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1. Introduction:	Mathematization?	

Philosophy	is	written	in	this	grand	book,	the	universe,	which	stands	continually	

open	to	our	gaze.	But	the	book	cannot	be	understood	unless	one	first	learns	to	

comprehend	the	language	and	read	the	letters	in	which	it	is	composed.	It	is	

written	in	the	language	of	mathematics,	and	its	characters	are	triangles,	circles,	

and	other	geometric	figures	without	which	it	is	humanly	impossible	to	

understand	a	single	word	of	it;	without	these,	one	wanders	about	in	a	dark	

labyrinth.1		

Galileo’s	famous	quote	is	often	taken	to	express	one	of	the	central	characteristics	of	the	Scientific	

Revolution:	the	ideal	of	a	thoroughgoing	mathematization	of	(the	study	of)	nature.	Yet	it	is	easy	

to	misconstrue	the	meaning	of	Galileo’s	metaphor	by	ignoring	the	specific	context	in	which	it	

was	introduced.	Galileo	only	characterized	mathematics	as	a	language	to	mock	the	Aristotelians’	

presumed	dependence	on	human	books	as	the	ultimate	authority—if	there	is	an	authoritative	

book	that	is	to	be	read,	it	can	only	be	nature	itself,	and	its	language	cannot	be	of	human	origin.2	

One	must	also	reconstruct	the	specifically	mathematical	background	that	made	it	appealing	for	a	

thinker	like	Galileo	to	invoke	these	striking	images	in	this	polemical	context	before	reading	

strong	metaphysical	commitments	into	the	metaphor.3		

Stories	about	the	Scientific	Revolution	usually	focus	on	how	ideas	about	physics	and	the	natural	

world	were	profoundly	modified	in	the	early	modern	period,	but	they	often	silently	assume	an	

ahistorical	notion	of	mathematics	that	hides	the	way	in	which	the	category	of	mathematics	itself	

was	also	being	reshaped	in	the	process.	There	are	different,	though	not	unrelated	ways	in	which	

the	historicity	of	mathematics	can	be	taken	into	account.	One	important	line	of	corrections	to	

earlier	stories	has	involved	paying	close	attention	to	the	constraints	imposed	by	the	use	of	

																																																													

*	To	appear	in	D.M.	Miller	and	D.	Jalobeanu,	The	Cambridge	History	of	Philosophy	of	the	Scientific	
Revolution.	
1	(Galilei	1957,	237–38)	
2	See	(Biagioli	2003)	for	an	analysis	of	the	polemical	background	to	Galileo's	use	of	the	metaphor.	See	also	
(Palmerino	2016).	
3	See	(Hatfield	1990).	



particular	mathematical	techniques	and	norms	that	are	no	longer	visible	from	the	perspective	of	

present-day	mathematics.4	Another	question	concerns	the	notion	of	application	itself:	what	did	

it	mean	to	“apply”	mathematics	to	the	empirical	world?	This	chapter	will	explore	a	way	to	

understand	the	issue	of	application	from	an	early	modern	mathematical	perspective,	and	will	

use	this	analysis	to	offer	a	fresh	perspective	on	the	idea	of	the	mathematization	of	physics.5		

Unpacking	the	notion	of	application	implies	that	we	should	try	to	understand	how	one	learned	

to	“recognize”	Galileo’s	circles	and	triangles	in	the	empirical	world.	Many	historical	analyses	

have	drawn	attention	to	the	importance	of	the	Aristotelian	notion	of	subalternate	or	middle	

sciences.6	These	sciences	were	supposed	to	result	from	a	two-way	operation.	First,	pure	

mathematics	is	established	by	abstracting	away	all	natural	attributes	from	physical	substances,	

so	that	only	their	quantitative	attributes	remain.	Second,	mathematical	truths	ascertained	in	this	

abstract	setting	can	be	predicated	of	natural	phenomena	by	superadding	specific	physical	

attributes	to	them,	so	that,	e.g.,	in	the	case	of	optics,	we	are	no	longer	dealing	with	straight	lines,	

but	with	straight	lines	in	light.	This	results	in	the	following	picture	of	application.	Circles	and	

triangles	are	typically	seen	as	the	abstracted	shapes	of	physical	objects;	mathematical	truths	

established	about	them	can	be	applied	back	to	the	empirical	world	if	we	know	on	natural	

philosophical	grounds	that	specific	phenomena	exhibit	some	mathematical	attributes.	E.g.,	if	we	

know	on	natural	philosophical	grounds	that	light	moves	in	straight	lines,	we	can	use	

mathematical	knowledge	to	demonstrate	properties	of	optical	phenomena.		

Rather	than	start	from	this	philosophically	motivated	picture,	Section	2	will	sketch	how	

sixteenth-century	mathematicians	approached	the	mathematization	of	often	very	mundane	

empirical	situations	through	a	set	of	concrete	practices.	Focusing	on	application	as	a	practical	

issue	will	bring	two	related	aspects	to	light:	the	relation	between	the	empirical	world	and	the	

mathematical	domain	was	primarily	mediated	by	an	operation	of	construction	rather	than	

abstraction;	and	since	this	has	important	implications	for	the	representational	role	of	

mathematical	diagrams,	it	will	also	allow	us	to	better	see	how	mathematicians	could	hope	to	

characterize	an	open-ended	list	of	empirical	phenomena	in	geometrical	terms.		

																																																													

4	See	the	chapter	by	Guicciardini	in	this	volume.	
5	(Roux	2010)	warns	against	monolithic	views	on	a	development	that	actually	had	many	forms.	This	
chapter	will	identify	one	particularly	important	form,	without	the	presumption	that	this	would	exhaust	
the	field	of	options.	(Gorham,	et	al.	2016)	is	a	recent	volume	that	treats	the	issue	of	mathematization	from	
a	variety	of	angles.	
6	(Machamer	1978;	Lennox	1986)	were	influential	in	linking	Galileo’s	work	to	this	notion.	(Laird	1983;	
Laird	1987)	analyzes	scholastic	discussions.	(Distelzweig	2013)	offers	a	concise	treatment	of	Aristotle’s	
own	treatment.	See	also	(Mueller	1990)	for	different	interpretations	of	Aristotelian	abstraction.	



Galileo’s	metaphor	invites	a	further	question.	Reading	a	book	involves	more	than	recognizing	its	

characters;	it	also	requires	identifying	narrative	structures	that	allow	the	reader	to	make	sense	

of	the	words	and	sentences	formed.	But	what	was	the	appropriate	reading	strategy	for	the	book	

of	nature—to	what	genre	did	it	belong?	As	we	will	see,	the	mathematization	of	the	study	of	

nature	did	not	just	depend	on	the	replacement	of	one	language	with	another,	it	was	also	(and	

maybe	primarily)	a	shift	in	reading	strategy—one	that	focused	on	problem-solving,	as	was	

suggested	by	the	practice	of	mathematics.	Section	3	will	try	to	gauge	the	impact	that	an	explicitly	

mathematical	way	of	approaching	the	empirical	world	could	have	on	philosophical	ideals	and	

goals.		

