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Abstract

The idea that demographic change may spur or slow down technological change has become widely accepted among
evolutionary archaeologists and anthropologists. Two models have been particularly influential in promoting this idea: a
mathematical model by Joseph Henrich, developed to explain the Tasmanian loss of culture during the Holocene; and an
agent-based adaptation thereof, devised by Powell et al. to explain the emergence of modern behaviour in the Late
Pleistocene. However, the models in question make rather strong assumptions about the distribution of skills among social
learners and about the selectivity of social learning strategies. Here I examine the behaviour of these models under more
conservative and, on empirical and theoretical grounds, equally reasonable assumptions. I show that, some qualifications
notwithstanding, Henrich’s model largely withstands my robustness tests. The model of Powell et al., in contrast, does not–a
finding that warrants a fair amount of skepticism towards Powell et al.’s explanation of the Upper Paleolithic transition.
More generally, my evaluation of the accounts of Henrich and of Powell et al. helpfully clarify which inferences their popular
models do and not support.
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Introduction

Numerous recent publications [1–5] point out the depen-

dence of cumulative cultural evolution on demography. Low

population numbers, the thought is, may slow down or reverse

processes of accumulation; high population levels, in contrast,

spur cultural change. Justification for this thought is commonly

derived from two highly influential studies, one by Henrich [6],

the other by Powell and colleagues [7] (for other models linking

demography and cultural adaptiveness, see [5,8–11]). In the

former, Henrich develops a mathematical model to account for

the loss of tool complexity on Tasmania; the latter presents an

agent-based model (based on Henrich’s mathematical model) to

explain the Late Pleistocene appearance of modern human

behaviour. From that it is concluded that the inaccuracies of

cultural transmission will give rise to technological loss in case

populations drop below a certain critical threshold (Henrich);

and conversely, that these inaccuracies can be offset by

increasing population size (Powell et al).

Bentley and O’Brien [12] suggest, however, that this result may

be an artifact of two strong assumptions of both Henrich and

Powell et al, namely: (A.1) that the distribution of skills in a

population follow a Gumbel (or, in case of Henrich, a Logistic)

rather than a Normal distribution; and (A.2) that social learners

are strongly biased towards those mentors that are (extremely)

skilled, rather than copying at random or following social cues

(e.g., conformity, similarity). However, Bentley and O’Brien do

not provide a real formal proof of their point. For that, one would

need to adjust Henrich’s mathematical model and Powell et al’s

agent-based model to observe whether the relation between

population size and cumulation still holds when assumptions (A.1)

and (A.2) are relaxed.

Below, I do precisely that. I first show that Henrich’s results,

although becoming more fragile, still obtain when relaxing (A.1),

i.e. under assumptions of Normality. Second, I demonstrate that

the population effect in Powell et al’s model vanishes when (A.2)

takes on more conservative values, i.e. when mentor selection is

assumed random or conformist. The lack of firm theoretical and

empirical justification for (A.2), I argue, seriously compromises

Powell et al’s explanation of the Upper Paleolithic transition.

Methods

Henrich’s Model
Henrich’s original. Henrich’s mathematical model starts

with a population of N individuals, where each individual i is

skilled to an extent zi in a skill involving at least some culturally

transmittable component. Through a process of inaccurate

transmission, each new generation of N individuals acquires a zi

value from individuals of the previous generation. The average

change in skill, D�zz, is given by the Price equation:

Dz~ Cov(f ,z)|fflfflfflfflffl{zfflfflfflfflffl}
selective transmission

z E(fDz)|fflfflffl{zfflfflffl}
noisy interference

: ð1Þ

In this equation, the variable f represents the likelihood that an

individual will be copied. For instance, in case the zi value of an

individual i is high, and assuming that individuals are more likely

to copy highly skilled individuals (i.e. individuals having a high zi

value), i will be copied more frequently, and hence fi will be high.

As it stands, Equation (1) is still not very helpful for studying the

specific conditions under which D�zz changes. For that purpose,

Henrich makes a tractability assumption, namely that that all
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imitators copy the most skilled individual, h (having a z value zh).

This is Henrich’s version of assumption (A.2) mentioned above:

Henrich assumes extreme selectivity for the skill itself. Imitators

are not just able to identify the most skilled individual h, they are

completely unaffected by context biases, such as biases of prestige,

similarity, success or conformity.

