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a b s t r a c t

A hard choice is a situation in which an agent is unable to make a justifiable choice from a given
menu of alternatives. Our objective is to present a systematic treatment of the axiomatic structure
of such situations. To do so, we draw on and contribute to the study of choice functions that can be
indecisive, i.e., that may fail to select a non-empty set for some menus. In this more general framework,
we present new characterizations of two well-known choice rules, the maximally dominant choice
rule and the top-cycle choice rule. Together with existing results, this yields an understanding of the
circumstances in which hard choices arise.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

We are concerned with the phenomena of hard choices, that is,
ituations in which an agent is unable to make a justified choice
rom a given menu. As Ruth Chang – one of the most prominent
ontemporary scholars of hard choices – writes, “In the most
eneral terms, hard choices are ones in which reasons ‘run out’:
hey fail, in some sense, to determine what you should do” (Chang
2012); p. 107). Our objective here is to present a systematic
nalysis of the axiomatic structure of hard choices with the help
f the theory of rational choice.
Conventionally, a choice function f specifies, for any choice

ituation or menu A, a choice set f (A) which is a non-empty
ubset of A. The non-emptiness of the choice set – or decisiveness
f the choice function, using Richter’s (1971) terminology – is
tandardly built into the definition of a choice function. We follow
erasimou (2016, 2018) and others and abandon the assumption
hat a choice set will always be non-empty.1 In behavioural
erms, Gerasimou interpretes the possibility of an empty choice
et as a refusal or deferral on the side of a rational decision maker.
n a later moment, some mechanism may lead to the selection of
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an option after all, but it is either not the agent herself who makes
that selection or, if she does, she does not do it in the full agentive
sense.2

Note that there have also been proposals to model the absence
of justifiable options with the help of decisive functions. Eliaz and
Ok (2006), for instance, provide a characterization of a decisive
choice function whose range coincides with the maximal set.3 We
do not follow this route. Instead, we examine choice functions in
general (decisive and indecisive ones) and define a hard choice
as a situation to which a given choice function assigns the empty
set.

There are several reasons for the possible existence of hard
choices.4 We focus on two in particular. The first refers to cases in
which any choice is unacceptable. In the philosophical literature
such a case is often illustrated with the story of Sophie who, in

2 Viewing a choice function as the first step of a two-step procedure is a
ell-known view in the theory of rational choice. Richter (1971, p. 31), for

nstance, uses it in his explanation of choice sets that contain multiple elements.
uch sets are, in the standard account, viewed as revealing indifference of the
gent between her most preferred outcomes. Richter points out that the decision
rocess in these cases can be seen as involving two stages. The agent chooses
irst and then some random device is used to select a single element from the
gent’s choice set.
3 See also, Schwartz (1976), Moulin (1985) and Bandyopadhyay and Sengupta

1993).
4 Gerasimou (2018) is the relevant source in the literature in economics.
e also discusses cases in which an agent cannot make a decision because of
he large number of available options. Our analysis does not cover situations of
hoice overload such as this. More generally, we ignore hard choices that follow
rom the epistemic limits faced by a deliberating agent (see e.g. Sepielli, 2009,
014).
ctions and hard choices. Journal of Mathematical Economics (2021) 102479,
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tyron’s novel, was forced to choose between her two children.
et hard choices of this first type need not always be of such
radical or horrendous nature. They can occur in any situation

n which an agent has to make a choice between unaccept-
ble or unattractive alternatives. A second possibility is that the
lternatives pose incommensurable values against one another
Raz, 1986, 1997). The choice between two very successful, yet
ery different, career paths may serve as an example of such a
ard choice (see Raz, 1986, p. 332). If we cannot compare the
nderlying values that are involved, we are not able to make a
ustifiable choice in favour of either option.

Our analysis of indecisive choice functions is motivated by
hese two types of hard choices.5 Of course, analysing hard
choices in terms of indecisive choice functions does not mean
that the classic results of rational choice theory are irrelevant for
our understanding of hard choices. On the contrary, they form an
important starting point since they show us when hard choices
do not emerge. If a decisive choice function induces (‘reveals’)
a weak ordering over the set of alternatives, then an optimal
choice is defined for every menu of alternatives. Assuming that
the availability of an optimal choice entails that a rational agent
can make a justified choice, the standard theory teaches us that
a rational agent can only face a hard choice if optimality is not
ensured.

A failure of optimality can occur if the preference relation
violates completeness, that is, when an agent cannot compare
all alternatives. Of course, it can also result from a violation of
transitivity. In what follows, we shall examine conditions under
which the violation of transitivity as such does not constitute
a hard choice. Thus, given the conditions that we stipulate, a
hard choice is always caused by the incompleteness of one’s
preferences. To see why, it is worth mentioning that we follow
Schwartz (1972) and Deb (1977) and use the transitive closure of
the base relation as the basis of choice. The idea is that the turn
to the transitive closure can be seen as a step in the process of
deliberation that a rational agent can make when confronted with
a seemingly difficult choice.6 If, after such deliberation, the agent
still faces a deadlock, then it ‘really’ is a hard choice.7

