

a!þ b
!¼ AB

�!þ BC
�! ¼ AC

�!

b
!þ a!¼ AD

�!þ DC
�! ¼ AC

�!

Hence, a!þ b
!¼ b

!þ a!. h

Since the multiplication of an arrow by a number is invariant under relation �
(Axiom A5), we can transfer the operation into the multiplication of a vector by a
number:

k � AB�! ¼ k � AB���!

Because of the invariance, we can transfer all the properties of the multiplication

of an arrow by a number into the properties of the multiplication of a vector by a

number:

Theorem W4 Multiplication of a vector by a number has the following

properties:

1. 1 � a!¼ a!
2. ðkþ lÞ � a!¼ k � a!þ l � a!
3. k � ðl � a!Þ ¼ ðk � lÞ � a!

4. k � ð a!þ b
!Þ ¼ k � a!þ k � b!

Proof Let a!¼ AB and b
!¼ BC

Fig. 4 Illustration for the proof
of the commutativity of vector
addition
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1. 1 � a!¼ 1 � AB���! ¼ AB
�! ¼ a!

2. ðkþ lÞ � a!¼ ðkþ lÞ � AB�! ¼ ðkþ lÞ � AB
��������!

¼ k � ABþ l � AB����������!

¼ k � AB���!þ l � AB���! ¼ k � AB�!þ l � AB�! ¼ k � a!þ l � a!

3. k � ðl � a!Þ ¼ k � ðl � AB�!Þ ¼ k � l � AB���! ¼ k � ðl � ABÞ
�������!

¼ ðk � lÞ � AB
�������!

¼ ðk � lÞ�
AB
�! ¼ ðk � lÞ � a!

4. k � ð a!þ b
!Þ ¼ k � ðAB�!þ BC

�!Þ ¼ k � ABþ BC
�����! ¼ k � ðABþ BCÞ

���������!

¼ k � ABþ k � BC����������! ¼ k � AB���!þ k � BC���! ¼ k � AB�!þ k � BC�! ¼ k � a!þ k � b!

h

All previously established propositions with label W say that the space of vectors

S
!

together with operations of addition of vectors and multiplication of a vector by a

number has the structure of vector space, and that the space of points S together with

the space of vectors S
!

and the mapping AB 7!AB
�!

, that is to say, the structure

ðS; S!; ! ;þ; �Þ; where ! : S2 ! S
!
; þ : S

!2
! S

!
; � : R� S

!! S
!
;

is Weyl’s structure of affine space. W propositions are precisely Weyl’s axioms for

the affine part of Euclidean geometry. Conversely, starting from Weyl’s structure of

affine space, for which W propositions are valid, we could define in a standard way

the equivalence of arrows, addition of arrows and multiplication of an arrow by a

number, and prove that for such a defined structure

ðS; � ;þ; �Þ; where S 6¼ ;; � � S2 � S2; þ : S2 � S2 ! S2; � : R� S2 ! S2

all A propositions are valid. Hence,

A axioms are equivalent to W axioms in this affine layer of Euclidean geometry.

Let’s note that in the structure ðS; � ;þ; �Þ addition þ is defined and

multiplication � can be defined if we choose to introduce multiplication of a vector

gradually, first by natural numbers, then by integers and rational numbers, and

finally by real numbers. It means that there is essentially only one primitive term,

the relation of equivalence � between ordered pairs of points.

In the next section we will use a few propositions of affine geometry concerning

parallelograms and projections. It is well known that the propositions follow from

W (and so from A) axioms and they will not be proved here.

Fig. 5 Illustration
for characterization of a
parallelogram by diagonals
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We will define a parallelogram in the usual way, as a quadrilateral ABCD such

that AB�DC. We will need the following result about parallelograms:

characterization of a parallelogram by diagonals A quadrilateral is a

parallelogram if and only its diagonals bisect each other (Fig. 5).

AB�A0B0 $ AP�PB0 ^ BP�PA0

The definition of a projection is based on the following proposition. In a fixed

plane, for every (straight) line g and point S there is a unique line gS through S

which does not intersect g or is equal to g (when S lies on g). The line gS intersects

every line p which intersects g in a unique point S0. The mapping S 7!S0 maps every
point of the plane onto a point of the line p. This mapping is termed projection Pg;p

onto the line p generated by the line g (Fig. 6).