So if all imitators copy the most skilled individual, h, the

likelihood of h being copied (i.e. fh) is 1, and the likelihood of other

models being copied (i.e. fnoth) is 0. This tractability assumption

simplifies matters considerably, because now the Price equation

reduces to:

Dz~ zh{z|fflffl{zfflffl}
selective transmission

z Dzh|{z}
noisy interference

: ð2Þ

The first part of Equation (2) takes the difference between the z
value of the subsequent generation (which equals zh, because all

individuals are assumed to copy h) and the z value of the earlier

generation (which equals the average of z’s of that generation, i.e.

�zz). At this point, Henrich invokes assumption (A.1). He assumes

that skills in the population are distributed according to a Gumbel

distribution, so that the expected value of the highest values from a

sample of size N is given by

zh~N

ð?
{?

e
m{x

b (e{e

a{x
b

)Nxdx, ð3Þ

which can be approximated by

zh~mzb(ez ln (N)): ð4Þ

Here m is the mode of the distribution, b represents the

distribution’s spread (see Figure 1), and e&0:577 is the Euler-

Gamma constant.

Still assuming a Gumbel distribution of skills, �zz is given by

z~mzbe: ð5Þ

The second part of Equation (2), namely Dzh, captures the

transmission bias associated with copying h. Each individual draws

again from a Gumbel distribution (a,b) to determine her imitation

error:

Dzh~{azbe~{tG: ð6Þ

Since {tG represents transmission inaccuracy, {tG may be

taken as a measure of skill complexity. In other words, a complex

skill is a skill that is difficult to learn, and hence, one that is

associated with high transmission inaccuracy {tG . To be clear,

other measures of skill complexity have been proposed. For the

Gumbel, Henrich for instance uses the ratio a=b (rather than

transmission inaccuracy, which for the Gumbel is {azbe),

whereas for the Logistic (see below), he does work with

transmission inaccuracy (which, in case of the Logistic is the

mean a). Powell et al [7] follow Henrich’s second approach even

for their Gumbel-based implementation (so they take {azbe
rather than a=b as a measure of skill complexity). Like Powell et al,

I here thus follow Henrich’s second approach, first, because of its

intuitive appeal, and second, because of at least one counter-

intuitive feature of Henrich’s first approach (i.e. measuring

complexity in terms of a=b). Consider, for instance, two skills, A

and B, with corresponding a- and b-values, [9,9] for A and

[0.1,0.1] for B. A and B have the same a=b-ratio. Still, plausibly B

is much easier to imitate than A, as for B a much larger proportion

of the population very (!) closely approximates the z-value of the

model h. This fact is not captured by the ratio a=b, but is captured

by {azbe (23.8 for A versus 20.042 for B).

Substituting Equations (4), (5) and (6) in Equation (2) yields

D�zz~b ln (N){tG: ð7Þ

Setting D�zz~0 yields Figure 2A, with the X-axis representing the

minimal population size needed for cumulation to occur, Nmin.

The area above the curve is associated with regimes of cultural loss

(D�zzv0), the area underneath it represents favourable conditions

where skill accumulates (D�zzw0). As one can see, indeed,

population size has a considerable effect on the amount of skill

complexity ({tG ) that can be maintained.

I must add here that Henrich also considers what happens in

case skills follow a standard Logistic distribution. Following the

same derivation as above, transmission inaccuracy for the Logistic,

tL, is according to Henrich (see his Appendix C) given by

tL~Y(N)ze, ð8Þ

where Y(N) is the Digamma function at N. For Nw0, Y(N)
behaves nearly identically to ln (N). So when setting b~1 for the

Gumbel (as done in Figure 2A), the Logistic curve is nearly

identical to the Gumbel, only shifted up to an extent e, as can be

seen in Figure 2B.

The two variants of the model indeed support the idea idea that

only sizable populations of social learners are able to sustain

processes of technological accumulation. To see whether this result

is robust when we relax (A.1), the model now needs to be adjusted

to assumptions of Normality.

