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Abstract

Causal models provide a framework for making counterfactual predic-
tions, making them useful for evaluating the truth conditions of coun-
terfactual sentences. However, current causal models for counterfactual
semantics face logical limitations compared to the alternative similarity-
based approaches: they only apply to a limited subset of counterfactuals
and the connection to counterfactual logic is not straightforward. This pa-
per offers a causal framework for the semantics of counterfactuals which
improves upon these logical issues. It extends the causal approach to coun-
terfactuals to handle more complex counterfactuals, including backtrack-
ing counterfactuals and those with logically complex antecedents. It also
uses the notion of causal worlds to define a selection function and shows
that this selection function satisfies familiar logical properties. While some
limitations still arise, especially regarding counterfactuals which require
breaking the laws of the causal model, this model improves upon many of
the existing logical limitations of causal models.

Counterfactual conditionals like ‘If A were the case, then C would be the
case’, written A > C, have two conflicting models for their truth conditions.
Similarity-based models, like those of Lewis (2013) and Stalnaker (1968), assume
that we have a set of possible worlds W with a similarity relation on worlds,
≤w. They propose that the counterfactual A > C is true at world w if C is
true in all of the worlds closest to w (according to ≤w) where A is true. Causal
models, following Galles and Pearl (1998) and Pearl (2009), assume that we
have a set of variables V with a causal model M describing how the variables
in V are related to each other; a counterfactual A > C is true if intervening on
the causal description of the world to force A to be true entails that C is true.

One of the main advantages of causal models is that the models are determi-
nate and cognitively realistic. Causal modeling builds on methods of statistical
inference prevalent in epidemiology and econometrics, and elements of causal
models (such as variable identification, structural equations, and residual or er-
ror terms) are frequently found in empirical work on counterfactuals and causal
inference. Economists, for example, use elements of causal modeling to make
counterfactual predictions for what would have happened if certain countries
did not join the EU (Campos et al., 2019) or if video game companies had not
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developed games exclusively compatible with one platform (Lee, 2013). Fur-
thermore, extensive psychological evidence supports the use of causal models
to study human reasoning.1 In contrast, similarity-based models are often too
intractable to play the same role in empirical research or psychological theory.

However, philosophers have often preferred similarity-based approaches to
causal models because they are more general, offering predictions for a broader
range of counterfactuals, and because they correspond nicely to counterfactual
logics. While similarity-based models can handle all kinds of counterfactual
antecedents, causal models are usually limited in the antecedents they offer pre-
dictions for. The original causal model of Pearl, for example, could only handle
counterfactuals with antecedents which are conjunctions of variable assignments.
Furthermore, Pearl’s model struggles with backtracking counterfactuals, where
the antecedent is the effect rather than the cause of the consequent (‘If the
grass were wet, then it must have rained’). Hiddleston (2005) offers a frame-
work which works for backtracking counterfactuals, but it struggles to explain
some forward counterfactuals and still only applies to antecedents which are
conjunctions of variable assignments. All causal models, furthermore, have dif-
ficulties explaining counterlegal counterfactuals, where the antecedent of the
counterfactual breaks causal laws in the causal model.

The connection between these causal models and counterfactual logic is also
underexplored. Pearl argues that his framework is sound and complete with re-
spect to Lewis’s axiomatization of counterfactual logic, VC, but this only holds
for antecedents which are conjunctions of variable assignments, and, as Halpern
(2000, 2013) points out, this conclusion only holds for recursive models. Briggs
(2012) offers an extension of Pearl’s framework to more complex antecedents,
but this logic differs from that of most counterfactual logics; modus ponens, for
example, does not hold. Hiddleston’s theory, like Pearl’s theory, is restricted to
antecedents which are conjunctions of variable assignments, and the connection
between his framework and counterfactual logic is not developed in any detail.

In this paper, I offer a causal model for counterfactuals which applies to a
wide class of counterfactuals, including those with antecedents of arbitrary log-
ical complexity and backtracking counterfactuals, and develop the connection
with similarity-based approaches and counterfactual logic. In §1, I introduce the
foundations of causal models, following the interventionist approach of Pearl. I
focus particularly on the distinction between exogenous and endogenous vari-
ables, an element of Pearl’s framework which is often overlooked in philosophical
discussions, and the need to incorporate backtracking counterfactuals. In §2, I
develop an exogenous intervention model for counterfactuals which applies to
antecedents of arbitrary logical complexity. I make use of the notion of a causal
world and formally define a set of interventions which associates a world u and
antecedent A with a set of intervened worlds which set A true. This set of
intervened worlds serves as the set of causally relevant worlds for a counterfac-
tual, allowing one to define selection functions within causal models. I define a
selection function for the strict semantics, where all causally relevant worlds are

1See, for example, Glymour (2001), Sloman (2005), and Gopnik and Schulz (2007).
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included. In §3, I show that this selection function satisfies the logical axioms
for a familiar logic of counterfactuals, Pollock’s (1981) counterfactual logic SS.

In §4, I consider the differences between the exogenous intervention model for
counterfactuals and the two leading alternative causal models, those of Hiddle-
ston and Pearl. I argue that both models have limitations: Hiddleston struggles
with some forward counterfactuals and Pearl struggles with backtracking coun-
terfactuals. I also defend the choice of modeling with exogenous interventions
and show how the main ideas of Pearl’s and Hiddleston’s models can both be
incorporated into the exogenous intervention model by making extra assump-
tions on the model set-up and the selection function. In §5, I consider some
issues which arise from relativizing truth conditions of counterfactuals to causal
models, including backtracking interpretations of forward counterfactuals, coun-
terlegal counterfactuals, and counterfactuals with counterfactual antecedents.

This paper therefore provides a causal model for counterfactuals which, un-
like current causal frameworks, extends to logically complex antecedents and
backtracking counterfactuals while providing a familiar counterfactual logic. It
also serves to clarify the relationship between the causal and similarity models
of counterfactuals as well as the relationship between different models of causal
counterfactuals such as the interventionist approach of Pearl and the backtrack-
ing approach of Hiddleston. By showing that causal models are flexible enough
to incorporate a wide range of complex counterfactuals and relate nicely to stan-
dard counterfactual logics, this paper aims to re-evaluate these two perceived
weaknesses of causal modeling.