We will need two properties of projection:

1. Projection maps the sum of arrows onto the sum of the projections of the arrows

(Fig. 7):

2. Projection maps a k times longer arrow into a k times longer projection of the

arrow (Fig. 8):

Fig. 6 Illustration for the
definition of a projection

Pg,p(AB + BC) = Pg,p(AB) + Pg,p(BC)

Fig. 7 The sum of arrows is
invariant under projection
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6 Length

A basic geometric measure is the measure of distance between points A and B, the

function j j : S2 ! R. This is the next and the final primitive term of the theory I

develop here. A real number |AB| will be termed the length of the arrow AB or

distance from the point A to the point B.

By the homogeneity of space the length of an arrow must be invariant under

equivalence relation � :

Axiom A8 AB�CD ! jABj ¼ jCDj.

By the very idea of measuring distance:

Axiom A9.1 jAAj ¼ 0.

Every point B 6¼ A determines a direction in which we can go from A. Because of

the isotropy of space, the algebraic sign of distance must be always the same –

distance must be always negative or always positive or always zero. The zero case

gives a trivial measure which does not make any difference between arrows, so, it is

a useless measure. Thus, the two other possibilities remain. Technically speaking

they are mutually equivalent choices, but by the very idea of measuring it is natural

to choose a positive algebraic sign:

Axiom A9.2 B 6¼ A ! jABj[ 0. (positive definiteness)

By the isotropy of space we also have:

Axiom A9.3 jABj ¼ jBAj.

For every direction from a point A determined with a point B 6¼ A we already

have a measure of distance. If we take AB as a unit of measure, than we can take the

number k[ 0 as a measure of distance of AC where AC ¼ kAB. Note that such a

choice of measure along every direction need not be isotropic. However, along

every direction the measure of distance A;B 7!jABj must be in accordance with this

k measuring (although it must be more than this):

Axiom 10 jkABj ¼ kjABj, for k[ 0,

We can express Axioms A9.1, A9.3 and A10 in a uniform way by the next

equivalent proposition:

Pg,p(λAB) = λPg,p(AB)

Fig. 8 The multiplication of an
arrow by a number is invariant
under projection
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Theorem 7 (compatibility of distance with multiplication) jkABj ¼ jkjjABj, for
every real number k.

Proof By A10, the claim is valid for k[ 0. By A9.1 the claim is valid for k ¼ 0.

By A9.3 the claim is valid for k ¼ �1. Thus, we must prove the claim for the

remaining negative values of k. Let k\0. Then k ¼ �l, where l[ 0. Now we

calculate using what we have already proven:

jkABj ¼ jð�1ÞlABj ¼ j � 1jjlABj ¼ j � 1jjljjABj ¼ jð�1ÞljjABj ¼ jkjjABj h

The description of distance function we have achieved until now enables us to

compare distances in a given direction with distances in the opposite direction and

with distances in parallel directions. What remains is to solve the main problem:

how to compare distances along arbitrary directions in an isotropic way. Let’s take,

in a given plane, along every direction from a point S, a point at a fixed distance

r[ 0 from S. The set of such points is the circle with center S and radius

r;CðS; rÞ ¼ fT : jSTj ¼ rg. Let’s choose two points A and B on the circle and

consider the unique line p(A, B) through these points (Fig. 9):

Let’s take an arbitrary point T on the line p(A, B) and consider how the distance

d(T) from T to the center S of the circle varies with the choice of T. Thereby, we will

use the idea of continuity of space and of continuity of function d(T). Because of the

isotropy of space, the function d(T) must be symmetric in the position of T relative

to the points A and B (directions SA and SB). For example, values of the function in

the points A and B are the same (equal to r). Also, the function must have the same

value in a point we reach when we move a certain distance from A to B as well as in

a point we reach when we move the same distance from B to A: dðAþ kAB
�!Þ ¼

dðBþ kBA
�!Þ (Fig. 10):

Because of this symmetry, the function d(T) must have a local extreme value in

the midpoint of AB. To determine more precisely the character of the extreme point

Fig. 9 Two points A and B on
the circle and the unique
line p(A, B) through these points

Fig. 10 Symmetry of the
distance function
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we will exploit knowledge of a special case, when the points A and B are

diametrically opposite on the circle, that is to say, when the center S of the circle lies

on p(A, B). In that case, if we ’’move’’ a point T from A to B (or from B to A), the

distance d(T) from the center S of the circle decreases and it is smallest in the

midpoint (S). Furthermore, if we move T from A in the direction opposite to the

direction to B (or from B in the direction opposite to the direction to A), the distance

increases. Therefore, the midpoint S is a unique point of the global minimum of the

function d(T). If we drag the point B slightly along the circle into the point B0, the
center S of the circle will no longer be on the line pðAB0Þ, but, because of continuity,
the behaviour of the function d(T) will remain the same. That is to say, the midpoint

P of AB0 will remain a unique global minimum of the function on the line (Fig. 11):

Because of continuity, for every two points A and B0 on the circle the function

d(T) will have a unique global minimum on line pðAB0Þ exactly in the midpoint of

AB0:

Axiom 11 If a line has two common points with a circle, points A and B, then the

midpoint P of AB is the point on the line nearest to the center of the circle (Fig. 12).