Section	2	will	deliberately	avoid	connecting	mathematical	practice	with	philosophical	debates	of	

the	period.	This	is	in	the	first	place	a	methodological	choice	to	better	bring	out	the	specific	

nature	of	the	practical	operations	that	were	central	in	applying	mathematics	to	empirical	

phenomena,	and	that	often	get	obscured	by	philosophical	preoccupations.	Both	the	thesis	that	

Platonic	metaphysics	was	the	key	to	understanding	Galileo’s	mathematization	of	nature	and	the	

thesis	that	this	grew	naturally	out	of	Aristotelian	developments	have	been	defended	with	vigor	

in	historical	scholarship.7	The	use	of	these	philosophical	categories	to	frame	the	question	of	

mathematization	tends	to	divert	attention	from	the	crucial	focus	of	mathematical	practice	itself:	

problem-solving	through	construction.	There	were	other	sixteenth	century	philosophical	

developments	that	were	closer	in	spirit	to	this	practice,	such	as	the	Ramist	movement	and	the	

rediscovery	of	Proclus’s	philosophy	of	mathematics.8	These	reflections	on	what	it	meant	to	

engage	in	mathematical	reasoning	were	definitely	an	important	part	of	the	background	against	

which	sense	could	be	made	of	the	idea	to	extend	mathematics	beyond	its	traditional	domain	to	

topics	that	had	traditionally	belonged	to	natural	philosophy;	a	background	that	also	included	

reconfigurations	of	elements	from	Platonic	and	Aristotelian	philosophy.	But	it	is	important	to	lay	

bare	the	aspects	of	the	mathematical	practice	itself	that	allowed	such	extension	and	that	gave	a	

particular	direction	to	the	resulting	options	for	reconceiving	natural	philosophy.	This	is	the	

angle	from	which	the	topic	will	be	analyzed	here.	

2. The	Practice	of	Mathematics	in	the	Sixteenth	Century	

Let	us	begin	with	some	triangles	and	circles.	In	1571,	the	English	mathematician	Thomas	Digges	

published	Pantometria,	a	text	on	practical	geometry	written	by	his	father,	Leonard,	before	his	

death	in	1559.	It	contained	an	entirely	traditional	treatment	of	the	measurement	of	lengths,	

																																																													

7	(Koyré	1978)	is	the	classic	reference	for	the	Platonic	interpretation.	(Wallace	1984)	has	been	an	
influential	plea	for	the	Aristotelian	reading.	
8	For	Ramus,	see	(Goulding	2010;	Pantin	2019).	For	Proclus,	see	(De	Pace	1993;	Claessens	2009).		



surfaces,	and	volumes.	Consider	the	twenty-third	chapter	of	the	first	book,	which	explains	how	

to	determine	an	unknown	distance	with	the	use	of	a	geometrical	square.	What	is	the	distance	

between	locations	A	and	B	(in	Figure	1)?	The	surveyor	first	uses	his	geometrical	square	(seen	in	

operation	at	C)	to	construct	a	right	angle	upon	the	line	of	sight	AB,	and	then	picks	out	an	

arbitrary	third	location	C	lying	somewhere	along	the	perpendicular	line.	By	directly	measuring	

the	distance	between	A	and	C	and	the	angle	ACB,	the	distance	AB	(and	CB)	can	be	readily	

determined.		

	

Figure	1.	Determining	an	unknown	distance.9	

The	first	thing	to	be	noticed	about	this	procedure	is	that	the	triangle	ABC	and	the	circular	arc	

that	measures	the	angle	are	not	simply	“abstracted”	from	the	situation.	They	cut	across	all	

empirically	given	shapes	and	boundaries	in	the	landscape.	Instead,	the	triangle	is	actively	

constructed	by	the	instrumentally	mediated	operations	of	the	surveyor,	who	is	pictured	in	

different	poses	that	highlight	his	active	engagement.	In	fact,	the	second	triangle	in	the	lower-

right	corner	of	the	figure	is	one	that	the	surveyor	is	supposed	to	materially	construct	on	a	piece	

of	paper	using	ruler	and	compass.	By	inspecting	this	scale	drawing,	he	can	superimpose	the	

geometrically	established	relationships	on	the	landscape.		

So	what	is	the	triangle	in	the	figure	doing	if	it	is	not	representing	any	concrete	shape?	It	solves	a	

practical	problem	by	showing	how	different	measurable	quantities	are	systematically	related	to	

each	other.	If	you	know	any	three	quantities	through	direct	measurement,	you	can	immediately	

determine	a	fourth,	unknown	quantity.	One	can	think	of	the	triangle	as	geometrically	encoding	

																																																													

9	(Digges	and	Digges	1571,	ch.	23)	



this	relation;	constructing	the	geometrical	figure	is	a	way	of	manipulating	the	accessible	

information.	Seen	from	this	perspective,	“applying”	mathematics	to	empirical	situations	is	a	

matter	of	constructing	geometrical	diagrams	to	solve	problems.		

Digges’s	triangle,	of	course,	provides	only	an	elementary	example.	Sixteenth-century	

mathematicians	spent	considerable	time	and	energy	on	developing	mathematical	instruments	

that	could	perform	more	complicated	tasks,	such	as	sundials	(often	of	amazingly	intricate	

design),	quadrants,	and	astrolabes.10	Most	of	these	instruments	can	be	understood	as	operating	

along	similar	lines.	They	gave	their	user	the	means	both	to	effect	a	direct	measurement	(e.g.,	of	

the	sun’s	height	above	the	horizon)	and	to	extract	more	information	from	its	result	(such	as	the	

time	of	the	day).	The	background	knowledge	required	for	this	latter	step	was	engraved	on	the	

instrument	and	often	required	further	manipulations	by	its	user,	who	moved	parts	that	helped	

translate	the	inputted	measurement	into	the	output	value.	Circles	and	triangles	were	only	a	part	

of	the	repertoire	of	figures	engraved	on	the	instruments,	which	encoded,	e.g.,	the	sun’s	altitude	

at	each	time	of	the	day	for	all	different	dates	of	the	year	at	a	given	latitude.		

The	geometrical	engravings	and	moving	parts	of	the	more	complicated	instruments	played	a	

role	very	closely	related	to	that	of	what	was	known	as	a	theorica.11	The	term	originated	in	

astronomy,	where	a	theorica	was	a	geometrical	model	that	allowed	one	to	track	the	observed	

motion	of	a	planet	(which	in	turn	could	be	embodied	in	a	material	instrument	called	an	

equatorium),	but	it	was	also	applied	in	other	fields	that	used	geometrical	constructions	to	

determine	relations	between	measurable	quantities.	Their	status	as	models	can	be	called	

“instrumental”	in	a	more	substantial	sense	than	the	one	often	intended	in	traditional	narratives	

concerning	the	history	of	astronomy.	They	usually	were	not	supposed	to	be	straightforward	

“realistic”	depictions	of	how	things	are,	but	neither	were	they	to	be	judged	merely	by	their	

predictive	successes.	Their	predictive	role	could	have	been	taken	over	by	purely	arithmetical	or	

tabular	methods,	but	their	geometrical	character	was	crucial	since	it	allowed	further	conceptual	

and	practical	exploration	of	systematic	dependencies.	To	put	it	differently,	geometrical	

constructions	were	essential	tools	for	both	thinking	about	and	actually	effecting	new	

measurements.	They	allowed	users	to	immediately	see	the	relations	between	a	wide	range	of	

possible	observations	(e.g.,	between	latitudes,	dates,	and	times),	and	this	spurred	

mathematicians	to	develop	ever	new	ways	of	representing	some	of	these	relationships	and	

embody	them	in	new	material	instruments.12		

																																																													

10	See	(Bennett	2003)	for	an	important	analysis	of	the	function	of	mathematical	instruments.	
11	See	(Bennett	2003,	142–43;	Johnston	2004).	
12	See	(Bennett	2012;	Kremer	2016)	for	examples.	