1 Causal Models

Consider a familiar example from the causal modeling literature, discussed in
Pearl (2009): the firing squad. Here, a court is deciding whether to order the
execution of a prisoner. If the court orders execution, then the captain sends a
signal to two shooters, Shooter X and Shooter Y , who bring about the death
of the prisoner. We can formalize this scenario as a causal model: we have
five binary variables which take values 0 if the event does not occur and 1 if
the event does occur and four structural equations describing the dependencies
involved. We can write the components of the causal model as:

Variables : the court orders execution (C), the captain sends a signal (S),
Shooter X shoots (X), Shooter Y shoots (Y ), prisoner dies (D)

Structural Equations : S = C; X = S; Y = S; D = X ∨ Y .

We can also illustrate the causal dependencies in a graph:
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The structural equations representing dependency relations allow us to use
causal models to evaluate counterfactual sentences. We evaluate a counterfac-
tual A > C in a causal model by intervening in the model to set A true and
seeing if this guarantees that C is true. Consider the counterfactual ‘If X were
to shoot, then the prisoner would die.’ If we make an intervention on the causal
model to set X = 1, then since D = X ∨ Y , D = 1, so the prisoner must die;
this renders the counterfactual true in this model.

To give a formal account of counterfactual truth conditions, we must de-
fine causal models more formally. A causal model M = (U, V, fi) consists
of a finite set of exogenous variables U , a finite set of endogenous variables
V = (V1, ..., Vn), and a set of structural equations F = (f1, ..., fn), where for
each i, vi = fi(pai, ui), where pai ∈ PAi ⊆ V \Vi is an assignment pai to the
parents PAi of Vi and Ui ⊆ U is the unique minimal set of exogenous variables
needed for fi. Thus, each fi tells us the value of the endogenous variable Vi

given the value of Vi’s parents PAi and the exogenous variables Ui. The as-
signment of parents PAi for Vi determines a graph G on V , which we assume is
a directed acyclic graph (DAG). Since all endogenous variables have structural
equations which depend on the variable’s parents and exogenous variables, once
we make an exogenous variable assignment u ∈ U , we fix the value of all en-
dogenous variables, so the set of structural equations F forms a function from
exogenous variables to endogenous variables, F : U → V . Therefore, the values
of the endogenous variables in a causal model are completely determined by the
structural equations and the values of the exogenous variables.2

In the firing squad example, the only exogenous variable is the court ordering
the execution (C); once the value of this variable has been settled, the values of
all other variables are settled as well.3 While the values of exogenous variables
determine all other variables in a causal model, the significance of the distinction
between exogenous and endogenous variables has often been ignored in causal
models for counterfactuals.4 In Pearl’s model, for example, the distinction does

2For more details on the formal background to causal modeling, see Pearl (2009).
3Technically, C is an endogenous variable with no parents. However, we often think of

these variables as being determined exogenously, so there is an exogenous variable UC such
that C = UC .

4While Pearl uses exogenous variables in his original framework, these are left out in the
more recent models of Hiddleston (2005), Kaufmann (2013), Santorio (2014), and Ciardelli
et al. (2018).
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not play any role: it does not matter whether the intervention we make is on
an exogenous or an endogenous variable. Consider again the counterfactual
‘If X were to shoot, then the prisoner would die.’ In Pearl’s interventionist
approach to counterfactuals, hypothetically considering the antecedent replaces
the structural equation X = C with the structural equation X = 1; regardless
of the fact that X is an endogenous variable, we can set it to X = 1 by breaking
the causal laws of the model.

The distinction between exogenous and endogenous variables becomes sig-
nificant when we try to incorporate backtracking counterfactuals, where the
consequent is the cause of the antecedent. Consider the counterfactual ‘If X
were to shoot, then the captain signaled for it.’ Intuitively, this counterfactual
is true since, if the causal model is correct, X only shoots if the captain sig-
naled to, so X = 1 only if S = 1. However, in a framework like Pearl’s where
we can intervene on any variable, this counterfactual need not be true. This is
because, when we intervene directly on X to replace X = S by X = 1, this does
not change anything upstream from X, so the intervention does not guarantee
that S = 1. In general, models where we can intervene directly on any variable
cannot explain judgments about backtracking counterfactuals.5

In backtracking reasoning, we keep the laws, or structural equations, of the
causal model the same, instead considering the changes on the exogenous vari-
ables which make the antecedent true. Preserving the interventionist intuition,
we can consider changes to exogenous variables to be interventions.6 In our
example, C is the only exogenous variable, so the only way we can change any
variables in the model while keeping the laws the same is by changing C. If
we consider the exogenous interventions which set X = 1, our model tells us
that X’s decision to shoot is based solely on the signal S, and S, in turn, is
based solely on C, so the only way to intervene within the model to set X = 1
is to set C = 1. This allows us to recover the desired truth conditions for the
backtracking counterfactual ‘If X were to shoot, then the captain signaled for
it’: intervening to set X = 1 involves setting C = 1, which sets S = 1, so the
counterfactual is always true.

Note that, on this approach, the inclusion of exogenous variables is significant
for counterfactual truth conditions: adding an extra exogenous variable, for
example, can change the truth conditions of the backtracking counterfactuals.
Suppose we think it is more accurate to attribute to X the possibility of shooting
without receiving the signal. In this case, we should add an exogenous variable
UX to the causal model such that X = S ∨ UX to account for this possibility,

5Rips (2010) and Gerstenberg et al. (2013) provide experimental evidence supporting back-
tracking in counterfactual reasoning.

6This differs from the standard conception of an intervention following Pearl. Fisher
(2017a), motivated by Pearl’s concept of an intervention, argues that an intervention on
an antecedent A requires making the variables in A independent of their parents. Here, an
intervention on a variable in A can occur at a parent of that variable, as happens when we
set C = 1 to fix X = 1, leaving the variables in A dependent on their parents. Thus, on
Fisher’s interpretation, an exogenous intervention does not properly count as an intervention
in the model. This notion of intervention, however, is discussed elsewhere; see LeRoy (2019).
I discuss these two notions of intervention in greater detail in §4.2.
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even if we consider the activation of UX extremely unlikely. Exogenous variables
like UX are sometimes referred to as error terms because they introduce the
possibility of outcomes deviating from the expected course of events. In this
new causal representation of the situation, setting X = 1 can arise from setting
either UX = 1 or S = 1; the first intervention UX = 1 does not guarantee that
the captain gave the signal (S = 1) or that the court ordered the execution
(C = 1). This shows how changing the exogenous variables included in a model
can change judgments about counterfactuals: when UX is not included, X =
1 > S = 1 is true, but when UX is added to the model, X = 1 > S = 1 need
not be true.

