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Abstract Evolutionary anthropologists and archaeologists have been considerably successful in

modelling the cumulative evolution of culture, of technological skills and knowledge in particular.

Recently, one of these models has been introduced in the philosophy of science by De Cruz

and De Smedt (2012), in an attempt to demonstrate that scientists may collectively come to

hold more truth-approximating beliefs, despite the cognitive biases which they individually are

known to be subject to. Here we identify a major shortcoming in that attempt: De Cruz & De

Smedt’s mathematical model makes one particularly strong tractability assumption that causes

the model to largely miss its target (namely, truth accumulation in science), and that moreover

conflicts with empirical observations. The second, more constructive part of the paper presents

an alternative, agent-based model, which allows one to much better examine the conditions for

scientific progress and decline.
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1 Introduction

Philosophers of science are slowly starting to model the collective aspects of scien-

tific knowledge and research practices. This could take the form of modelling disagree-

ment between experts and aggregation of their judgements (List, 2005; Hartmann and

Sprenger, forthcoming) or of the division of scientific labour (Kitcher, 1990; Strevens,

2003; Weisberg and Muldoon, 2009). Alternatively, one might focus on epistemic pro-

cesses that span generations of collectives of scientists—the population dynamics of

beliefs. Here, one may draw on evolutionary anthropology, where compelling evolution-

theoretic models of technical skills and knowledge have been proposed (Boyd and Rich-

erson, 1985; Richerson and Boyd, 2005; Henrich, 2004). In this paper, we identify a

major shortcoming in a recent attempt at applying one of these models to scientific

knowledge; then, in a more constructive mode, we propose a more promising (but still

imperfect) alternative for modelling the population-dynamics of scientific belief.

The application in question concerns a recent paper by (De Cruz and De Smedt,

2012, henceforth D & D), who make a strong case for incorporating the socio-cultural

dynamics of belief transmission into naturalized epistemology—introducing a collective,

generation-spanning dimension in the formation of scientific beliefs. Their aim is to show

that despite the truth-distorting cognitive biases that individual scientists are subject

to, scientific beliefs may over time become more truth-approximating in virtue of the

interaction of scientists.

The interaction D & D have in mind is cultural transmission, i.e. the processes of

social learning that allow individuals to pass on acquired knowledge to other individuals

remote in space and time. The basic idea is that scientists pass on previous achieve-

ments to subsequent generations, which can improve these achievements in turn. Such

cumulative effects, D & D believe, may be usefully examined with models devised in

evolutionary anthropology to explain the gradual accumulation of culture, of techno-

logical innovations in particular. More specifically, D & D borrow a popular model by
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Joseph Henrich (2004) to argue that cultural transmission among scientists can yield a

progressive evolution towards more truth-approximating representations on two condi-

tions: first, that the relevant community of scientists is sufficiently large and, second,

that from copied ideas scientists infer a sufficiently diverse set of new ideas. If these

conditions are met, the distorting effects of cognitive biases may be filtered out over

time—or so the argument goes.

D & D adopt from the original anthropological model a central assumption made

for reasons of analytical tractability, namely that scientists are biased towards and try

to copy the single best scientific theory available. This implicates D & D’s account

in two respects. First, as argued in Section 3, the tractability assumption reduces the

explanatory scope of D & D’s model to the extent that the model largely misses its

supposed target, namely truth-accumulation in science. The second problem, discussed

in Section 4, is the empirical inadequacy of the assumption—there is good reason to

think that scientists are not biased towards the single best belief in the pool of scientific

beliefs.

An alternative model, we conclude, should allow one to relax the tractability assump-

tion. In Section 5, we describe such a model. In particular, we present an agent-based

implementation of D & D’s (and of Henrich’s) model that can be used to examine the

effects of varying scientists’ copying biases. These effects, described in Section 6, will

turn out large: in the limiting case, where scientists exhibit strong conformity biases,

gradual truth-approximation does not get off the ground at all. Because it is largely an

open empirical question which of the modelled biases characterize the biases of actual

scientists best, the exercise does not allow us to settle the question whether processes of

cultural transmission actually do give rise to progression towards truth. Still, the model

does allow us to derive a set of in principle testable hypotheses about the circumstances

under which such progress can be expected to occur and not to occur.
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2 The cultural transmission of scientific knowledge: D & D’s model

Before discussing its problems,1 let us review what D & D’s model is constructed to do,

and how it is supposed to do this. As said above, the model is aimed at showing how,

and under which conditions, the cultural transmission of scientific beliefs results in these

beliefs approximating the truth, despite the cognitive biases of individual scientists. D

& D do not give a general characterization of such biases, but provide a set of examples

instead, such as the human disposition to conceptualize and reason about the world in

terms of a limited number of intuitive ontologies. Humans, for instance, are inclined to

reason about themselves and conspecifics as if they are not animals (Waxman, 2005).