Fig. 11 Illustration for the
argument that the midpoint P is
a unique point of the global
minimum of the distance
function on the line p(A, B)

Fig. 12 The midpoint P of AB is
the point on the line nearest to the
center of the circle

Fig. 13 Illustration for the
argument that the point A must
be the point on p nearest to the
center of the circle

Axiomathes

123

Author's personal copy



From the axiom it follows immediately that a line can not have more than two

common points with a circle. If, besides A and B, there was a third common point X,

by A11, the midpoint of AB and the midpoint of AX would be points on a line

nearest to the center of the circle. Then, by uniqueness of the nearest point, AB and

AX would have the same midpoint. Thus, we would get a contradiction, that X ¼ B.

Let a line p have exactly one common point with a circle, a point A. If we drag

the point A slightly along the circle in one direction onto a point Al, and in another

direction onto a point Ad, then the line p is dragged onto the line p(Al, Ad). By

Axiom 11 the midpoint P of AB is the point on p(Al, Ad) nearest to the center of the

circle. By continuity of space, the point A must be the point on p nearest to the

center of the circle (Fig. 13):

Axiom A12 If a line has exactly one common point with a circle, then the common

point is the point on the line nearest to the center of the circle (Fig. 14).

Theorem 7 For every point S not on a line p there is a unique point P on p which

is the point on p nearest to S.

Proof Let A be a point on a line p and let its distance to S be r. Thus, A is a

common point of the line p and the circle with center S and radius r. If the line p

does not have another common point with the circle, then, by A12, A is a point on p

nearest to S. If line p has another common point B with the circle, then, by A11, the

Fig. 14 The point A is the
point on the line nearest to the
center of the circle

Fig. 15 The point O is the
midpoint of PP0
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midpoint P of AB is the point on p nearest to S. Thus, we have proved the existence

of the nearest point. The nearest point is unique by its very definition. h

The direction from a point not on a line to its nearest point on the line is a

perpendicular direction to the line. Formally, we define that a line a is

perpendicular to a line b, in symbols a?b, if a intersects b and there is a point

S on a which is not on b such that the intersection of a and b is the point on b nearest

to S.

Theorem 8 For lines a and b, if a?b then b?a.

Proof By definition of perpendicularity, there is a point S on a such that the

intersection of a and b, the point O, is the point on b nearest to S. Let P be a point on

b different from O. Since its distance to S is greater than the distance of O to S, there

is another point P0 on the line b equally distant as P to S (Fig. 15). On the contrary,

by A12, P would be the point on b nearest to S, hence, it would be P ¼ O, which is

in a contradiction of the choice of P. Since O is the point on b nearest to S, it is, by

A11, the midpoint of PP0.
By the uniqueness of the translation of arrows law T3. there is a point S0 on the

line a such that SO�OS0 (Fig. 16). Thus, the point O is the midpoint of SS0, too.
Therefore, diagonals of the quadrilateral SPS0P0 bisect each other.

By the theorem of affine geometry on the characterization of a parallelogram by

diagonals, the quadrilateral is a parallelogram. Since it is a parallelogram, the

opposite sides have the same length. However, by the choice of the point P0, the
neighbouring sides have the same length, too. Therefore, all sides of the

quadrilateral have the same length. Thus, PS and PS0 have the same length. Hence,

by A11, the point O is the point on a nearest to P. By the definition of

perpendicularity, it means that the line b is perpendicular to the line a.

Theorem 9 A line b is perpendicular to a line a if and only if they have a common

point O and for every point P on line b the intersection O is the point on the line

a nearest to P.