This discussion motivates the approach to counterfactuals I will define in the
next section: A > C is true if any intervention (or way of setting the exogenous
variables in the model) which fixes A leads to C.

2 Exogenous Intervention Model

To draw the connection as closely as possible between causal models and the
similarity-based theories of counterfactuals, I frame the discussion of causal
models in terms of causal worlds. Pearl (2009) defines the notion of a causal
world, but makes little use of the notion in his analysis, and the notion is largely
left out of later causal models for counterfactuals. A causal world (M, u) is a
causal model M paired with an assignment to all exogenous variables, u ∈ U .
Since all endogenous variables are determined by an assignment u ∈ U , elements
of U play the role of truthmakers for propositions of variable assignments, and
we can associate propositions built from variable assignments with sets of worlds.

If Vi = vi is an endogenous variable assignment, this determines a set of pos-
sible worlds by [Vi = vi] = {u ∈ U : F (u)i = vi} ⊆ U , so u ∈ [Vi = vi] iff Vi = vi
is true when we plug u into the structural equations in M. Since all variable
assignments yield sets of possible worlds, any logical combination of variable
assignments also determines a set of possible worlds as usual, where negation,
conjunction and disjunction correspond to set-theoretic complementation, inter-
section, and union, respectively. As usual in possible world semantics, we refer
to subsets of U as propositions, and the set of subsets of U , P(U), as the set of
propositions. The truth conditions defined for counterfactuals will apply to all
propositions, or sets of exogenous variable assignments; this definition is what
allows us to extend the analysis of counterfactuals to antecedents with arbitrary
logical complexity.

To see how this notion of causal worlds works, consider a modified version of
the firing squad example where both X and Y are able to shoot without receiving
the signal. Here, the causal graph is as above, but there are three exogenous
variables, UC , UX , and UY , with structural equations C = UC , S = C, X =
S ∨ UX , Y = S ∨ UY , and D = X ∨ Y . In this case, there are eight possible
worlds corresponding to the eight possible assignments to the three exogenous
variables. To see how complex propositions reduce to sets of worlds, consider
the proposition ‘The prisoner dies and either shooter X or shooter Y does not
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shoot.’ We can see that there are only two worlds where this propositions is
true: (UC , UX , UY ) = (0, 1, 0) and (UC , UX , UY ) = (0, 0, 1).

To define the truth conditions associated with a counterfactual A > C, where
A and C are propositions, we need to associate a world u and the antecedent
A with a set of possible worlds over which we evaluate the consequent C; in
similarity-based approaches, this is the set of closest A-worlds to u, determined
by a selection function f(A, u). The intuition behind causal counterfactual
models is that the relevant set of A-worlds close to u is the set of worlds where we
intervene in the causal model to make A true. This can be done by changing the
structural equations, as in Pearl, or by changing the values of variables, as here
and in Hiddleston. Here, I propose a characterization of the set of worlds formed
by making an A-intervention on u; in §4, I argue that this set of interventions
generalizes both Pearl’s and Hiddleston’s proposals. Furthermore, while the
selection function used here is ‘strict,’ incorporating all intervened worlds, it is
possible to define a counterfactual semantics with a restricted selection function
by imposing stronger similarity constraints within this model.

We consider an intervention i in u to be an intervention forcing A if it makes
changes to the exogenous variables which are minimally necessary to ensure A.
The exogenous variable assignments which force A are all the worlds where A is
true, or the elements of [A]. However, we do not want to consider all assignments
in which A is true; if C is independent of A, for example, intervening to fix A
should not change C. For example, intervening to change the color of someone’s
shirt should not change their height. We want interventions to change only those
variables which are necessary to produce A. These interventions, rather than
being complete variable assignments (elements of U), will be partial variable
assignments.

Suppose there are m exogenous variables, so U = (U1, ..., Um), and let S ⊆
{1, ...,m} be a subset of variables with complement S′, so U = US × US′ and
for any u ∈ U, u = u|S × u|S′ . A restricted variable assignment r on S is
an assignment r ∈ US ; that is, a variable assignment for the restricted set of
variables US . For a restricted variable assignment r ∈ US and a world u, we
define the world where we intervene on u by r as u|r = r × u|S′ . This is the
world where we change the values of u on S to the values r, but leave all other
variables unchanged.

We then define the set of restricted variable assignments which force A in a
world u:

Ru(A) = {r : ∃S, r ∈ US & u|r ∈ [A]}.

This is the set of partial variable assignments such that imposing these variable
assignments on the world u gives a world u|r where A is true. As long as a
proposition A is possible, or has some world w ∈ [A] making it true, Ru(A) 6= ∅
since w ∈ Ru(A) with S = {1, ...,m}; every element w ∈ [A] is in Ru(A) for
any u. However, as motivated above, we don’t want all elements of [A] to be
interventions on A, so we must restrict the set Ru(A).

We want to restrict Ru(A) to just include the variable changes which are
necessary to bring about A. If r is such a variable change, then fixing any other
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variables in addition to those fixed by r would not change the value of A; this
means any extension of r to variables not fixed by r is also an element of Ru(A).
This motivates defining an order ≤ on Ru(A). Suppose r1, r2 ∈ Ru(A) assign
variables S1 and S2. We say r1 ≤ r2 iff r2 is an extension of r1, so S1 ⊆ S2 and
r2|S1

= r1.
We can now define the set of interventions which force A, Iu(A), as the

≤-minimal elements of Ru(A):

Iu(A) = {i ∈ Ru(A) : @r ∈ Ru(A), r 6= i, r ≤ i}.

We then define the truth conditions for a counterfactual: a counterfactual A > C
is true in a world u if C is true when we make all interventions from Iu(A) on
u. Thus, the set of worlds where a counterfactual A > C is true is as follows:

[A > C] = {u ∈ U : ∀i ∈ Iu(A), u|i ∈ [C]}.