This intuitive ontology, D & D argue with Foley (2001), has hampered archaeologists

and paleoanthropologists in their theorizing about the evolution of hominids. Until

the mid 1970s, scientists believed that human evolution was linear and that only one

hominid species existed at any one time, ideas that contrasted sharply with the bush-

like evolutionary models posited for all other organisms, but that were acceptable given

the special-status bias regarding human beings. Likewise, the intuitive idea that species

have essences has resulted in 2000 years of stasis in taxonomic theory—or so argues Hull

(1964). Finally, psychological evidence suggests that humans have a natural inclination

for teleological reasoning (Kelemen, 2004); that inclination too can be expected to work

against a correct causal understanding of the evolution of species.

Let us assume that human beings are indeed hampered by a set of specific biases in

their search for scientific knowledge. How is it then, D & D ask, that science can still

produce true beliefs? To answer that question, they consider a supposedly (more on

this below) pessimistic scenario in which cognitive biases are very influential in science;

and next, they model how these biases are, over time, overcome through processes of

cultural transmission.

1 Throughout, we assume that Henrich (2004) provides the best existing model of cultural transmission of

technological knowledge. Shortcomings shared by the original model and its application by D & D are, as much

as possible, left aside, in order to focus on problems specific to modelling the transmission of scientific knowledge.
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The model D & D deploy was originally developed by evolutionary anthropologist

Joseph Henrich (2004), who wanted to examine conditions for the acquisition and loss

of complex skills and technologies. Henrich found that population size is one factor that

determines whether complex skills may be retained over time.

In D & D’s application of the model, any scientific belief i is associated with a value

zi, which denotes how well the belief captures observer-independent reality; the higher

zi, the more truth-approximating i. For instance, z’s may capture the representational

accuracy of beliefs concerning the structure of the atom. Dalton’s early nineteenth-

century idea of atoms as hard billiard balls would have a lower z than Thomson’s

plum pudding model; and the latter would have a lower z than Rutherford’s early

twentieth-century miniature solar system model. ∆z denotes the average change in

representational accuracy of beliefs between two generations. In case of models of the

atom, ∆z was positive for the early nineteenth-to-twentieth century interval. In case

∆z = 0, truth-approximation would have stabilized; in case ∆z < 0, accuracy would

have decreased.

For modelling ∆z, the Price equation is used (Price, 1972):

∆z = Cov(f, z)︸ ︷︷ ︸
selective transmission

+ E(f∆z)︸ ︷︷ ︸
noisy interference

(1)

As one can see, the equation introduces a new variable f . Any scientific belief i has a

value fi which represents the frequency with which the belief will be copied and passed

on to the next generation. In case the z-value of a belief i is high, and assuming that

individuals are more likely to copy beliefs with a high z-value, i will be copied more

frequently, and fi will be high.

The Price equation separates ∆z into two factors. The first is Cov(f, z), which rep-

resents how cultural success (or frequency of copying) and representational accuracy

co-vary. Suppose we have two beliefs i and j, with zi > zj . Suppose moreover that

representational accuracy and cultural success are highly correlated—better beliefs are

more likely to be copied. If so, we should expect belief i to be copied more abundantly
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than belief j (or fi > fj), so that the next generation of beliefs will contain more copies

of i than of j. Given that for this generation too zi > zj , it will have a higher average

zvalue than the previous generation. Cov(f, z) just tells us how much z increases be-

cause of this differential reproduction (i.e. different z-values leading to different numbers

of descendants in the next generation).

For understanding the second factor in the Price equation, first let z′i denote the

z-value of the copy of belief i. If transmission between generations is perfect, z′i = zi.

Often, however, copies will be different from the original, and zi 6= z′i. Let ∆zi be the

difference between z′i and zi. Thus, ∆zi captures transmission fidelity; it is a measure

of how faithfully copying proceeds. If ∆zi = 0, copies of i are identical to the original

belief i; if ∆zi 6= 0, there is a transmission error or more systematic bias.

Evidently, whenever present, such transmission biases should affect ∆z. Suppose, for

example, that copying is highly unfaithful, and that copying errors always lead to inferior

copies. Under these circumstances one would intuitively expect average representational

accuracy to decrease between generations. Conversely, in case copying always lead to

superior copies (i.e., there is a positive bias or constructive source of error), ∆z should

ceteris paribus increase.

