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FOREWORD

I am heavily indebted to several logicians. Professors J. Michael
Dunn and Robert K. Meyer are to be given joint credit for the im-
portant counter-example of §6. Section 11 also owes much to Professor
Dunn, as it could not have been written without the inspiration given
me by his forthcoming paper on Analytic Implication; he also provided
the proof of T9. Professor Richard Routley brought to my attention
the facts which underly the discussion of semantical extensions in

§8. To all three logicians mentioned above I am indebted for the
stimulus of their correspondence and conversation. My greatest debts
are to my teacher, Professor Alan Ross Anderson and to my teacher and
adviser, Professor Nuel D. Belnap, Jr. Most of the ideas developed
below have their source either in their published work or in their
seminars, lectures and discussions. I would like to express my sincere
thanks to both for the inspiration of their writings, the influence of

their teaching and their friendly encouragement and advice.
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1.0 INTRODUCTION
The aim of the present study is the semantical analysis
of various non-classical theories of implication or entailment: the

systems EI’ R, and related logics, Parry's system of analytic im-

I
plication and Yukasiewicz's many-valued logics. For a detailed and
profound study of the problem of entailment in both its technical
and philosophical aspects the reader is referred to the papers of
Anderson and Belnap given in the list of references, and to the com-
prehensive work Anderson and Belnap *. For background in many-valued
logics the reader may consult McCall 1967 and Rescher 1969.

Several of the ideas in the present essay have been discovered
independently by others. The semantical concepts and analyses of §§1
to 4 were conceived independently by Richard Routley (Routley *%*), as
was the analysis of negation in §8 (Routley*, Routley and Routley*).
The interpretation of many-valued logics in §10 was discovered by Dana
Scott (Scott*) at a somewhat earlier date than the author.

In the logical systems to be discussed below we use Po’ Pl’
P2, ...etc. as propositional variables. The formulas of the language
of propositional logic are built up as usual, using connectives such
as >, &,V , v. We employ the conventions of Church 1956 in abbrevi-
ating formulas. A, B, C, ... etc. are used as syntactical variables
ranging over formulas. The set of non-negative integers is denoted
by N. If S is a non-empty set a function F defined on N taking subsets
F, of S as values is a value function on S. Standard algebraic concepts

k

(e.g. semilattice, monoid, partial ordering, distributive lattice) are




used throughout. For definitions of these concepts the reader is
referred to Birkhoff and Bartee 1970, from which we have also taken

our set-theoretical notation.



2,0 RELEVANT IMPLICATION
2.1 Pieces of information

We begin with the concept of a ''piece of information" as
it is basic in most of the ensuing discussions. Let us suppose we
have a particular subject under consideration, and a language in
which to formulate discourse about this subject. It is to be assumed
that from the sentences of this language we can isolate the basic or
atomic sentences from which logically complex sentences are formed by
operations such as conjunction, disjunction and implication. Thus if
the subject under consideration were number theory the atomic sentences
would be numerical equations, if physics they would be simple state-
ments of experimental results, and so forth. A ''piece of information"
is to be thought of as an arbitrary set of basic sentences. Such a
set may be given as a finite list, or may be listed mechanically if
infinite, possibly even defined in a non-mechanical manner.

This concept is to be contrasted with two less general con-
cepts, those of an "evidential situation' and of a "possible world".
The former concept is one suitable for an analysis of intuitionistic
logic (Kripke 1965), the latter for an analysis of modal logic (Kripke
1959, 1963). An evidential situation is to be considered as a set of
facts established as true during the course of some investigation. It
must therefore satisfy the requirement of consistency. The concept of
a possible world is still narrower. As a ''possible world’ is intended
to be a total description of a situation, it must satisfy not only the

consistency requirement, but also one of completeness.




Let us suppose we are given a family S of pieces of in-
formation about some topic. What can we say about the structure of
S? At least, it would appear, we would wish to include O, the empty
piece of information, in S; further, it seems clear that if x and y
are in S so is xvy, that is, the piece of information which is the
union of x and y. Thus S has the structure of a semilattice with a
zero element. It seems reasonable to go further and require S also
to be closed under intersection, so that it would have the structure
of a distributive lattice. However, since we shall not make any use
of the intersection operation, we shall consider S only in its semi-
lattice aspect.

It is to be noted that a semilattice structure can also be
imposed on a set of evidential situatioms. If x and y are both sets
of statements established as true during the investigation of a fixed
subject, then x and y are jointly consistent, so that xvy is again
an evidential situation. It is this fact which explains why intuition-
istic logic may be analysed as a special case of the semantics for
relevant logic. On the other hand, the union operation makes no sense
when considered as applying to a set of possible worlds. In fact, one
would expect in general two distinct possible worlds to be jointly in-

consistent.

Before we can say anything useful about a semilattice S of
informational quanta, we need one further concept, namely a primitive

notion of consequence or entailment. A piece of information x will

entail or have as consequence certain atomic sentences p; we write

'BcF:‘p” if this relationship holds. For instance, we might have:



{141 = 2, 2= 1x1}F 141 = 1x1,

{John is a bachelor} t= John is unmarried, and so on. This
consequence relation is essentially logic free, that is, it holds by
virtue not of the logical complexities of the sentences involved, but
by virtue of (a) the meanings of the predicates and descriptions in
the basic sentences and (b) certain background facts assumed to be
true ((a) and (b) may not be entirely separable). This fact shows
that there is not a vicious circularity involved in defining a con-
sequence relation for logically complex sentences in terms of the basic
consequence relation. Finally, we do not postulate that if x j=p then
xUykp. The reason is that the consequence relation may be inter-
preted in such a way that x p may fail if x is supplemented by addi-
tional irrelevant statements.

The notion of consequence for complex statements can now be
defined recursively, given S and the basic consequence relation relative
to S. Let us suppose for the moment that the language is purely impli-
cational. If the consequence relation has been extended to A and B
what are the truth conditions for (A-»B)? Well, since the — connective
represents the notion of logical consequence, we wish it to be the case
that (A—B) is a consequence of x whenever B is a consequence of x and
A together. We could then write: xi{= A—B if xvu{A}=B. However,
this will not do as a formal definition. The sentence A may be logi-
cally complex, so that x v {A} would not be a piece of information. We
can nevertheless reproduce the intention of the definition in a more
general form; x = A—B if for any y in S, whenever y A then xvy =B.

This statement, which seems to reproduce exactly the sense in which —



represents deducibility, we take as the recursive consequence defini-

tion.

Those familiar with the literature of relevant logic will

recognize the provenance of this definition. It is simply the sub-

scripting requirement of the Fitch-style formulations in Anderson

1960, recast in slightly more general form. What we have been trying

to emphasize above is the naturalness and philosophical plausibility

of Anderson's condition.

We shall now restate these ideas in terms of a formal se-

mantics for a pure implicational language.
2.2 Semantics for RI
Q=(5,F) is an r-model
if
(1) S is a semilattice with zero element (0),
(i1) F is a value function on S.
We define the truth of a formula A at x in Q as follows.

1. X%Pk iff xeFk,

2. xfa A—B iff for all y in S either not yE

A or xvuy k—-d B.

A formula A is true in Q if Of= A, r-valid if true in all r-models.

Q
2.3 Axiomatization of RI'

RI is axiomatized by the schemata
1. A-aA
2. A-B—7.C5A—>.C—B
3. (A—=xB->C)—.B—.A—C

4. (A—>.A—B)—>.A—B

with modus ponens (from A and A—3B infer B) as sole rule of inference.




Let (Al""’An) be a finite sequence of formulas of R Then

I'
(A5...,A "B is defined to hold if IEIA1‘ + ++.A—B. We now

list some derived rules in terms of this definition.

afl—A
al}‘—A

DR1

where al is any permutation of a.

DR2 o~ A—>B BiA,
«,B F B

a, A,LA, B I B

DR3 a, A, B ’
a,A B

DR4 a,A—~A —A}—B°’
a,A—A A—B

DR5 — ,

a,A—B
where a, B are finite sequences of formulas. We do not establish these
rules here, instead referring the reader to the convenient subproof
formulation of RI in Anderson and Belnap 196la, in which they are
easily demonstrated.
2.4 Completeness of RI

The semantic consistency of RI’ that is, the fact that every
theorem of RI is r-valid, is easily proved. We prove semantic complete-
ness by construction of a canonical model for RI'

Let S be the semilattice of all finite sets of formulas of
RI (that is, xvUy is set union, O the empty set). Let x be in Fk if
Y{—Pk for some sequence X in which each element of x occurs once and
only once.

Let Q be the r-model (S,F).

LEMMA x €A iff XA for some X.



Proof. The lemma holds for propositional variables by definition.
Assume the lemma for A and B. Let it be the case that x|A-—B. Then

if y}a A, YA by induction hypothesis, so that X, Yy B by DR2. By

DR1 and DR3, repetitions in (X,y) may be eliminated, so that XuUylB,

hency xvy /<~ B. Hence, x [ A—>B. Now assume conversely that x}a/’

Q Q
A—B. Define N°A to be A, N°T1A to be NkA-7Nkl,& —N"A. Let m be

the least k such thatquA is not in x. Now {NQA}ﬁTA by axiom 1,
DR4 and the induction hypothesis, so xt){NmA} Fg B, by assumption.

By induction hypothesis, xtJ{NmA}r—B. Since NmA is not in x,

xx){NmAj is (y, N"A, Z), x = yuz. Thus X, A B by DR1 and DRS5,
that is, X I—A-—3B.

As a corollary to the lemma we have: Fﬁi A iff O)E:A, so
that the completeness of RI is proved.
2.5 Modifications of r-models

Before proceeding to the discussion of other calculuses
related to RI’ some easy modifications of the semantics may be noted.

Firstly, we can weaken the condition on an r-model that S
be closed under the union operation. Accordingly, an fl-model is
defined to be a quadruple Q = (S,<,0,F) where

(i) S is a set partially ordered by <, with O the least
element of S, such that whenever a finite subset X of S has an upper
bound in S it has a least upper bound UX in S,

(ii) F is a value function on S. We then define the con-

sequence relation as follows.