Henrich’s model Normalized. Henrich provides no justifi-

cation for using Logistic distributions. For the Gumbel, in contrast,

his justification is that ‘‘a wide range of distributions, which

includes the Gumbel distribution and the Normal distribution,

yield the Gumbel distribution (approximately) when the extreme

values are repeatedly sampled’’ [6] This may be true, it is not

entirely satisfactory as justification. For although Henrich is right

Figure 1. Gumbel probability density function for imperfect
imitation.
doi:10.1371/journal.pone.0040989.g001
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that one gets a Gumbel distribution both in case one repeatedly

takes the highest value from a Normal distribution, and in case one

repeatedly takes the highest value from a Gumbel distribution, the

kind of Gumbel distribution one gets will differ (see [13]). So to

really assess the impact of distribution choice, one cannot but just

adjust Henrich’s model for assumptions of Normality.

To be clear, whether skills of the sort targeted by Henrich’s

model (e.g., arrow-making, fishtrap-building) follow a Gumbel,

Logistic or Normal distribution is an open empirical question.

Gumbel distributions are typically used to account for extreme

events (e.g., extraordinary hurricanes, floods, winds, earthquakes).

Perhaps, intuitively, one may think that this matches cases where

technological skills are taught by an extremely gifted tutor, say, a

grandmaster training several novice archers. In such cases, at least

when the population is considered as a whole (including tutors and

novices), a Gumbel distribution doesn’t seem implausible at all,

given the vast difference in skill between grandmaster and novices.

Yet, in case we are interested in transmission across successive

generations, what matters is not the skill distribution of the entire

population, but the skill distribution only of the population of

tutors (which, after learning, is ‘‘reproduced’’ by the generation of

novices, who then become the generation of tutors). The idea that

even among the generation of tutors (say, among all adult archers)

such extreme differences exist, thereby justifying a Gumbel, is

much less intuitive. Logistic assumptions seem more cautious;

Normality assumptions at the very least not more controversial

than the former two (but, for a note of skepticism, see [14])

How do we enter assumptions of Normality in Henrich’s model?

We start with Equation (2) again, but redefine the variables at the

right-hand side of the equation to reflect the idea that skill levels

are distributed Normally. The expected value of the highest values

drawn from a sample of size N, zh, is now given by

zh~

ð?
{?

Nw(x)W(x)N{1xdx, ð9Þ

where w(x) is the probability distribution function of Normal

distributions, given by

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p e

{
(x{m)2

2s2 , ð10Þ

and W(x) is the cumulative distribution function of Normal

distributions, given by

1

2
(1zerf (

x{mffiffiffiffiffiffiffi
2s2
p )): ð11Þ

Fortunately, Chen and Tyler [15] show that Equation (9) can be

approximated with great accuracy by

zh~W{1((0:5264)1=N ): ð12Þ

The other terms in Equation (2) are redefined as follows:

z~m, ð13Þ

Dzh~{tN , ð14Þ

with m being the mean of the skills of the current population, and

{tN the transmission inaccuracy for the Normal. Equation (2)

adjusted to normally distributed skill levels thus is given by

Dz~W{1((0:5264)1=N ){m{tN : ð15Þ

Setting D�zz~0 and m~0, we get the curve in Figure 2C. Again,

regimes of cultural loss are found above the curve, below it one

finds regimes of cumulation.

Powell et al’s Model
Powell et al’s original. Based on Henrich’s work, Powell

et al [7] present an agent-based model to explain the appearance

of modern behaviour in the Upper Paleolithic. They conclude that

increases in population size and density (rather than increased

cognitive capacity) well may account for that remarkable evolution

in our lineage.

Inspired by Henrich, Powell et al assume: (A.1) Gumbel rather

than Normal distributions of skills; and (A.2) a strong tendency to

select the most skilled individuals in the population as mentors. In

contrast to Henrich, however, Powell et al wish to explain an

instance of cultural gain. Hence, in the absence of empirical

evidence for (A.2)–evidence which Powell et al do not provide–a

conservative strategy would not start from (A.2), but from

assumptions working strongly against cumulation (e.g., random

copying, conformity). Stated otherwise, to have a forceful

demographic explanation one needs to show either that the

population effect in Powell et al’s model survives such severe tests

(i.e. assumptions of weak selectivity), or that early human social

learning really exhibited the kind of strong selectivity assumed in

the model. Let me first examine the first option, that is, how

Powell et al’s model fares under conditions of weak selectivity.