To see that these truth conditions provide intuitive results, recall the mod-
ified firing squad example from above with exogenous variables UC , UX , and
UY and structural equations C = UC , S = C, X = S ∨ UX , Y = S ∨ UY , and
D = X ∨ Y . Suppose that, in the actual world, the court does not order execu-
tion and neither X nor Y choose to shoot, so (UC , UX , UY ) = (0, 0, 0). Consider
the counterfactual ‘If X were to shoot, the prisoner would die.’ Here, the rele-
vant interventions are UX = 1 and UC = 1; in both cases, X = 1, so D = 1, so
the counterfactual is true. Now consider the backtracking counterfactual ‘If X
or Y were to shoot, the captain must have signaled.’ The relevant interventions
are UX = 1, UY = 1, and UC = 1, and under the interventions UX = 1 and
UY = 1, C = 0, so the counterfactual is false. This is intuitively correct: since
it is possible that X or Y decides to shoot without receiving the signal, X or Y
shooting does not entail that the captain signaled. These examples show how
the truth conditions defined here offer reasonable predictions for both forward
and backtracking counterfactuals.

3 Logic of Exogenous Intervention Models

Similarity-based models for counterfactuals rely on selection functions f(A, u) :
P(U)×U → P(U), which assign a world u and antecedent A to a set of closest
relevant A-worlds to u. The exogenous intervention model defines a selection
function by f(A, u) = {u|i : i ∈ Iu(A)}. The logic for similarity-based models
of counterfactuals built from selection functions is well-understood; restrictions
on the selection function f correspond to axioms for the conditional >.7 The
best-known logic for counterfactuals is Lewis’s VC, which corresponds to six
axioms on selection functions:

CS1: if w ∈ f(A, u), then w ∈ [A]

7See the classic text of Lewis (2013) or the recent surveys of Nute and Cross (2001) and
Arlo-Costa (2019).
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CS2: if u ∈ [A], then f(A, u) = {u}
CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅
CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)
CS5: if f(A, u) ∩ [B] 6= ∅, then f(A ∧B, u) ⊆ f(A, u)
CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]

However, many authors have recommended weaker logics than VC. Pollock
(1981), for example, recommends a logic SS, where we replace CS5 by CS5′:

CS5′: f(A ∨B, u) ⊆ f(A, u) ∪ f(B, u).

The selection function for exogenous intervention models defined above sat-
isfies the axioms for Pollock’s logic SS. We verify the satisfaction of these six
axioms below:

CS1: if w ∈ f(A, u), then w ∈ [A]

Proof. Suppose w ∈ f(A, u), so w = u|i for some i ∈ Iu(A). Since i ∈ Ru(A),
u|i ∈ [A] by the definition of Ru(A), so w ∈ [A].

CS2: if u ∈ [A], then f(A, u) = {u}

Proof. If u ∈ [A], then the empty intervention i, which changes no exogenous
variables, is in Ru(A) since u|i = u ∈ Ru(A). Since i ≤ r for every other possible
intervention r ∈ Ru(A), i is the unique minimal element in Ru(A) and the only
element in Iu(A). Since f(A, u) = {u|i : i ∈ Iu(A)}, f(A, u) = {u|i} = {u}.

CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅

Proof. If f(A, u) = ∅, then Iu(A) = ∅, so Ru(A) = ∅. Since [A] ⊆ Ru(A),
[A] = ∅, so f(B, u) ∩ [A] = ∅.

CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)

Proof. Suppose f(A, u) ⊆ [B] and f(B, u) ⊆ [A]. To show that f(A, u) ⊆
f(B, u), we must show that, for all i ∈ Iu(A), there is some j ∈ Iu(B) such that
u|i = u|j. Suppose i ∈ Iu(A). Since f(A, u) ⊆ [B], u|i ∈ [B], so i ∈ Ru(B).
Then there is a j ∈ Iu(B) such that i extends j. But since j ∈ Iu(B) and
f(B, u) ⊆ [A], u|j ∈ [A], so j ∈ Ru(A). This means there is an i′ ∈ Iu(A)
such that j extends i′. But since i and i′ are both ≤-minimal elements and
i′ ≤ j ≤ i, i = i′ = j, so u|i = u|j. Since we have shown ∀i ∈ Iu(A),∃j ∈ Iu(B)
such that u|i = u|j, we have shown that f(A, u) ⊆ f(B, u). The proof that
f(B, u) ⊆ f(A, u) is parallel, showing that f(A, u) = f(B, u).

CS5′: f(A ∨B, u) ⊆ f(A, u) ∪ f(B, u)
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Proof. Suppose u|i ∈ f(A ∨B, u), where i ∈ Iu(A ∨B). Since u|i ∈ [A ∨B] by
CS1, u|i ∈ [A] or u|i ∈ [B]. Suppose u|i ∈ [A]. Then i ∈ Ru(A), so there is
some j ∈ Iu(A) such that i extends j. Since j ∈ Iu(A), u|j ∈ [A] ⊆ [A ∨ B],
so j ∈ Ru(A ∨ B). This means there is some i′ ∈ Iu(A ∨ B) such that j
extends i′. But since i′ ≤ j ≤ i and i and i′ are both ≤-minimal, i = i′ = j, so
∃j ∈ Iu(A) such that u|i = u|j, so u|i ∈ f(A, u)∪f(B, u). If u|i ∈ [B], a parallel
proof shows that u|i ∈ f(B, u) ⊆ f(A, u) ∪ f(B, u). Therefore, f(A ∨ B, u) ⊆
f(A, u) ∪ f(B, u).

CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]

Proof. Follows immediately from the definition of [A > C] in §2.

Note that the exogenous intervention model does not satisfy Lewis’s logic VC
as it admits counterexamples to CS5 and the corresponding logical principle:

(A > C) ∧ ¬(A > ¬B)⇒ (A ∧B) > C.

The counterexample to this is the same as found in Pollock and translated to
causal models in Hiddleston. Suppose three switches S1, S2, and S3 control two
lights L1 and L2 with structural equations L1 = S1 ∨S2 and L2 = S2 ∨S3. The
causal diagram for this model is as follows:

S1 S2 S3

L1 L2

Suppose all three switches are off (Si = 0) and, consequently, both lights are
off (Li = 0). The counterfactual ‘If L2 were on, S1 would be off’ is true since
both interventions which set L2 = 1, S2 = 1 and S3 = 1, leave S1 fixed at 0.
Additionally, it is not the case that ‘If L2 were on, L1 would be on’ since setting
S3 = 1 is an intervention which fixes L2 = 1 without setting L1 = 1. However,
it is not the case that ‘If L1 and L2 were on, S1 would be off’ since (S1, S3) =
(1, 1) is a minimal intervention setting the antecedent true. This provides a
counterexample to the logical principle corresponding to CS5, showing that the
exogenous intervention model does not validate Lewis’s semantics VC without
additional restrictions on the selection function.