The significance of our analysis is twofold. First, much of the
non-formal discussion of hard choices has been concerned with
choices restricted to the class of binary situations. A hard choice
is then defined as a choice between a pair x and y of alternatives
hat we are unable to rank vis-a-vis each other. But there are
any non-binary situations wherein even if we cannot rank two
iven alternatives, there may be a third alternative that is clearly
uperior and therefore optimal. We thus cannot straightforwardly
pply the account of a hard choice in the binary case to the
eneral setting. Our results, however, show how it can be so
eneralized. Second, insofar as hard choices have been analysed in
on-binary situations, the focus has often been with the question
f how, if at all, an agent should rationally respond to, or deal with,

5 A related argument can be found in Levi (1986, p. 84). He criticizes the
ssumption of revealed preference theory, i.e. that the preferences of rational
gents are complete (which revealed preference theory presupposes if an agent
an indeed always make a choice), and proceeds to claim that this assumption
s just as arbitrary as – if not more than – the assumption that the preferences
f rational agents are incomplete.
6 Alternatively, an agent may make this deliberation in order to avoid
otential hazards of choice, like being money-pumped. We refer to Mandler
2005) for an outcome-rational motivation of the transitivity of psychological
references.
7 It could be objected that we then could have assumed transitivity as a

eature of agent’s rationality all along. In response to this we concede that the
gent is more rational when they use the transitive closure, but we dispute the

claim that a violation of transitivity as such is irrational.
 r

2

a hard choice.8 In contrast, we are concerned here with providing
a formal description of a hard choice under different rationality
conditions. In doing so, we make a contribution to the existing
literature on choice functions.

The structure of the paper is as follows. After setting up the
formal framework in Section 2, we study – in Section 3 – the
nature of hard choices in situations where the preference relation
induced by a choice function (the so-called base relation) is
transitive. In Section 4, we turn to studying situations in which
the base relation may fail to be transitive.

2. The framework

Let X be a finite set of all alternatives that has at least three
lements and P the power set of X , i.e., the set of all subsets

of X . A choice function f is a function that assigns to each
non-empty A ∈ P an element of P , where f (A) is non-empty
for all singleton sets.9 As stated above, a decisive choice function
is one that always yields a non-empty choice set, whereas an
indecisive choice function will yield empty choice sets for some
menus.

In the setting of choice functions, there is a natural definition
of a hard choice.

Definition 1 (Hard Choice). Given a choice function f , an A ∈ P is
a hard choice if, and only if, f (A) = ∅.

Let R (with P and I as its asymmetric and symmetric parts,
respectively) denote the base relation induced by f : for all x, y ∈

X , we have xRy if, and only if, x ∈ f ({x, y}). Let R̄(A) be the
transitive closure of R in A, i.e., xR̄(A)y if there is a subset {x =

x1, . . . , xk = y} of A such that x1Rx2 . . . Rxk. Next, for any set A and
any binary relation R′, B(A, R′) denotes the set of optimal elements
of A defined with respect to R′. That is, an element x is optimal
in A with respect to R′ if, and only if, for all y in A, xR′y. M(A, R′)
denotes the set of maximal elements of A defined with respect to
R′. That is, an element x is a maximal element of A defined with
respect to R′ if, and only if, there is no y in A such that yP ′x.

Next, we introduce three classic consistency conditions at-
tributable to Amartya Sen, to wit: the properties α, β , and γ (Sen,
1971).

Axiom 1 (α). For all A, B ∈ P and all x ∈ A, if x ∈ f (A ∪ B), then
x ∈ f (A).

Property α requires that if some element in A is selected in the
union of A and B, it is also selected in A.

Axiom 2 (β). For all A, B ∈ P and all x, y ∈ f (A): x ∈ f (A ∪ B) if,
and only if, y ∈ f (A ∪ B).

Property β stipulates that if x and y are both selected in A, then
one of them cannot be selected in the union of A and B, without
the other also being selected in the union of A and B.

Axiom 3 (γ ). For all A, B ∈ P: f (A) ∩ f (B) ⊆ f (A ∪ B).

8 Arguments include satisficing, or making a satisfactory rather than an
ptimal selection (Schmidtz, 1992), maximization, or selecting an alternative
hat is not strictly worse than any other alternative that could have been chosen
nstead (Sen, 1997, 2004), and V-admissibility, or selecting an option that is
ptimal according to at least one of the relevant considerations at hand (Levi,
986).
9 Gerasimou (2018) lists the condition that singleton sets always have a non-
mpty choice set as a separate axiom, which he calls ‘desirability’, and he also
xamines cases in which the condition is not met. We do not follow him in this
egard.
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If an element is selected in A as well as in B, then, with γ , the
element is also in the selection from the union of both A and B.
We shall also use several variants of γ . They are, in increasing
logical strength:

Axiom 4 (γ =). For all A, B ∈ P: if f (A) = f (B) ̸= ∅, then
f (A ∪ B) ̸= ∅.

Axiom 5 (γ −). For all A, B ∈ P: if f (A)∩f (B) ̸= ∅, then f (A∪B) ̸= ∅.

Axiom 6 (γ +). For all A, B ∈ P , if x ∈ f (A) and y ∈ A ∩ f (B), then
x ∈ f (A ∪ B).

The two weaker versions of γ are, as far as we know, new.
Property γ + is due to Salant and Rubinstein (2008).