There	was	an	important	continuity	between	“practical”	and	“pure”	mathematics.	This	is	

illustrated	in	the	treatise	on	Platonic	solids	that	Thomas	Digges	appended	to	the	edition	of	his	

father’s	text.	This	exercise	in	pure	mathematics	can	again	be	understood	as	an	exploration	of	

systematic	dependencies,	explicitly	intended	to	solve	geometrical	problems.	Digges’s	Euclidean-

style	geometry	was	similarly	grounded	in	constructive	activity,	even	if	not	necessarily	carried	

out	materially,	but	typically	supposed	to	take	place	in	the	imagination	(based	on	“postulated”	

constructions	of	straight	line	and	circles).13	As	Digges’s	preface	made	clear,	the	main	difference	

he	saw	between	his	own	pure	and	his	father’s	applied	mathematics	was	merely	the	goal	to	which	

the	exploration	of	dependencies	was	put—in	the	one	case	the	satisfaction	of	pure	curiosity,	in	

the	other	the	achievement	of	practical	ends.14		

Given	this	continuity,	Euclid’s	Elements	could	be	seen	(and	was	often	explicitly	presented)	as	a	

toolbox	for	practical	mathematics.	The	attempt	to	extend	problem-solving	techniques	to	a	field	

of	practical	operations	was	often	described	as	the	search	for	a	“reduction	to	art.”15	Euclidean	

geometry	itself	can	be	considered	a	successful	exemplar	of	this	ideal.	By	identifying	a	few	

elementary	operations	(drawing	a	straight	line	and	a	circle),	and	investigating	their	mutual	

relationships,	Greek	mathematicians	had	been	able	to	show	how	any	spatial	measurement	

problem	could,	in	principle,	be	solved	by	a	limited	number	of	constructive	steps.	A	general	

understanding	of	the	nature	of	these	constructions	allowed	any	practitioner	to	quickly	and	

efficiently	reach	his	goals,	in	a	way	that	guaranteed	the	correctness	of	his	results—turning	the	

practice	of	measurement	into	a	true	art.	But,	if	one	wanted	to	move	beyond	the	domain	of	spatial	

measurement,	one	needed	further	guidance	to	effect	the	appropriate	constructions.	In	the	case	

of	astronomy,	e.g.,	one	had	to	assume	that	specific	geometrical	constructions	could	encode	the	

properties	of	astronomical	motion	that	were	of	interest.	Here,	I	briefly	consider	two	other	

domains	in	which	sixteenth-century	mathematicians	were	actively	seeking	ways	to	extend	their	

problem-solving	techniques.		

First,	let	us	consider	mechanics,	the	field	of	practical	operations	involving	the	weighing	and	

moving	of	heavy	bodies.	The	publication	of	the	Latin	translation	of	Archimedes’	treatise	on	the	

Equilibrium	of	Plane	Figures	in	1544	was	an	important	event,	but	it	is	important	to	stress	that	

this	text	remained	completely	silent	on	its	relevance	to	any	practical	challenges.	This	relation	

was	only	elaborated	in	Guidobaldo	del	Monte’s	Mechanicorum	Liber	in	1577	and	Simon	Stevin’s	

																																																													

13	To	avoid	possible	misunderstanding:	this	claim	does	not	rule	out	mathematical	realism,	as	I	am	
describing	the	kind	of	cognitive	activity	underlying	mathematical	thinking,	not	the	ontological	status	of	
presumed	mathematical	entities.	On	the	central	place	of	construction	in	early	modern	geometry,	see	the	
classic	study	(Bos	2001).	
14	See	(Johnston	2006)	for	further	analysis.	
15	See	(Vérin	2008)	for	an	essential	introduction.	



Weeghconst	(The	Art	of	Weighing)	and	Weeghdaet	(The	Practice	of	Weighing)	in	1586.16	Stevin’s	

treatise	was	explicitly	introduced	as	the	first	successful	reduction	to	art	of	mechanics	(a	relation	

that	was	also	signaled	by	the	titles	of	its	parts).	Guidobaldo’s	was	modeled	on	the	presentation	of	

mechanics	in	the	eighth	book	of	Pappus’s	Mathematical	Collection	(originally	written	in	the	

fourth	century	AD,	and	printed	in	Latin	translation	in	1588	under	Guidobaldo’s	supervision),	

which	had	characterized	mechanics	as	devoted	to	the	solution	of	the	general	problem,	“to	move	

a	given	weight	with	a	given	force”	(datum	pondus	data	potentia	movere).	Both	Guidobaldo	and	

Stevin	showed	how	this	problem	could	be	constructively	solved	by	building	a	Euclidean-style	

framework	that	identified	as	the	elementary	operation	the	suspension	of	any	body	in	indifferent	

equilibrium,	the	possibility	of	which	could	be	expressed	by	ascribing	to	each	body	a	unique	

center	of	gravity	(given	as	the	first	postulate	of	Guidobaldo’s	work	and	as	the	first	practical	

operation	of	Stevin’s	Weeghdaet—in	both	cases	occupying	the	place	of	the	Euclidean	

construction	of	a	straight	line).	This	operation	allowed	the	solution	of	the	general	problem,	since	

it	entailed	the	proportional	law	of	the	lever	and,	in	the	case	of	Stevin,	that	of	the	inclined	plane.	

To	show	how	these	laws	could	solve	concretely	given	challenges,	the	treatises	again	offered	

sustained	exploration	of	the	systematic	dependencies	they	implied,	in	this	case	between	given	

weights,	forces,	and	their	geometrical	dispositions.	The	elementary	operation	thus	allowed	the	

mathematician	to	construct—conceptually	and	materially—different	kinds	of	systems	that	were	

guaranteed	to	be	in	equilibrium,	and	which	could	be	put	into	motion	by	adding	a	small	amount	

of	force.	(In	theory,	the	smallest	amount	should	suffice;	in	practice,	friction	and	other	

impediments	had	to	be	overcome,	requiring	a	force	that	varied	with	material	circumstances.)		