This logic differs from alternative logics proposed for causal models. Briggs,
for example, offers a logic for an extension of Pearl’s theory which does not
satisfy modus ponens. SS, however, satisfies modus ponens, which is a conse-
quence of strong centering (CS2). Pearl and Halpern also show that Pearl’s
framework corresponds to the logic of Lewis’s VC for antecedents restricted
to conjunctions of variable assignments in recursive models, while the coun-
terexample above shows that VC validates an axiom not validated by the fully
general exogenous intervention model. As I discuss in §4.2, natural extensions of
Pearl’s framework to include disjunctions of variable assignments also invalidate
CS5, failing to correspond to Lewis’s VC.
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Note that the selection function used in this section includes all causally
relevant worlds, providing a ‘strict’ semantics, and that one could easily adjust
the semantics by imposing additional assumptions on this selection function,
as in the next section. Therefore, it makes sense to think of the exogenous
intervention model as providing a framework for expressing particular semantic
theories of counterfactuals through a precise expression of the set of causally
relevant worlds rather than as a particular semantics for counterfactual sen-
tences. For this reason, we do not discuss any completeness properties of the
strict semantics presented here or any of the derivative semantics discussed in
the next section.

4 Comparison to Other Causal Models

The exogenous intervention model is designed to generalize both Hiddleston’s
and Pearl’s causal models of counterfactuals. It combines elements of both mod-
els; for example, it makes use of the exogenous variables fundamental to Pearl’s
account while focusing on changes to variables rather than changes to structural
equations, following Hiddleston. In this section, I show how Hiddleston’s (§4.1)
and Pearl’s (§4.2) frameworks fit in the exogenous intervention model, defending
the modeling choices made in this paper.

Both Hiddleston’s and Pearl’s models motivate certain restrictions on the
semantics defined in §2. These restrictions arise from imposing an order rela-
tion ≤ on Iu(A) and requiring for A > C to be true that C is true under all
≤-minimal interventions in Iu(A), rather than all interventions in Iu(A). When
considering restrictions to the semantics from §2, we can think of Iu(A) as the
set of all causally relevant A worlds close to u; the further restriction, ≤, can
come from any other ordering on variables deemed relevant for the counter-
factual semantics. We could consider restrictions where the selection function
consists of a single closest world, yielding Stalnaker’s semantics C2, or restric-
tions which validate CS5 to get Lewis’s logic VC, including restrictions which
violate the Limit Assumption and require a System of Spheres model. Here, we
only consider two restrictions coming from two of the major causal theories of
counterfactuals, both of which yield the same logic SS.8

4.1 Hiddleston’s Theory

Hiddleston evaluates a counterfactual A > C at u by considering whether C is
true in all models which are ‘minimal breaks’ from the model in u; these models
leave the structural equations unchanged and change variables upstream from
A in a way which involves making the smallest necessary changes to variables
while leaving the most variables independent of A intact. We can think of the

8The proofs that the restrictions by ≤H and ≤P satisfy the axioms for SS follow the proofs
given in §3. The counterexample to CS5 from §3 applies to Hiddleston’s theory, as discussed
in his paper, and a counterexample to CS5 for the extension of Pearl’s theory to disjunctive
antecedents is given in §4.2.
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set of possible breaks as Ru(A) and Hiddleston’s minimal change requirement
as an ordering ≤H on Ru(A). After discussing some foundational differences, I
will show how we can define an ordering ≤H such that the set of ≤H -minimal
elements of Ru(A) forms a subset of Iu(A).

Hiddleston’s theory follows the set-up of §1 with two fundamental differ-
ences: he considers all variables as endogenous and he allows for indeterministic
structural equations such as Pr(Y = y|X = x) = p. While he does not include
an explicit set of exogenous variables, it is implicit that any variable which has
no parents in the graph G over V is exogenous; it can be freely set with no con-
straints from its structural equation because structural equations only involve
the parents of a variable. Thus, for any variable Vi such that PVi = ∅, we can
add an exogenous variable Ui such that the structural equation for Vi is Vi = Ui.

The issue of indeterministic structural equations is a little more difficult to
resolve, but Pearl provides adequate machinery to handle indeterminacies. To
see how this works, consider Hiddleston’s ceremonial cannon example. Here,
one lights a fuse (L), which has a 95% chance of setting off an explosion (E),
which causes a flash (F ) and a bang (B). The structural equations are Pr(E =
1|L = 1) = 0.95, Pr(E = 1|L = 0) = 0, F = E, and B = E with causal graph:

L

E

F B.

On Pearl’s theory, indeterminacies are handled by exogenous error variables
rather than indeterministic structural equations. In this example, we would
add an error variable U ′

E representing ‘unspecified inhibiting abnormalities’ and
replace Hiddleston’s structural equation for E by E = L ∧ ¬U ′

E , meaning that
E is activated when L is activated and L is not inhibited by U ′

E .9 The fact that
lighting the fuse leads to an explosion 95% of the time corresponds to the fact
that there is a 5% chance the error variable U ′

E is activated, or Pr(U ′
E) = .05.

Removing indeterminacies from Hiddleston’s structural equations is important
because Hiddleston uses indeterministic structural equations to justify interven-
ing on endogenous variables. For example, if we want to intervene to set E = 0,
Hiddleston argues that we can do this by changing the endogenous variable E
directly without changing its parent L; on an exogenous intervention theory,
however, we can only change E by changing an exogenous variable, either L or
U ′
E .

This discussion shows how we can replace Hiddleston’s indeterministic model
with only endogenous variables by a model with deterministic structural equa-
tions and exogenous variables. This can be accomplished by adding exogenous
variables corresponding to the endogenous variables with no parents and re-
placing indeterministic structural equations by deterministic equations with an

9For Pearl’s discussion of error variables in Boolean models, see Pearl (2009, p. 29).
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exogenous error term. In the model above, we keep the same endogenous vari-
ables and the same causal graph; we just add two exogenous variables UL cor-
responding to the only vertex without a parent and U ′

E corresponding to the
error associated with the statistical law. The new structural equations are then
L = UL, E = L ∧ ¬U ′

E , F = E, and B = E.
Given the different representations for causal models, the predictions of Hid-

dleston differ from those of this paper. The use of indeterministic structural
equations in Hiddleston, for example, makes it difficult to interpret forward
counterfactuals. Consider a world where the cannon is not lit and where we
want to evaluate the counterfactual ‘If the cannon were lit, then an explosion
would happen.’ In the exogenous intervention model, this is true in 95% of
worlds (where U ′

E = 0) and false in the other 5%, but in Hiddleston’s model,
this is predicted false in general because there is always a possible outcome
where the cannon is lit but an explosion does not occur.