E(f∆z) captures the effect of transmission fidelity. It is the expected value of the

product of copying frequency (i.e. f) and transmission fidelity (i.e. ∆z). f is included

because the effect of transmission fidelity needs to be weighted by the number of copies

affected by it. For example, even if a belief i has a high ∆zi, its impact on ∆z might

remain low if it has few offspring (a low f -value).

In his application of the Price equation, Henrich represents imperfections in imita-

tion with the transmission-fidelity factor. In imitating the skills or achievements of their

mentors, students may be prone to errors and biases. In some cases, these imperfections

are harmful, leading to inferior skills with lower z-values; in other cases, imperfections

may be beneficial, leading to increased z-values. D & D follow the same line in represent-

ing cognitive biases, such as intuitive ontologies. Scientists with essentialist dispositions,
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for instance, may be likely to copy evolutionary theories imperfectly. In some cases, this

imperfection is harmful, decreasing the z-values of their theories; in others, it may be

benign. Below, we discuss in some detail how the resulting changes are calculated.

As it stands, the Price equation is not helpful for studying the general conditions

for ∆z to increase (or not decrease). In particular, the possibility that students choose

different, or even multiple, mentors makes the model analytically intractable. Therefore,

D & D follow Henrich in assuming that all students copy the best (in their case: the

most accurate) model (in their case: belief) in the population, namely h (having a z-

value zh). So fh = 1, whereas fnot h = 0. This tractability assumption, the main target

of our criticism in Sections 3 and 4, considerably simplifies the Price equation:

∆z = zh − z︸ ︷︷ ︸
selective transmission

+ ∆zh︸︷︷︸
noisy interference

(2)

The first part of Equation (2) takes the difference between the z-value of the subse-

quent generation (which equals zh, because all individuals are assumed to copy h) and

the z-value of the earlier generation (which equals the average of z’s of that generation,

i.e. z). The second part of Equation (2), namely ∆zh, captures the transmission bias

associated with copying h.

D & D also assume (again following Henrich) that z-values of copied beliefs are

drawn randomly from a Gumbel distribution. The justification for this is that a wide

range of distributions, including the Normal and Gumbel distribution, yield a Gumbel

distribution if the highest value is repeatedly taken from samples of size N (Henrich,

2004, p. 210).2

A relevant feature of Henrich’s model is that students only rarely outperform their

mentor h: their skill level typically decreases by an amount α (greater than or equal to 0).

This represents a structural imperfection in imitation, which we shall call “inaccuracy”.

β (also greater than or equal to 0) represents the dispersion of the Gumbel probability

2 For a discussion of the problems associated with assuming Gumbel rather than Normal distributions, see

Vaesen (2012).
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distribution, and indicates the variety among the individual students of h. If h is hard

to copy, for instance, but students all make the same mistake, α would be high, and

β low. In case both α and β are zero, replication is perfect. In general, the probability

that students outperform their mentors is given by the area under the curve to the right

of the dashed line in Figure 1, which represents zh. By choosing α and β values, the

model represents how inaccurate and variable imitation is for a particular technology

or domain of knowledge.

zh

Β

Α

imitator

p

Fig. 1 Gumbel probability density function for imperfect imitation

With these assumptions, Henrich (2004) derives the following equation (for the tech-

nical details, see Appendix A):

∆z = −α︸︷︷︸
degenerative

+β(γ + ln(N))︸ ︷︷ ︸
positive

, (3)
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whereN is the population size;3 and γ the Euler-Mascheroni constant (≈ 0.577). Clearly,

the inaccuracy term α has a general degenerative effect on average skill level, which may

be counterbalanced by the second term. This will happen when β and/or N are suf-

ficiently large; in other words, when there is substantial variety among students who

imitate h and/or there is a sizeable population of students. The idea behind this is not

difficult to grasp: although inaccuracies in imitation have a structurally degenerative

effect, the sheer number of imitations may, in combination with the possibility of ben-

eficial errors or individual inventions, compensate for or even outweigh the constant

downward pull of α.

Figure 2 presents these ideas graphically. The Y-axis gives different values of im-

itation inaccuracy α. All the three curves correspond to parameter combinations for

which ∆z = 0; parameter combinations below a curve are associated with regimes of

increasing representational accuracy (i.e. ∆z > 0), while those above a curve yield loss

of accuracy (i.e. ∆z < 0). Each of the three curves, however, corresponds to a different

β value; the higher the diversity β, it appears, the higher the imitation inaccuracy that

can be compensated for. The same holds for larger population sizes N .