The	second	example	is	a	field	in	which	mathematicians	had	the	same	ambitions	as	in	mechanics,	

but	not	the	same	success.	The	inclusion	of	cannons	in	the	figures	illustrating	Digges’s	

Pantometria	(as	in	Figure	1)	was	not	accidental,	since	the	surveying	exercises	described	played	

an	important	role	in	warfare.	This	naturally	raised	the	question	whether,	given	that	the	distance	

to	a	target	could	be	geometrically	determined,	one	could	also	determine	how	to	aim	the	cannon	

to	guarantee	accuracy.	In	the	second	edition	of	the	Pantometria,	published	in	1591,	Thomas	

Digges	included	a	short	new	treatise	devoted	to	this	question,	following	up	on	the	1579	

Stratioticos,	a	text	on	military	science,	again	partly	based	on	his	father’s	work,	which	had	also	

included	ballistics.17	He	repeatedly	formulated	his	ambition	as	the	reduction	of	the	proportional	

relations	characterizing	shots	to	“a	Theorike	certain,”	but	he	also	had	to	admit	that	he	had	not	yet	

been	able	to	“reduce	that	art	to	such	perfection”	as	could	content	him.18	The	admitted	

																																																													

16	See	(Bertoloni	Meli	2006;	Van	Dyck	2006;	Van	Dyck	forthcoming).	
17	See	(Johnston	1994,	ch.	2;	France	2014,	ch.	2).	
18	(Digges	and	Digges	1591,	169,	191)	



imperfection	of	his	own	work	did	not	stop	Digges	from	criticizing	his	predecessors,	though,	

central	among	which	was	the	Italian	mathematician	Niccolò	Tartaglia.		

	

Figure	2.	Tartaglia’s	theorica.19	

Tartaglia’s	theorica	combined	a	“violent”	straight-line	motion	along	the	direction	in	which	the	

cannon	is	aimed;	a	circular	middle	part	resulting	from	the	modification	of	the	straight	motion	by	

the	bullet’s	weight;	and	a	“natural”	motion	straight	downward	at	the	end,	when	only	the	body’s	

weight	remains	operative.	(See	Figure	2	for	the	complete	diagram,	which	also	encodes	more	

fine-grained	information	concerning	the	distances	reached.)	Modern	commentators	often	

express	surprise	at	Tartaglia’s	neglect	of	the	curvature	at	the	beginning	of	the	motion,	but	Digges	

was	happy	to	ignore	this,	as	well—as	a	theorica,	the	geometrical	construction	represented	

empirically	measurable	properties	of	the	shots	(mainly	range	in	relation	to	angle),	it	need	not	

offer	a	realistic	depiction	of	the	shape	(although	that	could	be	one	way	to	guarantee	correct	

results).20	Digges’s	main	criticism	had	to	do	with	the	circular	part.	The	Stratioticos	suggested	

that	this	could	be	rather	a	conic	section,	which	would	change	from	elliptical	to	parabolical	to	

hyperbolical,	depending	on	the	angle	of	projection.	In	the	second	edition	of	the	Pantometria,	he	

assumed	it	is	a	“helical”	line,	constructed	in	a	way	similar	to	Archimedes’	spiral.	(We	can	

understand	this	along	the	following	lines,	although	Digges	is	not	clear:	the	“natural”	motion	

downwards	continually	changes	the	direction	of	the	“violent”	motion,	resulting	in	a	continuous	

rotation	of	its	line	of	motion,	yet	without	changing	the	violent	speed	that	needs	to	be	superposed	

on	the	rotation.)21	The	complexity	of	this	construction	he	likened	to	that	of	astronomical	

																																																													

19	(Tartaglia	1537,	bk.	II,	prop.	9)	
20	See	(Büttner,	et	al.	2003).	
21	This	possible	reconstruction	of	Digges's	intention	is	missed	in	(Johnston	1994;	France	2014).	



epicycles,	eccentric	deferents,	and	equant	points.	Digges	clearly	thought	that	the	complexity	of	

the	problem	required	him	to	use	tools	beyond	the	strictly	Euclidean	toolbox	taken	from	other	

works	of	antique	geometry,	such	as	Apollonius’s	Conics	or	Archimedes’	On	Spirals.		

Digges	was	convinced	that	Tartaglia’s	theorica	had	to	be	misguided	since	it	wrongly	implied	that	

the	angle	of	maximum	range	should	be	45	degrees,	which	was	“an	Error	knowne	even	to	the	first	

Practitioners.”22	With	hindsight	it	is	of	course	tempting	to	see	this	as	a	mistake,	but	Digges	was	

actually	right	in	claiming	that	in	practice	shots	reached	their	maximum	range	at	an	angle	

somewhere	between	40	and	45	degrees—and	he	saw	the	task	of	the	mathematician	as	finding	a	

geometrical	construction	that	could	fit	every	bit	of	relevant	practical	knowledge,	which	also	led	

him	to	call	for	further	practical	experiments.23	While	both	authors	appealed	to	the	terminology	

of	“natural”	and	“violent”	motion,	philosophical	ideas	played	no	direct	role	in	Digges’s	criticism	

of	Tartaglia.	The	distinction	between	the	kinds	of	motion	could	be	grounded	in	experience,	and	it	

was	intuitively	attractive	to	conceptualize	the	trajectory	as	“somehow”	composed	out	of	their	

combination.	But	the	operationalization	of	this	idea	was	almost	completely	guided	by	the	

combination	of	the	practical	knowledge	at	hand	and	the	geometrical	tools	available,	rather	than	

by	explicitly	philosophical	ideas—	a	pattern	that	would	be	often	repeated	in	the	century	to	

follow.		

3. Mathematizing	Physics	in	the	First	Half	of	the	Seventeenth	Century	

3.1 Mathematizing	Physics/Physicalizing	Mathematics	

The	preceding	has	suggested	geometry	was	not	necessarily	understood	as	a	descriptive	theory	

depicting	an	“abstract”	reality,	and	that	many	mathematicians	would	more	naturally	see	it	as	an	

art	that	allowed	one	to	solve	diverse	problems.	Petrus	Ramus	captured	this	spirit	when	he	

defined	geometry	as	“the	art	of	measuring	well.”24	The	introduction	of	quantitative	measure	in	

other	empirical	domains	could	be	achieved	by	similarly	reducing	them	to	art.	The	lavish,	

elaborate	instruments	(often	richly	and	symbolically	decorated)	that	came	out	of	the	

mathematicians’	workshops	and	were	eagerly	collected	by	the	powerful	stand	as	testimony	to	

the	fascination	that	could	be	triggered	by	this	practice.25	Its	presence	and	cultural	status	would	

have	an	important	impact	on	ideals	about	how	to	do	natural	philosophy,	but	this	impact	could	

take	many	forms.	Let	us	start	with	the	most	familiar	case:	astronomy.		

																																																													

22	(Digges	and	Digges	1590,	358)	
23	See	(Büttner	2017)	for	an	important	analysis	of	the	complicated	relation	to	practical	knowledge	of	early	
modern	ballistics.	
24	(Ramus	1569,	1)	
25	See,	e.g.,	(Korey	2007)	for	a	description	and	analysis	of	one	such	collection.	



It	is	no	accident	Stevin	and	Digges	were	among	the	first	committed	Copernicans.26	The	main	

advantages	of	the	Copernican	system	could	be	considered	“instrumental”	in	the	sense	discussed	

above.	Even	if	it	was	predictively	equivalent	to	the	family	of	Ptolemaic	models	(given	the	

observational	possibilities	of	the	time),	it	encoded	more	systematic	dependencies	between	the	

planetary	motions	in	one	geometrical	model	of	the	world-system,	and	this	allowed	the	

determination	of	relative	planetary	distances	that	had	been	unmeasurable.27	The	crucial	step	

that	these	mathematicians	took	was	to	treat	this	superior	instrumentality	as	a	criterion	of	truth.	

