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Abstract

Causal models provide a framework for making counterfactual predic-
tions, making them useful for evaluating the truth conditions of coun-
terfactual sentences. However, current causal models for counterfactual
semantics face limitations compared to the alternative similarity-based
approach: they only apply to a limited subset of counterfactuals and the
connection to counterfactual logic is not straightforward. This paper ar-
gues that these limitations arise from the theory of interventions where in-
tervening on variables requires changing structural equations rather than
the values of variables. Using an alternative theory of exogenous interven-
tions, this paper extends the causal approach to counterfactuals to han-
dle more complex counterfactuals, including backtracking counterfactuals
and those with logically complex antecedents. The theory also validates
familiar principles of counterfactual logic and offers an explanation for
counterfactual disagreement and backtracking readings of forward coun-
terfactuals.
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Recently, causal models have received increased attention for the seman-
tics of counterfactual sentences like ‘If A were the case, then C would be the
case’, written A > C.1 Causal accounts of counterfactuals rely on the concept
of intervention: a counterfactual is true if C is true when one intervenes to
set A true. This approach to counterfactual semantics connects counterfactual
language with other aspects of human reasoning studied with causal models
(Glymour, 2001; Sloman, 2005; Gopnik and Schulz, 2007) and with empirical
work on counterfactual inference.2

Despite the potential of causal approaches, many philosophers prefer similarity-
based models of counterfactuals. Following Lewis (2013) and Stalnaker (1968),
similarity-based models propose that a counterfactual A > C is true if C is true
in the most similar world(s) where A is true. The main advantages of similarity-
based models are that they apply to a broader range of counterfactual sentences

∗Comments are welcome at jonathanvandenburgh2021@u.northwestern.edu.
1See the classic works of Galles and Pearl (1998) and Pearl (2009), as well as more recent

work: Briggs (2012); Kaufmann (2013); Santorio (2014); Ciardelli et al. (2018).
2Economists, for example, use elements of causal modeling to make counterfactual predic-

tions for what would have happened if certain countries did not join the EU (Campos et al.,
2019) or if video game companies had not developed games exclusively compatible with one
platform (Lee, 2013).
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and correspond nicely to counterfactual logics. Many causal models of counter-
factuals, including that of Pearl (2009), cannot explain backtracking counterfac-
tuals, such as those where the antecedent is the effect rather than the cause of
the consequent (‘If the grass were wet, then it must have rained’). Furthermore,
most causal theories of counterfactuals only apply only to counterfactuals with
antecedents which are conjunctions of variable assignments (Hiddleston, 2005;
Pearl, 2009; Halpern, 2013), and the most promising extension to logically com-
plex counterfactuals (Briggs, 2012) violates modus ponens, a standard principle
of counterfactual logic.

In this paper, I argue that we can overcome these limitations by invoking a
different theory of causal intervention. While Pearl, and the models following
his account, argue that interventions require changing the structural equations
of a causal model, I argue that we get better results for counterfactual truth
conditions if interventions instead change the values of exogenous variables. In
particular, I argue that a counterfactual semantics built on exogenous inter-
ventions can analyze backtracking counterfactuals, extend to logically complex
antecedents, and satisfy familiar axioms of counterfactual logic, including modus
ponens.

The paper is organized as follows. In §1, I introduce the foundations of causal
models and the notion of an intervention, highlighting how Pearl’s approach
fails to predict the expected truth values for backtracking counterfactuals and
motivating the notion of exogenous intervention. In §2, I define exogenous
interventions more formally, characterizing the set of interventions which force
a counterfactual antecedent A and motivating a minimality condition. I then
use this to define a selection function for counterfactual semantics, and in §3, I
show that this selection function satisfies the logical axioms for a familiar logic
of counterfactuals, Pollock’s (1981) counterfactual logic SS. In §4, I compare
this account with that of Hiddleston (2005), who also offers a causal framework
which can analyze backtracking counterfactuals. I note that, while his model
can only handle a more limited set of counterfactuals, it motivates a stronger
notion of minimality than defined in §2, showing how one can define competing
counterfactual semantics within the exogenous intervention approach. In §5,
I discuss the difference between exogenous interventions and Pearl’s model in
greater depth, showing how one can replicate many of Pearl’s predictions using
exogenous interventions without the logical limitations of his approach. In §6,
I discuss two further aspects of counterfactual reasoning which the exogenous
intervention account can explain: counterfactual disagreement and backtracking
readings of forward counterfactuals.