The model of Powell and colleagues contains a set of agents that

undergo both vertical and oblique transmission. In particular, in

each generation the model goes through the following steps:

1. Vertical transmission: each agent behaves as a cultural parent,

producing one cultural offspring. The offspring individual takes

the z-value of the parent according to the transmission process

described by Henrich.

2. Oblique transmission: each offspring is given the opportunity to

undergo oblique transmission, by selecting an oblique model

from only those adults with z-values greater than that they

received from their own parent, with probability proportional to the

magnitude of the z-value difference. In the absence of such qualified

oblique model, this step is skipped. The offspring individual

takes the z-value of the oblique model, again according to the

transmission process described by Henrich, but only if it

Figure 2. Critical population size (Nmin) versus skill complexity (tG , tL, and tN ) assuming a (A) Gumbel, (B) standard Logistic, (C)

Normal distribution of skill levels. For the Gumbel, b was set to 1, which corresponds to a variance s~
pbffiffiffi

6
p &1:28. For the Normal curve, the

same variance was used, i.e. s~1:28.
doi:10.1371/journal.pone.0040989.g002
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exceeds its current z-value (i.e. the one obtained from the

parent).

3. Replacement: the offspring generation replaces the parent

generation, and the average skill level of the population, �zz, is

measured.

At this point, two things need to be stressed. First, Powell et al’s

original model contains also a fourth step, in which agents are

given the opportunity to migrate from one subpopulation to the

other. But since the authors find that migratory activity among a

set of subpopulations has the same effect on skill accumulation as

increasing the size of a single isolated population, this step is

ignored in the remainder. That is, my adjusted model will only

concern isolated populations with varying sizes N.

Second, the strong selectivity assumption (A.2) is made in step 2,

in the passage in italics: adults choose mentors proportionally to

their skill. This is a somewhat weaker form of selectivity than that

assumed by Henrich in Equation (7), but still much stronger than

the two I will consider, namely random copying and conformity.

Powell et al’s model adjusted to random copying and

conformity. In the random copying condition, offspring select

an oblique model at random and adopt the latter’s z-value

(through Henrich’s transmission mechanism) just in case it exceeds

the z-value received from the parent. Merely in virtue of the

distribution of skills, random selection will automatically favor z-

values closer to the mode of the distribution.

Such randomness may reflect two things. First, it may capture

the fact that, especially in larger populations and/or populations

with low cultural interconnectedness, not all cultural parents are

available to all to learn from, so that happenstance decides which

parents are assigned to whom. Second, the random copying

condition may imply absence of learning biases or, if present, any

systematic expression of them.

As Bentley and colleagues remark [16], random copying is a

suitable null hypothesis for examining the conditions of cultural

change. This holds especially for the study of Powell and

colleagues, whose aim it is to demonstrate that demographic

factors, without any change in cognitive machinery, could have caused the

emergence of modern behaviour in the Upper Paleolithic. After

all, the strong pay-off bias assumed by Powell et al may be one of

those cognitive inventions which the authors wish to prove the

dispensability of, perhaps involving mechanisms for evaluating

pay-off differences or prestige and for inhibiting present drives

until a better-than-the-present mentor is found.

Moreover, Powell et al’s selectivity is at odds with the

conformity biases widely discussed in studies of cultural evolution.

Conformity here refers to the propensity of individuals to actively

scout the population for the most common behaviour. Such

conformity, now, is my second adjustment to the Powell model,

and is implemented in two ways (as in [17]). In Conformity #1,

offspring randomly select an oblique model with a z-value in the

interval ½m{k,mzk�, with m being the mode of the distribution.

With k~1 and b~1, the interval amounts to four times the

spread b of the Gumbel, which corresponds to a fairly modest

form of conformity, including values already quite remote from the

mode. Results so obtained would a fortiori obtain in case conformity

is stronger. In Conformity #2, offspring select an oblique model

with probability inversely proportional to the magnitude of the

difference between the model’s z-value and the mode of the

distribution.

For given values of Nmin, I simulated widely over t, to find the

level of complexity that could be sustained by a population of

critical size Nmin. Simulations were performed for four learning

strategies: random copying, conformity and the direct biases of

Henrich and of Powell and colleagues. I did so both assuming

Gumbel and Normal distributions of skills. For more details about

the implementation of the model, I refer the reader to Text S1.