However, Hiddleston does offer a restriction on the semantics for counter-
factuals which may be useful for us. While the exogenous intervention model in
§2 evaluates counterfactuals over all relevant minimal changes to the exogenous
variables, Hiddleston further restricts to those ‘causal breaks’ which are ‘as mi-
nor and as late as is lawfully possible’ (Hiddleston, 2005, p. 643). While the
condition of minimality is enforced in §2 to rule out unnecessary interventions,
we considered all interventions rather than those that are as late as possible in
the causal process. To enforce this additional requirement, we can demand that
the set of variables independent of the antecedent remains as intact as possi-
ble, so that we consider only those interventions which minimally change the
variables independent of the antecedent. Let V (u|i) be the endogenous variable
assignment produced by intervention i in world u, Z the set of variables which
are not descendants of any variables in A, and V (u|i) ∩ Z the set of variable
assignments in V (u|i) which are in Z and equal to those in the world u. We can
define an order on Iu(A), ≤H , by saying i ≤H i′ iff V (u|i′) ∩ Z ⊆ V (u|i) ∩ Z.

We can then define the counterfactual A > C as true at u iff C is true
under all ≤H -minimal interventions from Iu(A). This offers a restriction on
the semantics in §2 which yields different truth conditions for counterfactuals.
To see that the new truth conditions are different, consider the above example
where the ceremonial cannon was lit, exploded, and the flash and bang occurred
in the actual world. Consider the counterfactual ‘If the flash hadn’t occurred,
the cannon was still lit.’ On the strict semantics from §2, this counterfactual
is false. There are two minimal interventions which could turn off the flash,
one where the cannon isn’t lit (UL = 0) and the other where an error prevents
the lit cannon from exploding (U ′

E = 1). Since the cannon is lit in one of
these but not the other, the counterfactual is false. On Hiddleston’s theory and
the restricted semantics here, however, the intervention U ′

E = 1 leaves more
independent variables intact (namely L), so it is the only relevant intervention,
meaning the counterfactual is true. Thus, if we modify Hiddleston’s theory
to fit into the exogenous intervention semantics, we can recover a restricted
counterfactual semantics with slightly different truth conditions than found in
§2.
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4.2 Pearl’s Theory

Pearl argues that a counterfactual A > C is true if an intervention to produce
A entails C, where we intervene on A by replacing the structural equation for
A with A = 1 rather than changing the values of exogenous variables. Pearl’s
model is limited insofar as it cannot handle logically complex antecedents or
backtracking counterfactuals. However, Pearl draws on extensive evidence from
the theory of causal inference to justify these interventions on structural equa-
tions as the correct representation of counterfactual intervention. Pearl inten-
tionally avoids backtracking in counterfactual reasoning because backtracking
can lead one to ignore confounders and mistake correlation for causation.

Consider the case of monetary policy, where a central banker considers lower-
ing interest rates to increase output and inflate prices. Typically, the monetary
policy decision is made based on economic fundamentals, making the decision
endogenous. Suppose a central banker ignores the economic fundamentals and
reasons: if I were to lower interest rates, then economic fundamentals would be
as they usually are when the central bank lowers interest rates, and output and
prices would therefore increase. This backtracking reasoning is clearly erroneous
and confuses the correlation of monetary policy decisions and economic effects
with a causal effect of monetary policy on the economy. Instead, Pearl argues,
we should evaluate the consequences of a monetary policy decision by taking the
fundamentals as given, intervening to set the interest rates to a certain level, and
seeing how (if at all) this affects the economy. Pearl’s approach to interventions
resolves the backtracking problem: the monetary policy decision can remain
endogenous and we can (correctly) consider an intervention as something which
does not change the background fundamentals.

This is a serious obstacle to implementing a theory of counterfactuals which
can handle backtracking counterfactuals: in many decision environments, back-
tracking seems inappropriate. However, we can resolve this in the exogenous
intervention model by adding exogenous variables to our model. In the mone-
tary policy example, we can treat an intervention not as a break in the structural
equations, but rather as an exogenous variable which influences the interest rate
directly without influencing the fundamentals. We can justify adding this ex-
ogenous variable because, in order for there to be a real possibility of intervening
on an endogenous variable, there must be some way to change the variable re-
gardless of the value of its parents. This is precisely what an intervention is,
and also precisely what an exogenous variable represents. One way of thinking
of the additional exogenous variable is as an error term representing all possible
ways of influencing the endogenous variable not covered by the parent vari-
ables. Since causal models almost never list all possible influences, we expect
such an error variable to exist, even if we consider it negligible in most modeling
circumstances.

When considering monetary policy, for example, any input to the interest
rate decision which does not come from economic fundamentals can be consid-
ered part of the exogenous error term. While in most circumstances we consider
this exogenous input to the interest rate decision negligible, we can certainly
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add it to our model. Economists, for example, have tried to isolate situations
in which this exogenous variable is activated by identifying cases when central
banks make decisions which deviate from what is expected based on the eco-
nomic fundamentals.10 Models which consider such exogenous interventions a
salient possibility, such as models where the economy can be subject to a ‘mon-
etary policy shock,’ even explicitly include an exogenous variable influencing
interest rate decisions.11 Therefore, while Pearl would consider an intervention
on interest rates a change to the structural equations, the exogenous inter-
vention model interprets the possibility of such an intervention as an exogenous
variable influencing interest rates. The fact that economists estimate this exoge-
nous effect on interest rates and incorporate an exogenous variable representing
it in their models serves as evidence for interpreting such an intervention as an
exogenous variable rather than a change to the structural equations.

We can also get the same predictions as Pearl’s semantics in an exogenous
intervention model if we add an exogenous error term to every endogenous
variable in the model and define an ordering ≤P on Iu(A) which makes sure we
only change the exogenous variables governing the variables in A. To add the
exogenous variables, we assume each endogenous variable Vi has an exogenous
variable Ui = Vi ∪ {OFF}, where Vi is determined according to its original
structural equation when Ui = OFF and Vi = Ui otherwise. Activating the
exogenous variable can be very unlikely, i.e., Pr(Ui = OFF) ≈ 1; what matters
is that the possibility is included in the model.