A classic result of rational choice theory is that a transitive
relation is the base relation generated by a choice function that
satisfies axioms α and β (see Sen, 1971). We maintain that this
result does not extend to indecisive choice functions.

Remark 1. Let an indecisive choice function f satisfy axioms α

and β . It does not follow, then, that R is transitive

Remark 1 can be easily demonstrated. Consider the indecisive
choice function f (x, y) = {x}, f (x, z) = ∅, f (y, z) = {y} and
f (x, y, z) = ∅. This indecisive choice function satisfies both α,
nd β , and yet R is not transitive. The first question for indecisive
hoice functions, then, is this: what condition(s), in conjunction
ith α and β , ensure that the underlying base relation is transitive?
The following axiom, called property ξ , is new to the literature

nd relevant to answer this question. This axiom expresses a
ondition which guarantees that a choice can always be made.

xiom 7 (ξ ). For all A, B, C ∈ P: if f (A) and f (B) are non-empty
and if f (A) ⊆ f (A ∪ B) and f (B) ⊆ f (B ∪ C), then f (A ∪ B ∪ C) ̸= ∅.

Using our definition of hard choices, property ξ demands that
for all choice situations A, B, C , if situation A and situation B do not
constitute hard choices, and if the situation involving the union of
A and B does not constitute a hard choice (because the element(s)
selected from A is also an element(s) that is selected in the union
of A and B), and further, if the situation involving the union of B
and C does not constitute a hard choice (because the element(s)
selected from B is also an element(s) that is selected in the union
of B and C), then the situation involving the union of A, B and C
does not constitute a hard choice.

We can now answer the question that has just been raised.

Result 1. Let f be a choice function satisfying axioms α, β and ξ . R,
then, is a pre-ordering, i.e. a reflexive and transitive relation on X.

Proof. Reflexivity follows directly by definition of R and by the
fact that f ({x}) ̸= ∅ for all x ∈ X . To show transitivity, assume
xRy and yRz, that is, x ∈ f ({x, y}) and y ∈ f ({y, z}). By axiom ξ ,
f ({x, y, z}) ̸= ∅. If z ∈ f ({x, y, z}), then by axiom α, z ∈ f ({y, z}),
and by axiom β , y ∈ f ({x, y, z}). Similarly, when y ∈ f ({x, y, z}),
by axioms α and β , x ∈ f ({x, y, z}). Hence, in all scenario’s
x ∈ f ({x, y, z}) if f ({x, y, z}) is non-empty. Then, by axiom α,

∈ f ({x, z}), hence xRz. ■

We conclude this section by noting a well-known result about
re-orderings.

emark 2 (Sen, 1970). A pre-ordering on X is sufficient to estab-
ish that a maximal alternative exists for all A ∈ P .
3

3. Characterizations with transitivity

We now present our first characterization result. Assuming the
transitivity of R, it establishes under what conditions a choice
function always selects the set of optimal elements. We refer
to these choice functions as maximally dominant choice rules,
following Gerasimou (2018), who provides the following charac-
terization for them with the use of α and γ +.

Gerasimou (2018, Theorem 1) A choice function f satisfies axioms
α and γ + if, and only if, R is transitive and f (A) = B(A, R) for all

∈ P .
Our result also uses α and brings out the different intuitions

hich underlie γ +.10

roposition 1. A choice function f satisfies axioms α, β, ξ and γ =

f, and only if, R is transitive and f (A) = B(A, R) for all A ∈ P .

roof. ⇒ Let f satisfy the four aforementioned axioms. If A
ontains one element, the proposition is true by definition of f
and the reflexivity of R. If B(A, R) = ∅, we must have f (A) = ∅: if
here were some x ∈ f (A), we would have x ∈ B(A, R) by axiom
. Let A therefore contain at least two elements and let B(A, R) be

non-empty.
We first prove that f (B) = B for all non-empty subsets B of

B(A, R). If B is a singleton set, the result follows trivially by defi-
nition of a choice function. For the case in which the cardinality
k of B is 2 or larger, we proceed by induction. If k = 2, this is
directly implied by the definition of an optimal element and by
R. Let it be true for any subset of B(A, R) with cardinality k ≥ 2
and consider a subset B of B(A, R) with k+ 1 elements, say x, y, z
are distinct elements of it. The induction hypothesis implies that
f (B − {z}) = B − {z} and thus f (B − {z}) ̸= ∅, in particular
x ∈ f (B − {z}). By α, x ∈ f (B − {y, z}). Since x ∈ f (B − {z}), any
other element of f (B − {y, z}) is also an element of f (B − {z}) by
β . Hence, f (B − {y, z}) ⊆ f (B − {z}). Since y = f ({y}) ⊆ f ({y, z}),
axiom ξ implies f (B− {y, z} ∪ {y} ∪ {z}) = f (B) ̸= ∅. With axioms
α and β we subsequently get f (B) = B.