Results

Henrich’s model
Result 1: Henrich’s qualitative results still obtain under

assumptions of Normality. As can be seen in Figure 2, the

Normalized model largely reproduces the qualitative results of

Henrich’s Gumbel and Logistic implementations: at lower N’s,

decreases of N have a high impact on the maximum sustainable

level of skill complexity (tG , tL and tN respectively); for higher

N’s, the population effect is weaker. As such, the Normalized

model is in line with Henrich’s demographic explanation of the

Tasmanian loss of culture during the Holocene: a reduction of the

Tasmanian population from 5,000 to 2,000 (Henrich’s estimates)

yields a reduction of skill complexity, also under assumptions of

Normality.

Result 2: Still, Normal populations are at a somewhat

lower risk of cultural loss due to population

reduction. The above may seem to prove wrong Bentley and

O’Brien [12]: since they also hold under assumptions of

Normality, Henrich’s results do not seem an artifact of his specific

assumptions regarding skill distributions. Yet, a closer comparison

of the Gumbel/Logistic and Normal models does reveal a subtle

difference–much in line with Bentley and O’Brien’s predictions.

More specifically, Normal populations are less susceptible to loss

due to population reductions than Gumbel/Logistic populations.

To appreciate this, one just needs to compare the derivatives of the

functions governing the Gumbel/Logistic and Normal curves

presented in Figure 2. From Equations (7), (8) and (15), we learn

that these functions are b ln (N) (for the Gumbel), Y(N) (for the

Logistic), and W{1((0:5264)1=N ) (for the Normal). Their derivative

functions are plotted in Figure 3. The derivative function of the

Normal (i.e. DNW
{1((0:5264)1=N ) is below the derivative function

of the Gumbel/Logistic (i.e. DNb ln (N) and DNY(N)), for all

values of N (even though for larger N’s, the difference is

indiscernible in the figure). This implies that changes in N
correspond generally to smaller changes in the dependent output

(transmission inaccuracy, in our case) for Normal than for

Gumbel/Logistic populations. Also, above N~500, the derivative

function of the Normal is constant at close to 0. So, as long as they

do not drop below a certain threshold (around N~500), Normal

populations will suffer only marginally from reductions in size. The

derivative function of the Gumbel/Logistic, in contrast, bottoms

out slower (for instance, the sensitivity to population changes of the

Normal at N~500 is reached only at around N~1290 in the

Gumbel/Logistic) and always remains slightly above the derivative

of the Normal.

To stress again, these differences are subtle, and arguably

insufficient to undermine Henrich’s explanation of the loss of

Tasmanian culture (although the matter is impossible to settle

empirically). Yet, what stands out is that demographic explana-

tions under assumptions of Normality are somewhat more

demanding: to account for an observed loss of culture, bigger

population reductions must be assumed.

Result 3: Henrich’s results do not extrapolate to instances

of cultural gain, especially not under assumptions of

Normality. Henrich’s model was devised explicitly to address

instances of cultural loss. Therefore it assumes, per (A.2), perfect

mentor selection; loss demonstrated under these conditions makes

loss even more likely in cases of weaker selectivity. (A.2) is thus

highly conservative and, for Henrich’s purposes, properly so.

Cumulative Cultural Evolution and Demography
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However, in explanations of cultural gain, the opposite holds.

Instead of (A.2), conservative assumptions are now those that

assume much-less-than-perfect mentor selection, such as copying

at random, or selection on the basis of social cues (conformity in

particular). Cumulation demonstrated under such severe condi-

tions makes cumulation even more likely in case learning biases do

not work so strongly against it.

Hence, without modifying its assumptions (i.e. assuming much-

less-than-perfect mentor selection), Henrich’s model is likely to

overestimate the cultural gain resulting from increases in

population size (unless, of course, the assumption of perfect

mentor selection really would conform with empirical observa-

tions). Importantly, Henrich himself doesn’t use his model for that

purpose (in contrast to Powell et al, see below). Moreover, he

presents an adjustment of Equation (7) (see his Equation 4) which

can be used to examine the effects of random copying (although it

is presented as an adjustment to accommodate vertical transmis-

sion). In case all individuals copy at random, the model now

predicts no cumulation, which is more or less in line with the

results presented in the next section. It is unclear how Henrich’s

model would behave under conditions of strong conformity, but

these will be taken up in the next section.