1. iff xeF,,

x}6=Pk k
2. x}6=A—7B iff for all y such that (J{x,y} exists either



not YFQ:A or U{x,y} }'—3 B.
Truth in a model and validity are defined as in 1.1. Completeness
follows by the results of 1.3.

Secondly, we can exploit the fact that the full semilattice
structure is not required for the proof of semantic consistency for
RI' For instance, to validate (A—.A—B)—>.A—B we do not need the
condition x ux = x; all that is needed is the weaker condition that

Q

With these facts in mind, we define an r”“-model to be a

if xux Ird‘A then x k= A,

triple Q = (S,<,F) where
(i) S is a commutative monoid,
(ii) xouxsx for all x in S, and if x<y then xvzgyv z,
(i#ii) F is a valuation function on S such that if x<y

and xcF, then yeF Truth and validity are defined as in 1l.1.

k k*
Completeness again follows from the results of 1.3, since ¢ may be
taken to be the identity relation in an r-model.

These two modifications of the semantics are not interest-
ing from a philosophical standpoint, but as we shall see below they

reduce the technical difficulties of a completeness proof when RI

is extended by the addition of certain new connectives.



3.0 GENERALIZATIONS OF RELEVANT IMPLICATION
3,1 Generalized Semantics

Although from the classical point of view RI is a very
weak calculus it can equally well be regarded as a very strong one,
the limiting case in a family of relevant implicational logics.
We now consider the consequences of weakening the semi-lattice
structure imposed upon an r-model. The calculuses defined by the
resulting semantics seem interesting and well-motivated (at least
in some cases); furthermore, some light is thrown on the exact
semantical conditions which underpin the validity of theorems in
RI.

We define an r@-model to be a structure Q=(S,F), where
0eS, and U is a binary operation defined on S. The notions of con-

sequence, truth and validity are defined as in §1.1. For future

reference we list the semilattice conditionms.

1. Ovux

x
2, xvu0 =x
3. (xvuy)uz=zxv(yuz)

4, xVUy =yuvx

5. xvx x
Let w be a subsequence of 1, 2, 3, 4, 5. Then an r@-model satisfying
the set {w} of conditions will be referred to as an rw-model. The set

of formulas true in all rw-models will be referred to as Rv. For in-

stance, Ry 1is Ry,3,57 = Ryq/57e

10



11

3.2 The System R¢I

RGI is not very interesting, as it has no theorems at all.
Let A be an arbitrary formula of R¢I' Consider Q=(S,F), where S, U
and F are defined as in 1.1, and 0={Pk} where Pk is a variable which
does not occur in A. Then Q is an r345-model; A is falsified in Q
by the variable-sharing theorem for RI (Belnap 1960b). From this it
follows that if w is contained in (3, 4, 5), then R.w is devoid of

theorems.

3.3 The System R

11
RlI is axiomatized by the schema
2., A—A

with the rules of inference
Rl. From A and A—>B infer B
R2. From A—B infer C—+A—>.C—B
R3. From A—B infer B—C —.A—C
To show completeness, consider Q=(S,F), where S is the set

of all sets of formulas, O={A: Fﬁ—' A}, xu y={B: (3 A)(A>Bex & Acy}l,
11

xeFk iff Pkex. Now if AeOux, then for some B, B—AecO, Bex. But if
B—7Ae0, B is identical with A, hence Aex. Conversely, if Aex, A—AeO,
hence AcO vx. Thus Oux=x for all x in S, so Q is an rl-model. The
simple proof that xfafA iff Aex is left to the reader.

3.4 The System RlAI

To axiomatize R

141 e add to the preceding axiom system the

schema
2. A—.A—B—B.

To show completeness, we consider the model Q given by the definitions:
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(i) S is the set of all sets of formulas x such that if A—BeO,

Aex then Bex,

(ii) o={a: fi-——- A},
141
(i1ii) =xuvy={B:(JA)(A—Bex & Aey)}
(iv) =xeFk iff Pkex.
The rule R3 ensures that S is closed under v; the schemata 1 and 2

ensure that Q satisfies conditions 1 and 4. Thus Q is an rl4-model.

To conclude the completeness proof, we must show that

X I?A iff Aex. This holds for propositional variables by construction.
Now assume that it holds for A and B, If A—>Bex then if y F—a' A, Acey by
inductive assumption so Bexuy, hence x-./yi—ao‘ B; hence xl—g A—>B. Con-
versely, let xf—é—‘ A—B. Consider y={€C:A—Ce0O}. This set is in S by

R3. Now by inductive hypothesis y}-a—A, S0 XUy }'—(‘2 B. Then for some

C, C—Bex and A—Ce0. Then by R3, C—3B—.A-7Be0, so A—>Bex.

3.5 The System R1231
is axiomatized by the schemata

Ry231
1, A-—7A
2. A—>B~—~».C—A—>.C—B

with the rules of inference
Rl. From A and A—B infer B,
R2., From A infer A—»B—¥B.

Let x by a finite sequence of formulas. We define x{B to hold if

I—ﬁi;;IAI‘? .o .An——';B, where x is (Al’ .o ’An) .

LEMMA 1. If x, BHC and+B, then xi—C.
Proof: If/ B then by R2 |-B—C—C. Hence by repeated use of schema 2,

}—-(Al—y .o .An——> .B~‘7C)——>(A1——>. . .An_7C) so by RI1, Al, .o .,An)-—C, where
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x=(Al’ooo,An)o
LEMMA 2. If x+A—B and y FA then x,yHB.

Proof: Let x=(C Cm) and y=(D D j. Assume that Cl,...,Cm

1,..., 1"", Qa

f~A—B, Dys--+»D ~A. By axiom 2, and R1, F—C1~9...Cﬁ—7(Di—7...Dﬁ—?A)
——7(DI~>...Dd—>B), so by Lz2mma 1, (qf'°"cm’Dl""’Dn)F~B'

Now let S be the set of all finite sequences of formulas,
O the empty sequence, xuy the sequence (x,y) and let xeFk iff x +Pk.

Q=(S,F) is an rl23-model. It remains to be shown that x FE A iff xHA

for all x in S. This follows easily from Lemma 2, so the completeness

of is proved.

Ri231

3.6 The System R12341

R12341 is axiomatized by simply omitting the fourth schema

from the axiomatization of 2.2.

Let x=(A Ah) be a finite sequence of formulas. xH+B

1,00.,
is defined to hold if +——— A—...A-—B. For any two finite sequences
PE n

x and y let x=y hold if x is a permutation of y.
LEMMA 1. If xt—A—B and yA then X,y B.
Proof: As for Lemma 2 in the preceding section.
LEMMA 2, If x FA and x=zy then y\A.
Proof: If suffices to prove that if x, A, B, y—C then x, B, A, y I,
as may be shown from the schemata 1 and 2..
Now let S be the set of all equivalence class [x] of finite
sequences x under the relation =, O the equivalence class of the null

sequence, [x] ulyl=[xy] and let ngk iff xFPk. Note that u is well-defined

since xzy, z=w implies xzzyw, and F is well-defined by Lemma 2. Q=(S,F)

is evidently an rl1234-model, and is a characteristic model for R12341 by
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Lemma 1.
R12341 has been treated in earlier literature. It appears

in Smiley 1959 and is discussed in Meredith and Prior 1963 with the
name BCI.
3.7 Systems with weakening and mingle

Systems with the ‘'weakening' axiom A~—>.B—A may be considered
as resulting from specializations of the semilattice semantics. The
condition needed to validate this axiom we shall designate by K;

if xeFk then xi}yeFk.
Of the systems with the weakening axiom only two seem worthy of comment,
namely R1234K and R12345K. The latter is simply the implicational frag-

ment of intuitionistic logic; the former is the system BCK of Meredith

and Prior 1963. also appears in Tarski 1956, Paper XIV where it

Ry234K
is proved that if an implicational logic contains R1234K then it has
only one consistent complete extension, if any.
A more restricted condition related to K is the condition M
" Yy, .
("mingle'): if xeFk and yeFk then XLJYSFk. RMI is axiomatized by adding

A—5.A—7A to the axiomatization of RI (see Anderson and Belnap *, Dunn
1970).
3.8 Cut free formulations

Several of the systems discussed above have elegant Gentzen-
style formulations. The most interesting case is possibly R1231 which

can be formulated as follows. The axioms are all of the form AFA.

There are two rules of inference:

B A a,B,yC
a,A2B,8,vHC

-
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o, AFB
at—A—B

— —
To show that this formulation is equivalent to the axiomatic formu-

lation of R123I’ we must prove for the Gentzen version the

Elimination Theorem (ET): If (1)a}A and (2) B,A,Y}B are provable.

so is (3) B,a,yYFB.

Proof: Let the definitions of parameter, constituent, parametric

ancestor be as in Curry 1963, p. 199. The rank of a constituent A
of a sequent is the number of parametric ancestors of A less 1.

Example: in the derivation

A-A BB
A—-B,AB
A—-B—A—-B

the rank of the lefthand constituent in the last sequent is 1, that
of the righthand constituent 0.

Let m be the rank of A in (1), n the rank of A in (2). We
first show that if either (1) or (2) are axioms then the ET holds. If
(1) is an axiom then o consists of A alone, so the theorem follows
trivially. If (2) is an axiom A is the same formula as C so ET again
is trivial. |

Now assume that the ET holds for m, n and a given formula A.
To show that it holds for the same A, m and n + 1, we observe that the
last line of the proof of (2) must be an instance of a rule in which A
is parametric. The conclusion follows from the fact that an instance
of either rule remains an instance of the same rule upon replacement of
the parametric A in premisses and conclusion by a.

Now assume ET for m, n and a fixed A. We aim to show that it

holds for m + 1, n and the same A, If the rank of A in (1) is m + 1,
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then (1) must be immediately derived by — |~ Let us suppose the
derivation to end as follows:

e—C §,D,ut—A
§,C—~D,e, u-A

By assumption, B,8,D,u,y B is derivable, hence by —> F—

e -C B8,8,D,u, y—B
B,8,CL—>D,e, 1, y}-B

That is, B,a,yI—B is derivable.