In D & D’s application, α represents how transmission of scientific beliefs is struc-

turally affected by cognitive biases. However, scientific progress can still occur on the

condition that values of β and N are sufficiently high; in other words, when there is

a sufficiently large number of replicas and/or sufficient variety between these replicas.

There will be scientific progress when at least one result of imitation is superior to the

currently best theory h—i.e. the z-value of that copied belief needs to be to the right of

the dashed line in Figure 1. Then, that copy can go on to become the model for the next

generation. When will that be more likely to happen? First, in case population sizes

3 According to D & D, N refers to the size of the scientific community. But since ∆z represents the repre-

sentational accuracy of scientific beliefs, it is more accurate to say that N represents the population of available

scientific beliefs (rather than of scientists). Nothing much depends on this as long as it is reasonable to assume

that there is a 1:1 correlation between the two populations. In light of this, we will refer to these populations

interchangeably.
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N

α

β = 3

β = 2

β = 1

Fig. 2 Population size (N), inference diversity (β), and copying inaccuracy combinations for which ∆z = 0.

Higher N ’s and β’s can offset higher levels of copying inaccuracy.

are large; exceptionally high z-values will occur more readily when drawn from larger

samples. Second, exceptionally high z-values will surface just in case there is variation

in the kinds of copies made from h; in the extreme case where β is 0 (and α 6= 0), no

copy scores better than zh − α, and a fortiori, no copy scores better than zh.

In D & D’s setup, it seems thus, processes of cultural transmission can offset the

cognitive, truth-distorting biases which scientists are subject to. Even in the pessimistic

scenario where initial theories are far from the truth and cognitive biases result in strong

inaccuracies (i.e. low z, high α, respectively), science may progressively approximate

truth as long as population size (N) and replica diversity (β) are sufficiently large.

Below, however, we identify two flaws in D & D’s argument.
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3 Problem 1: Where is the problem?

According to D & D, the evolution of scientific belief is driven by the following two

processes. First, scientists select a belief that they find imitation-worthy, and second,

scientists make a copy of that belief. Let us call these two processes belief selection and

belief imitation, respectively.

In the former, scientists do not select just any belief, but, per D & D’s tractability as-

sumption, the best (i.e. truest) belief, h, currently available in the scientific community.

Consequently, belief selection always favors increases of average truth value. Progress in

science is thus only worked against by the second process, that is, by belief imitation:

due to cognitive biases, imitation may yield inaccurate copies of h, which typically are

inferior to (but occasionally better than) h itself.

Now, the fact that D & D’s model allows only belief imitation to interfere with the

scientific aims of truth is not just empirically questionable (see Section 4), it seriously

limits the scope of D & D’s argument. The model can only show how processes of cultural

transmission may offset structural copying errors occurring in science. By its tractability

assumption, it cannot say anything about the conditions (if any) under which errors of

belief selection may be cancelled out. This is remarkably unfortunate given the fact

that belief selection, on D & D’s own reading, comprises practices which make up the

bulk of the scientific enterprise, such as experimentation, empirical validation, and so

forth. For regarding belief selection, D & D de facto assume that scientists can and do

properly ‘assess competing scientific theories [e.g.] through epistemic values, intuition,

experiment, evaluation of empirical adequacy or a combination of these factors (p. 12)’.

That the bulk of science is simply assumed to be free from the distortive effects of

cognitive biases makes D & D’s scenario much less pessimistic than advertised. The

scenario is just as pessimistic as is credible the (to our ears highly incredible) claim that

in science imitation is the only or chief source of error.
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To fully appreciate how D & D’s optimism reduces the explanatory scope of their

model, let us contrast it with the original, namely that of Henrich. Although Henrich

also assumes individuals to be able to select the best model in the population, this really

is a pessimistic assumption for the phenomenon he wants to explain, namely the loss

of complex technologies. In assuming that copiers are able to identify correctly the best

mentor, Henrich might indeed overestimate a population’s capacity for retaining skills

through cultural transmission; but if loss occurs even under these favourable conditions,

it will certainly occur in case model selection is less than perfect. In contrast, when

the explanandum isn’t so much cultural loss as cultural gain (as is the case for D &

D), the same assumption assumes partly what is to be explained.4 To bring out the

contrast explicitly: the result of Henrich’s model could be sloganized as “Even if we

would always learn from the best, complex skills may get lost in transmission”—which

is an informative claim. The counterpart for D & D’s model would be: “If we could

always learn from the best, we would be more likely to come to believe the truth”—which

is a fairly trivial claim. Or more accurately, it is a trivial claim, unless D & D have

convincing evidence showing that: (i) imitation is the most truth-distortive activity of

science; and (ii) the forces that make imitation so error-prone do not affect the reliability

of the other process at work in the evolution of belief, namely belief selection.