In the second part of the proof we add, one by one, the
elements of A\B(A, R) to the elements of B(A, R) and show that in
each step the choice set remains B(A, R). Take any v ∈ A\B(A, R).
We first demonstrate that, for any x ∈ B(A, R), v /∈ f ({x, v}) must
hold. For suppose on the contrary that v ∈ f ({x, v}) for some
x ∈ B(A, R). Take any z ∈ A. From v ∈ f ({x, v}) and x ∈ f ({x, z}),
it follows by axiom ξ that f ({x, v, z}) ̸= ∅. By axiom β , x must be
an element of f ({x, v, z}), but then, also by β , so must v. We then
have, by axiom α, v ∈ f ({v, z}). Since this is true for any z ∈ A, we
have v ∈ B(A, R), which is a contradiction. If x is the only element
in B(A, R), we have f ({x, v}) = f (B(A, R) ∪ {v}) = {x} = B(A, R).
Assume B(A, R) contains some y ̸= x. Step 1 demonstrated that
f (B(A, R) − {y}) = B(A, R) − {y} and f (B(A, R)) = B(A, R). Thus,
f (B(A, R)−{y}) ⊆ f (B(A, R)). Since we also have f ({y}) ⊆ f ({y, v}),
we have, by axiom ξ , f ((B(A, R) − {y}) ∪ {y} ∪ {v}) = f (B(A, R) ∪

{v}) ̸= ∅. Then, by axioms α and β , f (B(A, R) ∪ {v}) = B(A, R).
Now take a w ∈ A\(B(A, R) ∪ {v}), if any (otherwise we are

done). Analogously, we have f (B(A, R) ∪ {w}) = B(A, R). Since
f (B(A, R) ∪ {v}) = f (B(A, R) ∪ {w}), by axiom γ =, we have
f (B(A, R) ∪ {v} ∪ {w}) ̸= ∅. Application of α and β subsequently
shows that f (B(A, R) ∪ {v, w}) = B(A, R). Continuing this way, we
eventually arrive at f (A) = B(A, R).

⇐ Axioms α and γ = follow directly from f (A) = B(A, R).
Consider axiom β . Let x, y ∈ f (A) for some A and x ∈ f (A ∪ B)
for some B. We then have yRx (because x, y ∈ f (A)) and xRz for

10 In the Appendix we demonstrate that the axioms used in Proposition 1
are independent of each other.
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ll z ∈ A ∪ B by definition of an optimal element. Hence, by
ransitivity, yRz for all z ∈ A∪B, which needed to be shown. Now
onsider axiom ξ . Let f (A) ̸= ∅ ̸= f (B) and assume f (A) ⊆ f (A∪B)
and f (B) ⊆ f (B ∪ C). Let x ∈ f (A). By definition of an optimal
element we have xRy for all y ∈ B, and yRz for all y ∈ f (B) and all
z ∈ C . Hence, by transitivity, xRv for all v ∈ A ∪ B ∪ C , meaning
hat x ∈ f (A ∪ B ∪ C). ■

From Remark 2 and Proposition 1, we state the following
corollary which provides a first characterization of hard choices,
namely when the binary relation is transitive. In particular, the
corollary equates a hard choice with the absence of an optimal
element because the binary relation is incomplete.

Corollary 1. Let f be a choice function that satisfies α, β , ξ , and
γ =. A choice situation A constitutes a hard choice if, and only if, for
some x, y ∈ M(A, R) we have f ({x, y}) = ∅.

4. Characterizations without transitivity

Thus far, our line of reasoning has presented a characterization
of hard choices in light of a transitive binary relation. It is of
course well-known that the restriction to transitive binary rela-
tions need not be upheld. Therefore we shall now be concerned
with analysing choice functions when this restriction is lifted. We
start with the result due to Aizerman and Aleskerov (1995) that
extends a well-known result of Sen (1971, p. 314) on decisive
choice functions to the setting of all choice functions.

Aizerman and Aleskerov (1995, Theorem 2.7): A choice function f
satisfies axioms α and γ if, and only if, for all A ∈ P : f (A) = B(A, R).

Corollary 2. Let f be a choice function that satisfies α and γ . A
choice situation A constitutes a hard choice if, and only if, M(A, R) =

∅ or for all x ∈ M(A, R), there is some y ∈ A such that f ({x, y}) = ∅.

The corollary presents a second characterization of hard
choices. While it still equates a hard choice with the absence of an
optimal element, it drops the transitivity restriction. In particular,
it formalizes the intuition that a hard choice involves either a
violation of acyclicity, implying that the set of maximal elements
is empty, or that the underlying base relation cannot be used
to compare a maximal element with all other elements in the
menu.11

However, one may contest the view that a violation of acyclic-
ity and the consequent lack of a maximal element constitutes a
hard choice. The following example, originally presented in Deb
(1977), helps illustrate this point.

Example 1. Consider the choice situation A = {x, y, z, w} with
the following rankings of the relevant pairs in A: xPy, yPz, zPx,
xPw, yPw, and zPw.

While the set of optimal elements defined with respect to
R is empty in the present example, some have argued that a
deliberating agent can make a rationally justified selection here,
because the set of optimal elements defined with respect to the
transitive closure R̄(A) of R in A is non empty (see, e.g. Schwartz,
1972; Deb, 1977). According to this view, Example 1 does not
constitute a hard choice because B(A, R̄(A)) = {x, y, z} and one
can justifiably select each element of this set. Indeed, per this
view, a given situation constitutes a hard choice if, and only if,
B(A, R̄(A)) = ∅.