1 Causal Models and Interventions

Consider a familiar example from the causal modeling literature, discussed in
Pearl (2009): the firing squad. Here, a court is deciding whether to order the
execution of a prisoner. If the court orders execution, then the captain sends a
signal to two shooters, Shooter X and Shooter Y , who bring about the death
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of the prisoner. We can formalize this scenario as a causal model: we have
five binary variables which take values 0 if the event does not occur and 1 if
the event does occur and four structural equations describing the dependencies
involved. We can write the components of the causal model as:

Variables : the court orders execution (C), the captain sends a signal (S),
Shooter X shoots (X), Shooter Y shoots (Y ), prisoner dies (D)

Structural Equations : S = C; X = S; Y = S; D = X ∨ Y .

We can also illustrate the causal dependencies in a graph:

C

S

X Y

D .

The structural equations representing dependency relations allow us to use
causal models to evaluate counterfactual sentences. We evaluate a counterfac-
tual A > C in a causal model by intervening in the model to set A true and
seeing if this guarantees that C is true. Consider the counterfactual ‘If X were
to shoot, then the prisoner would die.’ If we make an intervention on the causal
model to set X = 1, then since D = X ∨ Y , D = 1, so the prisoner must die;
this renders the counterfactual true in this model.

To give a formal account of interventions and counterfactual truth condi-
tions, we must define causal models more formally.3 A causal model M =
(U, V, fi) consists of a finite set of exogenous variables U , a finite set of endoge-
nous variables V = (V1, ..., Vn), and a set of structural equations F = (f1, ..., fn),
where for each i, vi = fi(pai, ui), where pai is an assignment to the parents PAi

of Vi and ui is the assignment to Ui ⊆ U , the unique minimal set of exogenous
variables needed for fi. Thus, each fi tells us the value of the endogenous vari-
able Vi given the values of Vi’s parents PAi and the exogenous variables Ui.
The assignment of parents PAi for Vi determines a graph G on V , which we
assume is a directed acyclic graph (DAG). Since all endogenous variables have
structural equations which depend on the variable’s parents and exogenous vari-
ables, once we make an exogenous variable assignment u, we fix the values of
all endogenous variables. If we let U represent the set of possible values of the
exogenous variables and V the set of values of endogenous variables, the set of
structural equations F forms a function from exogenous variable assignments
to endogenous variable assignments, F : U → V. Therefore, the values of the

3For more details on the formal background to causal modeling, see Pearl (2009).
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endogenous variables in a causal model are completely determined by the struc-
tural equations and the values of the exogenous variables. In the firing squad
example, the only exogenous variable is the court ordering the execution (C);
once the value of this variable has been settled, the values of all other vari-
ables are settled as well.4 While the values of exogenous variables determine
all other variables in a causal model, the significance of the distinction between
exogenous and endogenous variables has often been ignored in causal models
for counterfactuals.5

Causal approaches to the truth conditions of a counterfactual A > C often
proceed by considering interventions in the causal model which set A true. The
dominant approach to counterfactual interventions follows Pearl, who argues
that interventions replace the structural equations for endogenous variables.
Consider again the counterfactual ‘If X were to shoot, then the prisoner would
die.’ On Pearl’s approach, intervening to fix the antecedent replaces the struc-
tural equation X = C with the structural equation X = 1. This intervention
breaks the causal laws of the model, rendering the antecedent fixed regardless
of the values of the parent variables. This is meant to capture the intuitive
difference between intervention and observation: intervention involves hypo-
thetically changing the laws of the model, while observation involves observing
a realization consistent with the laws (Hagmayer et al., 2007; Fisher, 2017a).

This notion of an intervention becomes problematic, however, when one
considers backtracking counterfactuals, such as counterfactuals where the con-
sequent causes the antecedent. Consider the counterfactual ‘If X were to shoot,
then the captain signaled for it.’ Intuitively, this counterfactual is true since, if
the causal model is correct, X only shoots if the captain signaled to, so X = 1
only if S = 1. However, this kind of reasoning is excluded by Pearl’s approach
to interventions: when we intervene directly on X to replace X = S by X = 1,
this does not change anything upstream from X, so the intervention does not
guarantee that S = 1. This is a problem for Pearl’s approach to interventions,
as there are many cases where backtracking appears correct in counterfactual
reasoning. This is illustrated by other examples of backtracking counterfactuals,
such as ‘If the grass were wet, then it must have rained’ or ‘If the light were
on, the switch would be up.’ There is also experimental evidence supporting
backtracking in counterfactual reasoning (Rips, 2010; Gerstenberg et al., 2013).