Before we question these two claims on empirical grounds in the next section, we

would like to note that the first one seems implausible already in light of the model’s

own assumptions. In particular, the tractability assumption is really difficult to make

fit with low-fidelity copying. It is hard to imagine how errors of imitation can be big

if the prior process of belief selection was properly executed (as D & D assume). The

ability to evaluate the empirical adequacy of someone else’s theory T , say, through

4 D & D are not alone in deploying Henrich’s model to explain instances of cultural gain. Powell et al. (2009),

for instance, present an agent- based version of Henrich’s mathematical model to explain the emergence of modern

behaviour in the Late Pleistocene. Everything we say here thus also applies to the results of Powell et al (in fact,

this kind of criticism has been leveled at Powell et al by one of us before, see Vaesen (2012)).
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a laborious process of experimentation, seems to require, minimally even, the ability

to first reproduce a fairly accurate copy of that very theory T .5 The assumption that

belief selection proceeds perfectly thus limits how much error can be expected to occur

subsequently during imitation. In light of this, if one accepts the tractability assumption,

one has reasons to doubt the pertinence of the problem D & D have found a solution

to.

4 Problem 2: What cognitive biases are we (not) talking about?

In the above, we have more or less bracketed the forces which may cause errors in

science: cognitive biases. There are two problems in the way D & D conceive of them.

First, it is unclear how cognitive biases could leave belief selection unharmed (as,

again, per D & D’s tractability assumption). Cognitive biases stand in the way of seeing

the truth; belief selection is a matter of identifying true belief; hence, belief selection is

a natural target for cognitive biases. Consider human teleological biases again. These

are portrayed as an impediment to a correct understanding of the evolution of species

(p. 14). Now, if a teleological bias indeed makes it difficult to see the correctness of the

Darwinian view, the bias should be expected to work also during belief selection, that

is, while experimenting and empirically validating the view in attempt to verify whether

it really is best; even more so perhaps than during belief imitation.

Second, a bit ironically, in the literature D & D borrow their model from discussions

of cognitive biases virtually always concern selection biases, not biases affecting copying

fidelity. Joseph Henrich (2003), in a paper co-authored with Richard McElreath, gives a

useful overview of the kinds of biases affecting the likelihood of some individuals being

copied more readily than others (see Figure 3).

At the highest level in Figure 3, one sees the first broad distinction, namely between

so-called content and context biases. Content biases arise due to cues associated with

5 Let us stress again that experimentation, on D & D’s construal, happens before imitation. Scientists thus are

assumed to engage in testing T , not, as seems more natural, in testing their inaccurate, internalized copy of it.
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Fig. 3 Cognitive biases in social learning

the thing being transmitted. For example, the quality of a belief—defined in terms of

its truth or utility or something else—affects the likelihood of its being copied. D &

D’s tractability assumption clearly falls under this heading; scientists are assumed to

be strongly biased towards good beliefs, viz. beliefs that are true.

Importantly, however, content biases may also favour the transmission of less favourable

beliefs. Think of the well-documented confirmation bias, which leads scientists to seek

and copy information that confirms their false preconceptions (for a useful overview

of research on confirmation biases, see Nickerson, 1998). Or think of the phenomenon

of belief perseverance, which sustains the transmission of false beliefs even in the face

of strong counter-evidence (for an early treatment of belief perseverance, see e.g. Ross

et al., 1975).

D & D’s assumption that scientists have the capacity to identify truth-approximating

belief would thus imply that scientists are immune to the deleterious content biases just

mentioned. The previous paragraph suggests that they are not.
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Furthermore, D & D’s ignore all biases on the right-hand side of Figure 3. These are

the so-called context biases, related to the tendency of humans to copy others based

on cues provided by the learning context. That is, one may copy other individuals not

because their beliefs are particularly good, but because these individuals either have

prestige; or are generally successful; or are similar to oneself; or are one’s friends; or are

one’s competitors. If so, one would copy based on properties of the mentor rather than

on any merits of the mentor’s scientific beliefs. In a similar vein, belief selection may be

informed by how widespread certain beliefs are in a community; one may copy the ma-

jority (conformity bias) or, conversely, beliefs that are rare (rarity bias). Although these

contextual cues may sometimes be taken to be indicative of properties of content—e.g.,

the prestige of a scientist may sometimes really correlate with the truth of her scien-

tific theory—such correlations cannot be taken for granted. For instance, the majority

is arguably often wrong, so that conformity biases would promote the transmission of

falsehoods rather than of truths.