The considerations above apply irrespective of distribution

choice: neither the Gumbel/Logistic nor the Normal implemen-

tation of Henrich’s model are duly conservative when it concerns

demographic explanations of instances of technological gain. But,

the Normalized model is even worse in this respect. For, given the

more modest population effect under assumptions of Normality

(see result b), Normal populations will even more readily exhibit

cultural stasis, despite increases of N. The same slight deviation

from perfect mentor selection may yield stasis in Normal

populations, merely slowed down cumulation in Gumbel/Logistic

populations.

Powell et al’s Model
Result 1: Powell et al’s results do not obtain under

conditions of weak selectivity. Figure 4 presents simulated

data for the four learning biases, assuming Gumbel (Fig. 4A) and

Normal (Fig. 4B) distributions of skills respectively. The first thing

to note is that the dependence of cumulation on population size is

virtually absent in case of random copying (some population effect

persists for very small populations, i.e. Nminv50), and completely

absent in case of conformity (both Conformity #1 and Conformity

#2). This places a major burden of proof on Powell and

colleagues. Their claim that demographic change rather than

increased cognitive capacity caused the emergence of modern

behaviour is credible only to the extent that they can show Upper

Paleolithic social learning to have been pay-off based, rather than

random or conformist. What evidence is there in support of this

claim?

There are indeed theoretical reasons for assuming pay-off biases

[18,19] and, in laboratory settings, Western subjects appear to be

generally inclined to imitate successful individuals (see the review

Figure 3. Comparison of the sensitivity of Gumbel/Logistic versus Normal populations to cultural loss due to population reduction.
Comparison is done by plotting the derivative functions of, on one hand, b ln (N) and Y(N), and of W{1((0:5264)1=N ) on the other. For the first b was
set to 1; correspondingly, for the latter s was set to 1.28.
doi:10.1371/journal.pone.0040989.g003
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by Mesoudi [20]; more recently, see [21,22]). But, there is also

good theoretical and empirical evidence for conformist transmis-

sion: models of Henrich and Boyd [23] suggest that conformist

biases are likely to evolve whenever social learning evolves;

Henrich [24] finds evidence of conformist transmission in field

data on the diffusion of innovations; Henrich and Boyd [25] and

Mesoudi [20] review a whole set of empirical studies demonstrat-

ing the powerful human propensity to conform. Importantly, it is

uncertain whether the empirical findings (both with respect to pay-

off and conformist biases) extend to non-Western small-scale

societies. Although Henrich and Broesch [26] provide evidence for

prestige biases among Fijian villagers, no corresponding evidence

is available for contemporary hunter-gatherers [27].

In light of the above, I think the most honest thing to say is that

the issue is undecided: there is insufficient warrant for choosing

either bias (pay-off or conformist) as being the most dominant in

human social learning, let alone as being the most dominant in

Upper Paleolithic cultural learning. Hence, Powell et al have little

warrant for focusing only on the most optimistic scenario (strong

pay-off biased transmission), simply ignoring the more conserva-

tive one (strong conformist transmission).

Second, what about the random copying condition? On the first

interpretation of the condition, randomness has nothing to do with

the psychological make-up of the social learners in question, but

with the fact that external factors often do the selection for us, for

instance, when populations are big and/or exhibit low cultural

interconnectedness. Chance effects due to population size are

presumably limited for the sizes assumed by Powell et al

(N~25{200); effects due to cultural interconnectedness, in

contrast, may be much more real. Given the costs associated with

acting as a mentor, there are strong theoretical reasons and there is

at least suggestive empirical evidence in support of the idea that

most transmission of early human crafts happened among kin–i.e.

predominantly vertically, and when obliquely, just within the

extended family [28,29]–resulting in low cultural interconnected-

ness. Now if oblique transmission in the Upper Paleolithic

occurred only within the extended family indeed, assumptions of

randomness seem justifiable; whether a social learner will be given

a decent opportunity for learning obliquely depends on the

contingent fact of being born or not being born in a family

containing one or more highly skilled oblique models.