Finally, assume that the ET holds generally when the elim-
inated constituents are C and D. We shall show that it holds for C—D
when m=n=o0. In view of the preceding remarks we may suppose that
neither (1) nor (2) are axioms so that the last parts of the deriva-

tions of (1) and (2) are applications of —and -» i respectively:

(3)
a,CHD
ap—C—D
(4) (5)
Ylf""c BaD’YZ*"'B

B>C—D,Yy5 Yys B
From (3) and (5) by the ET, B,a,C, sz—B is derivable, hence by the ET
from (4) B,a,yl,yzk—B is derivable. This completes the proof of the
elimination theorem.

It is now easy, using the results of 2.5, to show the two
formulations of R1231 equivalent, in the sense that A is provable in
R1231 iffHA is provable in the Gentzen system. Thus R123I corresponds
to a rather interesting cut-free formulation -- one in which there are
no structural rules whatever.

Gentzen formulations of R12341 and RI are obtained by adding

rules of permutation and contraction.



4,0 TICKET ENTAILMENT
4,1 Introduction

Pieces of information may be ordered in a variety of ways.
One way which seems especially interesting is connected with the
varying degrees of generality which a piece of information may possess.
Let us write x<y if the piece of information x is more general than
y, or alternatively, y contains at least as much information as x.

The relation < must possess some of the properties of set inclusion,
for instance x<xuUy for any x,y. On the other hand, it would not
appear to be correct to identify ¢ with set inclusion in general.
Thus it would seem plausible that

{John's wife is sick}<{John has a wife}, while the corre-
sponding statement of set inclusion is of course false.

It would seem that A—B is a more general statement than A
or B. We therefore postulate that A—B follows from x if the appro-
priate deducibility condition is satisfied by all pieces of informa-
tion as general as, or less general than x. This idea leads to the sys-
tem TI of ticket entailment.

4.2 Semantics for T,

Q=(S,<,F) is a t-model if

(1) S is a semi-lattice with O.

(ii) < is a transitive binary relation defined on S such that
for any x and y in S if x<y then xuzgyvz, and for any x in S, O<x.

(iii) F is a value function on S. The truth of a formula A

at x in Q is defined as follows.

17



18

1. xl—a‘Pk iff xFk,

2, x}3=A-%B iff for all y in Q such that xgy either not

nyA or xuylg B.

A formula A is true in Q iff 0)3=A, t-valid if true in all t-models.
4,3 Axiomatization of TI

TI is axiomatized by the schemata
1. A—>A

2, A—B—»B—~»C—.A—C

3. A—>»B—>.C—~A—~>.C—B

4, (A—~>.A—B)—.A—B

with modus ponens as sole rule of inference,

4.4 Completeness of TI

Let T be the set of all finite sets of positive integers, U
the set of all formulas of TI. For x,y in T the relation xgy is defined
to hold if max (x) is less than or equal to max (y), where max (x) is
the greatest member of x if x#¢ and max (#)=0. Members of UxT will be
referred to as terms. A term may be written as a formula with a sub-
script, for instance Af?c{l,Z}‘ Let S be the set of all finite subsets
of UrT. For x in S, s(x) is defined to be the union of all subscripts

of terms in x. For x in S, and A in [, a proof of A from x is defined

to be a sequence of terms B1 ,...,Bn such that Bn is A and X, is s(x)
X X

1 n
and for each Bi either (i) Bi is in x or (ii) Bi is a theorem of TI
X, X
i i
and x; is empty or (iii) Bix is Dyslz’ y<z and for some C, C~--7Dy and
i

C occur earlier in the sequence. We write xJ-A if there is a proof of
z

A from x. Finally, let x<y hold for x,y in S if s(x)<s(y).
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LEMMA 1. If xFA->B, yF A and x<y then xuyi B,
Proof: Immediate from definitions.

LEMMA 2. If xu{A }}I—‘B, where k>s(x) then x HA-7B.

{k

Proof: The proof of this lemma is a straightforward adaptation of the

method used by Anderson and Belnap * §6 to show the equivalence of the

axiomatic and subproof formulations of TI.
Now consider Q=(S,<,F), where S is the set semilattice of all

finite sets of terms, < is defined as above on S and xeFk iff x}—Pk.

We prove by induction on the complexity of a formula A that xnka A iff

XA, using Lemmas 1 and 2. Thus Q is a t-model which is characteristic

for TI‘

4.5 '1‘I minus contraction

As in the case of RI the semantics of TI may be generalized by
weakening the semilattice conditions. One logic which may be treated
semantically in this way is TI—W, TI minus contraction (Anderson and
Belnap *, §8.11), which is axiom#tized by omitting the fourth schema
from the axiom system of 3.2. We define a t1234-model in the same way
as a t-model, save that § ig\tssuired merely to be a commutative monoid
with zero.

For x,y arbitrary sequences let xZy hold if x is a permutation
of y. Let T be the set of equivalence classes [a] under =, where a is
a finite sequence of positive integers; let < be defined on T as in the
preceding section. Members of the set UxT will be referred to as terms,
where (J is as in 3.3; a term (A,[a]) may be written Aa’ with the under-

standing that for instance A12=A21, while on the other hand AlZ#A122' Now

let S be the set of all equivalence classes [x] under = where x is a finite
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sequence of terms; s is a commutative monoid with zero when [x]ulyl=i{xy].
The function s(x) and the relation x¢y are defined for x and y in s by
analogy with 3.3, as is the notion "proof of A from x", where x is a
finite sequence of terms. For such an x, let [x]/A hold if there is

a proof of A from x.

LEMMA 1. If [x]A—B, [x]<[y] and [y]j—~A then [xyli-A

Proof: As in 3.3.

LEMMA 2. If [x]L)[Ak]f—B, where k>s(x), then [x]}A->B.

Proof: By hypothesis there is a sequence of terms Cl ""’Cn which

a a
1 n

is a proof of B from x, Ak. We proceed in two stages to convert it into

a proof of A—B from x. First, delete from the sequence all Ci where
a

i .
k occurs more than once in a,. The resulting sequence {Di } is7still a

3

proof of B from x; for k can occur at most once in any term from which

Dn = Bs(x) v [k] is derived. The second part of the conversion then

a
n

proceeds as in Anderson & Belnap * §6.
Let Q=(S,<,F) where [x]eFk iff [x]k-Pk. Q is shown to be a

characteristic model for T._-W by use of the two lemmas.

1
4.6 TI minus contraction and permutation

Q=(S,<,F) is defined to be a t1l23-model if S is a monoid, F
a value function on S and < a binary relation on S such that for all
X,¥,z in s, 0<x and if xuy<z then y<z and xsyllz.
Truth and validity are defined as usual.

T1231 is axiomatized by the schemata
1. A-A
2, A—-3B—.C—A-—»C—B

with the rules of inference
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Rl. From A and A—B infer B

R2. From A—B infer B—~C—>.A—C

Let Ube the set of all finite sequences of positive integers,
and for x,y in U let x<y hold iff either x is empty or y is non-empty
and xy is a consecutive sequence. Let S be the set of all finite se-
quences of terms in FxU and for x in S let s(x) be the sequence ob-
tained by concatenating subscripts in the order in which they occur in
x. For x,y in s let x<y hold if s(x)ss(y). A proof of A from x may
be defined as in 3.4. Now let x/A hold if there is a proof of A from
x and s(x) is a consecutive sequence.
LEMMA 1. If xHA—B, yl~A and x<y then xytB.
LEMMA 2. If x, AkF-B and s(x)g<k, then x|-A-7B.
Proof: The proof is parallel to that of Lemma 2, 3.4.

Now let xeFk iff x P Q=(S,<,F) is a t123-model, and by

k.
the two lemmas above, characteristic for T1231°

One final system related to TI may be mentioned here, that
which arises by adding the requirement x<y iff xu y=y to the definition

of a t-model. This condition validates all theorems of S&I; we conjecture

that the condition characterizes S4I.



5.0 ENTAILMENT
5.1 Introduction
To motivate the semantics of entailment, let us return to
the considerations of 1.0. We supposed given a primitive, logic-
free consequence relation holding between pieces of information and
atomic sentences, which holds by virtue of (a) the meanings of words
in the basic sentences and (b) certain background facts. Now in R

I

and TI the set of background facts is tacit; it is considered fixed
or invariable. However, if we take into account the idea that there
may be alternate sets of background facts the picture changes. For
instance, the statement "Richard Nixon likes Billy Graham" follows
from the piece of information {The President of the U.S.A. likes
Billy Graham}, given the background of facts of actual events in 1971,
but it would not follow against a background in which, say, Hubert
Humphrey was President. In other words, the fundamental notion for
entailment is not simply logical consequence, but logical consequence
relative to a set of background facts. In what follows we shall use
the term 'possible world" instead of the clumsier ''set of background
facts."

Given a class W of possible worlds, one further concept is
required to determine the truth conditions of complex statements,
namely a relation R of relative possibility defined on W. We now proceed

to a formal definition of wvalidity.

5.2 Semantics for EI

Q=(S,W,R,w,F) is an e-model if

22
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(1) S is a semilattice,

(ii) W is a set with weW, R a transitive reflexive relation
on W,

(iii) F is a value function on S X W.

The truth of a purely implicational formula at xeS, ueW is defined as

follows.
1. x, u}s’Pk iff (x,u)eF,,
2. x, uiaf A—>B iff for all y in S, v in W, if uRv and

y,vFa—A then x vy, vf—a=B.
A formula A is e-valid if O, w]g’A in all e-models.
5.3 Axiomatization of EI
A convenient axiomatization of EI is provided by the axiom
schemata
1. A—>A—->B—5B
2. A>B—=>B—=C 2 A—C
3. (A—.A—>B)—.A—B

with modus ponens as sole rule of inference. As usual we leave it to

the reader to prove semantic consistency.