11 Let a choice function satisfy axioms α and γ . It does not follow, then, that
is acyclic. Consider the choice function f (x, y) = {x}, f (x, z) = {z}, f (y, z) = {y}

and f (x, y, z) = ∅. This choice function satisfies both α and γ , yet R is cyclic.
4

In the context of decisive choice functions, the functions
whose range coincides with B(A, R̄(A)), so-called top-cycle choice
rules, have been characterized, among others, by Bordes (1976)
and Evren et al. (2019). In what follows, we shall characterize top-
cycle choice rules in the extended framework of general choice
functions.12 The following pair of axioms will be relevant.

Axiom 8 (α−). For all A ∈ P and all x, y ∈ A, if x = f ({x, y}), then
y ̸∈ f (A) if x ̸∈ f (A).

Property α−, which is a weakening of α, requires that if x is
selected from the binary pair (x, y), then in any situation A where
both x and y are present, y is not selected in A if x is not selected
in A as well.

Axiom 9 (ρ). For all A, B ∈ P , if there are no x ∈ A and y ∈ B with
y ∈ f ({x, y}), then f (A ∪ B) ⊆ A.

For decisive choice functions, Property ρ equals the condition
of Preference Consistency that was used by Evren et al. (2019) in
their characterization of top-cycle choice rules. Its intuition can
be explained as follows. We may say that a set A ‘is immune
from’ a set B if an element from B is never chosen in a paired
comparison with any element from A. Property ρ then states that
the set of chosen elements when A is united with a set B that it
is immune from, can only consist of elements that were in A.

Next, we introduce three Lemmas.

Lemma 1. If a choice function f satisfies α−, β and ξ , then for
any R-chain x1R . . . Rxm we have B({x1, . . . , xm}, R̄({x1, . . . , xm})) ⊆

f ({x1, . . . , xm}).

Proof. Let x1R . . . Rxm be an R-chain. Take any k such that 2 <
k ≤ m and assume f ({x1, . . . , xk−2}) and f ({x1, . . . , xk−1}) are
non-empty. Let xi ∈ f ({x1, . . . , xk−1}). If i = 1, we are done. Let
i > 1. By applying α− or β step by step to xi−1, xi−2 et cetera, we
eventually arrive at x1 ∈ f ({x1, . . . , xk−1}). By the same reasoning
we derive x1 ∈ f ({x1, . . . , xk−2}). For any x ∈ ({x1, . . . , xk−2})
other than x1, we get with β and x1 ∈ f ({x1, . . . , xk−2}) ∩

f ({x1, . . . , xk−1}), x ∈ f ({x1, . . ., xk−1}). Hence, f ({x1, . . . , xk−2}) ⊆

f ({x1, . . ., xk−1}). Since we also have that f ({xk−1}) ⊆ f ({xk−1, xk}),
we obtain f ({x1, . . . , xk}) ̸= ∅ by ξ . Thus non-emptiness of
f ({x1, . . . , xk−2}) and f ({x1, . . . , xk−1}) implies non-emptiness of
f ({x1, . . . , xk}) (2 < k ≤ m). Since f ({x1}) ̸= ∅ ̸= f ({x1, x2})
by definition of f and R, repeatedly applying this result yields
f ({x1, . . . , xm}) ̸= ∅.

As above, stepwise application of α− or β to arbitrary xi ∈

f ({x1, . . . , xm}) reveals that x1 ∈ f ({x1, . . . , xm}). Obviously, x1 ∈

B({x1, . . . , xm}, R̄({x1, . . . , xm})). Now take any other y ∈ B({x1, . . .,
xm}, R̄({x1, . . . , xm})). There is then by definition of an optimal el-
ement an R-chain yR . . . Rx1 from y to x1. Applying α− or β at each
step from x1 to y eventually shows that y ∈ f ({x1, . . . , xm}). ■

Our next lemma shows that a choice function which satisfies
α−, β and ξ will always select the set of R̄-optimal elements
whenever this set constitutes the choice situation.

Lemma 2. If a choice function f satisfies α−, β and ξ , then for any
set A with non-empty B(A, R̄(A)), f (B(A, R̄(A))) = B(A, R̄(A)).

Proof. If B(A, R̄(A)) is a singleton set, the result follows trivially.
Assume it has k > 1 elements. Since R̄ is transitive, there are
exactly two ways in which B(A, R̄(A)) can be non-empty. Either
we have xRy for all x, y ∈ B(A, R̄(A)) (indifference ‘at the top’)

12 Note that for any choice function f , R is well-defined and has a unique
transitive closure R̄.
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r we have a top cycle, that is, there is a chain x1R . . . RxkRx1
with B(A, R̄(A)) = {x1, . . . , xk} and at least for some i, j, xiPxj.
In either scenario we can draw a chain for any two optimal
elements x, y that starts in x, passes through other elements of
B(A, R̄(A)), does not pass through elements not in B(A, R̄(A)) and
ends in y. Since the chains go through elements of B(A, R̄(A))
only, and since such chains exist for any x, y ∈ B(A, R̄(A)), we
see that B(B(A, R̄(A)), R̄(B(A, R̄(A)))) = B(A, R̄(A)). By Lemma 1 we
have B(B(A, R̄(A)), R̄(B(A, R̄(A)))) ⊆ f (B(A, R̄(A))). Thus we have
B(A, R̄(A)) ⊆ f (B(A, R̄(A))). Since f (B(A, R̄(A))) ⊆ B(A, R̄(A)) by defi-
nition of a choice function, we see B(A, R̄(A)) = f (B(A, R̄(A))). ■