Importantly, these context biases are not just hypothetical. There is ample empirical

evidence showing that they are real and abundant (for a useful overview, see Mesoudi,

2009). So if D & D really think that scientists are liable to the same cognitive limitations

as ordinary people (p. 6), they should incorporate the right-hand side of Figure 3. The

operation and interaction of many of these biases have, of course, been brought out by

sociological analyses that emphasize “mob psychology”, “bandwagon effects” and peer

pressure in scientific practice (Kuhn, 1962; Collins, 1985; Latour, 1987). This seems to

create a dilemma for the modelling of learning processes in science: either one takes

seriously all cognitive biases but ends up with an analytically intractable model (see

Appendix B for why this is so), or one retains the strong tractability assumption but

ends up with an empirically inadequate model.



16 Krist Vaesen & Wybo Houkes

5 An agent-based version of D & D’s model

The dilemma between intractability and empirical inadequacy derived at the end of the

previous section can be avoided by developing an agent-based version of D & D’s math-

ematical model. Agent-based models have seen some use in the philosophy of science, to

study effects of the structure of communication networks (Zollman, 2007; Grim, 2009),

various types of social networks (Payette, 2011) and the distribution of different learning

strategies (Weisberg and Muldoon, 2009) on the convergence of beliefs in communities

of scientists. Our agent-based model studies the effects of a single learning strategy,

imperfect intergenerational imitation. In particular, it is devised to examine the effects

of relaxing the assumption of perfect mentor selection, shared by Henrich and De Cruz

& De Smedt. Thus, our model represents a community of scientists who are imperfectly

tuned towards the best beliefs currently in the pool of beliefs, and who imperfectly copy

those beliefs. The model starts with N agents that act as the parent generation, and N

agents that act as the offspring generation. In each time-step, the model goes through

the following two steps:

1. Transmission: each offspring selects (*) one agent from the parent generation,

the latter acting as a cultural parent for the former. The offspring individual

takes the z-value of the parent, according to the transmission process described

by D & D.

2. Replacement : the offspring generation replaces the parent generation, and the

average z-level of the population, z, is measured.
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Different selection biases are implemented at (*) in step 1. In particular, largely

following Vaesen (2012), 6 offspring select a parent according to one of the four following

learning biases:

a. in case of Extreme Success, offspring select the single best parent in the pop-

ulation;

b. in case of Modest Success, offspring select a parent with probability propor-

tional to the parent’s z-value;

c. in case of Conformity, offspring select a parent with probability inversely pro-

portional to the magnitude of the difference between the model’s z-value and

the mode, µ, of the distribution; and

d. in case of Random Copying, offspring select a parent at random.

Let us briefly explain these biases. Extreme Success is simply the kind of selectivity

assumed by D & D.

Modest Success can be interpreted in two ways, either as a content bias or as reflecting

a context bias. In the former case, scientists preferentially select good theories over bad

theories in virtue of the goodness of the theories. They do so less perfectly than in

case of Extreme Success, either due to inherent imperfections of the selection process

(e.g., citation numbers may provide a good but imperfect indication of the goodness of

a theory; scientific ideas may be unequally available; satisficing rather than optimizing

strategies may be adopted for pragmatic reasons) or due to the fact that the selection

process is affected by cognitive biases of the sort D & D are interested in (e.g., intuitive

ontologies, essentialist preconceptions)—so that Problem 1 (Section 3) is addressed.

In contrast, if construed as a context bias, Modest Success assumes scientists to be

biased towards good theories because they are responsive to some (supposed) proxy for

6 The main difference is that the model of Vaesen (2012) contains a third step, in which offspring also undergo

vertical transmission (i.e. they learn from their biological parents). In our model, in contrast, cultural transmission

is assumed to proceed only through oblique transmission (i.e. offspring learn from parents that are not necessarily

their biological parents, as in step 2), simply because learning from one’s biological parents arguably plays only

a marginal (if any) in scientific practice.
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the goodness of theories, such as the parent’s prestige or the fact that her (empirical)

success is more public than that of others. As such, Modest Success offers one way of

addressing Problem 2 (Section 4).

A different context bias is Conformity, which refers to a disproportionate tendency

to copy the most common behaviour in the parent population (in our case approximated

by the mode, µ, of the distribution). How real is conformity in the scientific enterprise?

There is good theoretical and empirical evidence for conformist transmission in gen-

eral: models of Henrich and Boyd (1998) suggest that conformist biases are likely to

evolve whenever social learning evolves; Henrich (2001) finds evidence of conformist

transmission in field data on the diffusion of innovations; Henrich and Boyd (2002) and

Mesoudi (2009) review a whole set of empirical studies demonstrating the powerful hu-

man propensity to conform. Consequently, following D & D’s suggestion that scientists

are liable to the same cognitive dispositions as ordinary people, and given the evidence

for peer pressure and bandwagon effects provided by sociologists of science, there is

good reason to treat textitConformity as, minimally, a real possibility.