In backtracking reasoning, we keep the laws, or structural equations, of the
causal model the same, instead considering changes to the variables in the model
which make the antecedent true. This motivates an alternative conception of
intervention: an intervention is a change to the values of exogenous variables
in a causal model.6 Consider how this works in the above case: C is the only

4Technically, C is an endogenous variable with no parents. However, we often think of
these variables as being determined exogenously, so there is an exogenous variable UC such
that C = UC .

5While Pearl uses exogenous variables in his original framework, these are left out in the
more recent models of Hiddleston (2005), Kaufmann (2013), Santorio (2014), and Ciardelli
et al. (2018).

6This approach to interventions is also introduced in LeRoy (2019), though not for the

4



exogenous variable, so the only way we can change any variables in the model
while keeping the laws the same is by changing C. If we consider the exogenous
interventions which set X = 1, our model tells us that X’s decision to shoot is
based solely on the signal S, and S, in turn, is based solely on C, so the only
way to intervene within the model to set X = 1 is to set C = 1. This allows
us to recover the desired truth conditions for the backtracking counterfactual
‘If X were to shoot, then the captain signaled for it’: intervening to set X = 1
involves setting C = 1, which sets S = 1, so the counterfactual is always true.

Note that, on this approach, the inclusion of exogenous variables is significant
for counterfactual truth conditions: adding an extra exogenous variable, for
example, can change the truth conditions of the backtracking counterfactuals.
Suppose we think it is more accurate to attribute to X the possibility of shooting
without receiving the signal. In this case, we should add an exogenous variable
UX to the causal model such that X = S ∨ UX to account for this possibility,
even if we consider the activation of UX extremely unlikely. Exogenous variables
like UX are sometimes referred to as error terms because they introduce the
possibility of outcomes deviating from the expected course of events. In this
new causal representation of the situation, setting X = 1 can arise from setting
either UX = 1 or S = 1; the first intervention UX = 1 does not guarantee that
the captain gave the signal (S = 1) or that the court ordered the execution
(C = 1). This shows how changing the exogenous variables included in a model
can change judgments about counterfactuals: when UX is not included, X =
1 > S = 1 is true, but when UX is added to the model, X = 1 > S = 1 need
not be true.

This discussion motivates the approach to counterfactuals I will define in the
next section: A > C is true if any intervention (or way of setting the exogenous
variables in the model) which fixes A leads to C.

2 Exogenous Intervention Model

To draw the connection as closely as possible between causal models and the
similarity-based theories of counterfactuals, I frame the discussion of causal
models in terms of causal worlds. Pearl (2009) defines the notion of a causal
world, but makes little use of the notion in his analysis, and the notion is largely
left out of later causal models for counterfactuals. A causal world (M, u) is a
causal model M paired with an assignment to all exogenous variables, u ∈ U .
Since all endogenous variables are determined by an assignment u ∈ U , ele-
ments of U play the role of truthmakers for propositions of variable assignments,
and we can associate propositions built from variable assignments with sets of
worlds. Assuming the causal model is fixed across worlds, we can simply treat
the exogenous variable assignment u as the causal world.7

truth conditions of counterfactuals.
7Fixing the causal model poses problems for ‘counternomic’ or ‘counterlegal’ counterfac-

tuals, where the counterfactual requires breaking the laws of the causal model. See Fisher
(2017b).
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If Vi = vi is an endogenous variable assignment, this determines a set of pos-
sible worlds by [Vi = vi] = {u ∈ U : F (u)i = vi} ⊆ U , so u ∈ [Vi = vi] iff Vi = vi
is true when we plug u into the structural equations in M. Since all variable
assignments yield sets of possible worlds, any logical combination of variable
assignments also determines a set of possible worlds as usual, where negation,
conjunction and disjunction correspond to set-theoretic complementation, inter-
section, and union, respectively. As usual in possible world semantics, we refer
to subsets of U as propositions. The truth conditions defined for counterfac-
tuals will apply to all propositions, or sets of exogenous variable assignments;
this definition is what allows us to extend the analysis of counterfactuals to
antecedents of arbitrary logical complexity.

To see how this notion of causal worlds works, consider a modified version of
the firing squad example where both X and Y are able to shoot without receiving
the signal. Here, the causal graph is as above, but there are three exogenous
variables, UC , UX , and UY , with structural equations C = UC , S = C, X =
S ∨ UX , Y = S ∨ UY , and D = X ∨ Y . In this case, there are eight possible
worlds corresponding to the eight possible assignments to the three exogenous
variables. To see how complex propositions reduce to sets of worlds, consider
the proposition ‘The prisoner dies and either shooter X or shooter Y does not
shoot.’ We can see that there are only two worlds where this propositions is
true: (UC , UX , UY ) = (0, 1, 0) and (UC , UX , UY ) = (0, 0, 1).