Both	Digges	and	Stevin	were	themselves	too	much	and	too	proudly	mathematicians	to	care	

much	about	the	implications	this	had	on	natural	philosophy,	both	with	respect	to	determining	

legitimate	criteria	of	truth,	and	with	respect	to	the	consequences	a	moving	earth	would	have	on	

ideas	about	motion	and	causality.28	But	both	kinds	of	question	would	be	taken	up	by	others,	and	

not	only	with	respect	to	astronomy.		

To	start	with	the	second	implication,	the	Copernican	case	can	be	seen	as	an	occasion	for	what	

has	been	usefully	called	the	“physicalization	of	mathematics.”29	All	accepted	mathematical	

theories	(including	Euclidean	geometry	as	a	theory	of	spatial	measurement)	depended	on	some	

explicit	or	implicit	assumptions	about	empirical	properties	of	bodies	(e.g.,	the	circular	motion	of	

planets),	which	could	be	taken	up	in	relation	to	what	were	traditionally	considered	to	be	natural	

philosophical	questions—but	which	now	had	to	be	investigated	with	the	constraint	imposed	by	

the	independently	assumed	truth	of	the	mathematical	theories.	This	implied	a	reversal	with	

respect	to	what	was	traditionally	understood	as	subalternation,	where	mathematics	was	only	

used	to	derive	further	consequences	that	followed	if	one	could	assume	on	prior	natural	

philosophical	grounds	that	some	empirical	phenomenon	could	be	mathematically	

characterized.30	A	telling	example	of	the	opposite	move	of	“physicalization”	is	Descartes’s	

youthful	interpretation	of	Stevin’s	hydrostatic	paradox.31	Stevin	had	offered	a	mathematical	

																																																													

26	See	(Johnston	1994)	for	Digges	and	(Vermij	2002,	ch.	4)	for	Stevin.	
27	See	(Evans	1998,	410–13)	for	a	clear	and	concise	presentation.	See	also	the	chapter	by	Omodeo	and	
Regier	in	this	volume.	
28	As	with	the	other	authors	treated	below,	the	diverse	factors	that	could	explain	their	different	stances	
will	not	be	discussed	here;	but	it	is	striking	to	what	extent	Digges	and	Stevin	for	the	most	part	confidently	
ignored	philosophy	as	a	meaningful	practice.	It	is	also	interesting	to	note	that	both	mathematicians	
strongly	believed	that	Copernicus	could	be	improved	upon	by	gathering	further	observations.	
29	See	(Schuster	2012;	Schuster	2013).	
30	See	(Laird	1987;	Distelzweig	2013).	(Laird	1997)	already	noted	that	the	debates	on	subalternation	
could	not	have	been	of	much	interest	to	someone	like	Galileo,	since	they	simply	assumed	what	would	have	
been	the	most	pressing	issue	for	him—how	to	characterize	empirical	phenomena	in	mathematical	terms	
in	the	first	place.	See	also	(Biener	2004;	Van	Dyck	2013).	
31	See	(Schuster	2012).	Other	examples	could	easily	be	added.	To	name	just	some	of	the	most	influential	
ones:	Kepler's	work	on	optics	(Dupré	2012)	and	Gilbert's	on	magnetism	(Bennett	2003;	Johnston	2004).	
The	philosophical	elaboration	of	the	mathematical	theories'	presuppositions	needed	not	necessarily	have	
revolutionary	ambitions.	Guidobaldo	del	Monte,	e.g.,	spent	some	time	on	showing	how	the	science	of	



treatment	of	the	pressures	exerted	on	the	base	of	a	vessel,	in	which	the	only	properties	that	

mattered	were	the	weight	of	the	fluid	and	the	geometrical	properties	of	the	container.	Descartes	

literally	tried	to	fill	out	Stevin’s	geometrical	diagrams	by	offering	a	corpuscular	theory	of	matter	

in	which	pressure	was	interpreted	as	arising	out	of	the	particles’	“tendency	to	motion”	

propagated	through	the	medium.	Most	importantly,	the	laws	guiding	this	propagation	were	

conceived	such	that	the	mathematically	established	result	could	be	recovered.	To	put	it	

differently:	natural	philosophical	notions	were	now	guided	by	mathematically	established	truth.		

This	brings	us	to	the	first	implication.	My	analysis	has	suggested	that	the	establishment	of	

mathematical	truth	depended	on	criteria	that	were	directly	related	to	superior	problem-solving	

ability.	The	introduction	of	this	kind	of	norm	into	natural	philosophy	should	perhaps	be	

considered	the	primary	meaning	of	what	we	can	call	the	“mathematization	of	physics.”	

Understood	this	way,	mathematization	was	a	process	in	which	(practical)	mathematical	

construction	took	over	(at	least	part	of)	the	role	of	the	Aristotelian	scheme	for	causal	

explanation.	This	process	need	not	have	started	from	prior	metaphysical	beliefs	about	the	

ultimate	nature	of	reality,	as	Koyré	famously	contended,	but	it	was	rather	naturally	suggested	by	

the	successes	and	broader	appeal	of	mathematical	practice,	which	allowed	it	to	serve	as	a	new	

ideal	for	knowledge	more	broadly.32	This	move	had	two	immediate	consequences:	it	invited	the	

reinterpretation	of	questions	traditionally	belonging	to	the	domain	of	natural	philosophy	as	new	

problems	to	be	constructively	solved,	greatly	expanding	the	domain	of	mathematical	treatments	

(often	necessitating	the	development	of	new	mathematical	tools);	and	it	occasioned	the	

development	of	philosophical	discourses	aimed	at	legitimating	this	reinterpretation	(which	

could,	but	need	not	appeal	to	explicitly	metaphysical	arguments).	This	latter	step	was	often	

closely	related	to	the	physicalization	of	mathematics,	as	the	discourses	could	offer	conceptual	

resources	for	interpreting	the	assumptions	underlying	the	constructions	as	natural	

philosophical	principles.		

These	characterizations	are	of	course	very	schematic,	and	need	to	be	fleshed	out	by	showing	

how	they	allow	us	to	make	sense	of	the	work	of	different	authors—not	only	what	they	have	in	

common,	but	also	bringing	to	light	the	different	options	made	possible	by	the	shared	ideal	of	

articulating	a	new	physics	based	on	the	mathematical	arts.	The	next	sections	will	very	briefly	

																																																													

mechanics	(and	more	specifically	the	central	role	of	bodies'	centers	of	gravity)	could	be	given	a	place	
within	a	broadly	Aristotelian	conception	of	the	world	(Van	Dyck	2006;	Van	Dyck	2013).	
32	This	was	of	course	only	“rather	naturally	suggested”	for	authors	and	readers	with	a	specific	background,	
while	many	other	thinkers	could	only	consider	it	an	obvious	metaphysical	blunder.	The	important	point	
remains	that	metaphysical	pictures	can	be	challenged	from	perspectives	other	than	those	provided	by	
articulated	alternatives.	See	(Hatfield	1990).	



discuss	three	historically	influential	examples,	without	claiming	that	this	would	exhaust	the	field	

of	options.		