Fig. 16 The point O is the
midpoint of SS0
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Proof One direction is trivial: if for every point P on line b the intersection O is

the point on line a nearest to P then that is true for a particular P on b, so, by

definition of perpendicularity, b?a. The opposite direction is the immediate

consequence of the previous theorem and its proof. Namely, by the theorem, from

b?a follows a?b. In the proof of the previous theorem, from that assumption it is

proved that for every point P on the line b the intersection O is the point on the line

a nearest to P. h

Corollary 10 (the triangle inequality theorem): jABj þ jBCj � jACj. The equality

is valid if and only if the point B is on AC.

Proof We will prove only the most important case (Fig. 17), when the point B is

not on line p(A, C) and the line through B perpendicular to p(A, C) intersects

p(A, C) at a point B0 which is on AC (by Theorem 7, the perpendicular line exists).

By Theorem 8, the line p(A, C) is perpendicular to the line pðB;B0Þ. By

Theorem 9, B0 is the point on pðB;B0Þ nearest to points A and C. Hence,

jABj[ jAB0j and jBCj[ jB0Cj. Thus, jABj þ jBCj[ jAB0j þ jB0Cj ¼ jACj. h

Theorem 9 enables us to show that for every point and every line there is a

unique line through the point perpendicular to the given line .

Theorem 11 For a point S not on a line p there is a unique line through the point

S perpendicular to the line p.

Proof By Theorem 7, there is a point O on the line p nearest to S. By the definition

of perpendicularity, the line a ¼ pðS;OÞ is perpendicular to p. Thus, we have proved
the existence of the perpendicular line. Let S lie on another perpendicular line b. By

Theorem 10, the intersection O0 of the line b and the line p is the point on p nearest

to S. By the uniqueness of the nearest point, O0 ¼ O. Thus, b as well as a contains S

and O, hence b ¼ a. h

Fig. 17 |AB| ? |BC| C |AC|

Fig. 18 SS0 * OP
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Theorem 12 For every point P on a line p there is a unique line through

P perpendicular to p.

Proof To show the existence of the perpendicular line let’s choose a point S not on

p. If the intersection O of the line through S perpendicular to p with line p is just the

point P then we have found the perpendicular line. If it is not so, let S0 be a point

such that SS0 �OP (Fig. 18):

Because of the homogeneity invariance of length (Axiom A8), since O is a point

on p nearest to S, the point P is the point on p nearest to S0. Hence, P is on the line

through S0 perpendicular to line p.

To prove the uniqueness of the perpendicular line, let’s suppose the contrary, that

there are two lines through the point P perpendicular to the line p. Let S be a point

on one of perpendicular lines, the line a, but not on p and not on the other

perpendicular line, the line b. By affine geometry, there is a unique line through S

parallel to p. Let S0 be the intersection point of the parallel line with another

perpendicular line b (Fig. 19):

Let P0 be a point on line p such that PP0 � SS0 Let’s observe that P0 6¼ P. Because

of the homogeneity invariance of length, since P is the point on p nearest to point S,

so the point P0 is a point on p nearest to point S0. However, since P is on the line

through S0 perpendicular to p, P is the nearest point. Thus, we get a contradiction,

that P0 ¼ P. Therefore, there is no more than one line through the point P

perpendicular to the line p. h

We will define the orthogonal projection of a point S to a line p to be the

intersection of the line p and the unique line through S perpendicular to p, that is to

say, the point on line p nearest to point S. The next theorem says that it is indeed a

projection.

Theorem 13 All lines perpendicular to a line p in a given plane containing p are

mutually parallel.

Proof In a given plane, lines a and b are parallel if they have no common points,

or they are the same lines. Let a and b be lines perpendicular to a line p in a given

plane containing p. If a and b have no common points they are parallel. Let them

have a common point S. By Theorems 11 (if S is not on p) and 12 (if S is on p) there

is a unique line through S perpendicular to p. This means that a ¼ b. So, in this case,

a and b are parallel, too. h

Fig. 19 Illustration for the
proof of the uniqueness of the
perpendicular line
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Therefore, in a given plane, parallel lines generated by a line g perpendicular to a

line p are precisely lines perpendicular to the line p.

Orthogonal projection enables us to define the scalar orthogonal projection of an

arrow onto another arrow. Let C 6¼ D, and let points A and B be orthogonally

projected on line p(CD) into points A0 and B0 (Fig. 20). Then A0B0 � aCD for some

real number a.
We define the scalar orthogonal projection of the arrow AB onto the arrow CD

to be the number ajCDj. In simpler terms, it is just the ± length of the orthogonal

projection of the arrow AB onto the line p(CD), where the sign is þ if the projection

is in the direction of CD;� otherwise. In the extreme case of null arrow CC it is

convenient to take zero for the value of the scalar projection on CC. We will denote

ABCD as the scalar projection of AB onto CD.