To define an ordering which ensures that we only change the exogenous
variables governing variables in A, we will define a notion of distance between
an intervention and an antecedent which is minimized by exogenous variables
Ui which directly affect variables Vi. For an exogenous variable Ui which enters
the graph G at vertex Vi, for any vertex Vj , let d(Ui, Vj) be the graph theoretical
distance between Vi and Vj . For an antecedent A which references variables VA

and for an intervention i on variables US , define

d(i, A) =
∑
s∈S

min
Vj∈VA

d(Us, Vj).

For two interventions i, i′ ∈ Iu(A), we say i ≤P i′ iff d(i, A) ≤ d(i′, A) and a
counterfactual A > C is true at u iff C is true under all ≤P -minimal interven-
tions from Iu(A).

We can now see that this gives us Pearl’s semantics for counterfactuals.
Suppose that the antecedent is a variable assignment Vi = vi. The only non-
empty≤P -minimal interventions are those which change the exogenous variables
at Vi since we know Ui = vi is such an assignment; any such intervention leaves
the variables upstream from Vi constant and coincides with Pearl’s intervention
to set the structural equation for Vi to Vi = vi.

12 Similarly, for conjunctions
of variable assignments, the intervention which changes the exogenous variables

10One way of measuring this in the US is by noting when the Fed funds rate deviates from
futures on the Fed funds rate. See Kuttner (2001).

11See, for example, Christiano et al. (2005).
12Note that when Vi = vi is true in a world u, Iu(A) consists of only the empty intervention,
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for each conjunct is ≤P -minimal, and any other minimal intervention coincides
with this on endogenous variables, again coinciding with the predictions of Pearl.
Thus, for all the antecedents which Pearl considers, his semantics arises as a
restricted version of the exogenous intervention theory.

This version of Pearl’s theory extends the theory to logically complex an-
tecedents, for example, to disjunctions of variable assignments. If we have an
antecedent (Vi = vi) ∨ (Vj = vj), the interventions Ui = vi and Uj = vj would
each be minimal, corresponding to two possible ways of replacing the structural
equations: replacing the structural equation for Vi with Vi = vi and replac-
ing the structural equation for Vj with Vj = vj . Note that this differs from
Santorio’s (2014) extension of Pearl’s framework to disjunctions, since he also
considers the possibility of replacing both structural equations simultaneously.
In the framework here, the conjoined variable assignment (Ui, Uj) = (ui, uj)
is an extension of both individual assignments, so is not an element of Iu(A).
Considering this conjunctive variable assignment for disjunctions would violate
CS5′, and Ciardelli et al. (2018) provide experimental evidence that people do
not consider the combined intervention when evaluating counterfactuals with
disjunctive antecedents.13

While Pearl claims that his logic satisfies the axioms of Lewis’s logic VC
for antecedents limited to conjunctions of variable assignments, this claim has
been controversial. Halpern (2013), for example, argues that Pearl’s proof is
incorrect because it ignores logical consequences of incorporating disjunctions
into Lewis’s system, though he offers a new proof resolving this issue. Once we
incorporate disjunctions into Pearl’s framework using exogenous interventions,
we can see that Pearl’s logic satisfies the axioms of Pollock’s SS rather than
Lewis’s VC. Consider the following graph, for example:

X Z

Y W

with structural equations Y = X and W = Z. Let T = (Y ∨W ) ∧ ¬(Y ∧W ).
Recall that CS5 corresponds to the logical principle (A > C) ∧ ¬(A > ¬B) ⇒
(A ∧B) > C. In this case, if we assume all variables have value 0 in the actual
world, we can see that on Pearl’s semantics, (X ∨ Z) > T is true, ¬((X ∨
Z) > ¬Y ) is true, but ((X ∨ Z) ∧ Y ) > T is false. The final counterfactual
is false because the intervention (UZ , UY ) = (1, 1) ensuring Z ∧ Y is a ≤P -
minimal intervention (both Z and Y are in the antecedent) which makes T

so the ≤P -minimal element of Iu(A) is the empty intervention. This may leave exogenous
variables at Vi unactivated, but activating them wouldn’t change any other variables in the
model. The predictions in this case, therefore, also coincide with those of Pearl.

13Ciardelli et al. (2018) offer an interesting semantics for counterfactuals which considers
conjunctions of possible interventions in the set of relevant interventions, eliminating them for
disjunctive antecedents by a ‘lifting’ of the counterfactual semantics into inquisitive semantics.
It is unclear whether this approach can be evaluated in terms of the conditions on selection
functions in §3.
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false. Therefore, this extension of Pearl’s semantics to disjunctions violates
CS5, satisfying the axioms of SS rather than VC.14

5 Model Selection and Limitations of Causal Mod-
eling

One issue that arises for causal modeling of counterfactuals is the selection of
the correct causal model for analysis. As the differences in predictions of Hid-
dleston’s and Pearl’s models indicate, a decision as small as whether to include
an exogenous variable can have large effects on predictions for the truth condi-
tions of counterfactuals. This issue arose in the original firing squad case, where
whether we include an exogenous variable governing Shooter X’s ability to shoot
without a signal from the captain determines the truth values of counterfactuals
like ‘If X shoots, then the captain gave the signal.’ Certainly, it is possible in
some sense for X to shoot without command, but is this possibility relevant or
negligible?

While the issue of model selection can leave the truth values of counterfac-
tuals underdetermined, this is not always problematic. There are many cases,
such as the case of monetary policy intervention considered in §4.2, where agents
disagree about the causal structure and the variables which are and are not sub-
ject to exogenous shocks. The causal modeling framework therefore provides a
clear explanation of how people can disagree about the truth value of a coun-
terfactual: disagreement about the underlying causal structure. Disagreement
about the correct causal model can also explain a major type of disagreement
identified in the literature on counterfactuals: backtracking readings of forward
counterfactuals.

Consider the situation from Jackson (1977), also discussed in Khoo (2017):
your friend Smith is on top of a building about to jump, but steps off. You say,
‘If Smith had jumped, he would have died,’ which appears true. Your friend
Beth, however, hears you say this and disagrees, arguing that Smith has no
desire to die, so if he had jumped, there would have been a net or something
else intervening to prevent his death, so she claims, ‘If Smith had jumped, he
would not have died.’ The first prediction about the counterfactual is a forward
reading, while Beth’s interpretation is a backtracking reading.