Let S be the set of all finite subsets of N and T the set of

all terms Ax with A a formula of EI and x in S. Now let W be the set

of all u such that P
(a) u is contained in T,
(b) The union of all subscripts in u is finite,

(¢) 1If lﬁ; A then A¢su
(d) If A-5B_, A eu then B___ceu.
x* Ty xuy

For u,vew let uRv hold if for all A, B, x if A*-)BX is in u
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then A-—eBx is in v.
For X a finite set of terms let a proof of a term A.y from
>( be defined as a sequence of terms such that each term in the se-

quence is either in }(or is C¢ where fg C or is derived from preceding
I

terms according to the rule (d) above, and such that the last term is
A . Now for u in W let u' be the set of terms Af?Bx in u; let k be a
number greater than any occurring in any subscript in u. Define

P(u,Aqy) to be {B: There is a proof of By from some X< uu {Ay,H.

{k

LEMMA: If Bx¢{k} is in P(u,A{k}) then A—B_ is in u.

Proof: The proof is a variation on the proof of equivalence of the

axiomatic and subproof formulations of EI in Anderson & Belnap 1961a, *.
Let w be {sz FE;A}, and let (x,u)eFk iff kaeu. Then

Q=(S,W,R,w,F) is an e-model. By an inductive argument using the lemma

we show that x,ul6=A iff Axeu, so that Q is a characteristic model for

EI.

5.4 vVariations on a modal theme.

EI is only one of a family of logics. One group arises by
leaving the semilattice requirement fixed but altering the conditions
on the relation R. For instance, we may simply require that R be re-
flexive. The resulting implicational logic, EMI, appears to be rather
tricky to axiomatize. Like its classical counterpart MI, EMI seems to
require complex rules of inference (see Hacking 1963), as many implica-
tional principles are present in it only in the form of rules. Rather
more interesting is the logic E5I which arises by requiring R to be an

equivalence relation on W. The schema A—(A—>.B—+C)—.B—C is valid in

ESI though not in EI' It is conjectured that the addition of this schema
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to EI results in an axiomatization of ESI.

Evidently, we may also vary the semilattice conditions
freely and independently. The author has not investigated the result-
ing family of logics in detail, and leaves such experimentation to the

reader.



6.0 CONJUNCTION
6.1 Classical Conjunction
To treat classical conjunction we define relative to an

r- or t-model:

x[5=A&B iff xisiA and x§3=B, and relative to an e-model:

x,ufa;A&B iff x,u;i'a—A and x,u;zéB.

The systems RIC’ P_ . are axiomatized by adding to the axiomatizations

IC
of 1.2 and 3.2 the schemata:

5. A&B—A

6. A&B—B

7. (A—=>B&A—>C)—y(A—7.B&C)

and the rule of adjunction (from A and B to infer A&B). The same

extension of the implicational fragment provides a complete axiomatiza-
tion of the IC fragment of all logics axiomatized in §§1-3 with the

exception of R¢I In each case the completeness proof is a straight-

forward modification of the proof for the I fragment. It is to be

noted that in the case of R1IC the inference rules of 2.2, which are

redundant in RlI are essential in the extended calculus.

In the case of EIC we must add in addition to schemata 5-7

and the rule of adjunction the schema

8. (NASNB)->N(A&B), where NA=df A-sA->A. With this additionm,
a modification of the argument of the 4.2 suffices to prove completeness.
6.2 Intensional Conjunction

The semantics of RI extend to include "intensional conjunction"

c

or "joint consistency" by the consequence definition:
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xra'AoB iff for some y,z,x=y vz and yf-a—‘A and zra‘B.
This definition validates the schema

9. (A—.B—>C)<>(A0B~C)
where A<sB=df (A—B)&(B—»A). The author conjectures that the addition
of 9 gives a complete system. We can give an easy completeness result
by using the modified models of 1.4. Relative to an r”“-model Q let
the valuation rule for & be as usual, and let

x[—EAoB iff for some y,z,y uz<x and y'fQ=A and z#a B.
It is also convenient to introduce a constant t, for which the rule is:

xia"t iff Ogx.
For the constant t we have the valid schema:

10. A«>(Aot)
The set of valid formulas in —,&,0 and t we shall denote by R"Ith.
We claim that this set is axiomatized by adding the schemata 9 and 10
to RIC' Before giving the proof, we list some theorems derivable in the
axiomatization, whose proofs we leave to the reader.

Tl. (&B&C4>D)—>(AoCé>BoD)

T2. Ao(BoC)—(AoB)oC

T3. AoB<¥BoA

T4, A—>AoA

T5. (A—B)—>(AoC—»BoC)

T6. (A—B&C->D)-(AoC->BoD)

Now let S be the set of all non-empty equivalence classes of
formulas of R"Ith under provable equivalence. Let the equivalence class
of A be A. We define AuB as AoB; this is a valid definition by Tl. Let

0 be T, AsB iff FB—A and AcF, iffrA->P

k K’ Schema 8, together with T2-T6,
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ensures that Q=(S,<,F) is an r°“-model. The completeness proof is
concluded by showing that for any A, B, K% B iff FA—B, the proof
of which we omit.

The semantics for E__, extend similarly by the rule:

IC

X, ukE= AoB iff for some y,z,x=yvz and y,ul= A and z, ufz B.

Q Q Q
With this rule, T1-T6 are validated, as is (A—.B—>C)-—~.AoB—C. The

converse of this last schema is invalid.



7.0 DISJUNCTION

It would seem that the extension of the semantics to include
disjunction is as unproblematic as the extension to conjunction. We
define in an r- or t-model:

xf—a‘-‘AvB iff x}?A or xf=6 B,

and in an e-model:

X,u }a‘AvB iff x,uf—-d-*A or 1»:,uir6~ B
These rules validate the schemata:

11. A-—>.AvB

12. B—>.AvB

13. (A—>C&B—C)—~.AvB—C

14, (A&(BvC))—>.(A&B)VC
Thus all theorems derivable from the negation~free axioms of E, R and
T are valid in the appropriate senses. It seems plausible to conjecture
that these negation-free fragments are complete with respect to the
semantics. Surprisingly, this conjecture is false. A counter-example,
due to the joint effort of J. Michael Dunn and Robert K. Meyer is
provided by the schema

15. [(A—A)&(A&B—>C)&(A—>.BvC) ]—>.A—>C which is r-, t- and
e-valid, but not provable in R. Its independence in R may be shown by
the matrices in Anderson and Belnap *, §22.1.3; give A the value +3, B
the value +0 and C the value -0, so that 15 takes on the undesignated
value ~3. A slightly simpler schema:

16. [(A—*.BvC)&(B->D) ] (A—.DvC) is also valid under all

three definitions but may be shown independent in R by using the same

matrices and giving A, B and C the same values as before and D the

29
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value -0. The first schema is easily deduced from the second in
the context of T with the help of the distribution axiom.

The program of semantical analysis thus breaks down in the
presence of disjunction, and this failure appears irreparable. There
seems to be no plausible substitute for the obvious evaluation rule
for disjunction. It follows that the evaluation rule for implication,
though completely successful where implication alone is concerned,
must be basically altered if the full systems R, T and E are to be

treated.



8.0 A GENTZEN SYSTEM

Although we have failed to provide a correct analysis of
any of the major intensional logics, the systems defined by the
semantics appear independently interesting and well-motivated. The
problem of axiomatizing these systems when disjunction is included
has not been solved in any instance. However, as we now show, the
set of r-valid formulas in—», & and v can be provided with a kind
of "Gentzen formulation,"

The basic formal objects of the system which we shall call
RD are sequents ahB where o and B are sequences (possibly eméty) of

terms. The axioms of RD are all sequents of the form

a, AX’ By, Ax’ s.

The rules of RD follow.
- a,A*%Bx, %FﬁY,'Ay a,Au?Bx, B, Bx;;yf—Y
i o, A>B_, BFY

G, A{k}I—B’ A>ﬁBx’ Ys Bxu{k}

- -
a8, A--?BX’ Y

where k does not occur in x or in any subscript in a, B or vy.

a, A&Bx, B, Ax’ Bxp_y

&+ o, A&B , BrYy
X
. o B, A&Bx, Ys A.x aiB, A&Bx Ys Bx
= at-B, A&B_, ¥
- a, AvB_, B, A p-¥ a, AvB_, B, B {-¥
Oy Ava, B Y

a B, Ava, Y, Ax’ Bx

v a8, AVBxs Y

OQur main object is to prove the following completeness theorem,
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T1. L_A¢ is provable in RD iff A is r-valid.

Proof: We first show that a proof of}‘A¢ in RD shows A to be r-valid.
This is done by correlating the sequents of RD with statements about
validity of formulas in r-structures. In a sequent a}-8 replace each

term A{ by the statement xaLl...ufxm FE‘A. Then let S(a F8)

yeeoym}
be the statement "For any r-structure Q, if all statements in a are
true, then at least one statement in B is true.' We may now prove
that if a8 is provable in RD then S(a -B) is true, hence that iff—A.¢
is provable, A is r-valid.

To complete the proof, an algorithm is described which con-
sists of a systematic attempt to construct a proof of a sequent. If
the attempt fails the algorithm produces a falsifying r-model. The
idea is to start with a given sequent FA,, then apply the rules of
RD in reverse, thus producing a growing tree of sequents. First, some
definitions. A term Ax occurring in a sequent a B is said to be dis-
charged if one of the eight conditions hold: (1l)alB is an axiom of
RD, (2) Ax is B—C_,occurs in B and for some k, B{k} is in o and Cx~4{k}
is in B, (3) Ax is B—?Cx, is in o and for all y contained in w, either By
occurs in B or Cxuy'is in a, where w is the union of all subscripts in
a8, (4) Ax is B&Cx’ is in o and Bx and Cx are both in a, (5) Ax is B&Cx’
is in B and either Bx or Cx is in g, (6) Ax is BVCX, is in o and either
Bx or Cx is in o (7) Ax is Bvi, is in g and both Bx and Cx are in B,

(8) A is a propositional variable. Otherwise, Ax is undischarged. The

rules for the algorithm follow.
Stage 0. Start with PAa as the origin of the tree.
Stage 2n. Apply the appropriate rule of RD in reverse to the leftmost

undischarged term in the tree which is not an implication on the right
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of a sequent. For instance, let A&Bx be the leftmost such term,
occurring in o in afB8; we add to the end of the branch a new se-
quent which is a premiss for an instance of & f—in which A&Bx is the
principal constituent. This stage must eventually produce a tree in
which all terms are discharged, with the possible exception of arrow
terms on the right of sequents. The reason for this is that no new
subscripts are introduced in the stage, while applications of the
rules in reverse produce only formulas of lesser complexity than the
formula in the term to which they are applied. When this occurs, proceed
to stage 2n+tl.