For two equally long arrows with the same initial point, because of the isotropy

of space, the scalar projection of the first arrow on the second arrow must be the

same as the scalar projection of the second arrow on the first arrow. This is the

content of the final axiom:

Axiom A13 jABj ¼ jACj ! ABAC ¼ ACAB (Fig. 21).

Fig. 20 Orthogonal projection of an arrow

Fig. 21 Equally long arrows AB
and AC have equally long
mutual orthogonal projections
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Now, we can define the scalar product of arrows AB and CD. It is the product of

the scalar projection of the arrow AB onto CD and the length of the arrow CD. More

formally:

AB � CD ¼ ABCD � jCDj

This operation is invariant under � relation:

Theorem 14 A0B0 �AB ^ C0D0 �CD ! A0B0 � C0D0 ¼ AB � CD.

Proof It is the consequence of the properties of projection that (i) equivalent

arrows are projected onto equivalent arrows and (ii) projections generated by the

same line onto parallel lines map an arrow onto two mutually equivalent arrows. h

Theorem 15 (properties of the scalar product of arrows)

1. A 6¼ B ! AB � AB[ 0

2. ðABþ A0B0Þ � CD ¼ AB � CDþ A0B0 � CD
3. ðkABÞ � CD ¼ kðAB � CDÞ AB � ðkCDÞ ¼ kðAB � CDÞ
4. AB � CD ¼ CD � AB

Proof

1. AB � AB ¼ ABAB � jABj ¼ jABj � jABj[ 0, because, by A9.2, for A 6¼
BjABj[ 0.

2. For the proof it is crucial that, by Theorem 13, orthogonal projection is a special

type of projection. From affine geometry it is known that for every projection it

is valid that ðABþ A0B0ÞCD ¼ ABCD þ A0B0
CD. So, ðABþ A0B0Þ � CD ¼ ðAB

þA0B0ÞCD � jCDj ¼ ðABCD þ A0B0 CDÞ � jCDj ¼ ABCD � jCDj þ A0B0
CD � jCDj ¼

AB� CDþ A0B0 � CD
3. Because orthogonal projection is a special type of projection and for every

projection it is valid that ðkABÞCD ¼ kðABCDÞ, we have ðkABÞ � CD ¼
ðkABÞCD � jCDj ¼ kðABCDÞ � jCDj ¼ kðAB � CDÞ Thus, the first claim is proved.

The second claim is an immediate consequence of definition of the scalar

product of arrows: AB � ðkCDÞ ¼ ABkCD � jkCDj ¼ jkjABkCD � jCDj ¼ kABCD �
jCDj ¼ kðAB � CDÞ

4. We will express the arrow AB as a stretched arrow of the arrow C0D0 which has

length equal to the length of CD, AB ¼ kC0D0. Now, we will apply the

previously proved proposition, Axiom A13, and invariance under � of the

scalar product of arrows (Theorem 14):

AB � CD ¼ðkC0D0Þ � CD ¼ kðC0D0 � CDÞ ¼ kðCD � C0D0Þ
¼ CD � ðkC0D0Þ ¼ CD � AB

h
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The scalar product of vectors is defined by arrows which represent vectors:

AB
�! � CD�! ¼ AB � CD

Since scalar product of arrows is invariant under � (Theorem 14) the definition

is correct, that is to say, it doesn’t depend on the choice of arrows representing

vectors.

Theorem W5 (properties of the scalar product of vectors)

1. a! 6¼ 0
! ! a!� a![ 0

2. ð a!þ b
!Þ � c!¼ a!� c!þ b

!� c!

3. ðk a!Þ � b!¼ kð a!� b!Þ
4. a!� b!¼ b

!� a!

Proof These claims, by definition of the scalar product of vectors, are reduced to

corresponding claims about the scalar product of arrows, which were proved in the

previous theorem. h

Proposition W5 about the scalar product of vectors, together with W propositions

about the affine structure of space, form Weyl’s axiomatics of Euclidean geometry.