A third useful lemma is:

Lemma 3. Let f be a choice function that satisfies α−, β and ρ.
Then (a) For all A, B ∈ P: if y ̸∈ f ({x, y}) for all x ∈ A and y ∈ B,
then f (A∪B) ⊆ f (A), and (b) f satisfies γ −, if, and only if, it satisfies
γ .

Proof. (a) Let f and A and B be as described. By non-emptiness
of f ({x}) for all x, A and B are disjoint. We have to show that
f (A ∪ B) ⊆ f (A). Take arbitrary x ∈ f (A) and y ∈ A − f (A). If such
y does not exist, A = f (A) and the result follows directly from ρ.
If y ∈ f ({x, y}) we have y ∈ f (A) by either α− (if f ({x, y} = {y}) or
β (if f ({x, y} = {x, y}), which is a contradiction. By assumption,
we also have y ̸∈ f ({x, y}) for all y ∈ B. Hence, y ̸∈ f ({x, y})
for all x ∈ f (A) and y ∈ [A − f (A)] ∪ B. With ρ we then get
[f (A) ∪ [A − f (A)] ∪ B] = f (A ∪ B) ⊆ f (A).
(b) To prove the non-trivial direction, let x ∈ f (A)∩f (B). By γ −,

(A∪B) ̸= ∅, say y ∈ f (A∪B). If (A∪B) = f (A)∪ f (B), then y ∈ f (A)
or y ∈ f (B) and either x = y or x ∈ f (A ∪ B) by β , which we need
to show. Next consider (A∪B)−[f (A)∪f (B)] ̸= ∅, say z is in it. We
cannot have z ∈ f {x, z} for any x ∈ f (A)∪f (B): α− (if f {x, z} = {z})
or β (if f {x, z} = {x, z}) would then entail that z ∈ f (A) ∪ f (B).
Hence, it follows from (a) above that f (A∪B) ⊆ f (f (A)∪ f (B)) and,
in particular, y ∈ f (f (A) ∪ f (B)). This means y ∈ f (A) ∪ f (B) and
thus y ∈ f (A) or y ∈ f (B). Application of β subsequently shows
that x ∈ f (A ∪ B). ■

We now present the main characterization result of this pa-
per.13

Proposition 2. A choice function f satisfies axioms α−, β , ξ , γ −

nd ρ if, and only if, f (A) = B(A, R̄(A)) for all A ∈ P .

Proof. ⇐ Assume f (A) = B(A, R̄(A)) for all A. Properties β and
γ − follow directly from the definition of an optimal R̄ -element.
To prove α− assume x = f {(x, y}) for some x, y ∈ X and x ̸∈ f (A)
for some A that contains x, y. There is then some z ∈ A for which
we do not have xR̄(A)z. Since xPy, we cannot have yR̄(A)z either.
Hence, y ̸∈ f (A). For ξ , let A, B and C be defined as: f (A) and
f (B) are non-empty and f (A) ⊆ f (A ∪ B) and f (B) ⊆ f (B ∪ C). Let
x ∈ f (A). Since f (A) ⊆ f (A∪B) we have xR̄(A∪B)y for all y ∈ A∪B. In
particular, xR̄(A∪B)y for all y ∈ f (B). Since f (B) ⊆ f (B∪C) we have
for all y ∈ f (B) and all z ∈ C , yR̄(B∪C)z. By transitivity of R̄we thus
have xR̄(A∪B∪C)z for all z ∈ C . Hence, x ∈ B(A∪B∪C, R̄(A∪B∪C))
and thus f (A ∪ B ∪ C) ̸= ∅. To consider ρ, let A and B be disjoint
and assume that there are no x ∈ A and y ∈ B with y ∈ f ({x, y}).
This means that there is no R-chain starting with some y ∈ B and
ending with x ∈ A, for if there were, there must be some xi, xi+1 in
the chain with xi ∈ f (xi, xi+1), xi ∈ B and xi+1 ∈ A, which would be
a contradiction. Since there cannot be a y ∈ (B(A∪B, R̄(A∪B))∩B),
f (A ∪ B) = B(A ∪ B, R̄(A ∪ B)) ⊆ f (A) = B(A, R̄(A)) ⊆ A.