Stage 2nt+l: Applyi—-—>in reverse to the leftmost undischarged term.
Proceed to Stage 2n+2,

Three possibilities arise. First, the algorithm may ter-
minate, producing a tree in which all end sequents are axioms. Second,
the algorithm may terminate, but in the resulting tree, at least one
end sequent is not an axiom. Third, the algorithm may fail to ter-
minate (for an example, apply it to F—A-eB-€A—¢A¢). In the first case,
the tree is a proof of F-A¢ in RD. 1In the last two cases it must be
shown that the resulting tree (in the last case, an infinite tree)
provides an r-model in which it is not the case that O Fa A.

In the second case at least one branch of the tree ends in
a sequent which is not an axiom, but in which all terms are discharged.
In the third case, it follows by Kénig's lemma that the tree has at

least one infinitely long branch. Let us call either type of branch a

full branch. A term is said to occur on the left (on the right) of a

branch if it occurs on the left (on the right) of some sequent in the
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branch. Let S(B) be the union of all subscripts occurring on a
branch B.

LEMMA 1 If B is a full branch then (1) No term occurs on both the
left and right of B, (2) if A~?Bx occurs on the left of B then for
all y contained in S(B) either Ay occurs on the right of B or BxL/y
occurs on the left of B, (3) if Aw"Bx occurs on the right of B then

for some y contained in S(B) Ay occurs on the left and Bxuy on the
right, (4) if A&Bx occurs on the left, both Ax and Bx occur on the

left, (5) if A&Bx occurs on the right either Ax or Bx occur on the
right, (6) if Ava occurs on the left either Ax or Bx occurs on the
left, (7) if Ava occurs on the right both Ax and Bx occur on the

right.

Proof: Part (1) follows from the fact that terms occurring on either
side of sequents occur on the same sides of dominating sequents. If

B is finite (2) to (7) follow from the fact that all terms in the end
sequent of B are discharged. Assume that B is infinite. Let A-—-yBx
occur on the left of B and let y be contained in S(B); then there is

an earliest stage n at which Af—7Bx occurs on the left of a partial
branch B” contained in B and y is contained in S(B”). Then since at

the next even stage after n A-ﬁBx is discharged, either Ay occurs on

the right or Bxuy occurs on the left of B. Let A-—->Bx occur on the
right of B. Then since B is infinite, at some stage 2n+l A->Bx is the
leftmost undischarged term in a branch B” contained in B, so that it

is discharged at stage 2n+l, proving (3). Parts (4) to C’) in this case
follow from the fact that all terms save arrow terms on the right are

discharged during even stages.



35

Now let S be the set of all finite subsets of S(B), and

for x in S, let xeFk iff Pk occurs on the left of B. Then QB=(S,F)
x

is an r-model.

LEMMA 2. If A_occurs on the left of B, xéa; A; if A_ occurs on
the right of B, not xta; A,

Proof: For propositional variables the result holds by definition;
the inductive step follows by Lemma 1.

Hence, if the algorithm fails to produce a proof of f‘A¢
in RD, thenI—A¢ appears on the right of a full branch B, so Oia; A
is false. This proves Tl.

The success of the Gentzen formulation with respect to
completeness, however, does not seem to bring us nearer to providing
a standard axiomatization of the set of all r-valid formulas. The
difficulty is that there is no apparent way to translate the sequents

of RD into the language of R. (A translation is, however, possible

where implication alone is concerned -~ see Urquhart *).



9.0 NEGATION

Negation, after implication, poses the most interesting
problems in the context of intensional logics. It is involved
essentially in two of the most notorious 'paradoxes of material
implication', (A&A)—B and A—>(BvB). Any account of negation in
intensional logics must at the very least avoid rendering these
schemata valid.

This fact immediately rules out what could be called the
classical valuation rule for negation:

(.C) xlﬁ=mA iff it is not the case that x}6=A, which
validates both paradoxes. Their validity can be traced to two con-
sequences implicit in the classical rule. If this rule truly de-
scribes the behaviour of the negation connective then all pieces of
information must be both consistent and complete. Neither property
however, necessarily attaches to a piece of information, as was argued
informally in 1.0.

We therefore have to provide a rule for negation which is
consistent with the existence of inconsistent and incomplete pieces of
information. At the same time, if we wish to follow the lines of the
axiomatization of intensional logics provided by Ackermann, Anderson,
Belnap and others, we must strive to preserve many laws ordinarily
considered characteristic of classical negation (for instance, the
law of double negation). This aim is partially fulfilled by an extension
of the concept of an r-model.

Let Q=(S,*,F) be an r*-model if (1) (S,F) is an r-model and
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(2) * is a function defined on S such that 0%=0 and for any x in S,
x**=x, Then if Q is an r*-model, negation is treated by the rule:

(V) xlg ~A iff it is not the case that x*\? A,
Similarly, Q=(S,*,W,R,w,F) is an e*-model if (1) (S,W,R,w,F) is an
e-model and (2) * is a function defined on S satisfying the above
conditions. The rule for ~ in an e*-model is:x, ulS’NA iff it is
not the case that x*, ulafA.

These definitions have many of the right features. For in-

stance, let $={0,a,b} and let « and * be defined by the tables

uvloab >l
0 O0ab 0|0
alaab a|b
b| bbb b a

Let Fl={a}, F2={b}. As may easily be checked, Q=(S,F) is an r*-model,
where F is otherwise arbitrary. Furthermore, Q falsifies both paradoxes
mentioned above, as well as the principle of the disjunctive syllogism
(NPl&(PlvPZ))~aP2.

We can actually state something stronger. The zero- and first-
degree entailments which are r*-valid are exactly those provable in R,
or equivalently, in E or T. This fact can be proved by introducing an
auxiliary concept. Q=(S,0,*,F) is a *-model if 0eS, * is a function
on S such that 0*=0, x**=x and F is a value function on S. The recursive
valuation rules for &, v, ~ are as for r*-models, but —is dealt with by the
rule: xf6=A~§B iff for all y in S, if y}3=A then y}arB. A formula A
is *-valid if 0}3=A for all *-models. A first-degree formula is one
which contains no nested arrows.

Theorem. If A is a first-degree formula, then }E‘A iff A is #*-valid.
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Proof: A proof of this theorem is to be found in Routley *. It may
also be derived by combining the completeness results of Belnap 1967
with the representation theorem of Bialnycki-Birula and Rasiowa 1957.
In view of the above theorem all that remains to be shown
is that a fdf (first-degree formula) is r#*-valid iff *-valid. The
implication from right to left is trivial. Now let A be a *-invalid
fdf, so that A is falsified in a *-model Q=(S,0,*,F). Let f be any
one-one map of (S,0) into a set semilattice S”. For xef(S), let x*~
=f((f-l(x))*), xeF'k iff f-l(x)eFk. For x in S‘-f(S), let x*=x, xeF'k
iff OeF’k. Then Q°=(S°,*",F”) is an r*-model. We observe that for B
a zero-degree formula, fofB iff fx l—d_-, B and for x in S°-£(S), x F&, B
iff 0 fﬁ B. It follows that if B is a fdf, 0 }f; B iff O }5—: B.
Hence, the *-invalid formula A is falsified in Q~-. Thus we have shown
that the r*-valid fdfs coincide exactly with those provable in R.
However, when we go beyond the first-degree fragment even
semantic consistency fails. The schemata A-3B—>.B—~A (contraposition)

and A~A-»>A (reductio) are both r*-invalid, though they are both axiom

schemata of T. Let S={0,a,b,c}, let U and * be defined by the tables

U| 0abec Xy
0] O0Oabe 010
ajaacec a|b
bjibecbec b| a
c]ccce c| c

and let F1={b}, F2={c}. Then Q=(S,*,F) is an r*-model which falsifies
both P2—>~Pl—+.Pl—>wP2 and P1T7~P1<>NP1.
Of course, it is possible to postulate a variety of negation

for which these two principles are assured. Q=(S,C,F) is an rf-model
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if (S,F) is an r-model and C is a subset of S. The valuation rule

for negation is:

(vf): xﬁf‘hA iff for all y in S either

not y}6=A or xuy is in C.

The rf-valid formulas in which only — and v appear can be axiomatized
by adding reductio and contraposition to RI' let S, F be as in 1.3,
and let x be in C iff for some A, A is in x and for some ordering
;ZTZ} of xv{A}, ;;TKEE~NA. It is then easy to show that (S,C,F) is

a characteristic model for this axiomatization.

The rule (vf) invalidates principles like “WwA—>A, AvvA and
~(A&B) —.VAvvB; in general, no formula is rf-valid which is not provable
in the minimal logic of Johansson. This fact is incompatible with
logics like E and R which contain theorems pointing towards a classical
or non-constructive interpretation of negation.