3.2 Galileo:	Mathematizing	the	Phenomena	

Soon	after	his	appointment	as	professor	of	mathematics	at	the	University	of	Pisa	in	1589,	the	

young	Galileo	composed	a	treatise	on	natural	philosophy	(commonly	called	De	Motu	Antiquiora),	

which	he	never	published	but	which	survives	in	a	few	manuscript	drafts.33	The	text	stridently	

opposed	the	method	that	Galileo	claimed	to	have	learned	from	“his	mathematicians”	to	that	used	

by	the	traditional	philosophers.34	The	result	can	somewhat	provocatively	be	characterized	as	an	

attempted	reduction	to	art	of	the	philosophical	science	of	local	motion.	One	of	the	manuscript	

notes	consists	of	a	list	of	some	of	the	most	important	questions	treated	in	the	debate	on	motion	

among	Pisan	philosophers,35	and	we	can	read	the	treatise	as	trying	to	show	that	these	could	all	

be	constructively	solved	using	Archimedean	mathematical	tools.36	Hydrostatics	offered	Galileo	a	

scheme	of	systematic	dependencies	between	weights	and	volumes	of	bodies	and	of	the	medium	

in	which	they	move	that	allowed	him	to	determine	under	which	circumstances	bodies	move	up	

or	down.	In	a	crucial	extrapolation,	he	suggested	that	these	dependencies	could	also	solve	a	

further	problem	(the	formulation	of	which	brings	to	mind	Pappus’s	central	problem	of	

mechanics):	“to	give	the	speed	of	motion	given	the	weights	of	a	body	and	the	medium”	(data	

gravitate	mobilis	et	medii,	datur	velocitas	motus).37	His	suggestion	was	to	set	the	velocity	equal	to	

the	hydrostatic	force,	which	could	already	be	determined.	We	can	see	Galileo	tentatively	

attempting	a	construction	based	on	the	models	already	at	his	disposal,	again	not	dissimilar	from	

the	way	that	Tartaglia	and	Digges	were	exploring	possible	theoricae	for	projectile	motion.		

The	preceding	description	could	misleadingly	suggest	that	Galileo’s	text	was	presented	as	a	

treatise	in	mathematics,	but	the	mathematical	constructions	actually	formed	the	backbone	for	an	

exercise	in	“physicalization.”	Galileo	used	the	constructions	to	rethink	the	crucial	natural	

philosophical	concepts	implicated	in	the	formulation	of	the	original	questions,	which	also	

guaranteed	that	the	constructive	solutions	could	be	presented	as	“answers”	to	these	

philosophical	questions.	The	opening	of	the	treatise	accordingly	tied	the	meaning	of	“heaviness”	

and	“lightness”	to	conditions	of	measurement—in	a	way	that	allowed	the	problems	formulated	

																																																													

33	See	(Fredette	2001).	
34	(Galilei	1890-1909,	1:285)	
35	(Galilei	1890-1909,	1:418)	
36	See	(Camerota	and	Helbing	2000)	for	the	Pisan	context.	It	is	very	suggestive	to	compare	Galileo's	list	
with	the	comparable	list	of	more	practically	oriented	questions	concerning	ballistics	that	Thomas	Digges	
had	included	in	his	Stratioticos	as	a	preliminary	step	to	the	reduction	to	art.		
37	(Galilei	1890-1909,	1:418)	



in	terms	of	heaviness	to	be	in	principle	solvable.	This,	in	turn,	suggested	some	options	to	

reconceptualize	the	notions	of	“natural”	and	“violent”	motion,	options	that	were	progressively	

worked	out	in	the	different	drafts,	and	which	also	lead	to	the	suggestion	to	categorize	horizontal	

motion	as	neither	natural	nor	violent	but	“neutral.”38		

In	the	decade	following	this	first	attempt,	Galileo	would	reshape	both	his	mathematical	

constructions	and	the	accompanying	philosophical	interpretations,	based	on	new	empirical	

findings	triggered	by	some	of	the	problems	treated	in	his	early	treatise.	In	a	first	experiment,	

Galileo	found	that	the	trajectory	of	a	projectile	is	approximately	parabolical.39	In	a	second	

experiment,	he	found	that	a	simple	pendulum	is	approximately	isochronous.	The	relevance	of	

this	latter	phenomenon	was	probably	brought	to	his	attention	by	his	analysis	of	motion	on	

inclined	planes,	already	included	in	a	chapter	of	De	Motu	Antiquiora,	and	it	further	invited	the	

search	for	a	mathematical	construction	of	this	empirical	finding	based	on	an	approximation	of	

circular	motion	by	motion	over	a	sequence	of	inclined	planes.	The	latter	search	could	be	further	

guided	by	the	results	of	a	third	experiment,	in	which	Galileo	famously	established	the	times-

squared	law	of	free	fall	by	rolling	balls	down	inclined	planes.40		

This	last	finding	had	at	least	two	important	consequences.	First,	it	set	a	new	fundamental	

problem	to	be	solved:	how	to	geometrically	model	accelerated	motion?	This	would	bring	Galileo	

into	uncharted	mathematical	terrain,	since	the	toolbox	of	antique	mathematics	could	not	

provide	him	with	the	instruments	he	needed	to	represent	the	systematic	relations	between	

distances,	speeds,	and	times	he	was	in	the	process	of	uncovering.41	Second,	it	invited	a	further	

philosophical	reconceptualization	of	motion.	Galileo	now	had	to	find	a	way	to	present	

accelerated	motion	as	natural,	and	this	gave	rise	to	an	even	more	far-reaching	consequence	once	

related	to	the	first	experimental	finding.	If	distances	were	as	the	squares	of	times	in	free	fall,	

then	the	parabolic	shape	of	the	trajectory	of	a	projectile	could	be	directly	constructed	from	the	

composition	of	free	fall	with	a	horizontal	component	that	was	uniform.	Assuming	the	latter	

allowed	Galileo	to	answer	a	question	that	had	already	arisen	in	De	Motu	Antiquiora,	but	which	

																																																													

38	(Galilei	1890-1909,	1:300)	
39	See	(Renn,	et	al.	2000)	for	the	experiment	and	its	relation	to	the	theory	of	De	Motu	Antiquiora.	It	is	
important	to	notice	that	Galileo	could	find	this	out	by	taking	the	question	out	of	the	realm	of	ballistics	
proper:	rather	than	experimenting	with	actual	artillery	(as	Digges	claimed	to	have	done),	Galileo	and	his	
collaborator	Guidobaldo	del	Monte	simply	threw	an	inked	ball	along	a	plane	that	was	tilted	with	respect	to	
the	horizon	and	inspected	the	trajectory	drawn	by	the	ball	itself.	Arguably,	it	is	only	the	natural	
philosophical	context	(in	which	bodies	in	violent	motion	were	typically	assumed	to	be	thrown)	that	could	
have	suggested	the	relevance	of	this	kind	of	situation	for	the	more	general	question.	See	(Büttner	2017)	
for	the	very	limited	relevance	of	Galileo's	finding	for	the	practice	of	artillery.		
40	See	(Wisan	1974;	Büttner	2019).	
41	See	(Damerow,	et	al.	2004)	for	an	analysis	of	Galileo’s	attempts	to	come	to	terms	with	this	problem.	