The original speaker probably had a simple causal model in mind: jumping
off a building leads one to die, so there is one exogenous variable UJ , J = UJ ,
and death is determined by J , D = J . However, Beth proposes a different causal
model: there is the possibility that some condition, like a net, will prevent jump-
ing from causing death, and this is likely the case in the actual world due to
Smith’s psychology. Now, we have two exogenous variables, UJ and U ′

D, where

14It is possible that an alternative formalization of Pearl’s theory within the exogenous
intervention model could satisfy the axioms of VC. For example, this counterexample is no
longer an issue if one imposes the constraint that the intervention must change as few variables
as possible, leaving UX = 1 as the unique minimal intervention. However, further work is
required to prove that such a formalization is possible.
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J = UJ and D = J ∧ ¬U ′
D. Beth claims that U ′

D = 1, so the counterfactual
J = 1 > D = 1 is false on her model of the world, even though it was true on
the original model. The other examples of backtracking counterfactuals in the
literature can be handled similarly by describing different causal models for the
forward and backtracking readings of the counterfactuals. This interpretation
of backtracking counterfactuals as arising from disagreement about the causal
model differs from the ‘historical modality’ account of backtracking found in
Khoo (2017) and counters Lee’s (2015) thesis that the ambiguity of counterfac-
tuals exhibited in forward and backtracking readings requires separate causal
models for intervention and extrapolation.15

Another issue which arises for model selection is that some models will render
an antecedent impossible, so there is no way to evaluate the truth value of
the counterfactual. Consider again the firing squad case where we now seek
to evaluate the counterfactual ‘If someone replaced all the real bullets with
rubber bullets, then the prisoner would have died.’ None of the causal models
considered for the firing squad provide a way to evaluate this counterfactual,
since the antecedent does not correspond to variables considered in the model.
Intervening to set the antecedent true would require breaking the causal law
D = X ∨ Y , which is impossible. Thus, all the causal models we considered
treat the counterfactual as either not evaluable or vacuously true, despite the
fact that it is intuitively false. If we had a model where this possibility was
accounted for, perhaps by adding an error term U ′

D which is activated when
something (like rubber bullets) prevents X or Y shooting from causing the
death of the prisoner, D = (X ∨Y )∧¬U ′

D, then we would have had no problem
evaluating this counterfactual.

However, not all counterfactuals can be evaluated by choosing an appro-
priate causal model. Some counterfactual antecedents would never be true in
any reasonable causal model, such as ‘If turning off the sprinklers caused it to
rain,...’ or ‘If Shooter X was subversive and did the opposite of what the cap-
tain ordered,...’ These, as well as the case above with the rubber bullets, are
often called counterlegal counterfactuals since they require breaking the laws
of the causal model. While some counterlegal counterfactuals can be handled
simply by adding new variables, others, such as those requiring us to change a
structural equation directly, cannot be evaluated simply in a causal model.16

This problem of counterlegal counterfactuals also makes it difficult to evalu-
ate counterfactual antecedents in causal models. Since we defined a set of pos-
sible worlds corresponding to counterfactuals, [A > C], and the evaluation of a
counterfactual only relied on the antecedent and the consequent being propo-
sitions, or sets of possible worlds, we might expect to obtain good results for

15Lee (2017, p. 90) offers another example, Nuclear , motivating the need for a dual theory of
intervention and extrapolation in causal models. In this example, no variable changes make a
given antecedent A true, but Pearl-style intervention can make the antecedent true. However,
the modification of Pearl’s theory in §4.2 where we associate interventions with exogenous
variables resolves this division between intervention and extrapolation.

16Fisher (2017b) provides one possible solution to this problem, proposing a way to go from
a given causal model M where the antecedent is impossible to a set of closest (‘minimally
illegal’) causal models where the antecedent is possible.
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counterfactual antecedents. However, this is not the case. Suppose one has a test
(T ) for a disease (D) which gives a positive result if the disease is present with
a chance of false positives (UT ), so T = D∨UT . Consider the counterfactual ‘If
you were to have the disease when the test is positive, then you would have the
disease,’ represented (T > D) > D, in a world where you don’t have the disease
and the test is negative. Formally, T > D is true when any intervention which
fixes T fixes D, which is only true if D is true since UT = 1 is always a possible
intervention. Thus, setting D true is the only relevant intervention which fixes
T > D, which ensures that D is true, so the counterfactual (T > D) > D is
formally true. However, intuitively, we expect the counterfactual to be false,
since the fact that a test accurately indicates disease does not entail that some-
one has that disease. This is because the antecedent is not asking us to change
variables within the model, but rather to change the causal model. The an-
tecedent T > D is true if we remove the error variable UT from the model, or if
the test has no false positives. However, the given causal model does not offer
a way to incorporate such a counterlegal antecedent, making evaluation of this
counterfactual difficult in the causal model.

This section shows that, in a causal modeling approach, the truth condi-
tions of counterfactuals are closely tied to the causal model selected for analysis.
Small changes to a causal model, such as adding or taking away error terms, can
change the predictions for a large number of counterfactual sentences. This sen-
sitivity has some benefits, allowing us to explain disagreements in counterfactual
judgments and the possibility of forward and backtracking readings for the same
counterfactuals. However, it also comes with some costs, making it challenging
to offer predictions for counterfactuals with antecedents that require changing
the causal model, such as counterlegal counterfactuals and counterfactuals with
counterfactual antecedents.

6 Conclusion

In this paper, I introduced a causal model for the semantics counterfactuals, the
exogenous intervention model, which incorporates logically complex antecedents
and satisfies the axioms of a familiar counterfactual logic, Pollock’s SS. This
model predicts that a counterfactual A > C true in a causal world u if C is true
in all worlds formed by intervening to set A true. This differs from other causal
models which consider only restricted antecedents and which have less famil-
iar logical properties. The exogenous intervention model also generalizes the
causal models of both Pearl and Hiddleston, incorporating an analysis of both
forward and backtracking counterfactuals. The relativization of truth condi-
tions for counterfactuals to causal models can also explain disagreement about
counterfactuals and how we get forward and backtracking interpretations of
the same counterfactuals. However, the model remains limited for antecedents
which require amending the causal model, such as counterlegal counterfactuals
and counterfactuals with counterfactual antecedents.
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