13 In the Appendix we demonstrate that the axioms used in Proposition 2
re independent of each other.
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⇒ Let f satisfy the axioms and take arbitrary A. First, assume
B(A, R̄(A)) = ∅, i.e., there is no x ∈ A with xR̄(A)y for all y ∈ A.
Since R̄ is transitive and reflexive, M(A, R̄(A)) ̸= ∅ (see Remark 2).
We first show that M(A, R̄(A)) is not a singleton set. Take arbitrary
x ∈ M(A, R̄(A)). Since B(A, R̄(A)) = ∅ there is some y such that
there is no R -chain from x to y, that is, xR̄(A)y does not hold.
Let By be the set of all elements z such that zP̄(A)y. If By = ∅,
then y ∈ M(A, R̄(A)). Assume it is non-empty. By the construction
and finiteness of A, there must be some v ∈ By(v ̸= x) such
that wP̄(A)v for no w ∈ A. But then v ∈ M(A, R̄(A)). Hence, in
all scenario’s M(A, R̄(A)) contains at least one element other than
x. Denote k ≥ 2 the cardinality of M(A, R̄(A)).

Next, we show that there are sets A1, . . . , At with t ≤ k
such that (i) ∪i∈{1,...,t}Ai = A and where (ii) {B(A1, R̄(A1)), . . . ,
B(At , R̄(At ))} is a partition of M(A, R̄(A)). We introduce some def-
initions first. Define Φ = {x ∈ M(A, R̄(A))| for all y ∈ M(A, R̄(A)),
y = x if yR̄(A)x}. Let g denote the cardinality of Φ . Take an x ∈ Φ .
Define Ax

= {y ∈ A|xR̄(A)y}. Then B(Ax, R̄(Ax)) = {x}. We speak of
a {x1, . . . , xl}-top R̄ cycle (l ≤ k) when {x1, . . . , xl} ∈ M(A, R̄(A))
and x1R̄(A) . . . R̄(A)xlR̄(A)x1. Define A{x1,...,xl} = {y ∈ A|x1R̄(A)y
or . . . or xlR̄(A)y}. Then B(A{x1,...,xl}, R̄(A{x1,...,xl})) = {x1, . . . , xl}.
Let h be the number of distinct top R̄ cycles in A. Note that, if
g = 0, then h > 1 and if h = 0, then g > 1, otherwise
B(A, R̄(A)) ̸= ∅, which is a contradiction. For notational con-
venience, label the ith top R̄ cycle in A as TCi and denote its
cardinality #TCi. We then have k = g +

∑h
i=1 #TCi. Then (i)

Ax1 ∪ · · · ∪ Axg ∪ ATC1 . . . ∪ ATCh = A and (ii) {B(Ax1 , R̄(Ax1 )), . . . ,
B(Axg , R̄(Axg )), B(ATC1 , R̄(ATC1 )), . . . , B(ATCh , R̄(ATCh ))} partition
M(A, R̄(A)). Result (ii) follows by construction but to see (i),
assume there is some A\(Ax1 ∪ · · · ∪ Axg ∪ ATC1 ∪ · · · ∪ ATCh ) ̸= ∅.
In particular, let y be an element of it for which it is true that not
xP̄(A)y for any other x in A\(Ax1 ∪· · ·∪Axg ∪ATC1 ∪· · ·∪ATCh ) ̸= ∅.
Then for all x ∈ M(A, R̄(A)), we would have not xR̄(A)y (otherwise
y ∈ (Ax1 ∪ · · · ∪ Axg ∪ ATC1 ∪ · · · ∪ ATCh )) and not yR̄(A)x (otherwise
we have, since not xR̄(A)y, x ̸∈ M(A, R̄(A))). Since y ̸∈ M(A, R̄(A)),
there must by the way y was chosen, be some x ∈ (Ax1 ∪· · ·∪Axg ∪

ATC1 ∪ . . . ∪ ATCh ) − M(A, R̄(A)) with xP̄(A)y. Let z ∈ M(A, R̄(A)) be
an element for which zP̄(A)x. Since x ̸∈ M(A, R̄(A)) such a z exists.
But then we either have y ∈ Az or y ∈ TCi, where z is an element
of some top-cycle TCi and where zP̄(A)x.

Now take the following partition {B(Ax1 , R̄(Ax1 )), . . . ,
B(Axg , R̄(Axg )), B(ATC1 , R̄(ATC1 )), . . . , B(ATCh , R̄(ATCh ))} of M(A, R̄(A)).
For simplicity’s sake relabel the elements so that we have {A1, . . . ,

Ag+h} = {B(Ax1 , R̄(Ax1 )), . . . , B(Axg , R̄(Axg )), B(ATC1 , R̄(ATC1 )), . . . ,
B(ATCh , R̄(ATCh ))}. Applying Lemma 3a to A1 and A2 shows that
f (A1 ∪ A2) ⊆ f (A1) as well as f (A1 ∪ A2) ⊆ f (A2). Since the sets A1
and A2 are disjoint, this can only mean that f (A1 ∪ A2) = ∅. Now
consider the partition {A1∪A2, A3, . . . , Ah+g}. Applying Lemma 3a
now to A1 ∪ A2 and A3 leads, by the same reasoning, to the
conclusion that f (A1 ∪ A2 ∪ A3) = ∅. Proceeding in this way
we eventually arrive at f {A1 ∪ · · · ∪ Ah+g} = f (M(A, R̄(A))) = ∅.
Consider next the sets M(A, R̄(A)) and A−M(A, R̄(A)). Since there
are no y ∈ A − M(A, R̄(A)) and x ∈ M(A, R̄(A)) with y ∈ f ({x, y}),
Lemma 3a yields f (M(A, R̄(A))) ∪ (A − M(A, R̄(A))) = f (A) ⊆

f (M(A, R̄(A))). Since f (M(A, R̄(A))) = ∅ by the previous step,
f (A) = ∅.