had	remained	unanswered:	whether	a	“neutral”	motion	once	started	would	persist	or	end.42	The	

positive	answer	to	this	question	would	form	the	kernel	of	a	new	approach	to	the	analysis	of	

motion,	as	it	can	be	seen	to	play	a	role	related	to	what	would	become	the	inertial	principle.	(It	

also	allowed	Galileo	to	partly	meet	the	challenge	of	physicalizing	the	Copernican	hypothesis.)43	

We	again	find	the	same	move:	a	natural	philosophical	concept	was	given	empirical	content	by	

tying	its	meaning	to	the	requirements	of	mathematical	construction.	But	Galileo	was	well	aware	

that	his	conceptual	apparatus	was	still	incomplete,	since	he	was	not	able	to	fully	identify	the	

concepts	that	could	play	the	role	that	the	center	of	gravity	had	played	for	mechanics,	expressing	

the	relevant	empirical	property	that	could	satisfactorily	ground	the	mathematical	

superstructure.44		

When	Galileo	presented	the	final	results	of	his	investigations	in	Two	New	Sciences	in	1638,	the	

constructions	were	explicitly	presented	as	forming	an	elaborate	and	self-contained	

mathematical	treatise	on	motion	in	Latin.	This	was	still	embedded	in	a	broader	philosophical	

discourse,	in	the	form	of	an	Italian	dialogue,	but	the	nature	of	the	discourse	had	shifted	

significantly	compared	to	De	Motu	Antiquiora.	It	was	no	longer	intimately	tied	to	a	philosophical	

agenda	that	had	been	set	by	Aristotelian	natural	philosophy.	Motion	as	the	treatise’s	topic	was	

simply	presented	as	an	“ancient	subject”	about	which	much	had	been	written.45	Some	of	the	

discussions	of	De	Motu	Antiquiora	were	taken	up	again,	but	they	were	integrated	into	a	more	

exploratory	discussion	of	many	different	topics	that	all	shared	a	relation	to	mathematical	

problems,	an	approach	that	was	explicitly	justified	by	a	reference	to	“the	richness	joined	with	

great	liberality	of	nature”46	that	allowed	ever	new	discoveries	to	be	made—a	process	for	which	

mathematics	with	its	constructive	capacity	for	infinite	invention	based	on	the	study	of	

systematic	dependencies	was	eminently	suited.47		

The	discovery	of	mathematical	regularities	characterizing	acceleration	and	pendular	motion	had	

brought	Galileo	to	a	position	that	saw	mathematizability	of	phenomena	as	the	main	criterion	for	

inclusion	in	natural	philosophy.	Philosophical	enquiry	became	an	open-ended	search	into	the	

richness	of	nature,	with	no	a	priori	guarantee	that	everything	could	be	treated	mathematically—

but	with	the	norms	of	success	straightforwardly	defined	by	mathematical	practice,	where	the	

																																																													

42	See	(Van	Dyck	2018)	for	further	analysis.	
43	See	(Roux	2006)	for	a	careful	treatment	of	the	pre-history	of	the	inertial	principle.	
44	See	(Wisan	1974;	Damerow,	et	al.	2004;	Büttner	2019)	for	the	unfinished	nature	of	Galileo's	
mathematical	framework	for	dealing	with	the	phenomena	of	motion.	
45	(Galilei	1890-1909,	8:190,	266–67)	
46	(Galilei	1890-1909,	8:140)	
47	(Galilei	1890-1909,	8:267)	



material	instrumental	infrastructure	of	the	latter	now	included	pendula	and	inclined	planes	

besides	quadrants	and	balances.		

3.3 Descartes:	Mathematizing	the	World	

While	Galileo’s	endeavor	started	from	an	approach	to	mathematics	informed	by	the	eighth	book	

of	Pappus’s	Mathematical	Collection	(as	further	developed	by	Guidobaldo	del	Monte),	Descartes’s	

wider	program	can	be	seen	to	start	from	Pappus’s	fourth	and	seventh	books,	with	their	

discussions	of	the	appropriate	means	of	geometrical	construction	and	the	analytic	method	in	

mathematics.	As	has	been	well	documented,	the	young	Descartes	was	fascinated	by	the	

prospects	of	an	absolutely	general	problem-solving	scheme	involving	a	central	place	for	

mathematical	instruments.48	Significantly,	he	expected	this	scheme	to	be	directly	relevant	to	

natural	philosophical	problems,	which	should	thus	be	constructively	solved.		

In	the	decade	after	the	first	letters	and	notes	(from	1619),	Descartes	kept	returning	to	

mathematical	and	natural	philosophical	problems.	His	work	on	optics	was	initially	in	line	with	

other	approaches	to	applied	mathematics	at	the	time.	By	analyzing	the	systematic	dependencies	

encoded	in	a	geometrical	model	that	had	been	constructed	taking	into	account	empirical	

observations,	Descartes	was	able	to	establish	the	law	of	refraction.49	At	the	same	time,	he	was	

keen	on	reinterpreting	these	constructions	in	natural	philosophical	terms	as	“following”	from	

hypotheses	concerning	the	nature	of	light	(whereas,	in	a	familiar	move,	these	hypotheses	could	

only	be	operationalized	by	first	assuming	the	geometrical	constructions).	This	physicalizing	step	

was	further	foregrounded	and	given	an	explicitly	metaphysical	foundation	by	the	end	of	the	

1620s,	when	Descartes	started	developing	metaphysical	ideas	implying	a	limitation	on	possible	

modes	of	constructing	explanations	of	all	natural	phenomena.50	Interestingly,	this	was	paralleled	

by	a	similar	development	in	his	work	on	pure	mathematics,	where	he	also	came	to	a	position	

implying	a	principled	distinction	between	legitimate	and	illegitimate	modes	of	constructing	

curves	for	solving	geometrical	problems	that	went	beyond	the	strictly	Euclidean	canon.51		

Descartes’s	focus	on	absolute	universality	set	his	work	clearly	apart	from	that	of	Galileo.	At	the	

latest	by	1633,	when	he	finished	work	on	Le	Monde,	Descartes	believed	he	had	been	able	to	

metaphysically	determine	a	fixed	basis	of	operations	that	would	suffice	for	the	constructive	

																																																													

48	See	(Bos	2001;	Sasaki	2003)	for	a	general	introduction.	See	also	the	chapter	by	Guicciardini	in	this	
volume.	
49	See	(Schuster	2012;	Heeffer	2017)	for	possible	reconstructions.	
50	See	(Garber	1992)	for	a	classic	study	of	Descartes's	“metaphysical	physics.”	
51	See	(Bos	2001)	and	(Domski	2009),	which	focusses	on	the	parallel	role	of	motion	in	both	natural	
philosophy	and	pure	mathematics.	



explanation	of	everything	that	happened	in	nature,	and	this	allowed	him	to	resolutely	take	his	

distance	from	more	piecemeal	empirical	and	mathematical	exploration	as	the	guide	towards	the	

selection	of	both	the	mathematical	basis	and	the	phenomena	to	be	constructed.	This	especially	

comes	to	light	in	Descartes’s	critical	reaction	to	Galileo’s	law	of	fall.52	Descartes	was	convinced	

that	this	mathematical	regularity	could	only	be	considered	an	approximate	characterization,	

valid	under	limited	and	contingent	circumstances	and	with	no	wider	relevance,	since	it	could	not	

be	squared	with	a	construction	of	acceleration	as	due	to	consecutive	pushes	by	rotating	subtle	

matter	that	should	explain	gravity	(an	empirical	property	of	bodies	simply	assumed	by	Galileo).	