We have so far failed to find an extension of the concept of
r-validity suitable for such logics as the full system R. If could be
that we have not been ingenious enough. However, it is possible to
show that on certain plausible assumptions this is not the case. A
simple argument shows that if the class of possible extensions is
limited in a fairly weak way no suitable extension exists. Let us say
that a model (Q,T) is an expansion of an r-model if Q i% an r-model
and T is a sequence of relations and functions defined on S, the domain
of Q. Now let us suppose that the concept of r-validity has been ex-
tended in the following sense: a class of models -- call them rn-models
—- has been defined, each rn-model being an expansion of an r-model, and

the consequence relation relative to an rn-model has been defined, leav-

ing the consequence definitions unchanged for the positive connectives.
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Further, let it be the case that each r-model has an expansion
which is an rn-model. Then not all theorems of R are rn-valid.
The reason is that if the concept of r-validity is extended as
above, then every rn-valid negation-free formula is also r—valid.
However, if all theorems of R are rn-valid, since the schema QHD :
must also be rm-valid, then (by some simple manipulations) the
schema ((A&B~>C)&(D->B))—->(A&D—>C) must be rn-valid. It is not,
however, r-valid, which contradicts the original supposition.
Hence, any extension of the positive semantics satisfying the
stated conditions must fail to validate some theorems of R.

So far we have discussed only the technical aspects of
an attempt to extend the notion of consequence to include negation.
A philosophical analysis may disclose some of the deeper reasons
underlying the purely formal difficulties discussed above. Let us
call the negation operators whose valuation rules are (ve), (v¥)
and (vf) c-negation (classical negation), *-negation and f-negation
(constructive negation) respectively. Of these three, f-negation
has an immediate intuitive interpretation. The meaning of the con-
structive negation operator may be summed up by saying that A is
a consequence of x just in case A is refutable from x (Curry 1963,
Ch. 6). A sentence A is refutable from a piece of information x
just in case an obvious absurdity (e.g. '1=2"") can be deduced from
A and x jointly. What is considered to be obviously absurd will
depend on context. In any case, if we read "x is in c" as "an
obvious absurdity is deducible from C" then the above discussion

exactly describes the content o the rule (vf).
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It is important not to confuse refutability with non-
deducibility. For instance, it is clear that

Ok Xanofon Xatjoules likes lobster is false. On the
other hand we cannot say that Xanofon is not fond of lobster,
given no information about Xanofon and his preferences. This
is a distinction familiar from intuitionism -- from the construc-
tive point of view an undecided conjecture is neither true (provable)
nor false (refutable).

If we keep this distinction in mind, the other two
varieties of negation seem by contrast to be lacking in intuitive
content, at least within the framework of the informal interpreta-
tion which we have developed in conjunction with the formal semantics.
C-negation interprets negation in terms of non-deducibility. It is
clear from the example of the last paragraph that this is quite im-
plausible in the present framework. Similar criticism applies to
*-negation. The requirement 0%=0 (which is needed to validate
classical tautologies like AvvA) shows that at least in the case of
0, refutability is interpreted as non-deducibility, so the argument
again applies.

This philosophical analysis does appear to provide a par-
tial explanation for the results of our purely formal investigatioms.
The philosophical analysis, however, is only as good as the set of
concepts and presuppositions in which it is conducted. It is possible
that a quite different array of informal concepts exists within which
*-negation would appear as the most natural analysis of negation.

If the basic semantical concept is that of a possible world,
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then the rule of c-negation is the only possible choice. The rule
(*v) seems to be closer to the classical than the constructive
approach. This fact suggests reinterpreting the elements of an
r*-model as possible worlds rather than pieces of information, O
being interpreted as the actual world and "x A" being read as "A
is true in world x." Or rather, one wishes to say that the elements
of an r*-model are almost possible worlds; those elements x for
which x*=x are possible in the sense of being actualisable, while
those for which x*#x are conceivable if not actualisable, as they
follow certain regular laws in spite of being inconsistent or in-
complete. This, at least, corresponds to the interpretation given
to the rule (*\) in Routley & Routley*, However, although this
interpretation has a certain plausibility, it is difficult to see
what meaning can be attached to the U or * operators. Nor is it
easy to see in what sense inconsistent ''worlds' are conceivable.
Routley and Meyer, using a valuation rule for implication
which is a generalization of the rules used above and the rule (v¥)
for negation, have succeeded in providing completeness proofs for R,
T and other relevant logics. The reader is referred to Routley and

Meyer *, *%, **% for the details of these and other important results.



10.0 PARADOXES OF IMPLICATION

The systems of intensional logic were expressly devised
to avoid the so-called "paradoxes of material implication.'" A
semantical analysis of these systems should throw light on these
paradoxes, and on the reasons underlying their acceptance or rejec-
tion.

Anderson and Belnap * distinguish fallacies of relevance
and fallacies of modality. The archetypical examples of the former
and the latter respectively are:

#1. A-2.B—>A

#2. A—>.A—7A—A
In terms of our semantics a fallacy of relevance might be defined as
a theorem of intuitionistic logic which depends essentially on the
condition K(§2.7). A fallacy of modality may be defined as a formula
which is valid only when the structure of possible worlds is ignored.
Further categories of fallacy can be distinguished:fallacies of con-
sistency could be defined as those formulas which would be valid
only if inconsistent pieces of information were not admitted, for
instance (A&vA)—~>B., Fallacies of completeness could be defined as
those which depend on the condition that all pieces of information --
or possible worlds -- have as consequence every statement or its nega-
tion; an example would be A—.Bv\B.

These categories of fallacies are mutually independent.

We can add a consistency requirement to the definition of an rf-model,

thus producing a logic which is a relevant version of intuitionistic

43



44

rather than the Kolmogorov/Johansson minimal logic. This logic has
none of the categories of fallacy save those of consistency and
modality. A similar version of ef-models would produce a logic
with fallacies of consistency alone. In possible-world semantics
for modal logic we may replace the classical negation rule by (*v),
thus producing a logic which lacks paradoxes of consistency and
completeness, but contains fallacies of relevance. Routley * carries
out this proposal in detail for the case of the modal logic S3.
Noting that the set of rf-valid formulas contains fallacies of mo-
dality without any from the other categories, we may conclude that
each variety of fallacy with the possible exception of fallacies of
completeness can be incorporated in a coherent system which excludes
all other categories of fallacy.

In any case, the analysis given above indicates that there
are at least two intuitions underlying the rejection of the fallacies.
That is, the rejection of the rule K as governing the consequence rela-
tion, and the acceptance of "badly behaved" (i.e. inconsistent or in-
complete) elements in a model appear to be distinct commitments.

Our view on the validity of the paradoxes, then, may depend
on what we require our logic to do. In mathematical argument, for in-
stance, we make the idealising assumption that our reasoning does not
lead to contradictions, so ruling out contradictory pieces of informa-
tion. However, if we were investigating the formal logic of knowledge
and belief, inconsistent pieces of information would be of great in-
terest and importance. The paradoxes of relevance similarly may or

may not be viewed as important depending on our purpose. From the
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classical point of view a mathematical theorem is a self-sufficient
truth -- how we establish its truth is of no importance provided

the arguments are sound. From this point of view to infer "If B

then A" from "A" is not unsound, though somewhat pointless. How-
ever, there is another point of view on mathematical statements,

that of intuitionism. Intuitionistically, a mathematical statement
is not a self-sufficient entity —- it is rather a highly compressed
and inadequate shorthand indication that a certain construction has
been effected (Heyting 1956, p. 8). The classical view of logic is
that it is made up of statements which are true under all possible
circumstances; in contrast, the logical truths of intuitionism rep-
resent proofs and methods of construction applicable in all contexts.
1f, then, we regard the purpose of a logical calculus as the repre-
sentation of constructions or proofs rather than truths, it is clear
that the stronger a logic is (from the classical point of view) the
less adequate it is from our point of view. If we allow the rule of
weakening, we "blur" the representation of proofs so far as to obscure
what premisses are actually used in an argument, and form its core.
It can be plausibly argued along these lines that the most adequate
logic, from the point of view of proof representation, would be some-

thing like R Although excessively weak from the classical stand-

123°
point, R123 exactly represents proofs in the sense that a theorem of
this logic displays exactly the number and order of the non-logical
premisses used in a proof. To put it another way, if we adopt the
intuitionistic viewpoint with regard to logic, the omission of the

paradoxes of relevance appears not as an arbitrary excision of odd-

seeming but harmless principles, but as a natural consequence of the



attempt to represent proofs and constructions as accurately as

possible in a formal system.
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11.0 MANY-VALUED LOGICS
11.1 Introduction

Developments in model theory over the past two decades
have shown the fruitfulness in non-standard logic of the general
concept of a "'model-structure" consisting of "points of reference'
or "indices" at which formulas are evaluated (for a general formu-
lation see Cresswell 1971, Montague 1968). In view of these devel-
ments, it is surprising that the many-valued logics of Fukasiewicz
have not been fitted into this general framework, as they were per-
haps the first non-standard logics to be investigated in depth. In
the present section we attempt to £i1l1l this gap by presenting a
tense-logical interpretation of Jukasiewicz's matrices, incidentally
revealing a surprisingly close connection between these matrices
and our earlier semantical analyses of implication and negation.
11.2 Model theory

For neN let Sn={xeN:o$x$n}. A valuation over Sn is a

function F defined on N such that

(i) ch_: Sn

(ii) 1I1f xeFk, yeSn then yeFk.
For x in Sn’ F a valuation over Sn’ A a formula in — , v, the conse-
quence relation xk%-A (read "A is assertable at x under F") is defined
recursively as follows.

1. xj Pk iff xeFy
2, xf%‘NA iff it is not the case that (n-x)#% A

. F . , . . F
3. xf AB iff for ally in S_, if xty is in § and y}'—ﬁ- A,
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then (xi-y)}{—- B.
LEMMA. If x]% A and x<y the y;:% A,
Proof. By induction on the complexity of A, using the fact that if
x¢y then n-y<n-x and xtzgytz.

Note that if, following Fukasiewicz, we define Av B as
(A>B)—>B and A&B as “v(“A v B) then the derived semantical conditions
are

4, x%— AvB iff x)‘% A or x(:——rF; B,

5. x= ASB iff x/2 A and xj B.