Conversely, by Weyl’s axioms we can define in a standard way the length of an

arrow and deduce all A axioms about length. This means that A axioms of the

structure of set of points S with relation � between pairs of points, addition of

pairs, multiplication of a pair by a number and distance function of a pair:

ðS; � ;þ; �; j jÞ; where S 6¼ ;; � � S2 � S2; þ : S2 � S2 ! S2; � :
R� S2 ! S2; j j : S2 ! R

are equivalent toWeyl’s axioms of the corresponding structure of the set of points and

the set of vectors togetherwith the operation frompairs of points to vectors, addition of

vectors, multiplication of a vector by a number and the scalar product of vectors:

ðS; S!; �! ;þ; �; �Þ; where S 6¼ ;; �! : S2 ! S
!
; þ; � : S

!2
! S

!
; � :

R� S
!! S

!

Appendix

The primitive terms of the system of axioms are (i) equivalence of pairs of points

(arrows): AB�CD, with the intuitive meaning that the position of the point B

relative to the point A is the same as the position of the point D relative to the point

C, (ii) multiplication of a pair of points (an arrow) by a real number:

k;A;B 7! k � AB, with the intuitive meaning of stretching the arrow and of iterative

addition of the same arrow, and (iii) distance between points: A;B 7! jABj 2 R.

Axiom (A1) � is an equivalence relation. (by the very idea to be in the same

relative position)
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Axiom (A2) AB�AC ! B ¼ C. (by the very idea of the relative position of

points)

The definitions od inverse arrow and of adding arrows:

inverting arrow AB 7! � AB ¼ BA

inverting arrow AB; BC 7! ABþ BC ¼ AC

Because of Axiom A2 we can extend addition of arrows:

generalized addition of arrows ABþ CD ¼ ABþ BX, where BX�CD, under the

condition that there is such a point X.

Axiom (A3.1) AB�A0B0 ! BA�B0A0. (by the homogeneity principle)

Axiom (A3.2) AB�A0B0 ^ BC�B0C0 ! AC�A0C0. (by the homogeneity

principle)

Next axioms describe multiplication of an arrow by a real number.

Axiom (A4) 8k;A;B 9C k � AB ¼ AC.

(by the very idea of the multiplication as stretching arrows)

Axiom (A5) AB�CD ! kAB� kCD.
(by the homogeneity principle)

Axiom (A6.1) 1 � AB ¼ AB.

(by the very idea of the multiplication as addition of the same arrow)

Axiom (A6.2) k � ABþ l � AB ¼ ðkþ lÞ � AB.
(by the homogeneity principle and by the very idea of the multiplication as

iterative addition of the same arrow)

Axiom (A6.3) k � ðl � ABÞ ¼ ðk � lÞ � AB.
(by the very idea of the multiplication as iterative addition of the same arrow)

Axiom (A7) (the scale invariance axiom)

If AC ¼ k � AB and AC0 ¼ k � AB0 then CC0 � k � BB0.
(by the scale invariance principle)

Next axioms describe the distance function.

Axiom (A8) AB�CD ! jABj ¼ jCDj.
(by the homogeneity principle)

Axiom (A9.1) jAAj ¼ 0.

(by the very idea of measuring distance)

Axiom (A9.2) B 6¼ A ! jABj[ 0. (positive definiteness)

(by the isotropy principle)

Axiom (A9.3) jABj ¼ jBAj.
(by the homogeneity principle)

Axiom (A10) jkABj ¼ kjABj, for k[ 0.

(by the very idea of measuring along AB)

The definition of a circle:

the circle with center S and radius r is CðS; rÞ ¼ fT : jST j ¼ rg
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Axiom (A11) If a line has two common points with a circle, points A and B, then

the midpoint P of AB is the point on the line nearest to the center of the circle.

(by the isotropy principle and an idea of continuity of space)

Axiom (A12) If a line has exactly one common point with a circle,then the

common point is the point on the line nearest to the center of the circle.

(by the isotropy principle and an idea of continuity of space)

The definitions of perpendicularity of lines, orthogonal projection and scalar

orthogonal projection of an arrow:

A line a is perpendicular to a line b, in symbols a?b, if a intersects b and there

is a point S on a which is not on b such that the intersection of a and b is the point on

b nearest to S.

orthogonal projection of a point S to a line p is the point on line p nearest to the

point S.

The scalar orthogonal projection of the arrow AB onto the arrow CD, denoted

ABCD, is the ± length of the orthogonal projection of the arrow AB onto the line

p(CD), where the sign is þ if the projection is in the direction of CD;� otherwise.

Axiom (A13) jABj ¼ jACj ! ABAC ¼ ACAB. (Fig. 23)

(by the isotropy principle)

Fig. 22 Illustration for the scale invariance axiom

Fig. 23 Illustration for the
axiom A13
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