Next, assume B(A, R̄(A)) is non-empty. By definition, there is
no x ∈ A − B(A, R̄(A)) and y ∈ B(A, R̄(A)) with x ∈ f ({x, y}).
Hence, by Lemma 3a, f (A) ⊆ f (B(A, R̄(A))) and, by Lemma 2,
f (A) ⊆ B(A, R̄(A)). By definition of R̄ there is, for any y ∈ A, an
R-chain from x to y. Let Ax

y denote the set of all elements in the
chain from x to y. By Lemma 2, x ∈ f (Ax

y). By Lemma 3b, f satisfies
γ . Repeated application of γ allows us to derive x ∈ f (∪y∈AAx

y) =

f (A). Hence, B(A, R̄(A)) ⊆ f (A). Thus f (A) = B(A, R̄(A)). ■
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Two remarks are worth making. First, γ + and ρ together yield
more succinct characterization as a corollary of our main result,
hen combined with the following observation.14

bservation 1. If a choice function f satisfies γ +, then it satisfies
α−, β , ξ , and γ −.

Corollary 3. A choice function f satisfies axioms ρ and γ + if, and
only if, f (A) = B(A, R̄(A)) for all A ∈ P .

Second, Evren et al. (2019, Theorem 5.1) use the following
trengthening of β , first introduced in Bordes (1976), together
ith ρ in their characterization of the top-cycle choice rule in
he context of decisive choice functions.

xiom 10 (β+). For all A, B ∈ P , if A ∩ f (B) ̸= ∅, then f (A) ⊆ f (B).

Note that given their result, our Proposition 2 and the obser-
vation that γ − and ξ are trivially fulfilled for decisive choice func-
tions, α−, β+ and ρ together yield an alternative characterization
of decisive top-cycle choice rules.

We conclude with a corollary of Proposition 2 which forms a
novel account of what constitutes a hard choice. Per this char-
acterization, a hard choice is defined by the incompleteness of
the binary relation rather than by the violation of regularity
properties such as transitivity or acyclicity.

Corollary 4. Let f be a choice function f satisfying axioms α−, β ,
ξ , γ − and ρ. A choice situation A constitutes a hard choice if, and
only if, for some x, y ∈ M(A, R̄(A)) we have f ({x, y}) = ∅.

Appendix. Independence of axioms

We demonstrate that the axioms in Propositions 1 and 2 are
independent. Let x, y, z be distinct elements in X and let A =

X − {x, y, z}. For the choice functions fi (1 ≤ i ≤ 7) used below
we specify: (a) f (A∗) = ∅ for all non-singleton subsets A∗ of A and
(b) f (A ∪ B) = f (B) for all non-empty subsets B of {x, y, z}.

First, consider the axioms used in Proposition 1.

1. Satisfying α, ξ , γ = and violating β: f1(x, y) = {x, y},
f1(x, z) = {x, z}, f1(y, z) = {y, z} and f1(x, y, z) = {y, z} =

f1(X) ̸= B(X, R) = {x, y, z}.
2. Satisfying β , ξ , γ = and violating α: f2(x, y) = {x}, f2(x, z) =

{z}, f2(y, z) = {y, z} and f2(x, y, z) = {y, z} = f2(X) ̸=

B(X, R) = {z}.
3. Satisfying α, β , γ = and violating ξ : f3(x, y) = {y}, f3(x, z) =

{x}, f3(y, z) = {y, z} and f3(x, y, z) = ∅ = f3(X) ̸= B(X, R) =

{y}.
4. Satisfying α, β , ξ , and violating γ =: f4(x, y) = {x}, f4(x, z) =

{x}, f4(y, z) = ∅ and f4(x, y, z) = ∅ = f4(X) ̸= B(X, R) = {x}.

Next, consider the axioms used in Proposition 2.

1. Satisfying α−, β , ξ , ρ and violating γ −: Take f4 defined
above. We have f4(X) = ∅ ̸= B(X, R̄(X)) = {x}.

2. Satisfying α−, β , γ −, ρ and violating ξ : f5(x, y) = {x},
f5(y, z) = {y}, f5(x, z) = {z} and f5(x, y, z) = ∅ = f5(X) ̸=

B(X, R̄(X)) = {x, y, z}.

14 We are very grateful to an anonymous reviewer who suggested this.
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3. Satisfying α−, ξ , γ −, ρ and violating β: f6(x, y) = {x, y},
f6(x, z) = {x, z}, f6(y, z) = {z} and f6(x, y, z) = {x, z} =

f6(X) ̸= B(X, R̄(X)) = {x, y, z}.
4. Satisfying β , ξ , γ −, ρ and violating α−: Take f2 above. We

have f2(X) = {y, z} ̸= B(X, R̄(X)) = {x, y, z}.
5. Satisfying α−, β , ξ , γ − and violating ρ: f7(x, y) = {x, y},

f7(x, z) = {x}, f7(y, z) = {y} and f7(x, y, z) = {x, y, z} =

f7(X) ̸= B(X, R̄(X)) = {x, y}.
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