A formula A is n-valid, 4 A, if 0}% A for all valuations
F over Sn’ and w-valid, tT_J A, if ﬁ A for all n,
11.3 Informal Explanation

The elements of Sn can be regarded as moments of time, with
n, the last element in Sn’ some fixed future date, while O is inter-
preted as the present moment. The statement "x}.ﬁF_—A" can be read "A
is assertable at moment x." A proposition may or may not be assert-
able at a given moment; for instance, a proposition about some future
event may or may not be assertable now. However, if A is assertable
now it is assertable at all later times. This means that in the present
context we do not think of propositions as temporally indefinite (e.g.
"Abraham Lincoln is President now') but as temporally definite (e.g.
"Abraham Lincoln is President in 1971 A.D.") So far, our informal
explanation is in line with the philosophical motivation given in
Fukasiewicz 1930. The connectives —> and v, however, do not appear
to correspond to the standard interpretations of implication and nega-

tion. The standard interpretation would be embodied in the rules:



49

xt%-AvaB iff for all y in Sn, if x¢y and ykg A then YF% B;

F F
A iff i — A.
xﬁi iff it is not the case for some y in Sn that yfa A

(Note that for not — A to be assertable at x it is not sufficient
that A is not assertable at x —— it must be the case that A is never

assertable.) By contrast, in the present interpretation of Fukasiewicz's
systems A—B is assertable at time x iff whenever A is assertable at
time y, B is assertable at time xty, i.e. at a time x instants in the
future of y. The statement “A is assertable at time x iff A is not
assertable at the instant which is x instants in the past of the last
moment in the temporal series. Thus both the "implication" and ''nega-
tion" connectives of Fukasiewicz appear to differ considerably from
the standard implication and negation operators. We feel that this
fact goes some way towards explaining the difficulties of interpreta-
tion associated with these logics.
11.4 Equivalence of model theory and matrices

The n+2-valued matrices of KLukasiewicz, neN are defined as
follows. The space of truth-values is Sn+1. A function v defined on
the formulas in—p, v is a valuation 13-2n+2 if v(Pk)eSn+l for all k
and v(A—B) is min(n+l, (n+l)-v(A)+v(B)), v(vA) is (n+l)-v(A). A formula
A is valid in Zn+2, En+2F=A, if v(A)=n+l for all valuations v in Zn+2'
By Thm. 17(c) of Fukasiewicz and Tarski 1930, A is valid in ﬁ?%, the
infinite-valued logic of FKukasiewicz, if En+2F=A for all n; we write
z.Vck= A when this obtains.
Theorem. Let v be a valuation in En+2. Let FZ={xeSn : x3(n+l) - v(Pk)}

v
Then for x in Sn’ xf% A if and only if x>(nt+l)-v(A).
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Proof:
v

(1) xi{:Pk iff xeF.

k
iff x>(ntl) - v(B).
Now assume the theorem for A and B.
(ii) xkngA iff not (n—x)#gYA
n n
iff not (n-x)2(n+l) - v(A)
iff (n-x)<(n+l) - v(A)
iff (n-x)<v(vA)
iff xz(n+l) - v(vA)

(iii) (a) Let v(A)sv(B), so that v(A—B) = ntl. Then for
x+yeSn, if yﬁ%vA, then y3(ntl) - v(A), so yz(nt+l) - v(B), hence
(xt+y) 2 (n+l) - v(B), so (x+y)k§y3. Hence for any xeSn, xf%YA—?B,
so x>(n+l) - v(A—>B).

(b) Let v(A)>(B). xk%v A—>B iff for all yeSn, if
x+yeSn and y>(nt+l) - v(A) then (x+y)>(ntl) - v(B), iff x2 (n+1) - ((o+l)
- v(A) + v(B)) iff x>(nt+l) - v(A—>B).

This completes the proof.
Corollary. [= A iff ln+2F=A

= A iff Ly A
11.5 Generalizations.

The semantics for pure Kukasiewicz implication can be extended
immediately to more general models. Let S be a non-empty subset of the
non-negative reals such that if x, yeS and xgy then y-xeS. A valuation
F over S must satisfy the condition that Fk is either empty or is
{xeS : x>a} for some a in S. Truth at a point in S and validity in S

are defined exactly as for Sn' It is then not difficult to check that
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all pure implicational theorems of ¥ \y are valid in S, by using the
axiomatization of Rose 1956. It may be noted that the restriction
on valuations is essential. If we merely require as for Sn that if

xeFk, x<y, yeS then yeF

k
Let S be the set of all non-negative reals, Fo ={x + x>1}, F

then not all theorems of ﬁV. are validated.

(]

1 ={x :

x32}. Then 1}% (P0—9P1)_7P but not 1k§:(Pl;>P0)f>PO, so the 1"1 -

1’

valid formula

((P047P1)«>P1)~7((P1—7P0)—7P0) is falsified in S under F.



12.0 ANALYTIC IMPLICATION
12.1 Introduction

A well-known argument of C.I. Lewis (Lewis and Langford
1932 pp. 250-51) purports to derive an arbitrary proposition from
a contradictory proposition. Indeed, if some apparently harmless
principles of inference involving conjunction, disjunction and
negation are accepted, P&WP-»Q must also be accepted as a law of
logic. In the systems so far discussed, this conclusion has been
avoided by a rejection of the law of disjunctive syllogism. As we
have seen, this is not simply an ad hoc device, but is in fact the
only choice possible in a semantical framework allowing inconsistent
pieces of information.

An alternative approach is to deny the validity of the
principle A—.AvB. This seems to have much to recommend it; this
principle is precisely the one which introduces the irrelevant con-
clusion Q into the argument. The law of disjunctive addition can be
rejected according to a Kantian view of implication (definition of
"analytic'', CPR A7, Bll). Kant's definitions are clearly meant to
apply only to statements of subject/predicate form. However, we may
extend the concept of analyticity to include entailment. Under this
view, the consequent of an entailment A—B should simply "unpack"
the antecedent, so that every concept occurring in B should also occur
in A. Under this condition A-7.AvB is indeed invalid. The paradox
of relevance A-=.B-»A is also invalid, as well as A—>B-».B—»C—~>.A—>C,

and any formula A—7B in which a variable occurs in B but not in A.
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12.2 Parry's system and others.

A system embodying these ideas is set forth in Parry 1933,
who calls it a system of "Analytic Implication'. The primitive
connectives are —>, & and Vv, with<s, y and > defined as usual. The
axioms of Parry's system are all the instances of the following
schemata.

Al. A&B—B&A

A2, A—A&A
A3, A>WA
A4, WA-—A

A5. A&(BvC)— (A&B)v (A&C)

A6, Av(B&B) >A

A7. (A-B)&(B—>C)—~>.A>C

A8. (A—>B&C)-—~.A—C

A9. (A—B)&(C->D)—>.A&C-—~B&D
Al0. (A--»B)&(C-7D)~>.AvC-»BvD
All, A-B—>.A>B
Al2. (A«B)&f(A)->£(B)
Al3. f(A)—>.A—>A

The sole rule of inference is modus ponens. Parry 1968 adds the rule

of adjunction and the further schemata

Al4.  (WMA&(A—B))—>vMB

Al5. ~(A>B)=>~(A>B),
where MA is defined as “(A->“A). The independence of Al5 is proved in
Dunn *.

Parry proves of his system that it satisfies what he calls the
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Proscriptive Principle; no formula A—>B holds if B has a variable not
occurring in A. G&del in the discussion following Parry 1933 raised
the question of completeness for Parry's system:

'"p analytically implies q' can perhaps be interpreted as
follows: 'q is derivable from p and the axioms of logic and contains
no concepts other than those in p'" and it may be that after this
definition has been made more precise a completeness proof for Parry's
axioms could be obtained, in the sense that all propositions which
are valid for the above interpretation of — are provable.'

The system consisting of the schemata Al - Al5 and the
two rules of inference we shall call ASI, or the system of Analytic
Strict Implication. The adjective 'strict' is used because ASI is
contained in Lewis' system of strict implication S4. ASI may be
"demodalized" by adding the postulate

Al6, A—~v.vA—A
which is not a theorem of S4. The resulting system may be called the

system of analytic classical implication (ACI). These two systems

conform in their separate ways to the definition of validity proposed
by Godel.

The system which forms the main object of our investigations
is formed by 'remodalizing" ACI by the addition of an explicit necessity
operator N. We add to ACI the axiom schemata

Al7. N(A-»B)—>.NA->NB
Al8. N(A&B)-—>NA&NB
Al9. NA—A
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A21. (A—>A)—>N(A-A)
and the rule of necessitation (from A to infer NA). To Al2 we add
the restriction that in f(A) there is no occurrence of A within the
scope of a necessity operator. This system we shall refer to as AIN,
or Analytic Implication with Necessity.

We now list some theorems of AIN, referring the reader in
most cases to Dunn * for proofs.
Tl. B—>.A—>A, where B is a formula in which occur all variables in
A,
Proof: As in Dunn * T4, using Al7, A21.
TI2. A, where A is a classical tautology. Let us write SHFA if A

is derivable from S and the axioms of AIN by the rules of modus ponens

and adjuntion.

T3. If S, A-B, then S/I-ADB

Proof: By T2.

T4. If S, AFB and every variable which occurs in B also occurs in A
then SA-B.

T5. A&B—>.A«?B, provided A and B contain exactly the same set of
variables.

Proof: By T4.

T6. NA1 &...& NAH—»N(AI &.00& An)

Proof: By AlS.

T7. N(ADB)D.NADNB

Proof: By T3, Al8.

T8. ~A&B&(vA—"B)—>.A—B

Proof: See Dunn T24.
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T9. A&B&(VA-3B)-—>.A—B
Proof: Assume A&B&(VA—>VB). Then B, and (vA-—>"B) by the conjunction
axioms. Now VA->VA by A3, A4, A7, hence VA VA&B by A2, A7, A9.
Hence "A<>"A&\B by adjunction. Now we have AvB—B by T4, hence
A—>B by A3, A4, T7 and Al2., Hence T9 follows by T4. The author is
indebted to Professor J.M. Dunn for this proof (personal communicationm).
T10. ~A&B&(A—>B)—>.“A-7B
Proof: By Dunn * T26, and T9 above.
T1l. ~A&vB&(A—>B)—>(vA~>"B)
Proof: By T9, A3, A4.