The last condition, Random Copying, implies randomness in the strategies of off-

spring when selecting a parent. The offspring individual is assumed either to really

select parents at random (i.e. she is insensitive to clues about such things as the par-

ent’s success or the popularity of the parent’s beliefs), or to switch strategies seemingly

at random (e.g, conformist under time pressure, success-based otherwise; success-based

if cheap, conformist otherwise; conformist in matters of statistics, success-based in mat-

ters of biology). While there is accumulated evidence that contemporary humans do not

just select cultural parents at random (for a recent report, see Mesoudi, 2011), and thus

indeed are responsive to the features of the parents they choose, little is known about

the precise conditions under which they are responsive to which clues, that is, about the

conditions under which one of the various biases is dominant over the others. This holds

also (especially?) for scientists: we simply do not know which heuristics scientists use

when. In this light, it makes good sense to consider what happens in case no systematic
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trends in scientists’ biases are assumed. The Random Copying condition does this; it

acknowledges that we are unsure about what would qualify as a more realistic condition.

For given values of N , we simulated widely over α, to find the level of transmission

inaccuracy that could be sustained by a population of size N without loss in average

representational accuracy, ∆z. For further details, we refer the reader to Appendix C.

6 Results of the agent-based simulations

The results of the simulations are presented in Figure 4. Note first the profound differ-

ence between Extreme Success (which, recall, reproduces D & D’s assumption of perfect

belief selection) and the other three conditions. Extreme success is not only able to

sustain much higher levels of transmission inaccuracy α, it is also the only condition for

which there is a sustained population effect at higher N ’s.

These observations reinforce our previous point: D & D’s model is extremely opti-

mistic. It offers a credible explanation of scientific progress only on the unlikely condition

that scientists always perfectly assess the epistemic standing of all theories and pick out

the single best; and that they are immune to prestige, conformity and other biases. Once

such considerations are taken into account, the conditions of scientific progress are much

more limited. In case of Conformity or Random Copying, there is stasis throughout; some

gain is achieved in Modest Success, namely for lower values of N .

The good news, however, is that D & D’s targeted example—progress in biology from

1760 to 1860—is one that involves low values of N , namely a growth in the community

of biologists from 60 in 1760 to 240 in 1860. So to have a case as regards this particular

example, D & D would only need to establish the truth of Modest Success; that it is

true that scientists, conformity and other biases notwithstanding, preferentially select

good theories over bad ones. Although this may prove quite demanding, it is arguably

less difficult than defending Extreme Success.
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α

N

Extreme Success

(as in D & D)

Modest Success

Conformity

Random Copying

Fig. 4 Critical population size (N) versus transmission inaccuracy (α) for different selection biases. Parameter

combinations above a curve correspond to a regime of loss (i.e. to decreases of average representational accuracy,

∆z < 0); those under a curve correspond to a regime of gain (i.e. to increases of average representational accuracy,

∆z > 0).

For examples including higher N ’s (examples from contemporary science perhaps)

matters are different. Now one would need to show that scientists are biased towards

good theories even more strongly than just with probability proportional to the parent’s

z-value (as in Modest Success). In this regard, one could try the idea that scientists

engage in, what Mesoudi and Lycett (2009) call, Frequency-dependent Trimming, i.e.

they focus only on reasonably good beliefs and ignore beliefs in the bottom B fraction

of the frequency distribution.

The effects thereof are examined in Figure 5, which shows the results of implementing

Frequency-dependent Trimming for values of B from 0.0 to 0.9. In case B = 0.3 (for

instance) offspring discard the 30% percent worst parents; and choose a parent from the

remaining 70%, with probability proportional to the parent’s z-value.
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α

N

B =0.0

B =0.9

Extreme Success

(as in D & D)

Fig. 5 Critical population size (N) versus transmission inaccuracy (α) for Frequency-dependent Trimming,

discarding different bottom B fractions of the frequency distribution. For example, in case B = 0.3, the 30% lowest

z-values are ignored; the offspring selects a parent from the 70% best parents, with a probability proportional

to the parent’s z-value. Note that the condition where B = 0.0 corresponds to Modest Success. For purposes of

comparison, condition Extreme Success is plotted as well.