According to the second interpretation, the random copying

condition implies randomness in the strategies of social learners

when selecting a mentor. The learner is assumed either to really

select mentors at random (i.e. she is insensitive to clues about such

things as the mentor’s success or the popularity of the mentor’s

behaviour), or to switch strategies seemingly at random (e.g,

conformist under time pressure, pay-off based otherwise; pay-off

based if cheap, conformist otherwise; conformist in the production

of threaded shell beads and tattoo kits, pay-off based in matters of

blades and burins). While there is accumulated evidence that

contemporary humans do not just select mentors at random (for a

recent report, see [22]), and thus indeed are responsive to the

features of the mentors they choose, little is known about the

precise conditions under which they are responsive to which clues,

that is, about when which bias can be singled out as being

dominant. Given the aforementioned uncertainties regarding pay-

off and conformity biases in the Upper-Paleolithic in particular, it

definitely makes sense to consider what happens in case no

systematic trends in Upper-Paleolithic learning biases are

assumed. The random copying condition acknowledges that we

are unsure about what would qualify as a more realistic one.

In sum, given that Powell et al’s results do not survive

assumptions of weak selectivity, the authors need to provide a

justification for the strong pay-off biases they assume. In light of

the evidence just discussed, this will be a difficult, if not impossible,

task.

Result 2: Even given strong pay-off biases, the population

effect vanishes at higher N’s. As can be seen in Figures 4A

and 4B, once a certain population size is reached, population size

has little to no effect even under a regime of selectivity à la Powell et al. For

values of Nmin above 250, nothing much is gained by adding more

members to the population; effective populations of 250 and 1,000

are able to sustain largely the same levels of skill complexity t. This

is an important qualification: according to the model of Powell et

al, effects of demography only play in effective populations of fairly

limited size (so that it becomes crucial to establish that Upper

Paleolithic populations were indeed so limited in size). The model,

in contrast to economic models of technological growth (see [30],

and references therein), does not warrant inferences about the

existence of a general population effect, which holds for small and

large populations alike.

Conclusion
In this paper, I have examined the robustness and explanatory

power of two very influential models linking demography and

cumulative culture, a mathematical model by Henrich, and an

agent-based implementation thereof by Powell and colleagues. In

particular, I have tested Bentley and O’Brien’s suggestion that the

results obtained by Henrich and by Powell et al may be an artifact

of two fairly strong assumptions: (A.1) that cultural skill levels

follow a Gumbel (or a Logistic, in case of Henrich) rather than a

Normal distribution; and (A.2) that social learning biases are

strongly pay-off based. Relaxing (A.1) and (A.2), I found, has

limited impact on Henrich’s account, but seriously comprises that

of Powell et al.

More specifically, Henrich’s model still exhibits a population

effect if (A.1) is relaxed, although adaptive culture in Normal

populations appears generally less sensitive to population reduc-

tion than adaptive culture in Gumbel/Logistic populations.

Relaxing (A.2), as anticipated by Henrich himself, potentially

removes the effect completely. But since Henrich’s aim is to

explain an instance of cultural loss, (A.2), even if unrealistic,

provides the severest test possible. Loss demonstrated under (A.2)

would be even more likely in case learning biases were less pay-off

based.

Powell et al’s model, in contrast, targets an instance of cultural

gain. Here severe tests are those in which (A.2) is seriously relaxed.

Under such severe conditions, I have shown, Powell et al’s model

predicts cultural stasis rather than cumulation. This finding,

together with the absence of strong evidence in support of (A.2),

seriously weakens Powell et al’s case for a demographic

explanation of the Upper Paleolithic transition.

The present study is limited in scope in that it has focused on

just two, even if very influential, models. Future research should

determine whether alternative models linking population size and

cultural adaptiveness [5,8–11] are (also) causes for concern. But I

hope that this paper, at the very least, has demonstrated the

Figure 4. Critical population size (Nmin) versus skill complexity (t) for different selection biases, assuming (A) a Gumbel distribution
of skills; and (B) a Normal distribution of skills. For both (A) and (B), k~1. (A) corresponds to Figure 4B of Powell et al [7]. Note that doubling
kappa, i.e. k~2, does not change the qualitative results; now the curve is constant at t~1:4 for the Gumbel, and at t~0:8 for the Normal.
doi:10.1371/journal.pone.0040989.g004
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usefulness of such robustness tests: these help to sort out the claims

we are most interested in, to wit, claims that hold independently

from the simplifying assumptions of the models they are based on.

Supporting Information

Text S1 Details of the implementation of the simulations.

(PDF)
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