A set S of sentences is consistent if for no B is it the

case that SHB&.B, maximally consistent if S is consistent, but is

not properly contained in any consistent set.
T12. Every consistent set of sentences is contained in a maximally
consistent set.
Proof: By the methods of the corresponding theorem for classical
logic.
T13. If M is a maximally consistent set, then for any A,B, (i) AeM
iff MFA, (ii) ~AeM iff A¢M, (iii) AvBeM iff AeM or BeM, (iv) A&BeM
iff AeM and BeM.
Proof: By T2.
11.2 Semantics for analytic implication

Q=(I,W,w,<,R,F) is an aw-model if (i) I is a non-empty set,
(ii) weW, (iii) <« is a transitive reflexive relation defined on W,
(iv) RcWxI, (v) F is a value function on Iuv W. Relative to Q two

"consequence" relations are defined recursively, one having I as
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domain, the other W.
For x in I,

xiﬁ Pk iff xeFk,

x)= A&B iff Xi-a—-‘A or x}—g B,

xXi= VA iff xfa’ A,

xfb: A>B iff xf—-—Q‘A or x}—a—‘B,
X b= NA iff x}——Q—-A.
For u in W,

u({ar Pk iff ueFk,

ulg ASB iff uliz A and uiF B,

ulF(=2 vA iff not uif'a' A

ulka A—>B iff for all x in I such that uRx, if x\‘—a B then

x}(—l———A, and if uﬁ-—a A then u[ké B.

u}}ngA iff for all v such that usv, vl% A,

Q=(I,w,F) is an a-model if I and F are as in an aw-model.
The consequence relation relative to I is defined as above, save that
the clauses for N are omitted, and the clause for-» is simplified to
read:

w”—a—— A->B iff for all x in I, if x}—a—'B then xf—a— A, and if
w]}a‘—'A then wH—a’B.

A formula A is true in a model Q if w]ra—'A and aw-valid
(a-valid) if true in all aw-models (a-models).,

These semantics should be understood as an attempt to make
precise Godel's informal definition of validity. In an aw-model I is

to be interpreted informally as a set of concepts, while W is a set of

possible worlds, w being the real world. The relation £ is one of
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relative possibility, while for ueW, xeI, "uRx" is to be read as "x
is a concept conceivable in world u." For x in I, "x}3=A” is to be
read "concept x occurs in sentence A," while "ulf(—i—‘A" is to be read
"A is true in possible world u." Under this interpretation the
definitions are self—explanatory. The only one worthy of comment
is the rule for ~» relative to W. According to this rule, A—B is
true in world u iff (i) B follows from A in the sense of classical
logic and (ii) every conceivable concept (that is, every concept
conceivable in world u) which occurs in B also occurs in A. Thus
the concepts of aw-validity and a-validity seem to be acceptable

as a way of making Gddel's idea precise.

12.4 Completeness

Theorem 1. A formula of AIN isprovable in AIN iff it is aw-valid.
Theorem 2. A formula of ACI is provable in ACI iff it is a-valid.

It is left to the reader to show semantic consistency for
AIN. We now proceed to show completeness.

Let A be unprovable in AIN. Then {VvA} is consistent, so
by T12, VA is in some maximally consistent set M. We shall show A
invalid by constructing an aw-model Q in which ¢ is M and for any B,
w"g‘B iff BeM.

Let W be the set of all maximally consistent sets of sen-
tences. For u,veW let usv hold iff for any A if NAecu then Aev. For
an arbitrary set of sentences x let uIx hold iff (i) xcu, (ii) if
A—~Beu and Aex then Bex, (iii) if A, Bex then A&Bex. Let uR(v,x)
hold iff u=v and vIx. Let fu(A) be A or VA according to whether A

is or is not in u (note that fu(A)eu by T13). Let (u,x) be in Fk iff
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fu(A) is not in x, and let ueFk iff Pkeu.

By Al19, < is reflexive, and by A20 < is transitive, so
Q=(I,W,M,<,R,F) is an aw-model. Completenmess is a consequence of
the following
LEMMA. For any A, (a) (u,x)}—a A iff fu(A) #x, (B) uji= A iff Acu.

Q
Proof of (a). Part (a) holds for popositional variables by definitionm.

The inductive cases all follow from T5. We illustrate by treating the
case of —. Firstly, note that
fu(A)&fu(B)&fu(AwéB)”?.fu(A)&fu(B)é—>fu(A—7B) is an in-
stance of T5. Since the antecedent is in u, so is
£, (Q)&f (B)e— £,(A>B).
Hence:
(u,x) }':Q—“A_}B iff (u,x)f’——Q—‘A or (u,x) }6—-3
iff fu(A)tx or fu(B)pfx
iff fu(A~—> B) ¢x

Proof of (b). The basis case holds by definition. The inductive

steps for & and v follow by Tl3. It only remains to prove (b) for
the case of > and N.

If NAeu then uﬂ-a: NA by the definition of <. Conversely,
suppose that NAfu. Consider S={B : NBeu}. If s v {VvA} were incon-
sistent, then SIA, so that

f~ By&...8B DA, ByeS,

i
N(B,&...8B D A) by RN
+—N(B,&...B )D>NA by T7
|-NB,&...6NB DNA by T6.

But then NAeu, contrary to assumption. Thus § V{vA} is consistent
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and by T12 has a maximally consistent extension v. Hence, for some
v, usv but not vﬁé—— A, so that not ull—a‘ A, as was to be proved.

Now for the case of —>. Firstly, let A—Beu. Then by
All, T13, either Afu or Beu, so by inductive assumption, either not
u”QfA or “HQ7 B. Let ulx., We observe that for any u,

fu(A)&fu(B)&(A%B)--—r.fu(A)—*7fu(B) is provable by T9, T10.
Hence if fu(A)gX, fu(B)ex so that if (u,x)rﬁB then (u,x)t—?2 A, by
part (a). It follows that uﬂa—‘ A->B., Secondly, let A—>B#u, but
either not u”‘a“A or ul(a-:B. We aim to show that for some (u,x) such
that uR(u,x), (u,x) (3 B but not (u,Xx) Fa"A. Let a be the set
{c: fu(A)'—?Csu}. By A7, A9, ula, so uR(u,a). Evidently, fu(A)ea,
so (u,a)% A is false, by part (a) of the. lemma. Now by T8, Al6,

fu(A)&fu(B)&(fu(A)ﬁ fu(B) )=>.A—>B is provable, since either
fu(A) is VA or fu(B) is B. Hence, if fu(B) ca then fu(A)—>fu(B)eu, so A—*Beu,
contrary to assumption. It follows that fu(B) is not in a, so (u,a) {—’E“z B.
This concludes the proof.

Now since “vAeM, it follows that M(}(—?A is false, so A is
refutable in an aw-model.

The proof of Theorem 2 proceeds just as for Theorem 1, but
omitting any references to W, £ or R. |

We conclude this section with a conjecture concerning the
completeness of ASI. For A a formula of ASI, we define AN, the trans-
lation of A into the language of AIN as follows. PkN is Pk’ (A&B)N
is (AN&BN), ('\aA)N is ’\:(AN), (A—)B)N is (N(AN—?BN)). We conjecture
that ,KS’—IA iff rKfNAN’ so that ASI is complete with respect to a

version of the semantics of the last section.
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12.5 Decidability

Decidability can be proved for AIN by the method of fil-
trations due to Lemmon and Scott, and applied in Segerberg 1968a and
1968b. As the application of this method to AIN does not involve
any new ideas in principle, we leave the proof to the reader.
12.6 Other analytic systems

It is clear that the model-theoretic ideas applied in the
preceding sections are by no means limited to ACL, ASI and AIN, but
are applicable to a wide variety of systems. Thus ACI and AIN are
"analytic'' versions of classical logic and S4 respectively. The
semantics of AIN obviously generalizes to the semantics of other
modal systems like M, S2, S3, S5 (Parry 1968 considers an analytic
of S5). Similarly, analytic versions of E,R etc. are possible. For
instance, in an analytic version of RI’ A—> ., A—>A—>A is provable but
A—>.A—>B-—>B is not.
12.7 Relation to Dunn's results.

It should be emphasized that the completeness and decid-
ability results given for ACI above are not new. Dunn in * proves a
completeness result for ACI relative to certain algebras which he calls
Parry matrices; he also proves decidability for ACI by algebraic matrix
methods. 1In the final section of *, he gives a representation for
Parry matrices which he credits to Robert K. Meyer. Apart from inessen-
tial details, this representation coincides with the semantical analysis
of §11.2, Furthermore, the completeness proofs presented in preceding
sections are essentially adaptations of Dunn's algebraic completeness

proofs.
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THE SEMANTICS OF ENTAILMENT

Alasdair Ian Fenton Urquhart, Ph.D,

University of Pittsburgh, 1973

Systems of entailment designed to avoid the "paradoxes of
material implication' have been intensively studied by Anderson and
Belnap after initial development by Church and Ackermann. However, no
systematic semantical theory was developed for these systems. The main
aim of the present study is to provide such a theory for logics related
to the systems E and R of Anderson and Belnap. The first part shows
how the implicational fragments of E and R and other entailment logics
can be analyzed in terms of valuations over a semilattice, interpreted
informally as the semilattice of "pieces of information." Completeness
proofs are given for these implicational fragments, and also for the
fragments which include both conjunction and implication. The second
- part shows how these completeness results fail to extend to the positive
fragments of E and R (containing disjunction) or to the fragments of
these systems which contain negation. The third part shows how the
many-valued logics of Jukasiewicz can be interpreted so that the seman-
tical conditions on implication and negation bear a striking resemblance
to those given earlier for entailment logics. The final section gives
a semantical analysis of a different entailment logic, W.T. Parry's
system of Analytic Implication. Completeness results are given which

extend those of J.M. Dunn in this area.