Surprisingly, the effects of weeding out bad theories are relatively small at the range

we are interested in. Even when offspring make a selection just from the 10% percent

best theories (B = 0.9), little is gained by introducing more individuals in the population

once it has reached a threshold of around 350.7 In fact, only D & D’s original condition,

i.e. Extreme Success, offers a persistent population effect, operative in small and large

populations alike. That condition, however, is implausible in light of our earlier criticism

(Section 3 and Section 4).

To summarize, our model supports the following conditional claims:

7 Note that one shouldn’t put too much weight on the exact number here. Different parameter settings will

result in different thresholds. It is the qualitative point that matters: at a certain threshold, population effects

cease to play.
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C.1 If Extreme Success obtains (very unlikely), for any given initial population

size, population growth can be expected to increase the population’s average

z-value.

C.2 If Modest Success or Frequency-dependent Trimming obtains (likely, or so we

hope), for initial populations of limited size, population growth can be expected

to increase the population’s average z-value.

C.3 If Modest Success or Frequency-dependent Trimming obtains (likely, or so we

hope), for initial populations of considerable size, population growth should

not be expected to increase the population’s average z-value.

C.4 If Conformity obtains (perhaps more likely than we hope), for any given initial

population size, population growth should not be expected to increase the

population’s average z-value.

C.5 If Random Copying obtains (as likely as it is certain what actually is more

likely), for any given initial population size, population growth should not be

expected to increase the population’s average z-value.

7 Conclusion

We have done two things in this paper. First, we have pointed out the shortcomings of a

population-dynamic mathematical model deployed by De Cruz & De Smedt to address

the collective dimensions of scientific knowledge. In particular, we have argued that their

model makes one overly strong tractability assumption, which seriously limits the scope

of their argument and which makes little sense empirically. Second, we have developed

an agent-based version of De Cruz & De Smedt’s model that allowed us to relax the

tractability assumption in question. This enabled us to identify five conditional claims

about when and when not one should expect growth of scientific communities to spur

scientific progress.
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Appendix A: Derivation of Equation (3)

According to Henrich, assuming that everyone copies the most skilled individual, population-

level change in mean z-value, ∆z, is given by Equation 2, that is,

∆z = zh − z︸ ︷︷ ︸
selective transmission

+ ∆zh︸︷︷︸
noisy interference

For a population with skill levels distributed according to a Gumbel distribution, we

have

zh = µ+ β(γ + ln(N)),

where µ is the mode and β the spread of the distribution, and N represents population

size. Further, for z we have

z = µ+ βγ.

Finally, the transmission error is given by

∆zh = −α+ βγ,

where α represents imitation inaccuracy, as represented in Figure 1. Adding all this

yields Equation 3 in the main text.

Appendix B: Relaxing D & D’s first tractability assumption

What happens if one were to relax D & D’s first tractability assumption, and concede

that belief selection is subject to the same cognitive biases as imitation? Put differently,

what happens when imitators not only make inferior copies, but prior to that, also select

inferior beliefs to copy from? Under these conditions, the relatively simple Equation 2

no longer applies. Instead, one would need to deploy the following equation:

∆z =
1

n

n∑
1

fi

f
(zi +∆zi)−

1

n

n∑
1

zi (4)

So instead of having only one best belief h, which is copied by all, one now has several

beliefs {i, j, ..., n}, that all come with their own likelihood of being copied {fi, fj , ..., fn},
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and with their own transmission bias {∆zi,∆zj , ...,∆zn}. Without making any further

assumptions, there is no way of telling how ∆z will evolve over time. In sum, the “best

belief” assumption is indeed required for tractability. The only alternative for examining

the effects of less selective forms of mentor selection is to switch to agent-based models

(see Section 4).

Appendix C: Implementation of the simulations

Simulations were implemented in NetLogo (code available from the authors upon re-

quest). Simulations start with a population of N = 10, 50, 100, 175, 250, 350, 500, 1000

parents, each with an initial z-level randomly drawn from a Gumbel[10;1]-distribution,

and a population of N = 10, 50, 100, 175, 250, 350, 500, 1000 offspring individuals, each

with an initial z-level of 0.

In each run, models go through two stages: transmission and replacement.

During transmission, each offspring selects—according to the learning biases defined

in the main text—one agent from the parent generation, the latter acting as a cultural

parent for the former. In particular, the offspring’s z-value is given by the parent’s

z-value, minus the structural transmission inaccuracy α, plus an individual error, ran-

domly drawn from a Gumbel[0;1]-distribution.

During replacement, the offspring generation replaces the parent generation, and the

average z-level of the population, z, is measured.

Models go through 100 runs, after which the overall change in average z-level, ∆z,

is measured. To account for stochastic variation in simulation outcomes, 1000 iterations

were performed and results were averaged across these.