Prioritizing	a	metaphysical	norm	that	had	initially	been	suggested	by	mathematical	practice,	

Descartes	was	now	overruling	a	mathematical	characterization	of	phenomena	as	not	part	of	

proper	physics.	The	metaphysical	nature	of	matter	as	pure	extension	and	of	change	as	local	

motion,	with	collision	the	only	form	of	interaction,	constrained	all	possible	models,	rather	than	

independently	established	mathematical	models	constraining	philosophical	pictures	of	nature.	

The	empirical	world	had	been	made	co-extensive	with	the	subject-matter	of	mathematics,	but	in	

the	same	move	the	practice	of	physics	had	become	metaphysical.		

3.4 Mersenne:	Mathematizing	the	Scientific	Community	

It	is	no	coincidence	that	Descartes’s	comments	on	Galileo’s	work	had	been	solicited	by	Marin	

Mersenne.	The	French	polymath’s	personal	and	correspondence	network	played	a	crucial	role	in	

constituting	the	beginning	of	an	institutional	space	for	the	new	approaches	in	mathematics	and	

philosophy	mainly	being	developed	outside	the	universities.53	Beside	Descartes,	it	included	

mathematicians	and	philosophers	like	Isaac	Beeckman,	Pierre	Gassendi,	Gilles	Person	de	

Roberval,	Etienne	and	Blaise	Pascal,	Pierre	de	Fermat,	Claude	Mydorge,	Girard	Desargues,	Jean	

de	Beaugrand,	Jean-François	Niceron,	Honoré	Fabri,	Thomas	Hobbes,	Giovanni	Battista	Baliani,	

Bonaventura	Cavalieri,	Evangelista	Toricelli,	and	Christiaan	Huygens,	offering	an	amazing	cross-

section	of	the	mid-century	European	mathematical	landscape.	Through	this	network,	application	

of	mathematics	started	to	become	a	more	communal	process.	Mersenne	had	seen	that	

constructing	a	community	could	be	integral	to	the	construction	of	solutions	to	particular	and	

general	problems.		

Mersenne’s	letters	and	publications	(among	which	were	translations	and	summaries	of	Galileo)	

were	important	in	reporting	ideas,	techniques,	results,	and	empirical	data.	They	allowed	the	

construction	of	a	compendium	of	physico-mathematical	problems	(to	use	a	term	favored	by	

																																																													

52	See	(Palmerino	1999,	282–95)	for	discussion.	
53	For	the	characterization	of	the	network	as	an	institution,	see	(Goldstein	2013).	See	also	(Grosslight).	



Mersenne)	deemed	important	in	the	period:	free	fall	and	motion	on	inclined	planes,	pendular	

motion	(including	that	of	rigid	bodies),	ballistics,	simple	machines,	music,	optics	and	catoptrics,	

hydrostatics	and	pneumatics	(with	an	important	place	for	the	alleged	existence	of	a	void),	

hydrodynamics,	the	force	of	percussion,	the	strength	of	materials,	etc.54	Mersenne’s	role	was	

much	more	active	than	that	of	a	mere	informational	nexus,	though.	He	continually	challenged	his	

correspondents	with	new	problems,	and	as	the	exchange	with	Descartes	on	Galileo’s	work	

illustrates,	these	challenges	typically	also	included	requests	to	critically	assess	the	work	of	other	

mathematicians.	Mersenne’s	own	relatively	uncommitted	stance	on	many	matters	made	him	

ideally	suited	to	play	the	role	of	mediator	(and	vice	versa—the	way	he	saw	his	role	probably	

drove	his	stance).55		

The	community	constructed	by	Mersenne	was	not	held	together	by	common	ideas	about	the	

mathematization	of	physics	or	by	widely	accepted	results.	The	application	of	mathematics	to	

new	problems	forced	everyone	involved	to	rethink	the	proper	place	of	experience	and	

philosophical	interpretation	or	supplementation,	and	to	try	out	new	mathematical	techniques	

that	could	in	turn	be	contested.	Almost	nobody	agreed	on	the	answers,	but	everyone	recognized	

what	was	at	stake—and	it	is	primarily	around	this	recognition	that	the	fledgling	disciplinary	

community	was	being	built.		

4. Conclusion:	Physics	as	Problem-Solving		

When	Isaac	Newton	published	his	Mathematical	Principles	of	Natural	Philosophy	in	1687,	he	

could	straightforwardly	claim	in	his	Preface	that	“the	whole	difficulty	of	philosophy	seems	to	be	

to	discover	the	forces	of	nature	from	the	phenomena	of	motions	and	then	to	demonstrate	the	

other	phenomena	from	these	forces.”56	The	fundamental	natural	philosophical	challenge	had	

become	a	problem	(the	formulation	of	which	again	distantly	recalls	Pappus)	that	was	to	be	

mathematically	solved.	Galileo’s	metaphor	had	depicted	the	universe	not	only	as	a	book	but	also	

as	a	labyrinth,	Newton	proposed	his	new	concept	of	force	as	Ariadne’s	thread	with	which	to	

construct	clear	paths	that	made	nature	legible.	A	new	ideal	of	knowledge	was	taking	hold	

according	to	which	knowing	nature	implied	being	in	a	position	to	gradually	find	out	more	by	

constructively	exploiting	the	information	at	one’s	disposal	and	making	it	fruitful	for	further	

exploration.		

																																																													

54	For	a	discussion	of	most	of	these	problems	see	(Bertoloni	Meli	2006),	a	work	on	the	history	of	
seventeenth-century	mechanics	that	seems	to	have	been	written	very	much	in	Mersenne's	spirit.	
55	On	Mersenne's	stance,	see	(Dear	1988;	Garber	2004).	This	did	not	mean	that	Mersenne	did	not	take	
position	on	important	issues.	See	(Palmerino	2010).	
56	(Newton	1999,	382)	



The	practice	of	“mathematical	physics”	(as	it	would	become	known)	also	triggered	important	

developments	in	pure	mathematics	that	extended	and	transformed	Descartes’s	analysis	of	the	

conditions	under	which	geometrical	problems	could	be	solved.	By	the	end	of	the	century,	the	

calculus	had	established	itself	as	a	general	analytic	scheme	that	could,	in	turn,	be	justified	by	its	

use	in	solving	important	physical	problems.57	Solving	differential	equations	would	become	the	

core	of	a	whole	new	approach	to	the	study	of	systematic	dependencies	that	far	outstripped	what	

could	be	expressed	by	geometrical	proportions.	This	created	a	mathematical	setting	where	many	

of	the	problems	already	raised	by	Mersenne,	such	as	the	rotation	of	rigid	bodies,	the	vibrations	

of	a	taut	string,	or	the	behavior	of	jets	of	waters,	found	novel	solutions	that	moved	physics	

decidedly	away	from	Newtonian	methods	and	concepts.58	Yet	how	to	philosophically	interpret	

these	later	successes	remained	an	open	problem.		
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