To define the truth conditions associated with a counterfactual A > C, where
A and C are propositions, we need to associate a world u and the antecedent
A with a set of possible worlds over which we evaluate the consequent C; in
similarity-based approaches, this is the set of closest A-worlds to u, determined
by a selection function f(A, u). The intuition behind causal counterfactual
models is that the relevant set of A-worlds close to u is the set of worlds where
we intervene in the causal model to make A true. This can be done by changing
the structural equations, as in Pearl, or by changing the values of variables,
as here and in Hiddleston. Here, I propose a characterization of the set of
worlds formed by making an A-intervention on u based on an independence
assumption. However, as with similarity models of counterfactual semantics,
one could argue for further restrictions on the selection function; I discuss one
possible such restriction motivated by Hiddleston’s theory in §4.

For i to be an intervention forcing A in u, i must involve a change to ex-
ogenous variables which makes A true. However, not all such variable changes
are relevant for counterfactual intervention. Interventions which change vari-
ables independent of A, for example, require intervening on the world to change
more than what is necessary to realize A. Consider a counterfactual like ‘If
John’s shirt were green, he would be the same height,’ which we judge true.
Here, we expect the relevant interventions to change the color of John’s shirt,
but not to have any effect on his height: we should not include the interven-
tion where John’s shirt becomes green and he becomes taller in the selection
function. This motivates the formal characterization of interventions introduced
below: A-interventions are the partial variable assignments which are minimally
necessary to produce A in u.

6



Suppose there are m exogenous variables, so U = (U1, ..., Um), and let S ⊆
{1, ...,m} be a set of indices with complement S′. For any u ∈ U , let u|S
represent the projection of u onto the indices in S and US the set of all possible
variable assignments to exogenous variables indexed by S. A partial variable
assignment rS is a variable assignment to the set of variables indexed by the
set of indices S, or an element rS ∈ US . For a variable assignment u|S to the
variables indexed by S and u|S′ to the variables indexed by S′, let u|S

⊕
S u|S′

represent the unique complete variable assignment in U which restricts to u|S
on S and u|S′ on S′.

We can now use a partial variable assignment rS to intervene in a world u.
For rS ∈ US and u ∈ U , we define the world where we intervene on u by rS as
u|rS = rS

⊕
S u|S′ . This is the world where we change the values of u on S to

the values rS , but leave all other variables unchanged. We then define the set
of restricted variable assignments which force A in a world u:

Ru(A) = {rS : rS ∈ US & u|rS ∈ [A]}.

This is the set of partial variable assignments such that imposing these variable
assignments on the world u gives a world u|rS where A is true. As long as a
proposition A is possible, or has some world w ∈ [A] making it true, Ru(A) 6= ∅
since w ∈ Ru(A) with S = {1, ...,m}; every element w ∈ [A] is in Ru(A) for
any u. However, as motivated above, we do not want all elements of [A] to be
interventions on A, so we must restrict the set Ru(A).

We want to restrict Ru(A) to just include the variable changes which are
necessary to bring about A. This means that, if iS is a minimal intervention
fixing A, one should not be able to fix A while making a smaller subset of the
changes that iS makes. Otherwise, some of the variable changes required by iS
would be independent of A in the sense that making the additional changes has
no effect on the value of A. As argued above, we wish to only include those
changes which are directly relevant to realizing A. This motivates defining an
order ≤ on Ru(A). Suppose rS1

, r′S2
∈ Ru(A) assign variables S1 and S2. We

say rS1
≤ r′S2

iff r′S2
is an extension of rS1

, so S1 ⊆ S2 and r′S2
|S1

= rS1
. We

can now define the set of interventions which force A, Iu(A), as the ≤-minimal
elements of Ru(A):

Iu(A) = {iS ∈ Ru(A) : @rS′ ∈ Ru(A), rS′ 6= iS , rS′ ≤ iS}.

We then define the truth conditions for a counterfactual: a counterfactual A > C
is true in a world u if C is true when we make all interventions from Iu(A) on
u. Thus, the set of worlds where a counterfactual A > C is true is as follows:

[A > C] = {u ∈ U : ∀iS ∈ Iu(A), u|iS ∈ [C]}.

Note that this definition applies to all propositions A and C built out of vari-
able assignments. Furthermore, since this definition now associates a set of
variable assignments with a counterfactual sentence, we can ascribe truth val-
ues to right-nested counterfactuals, where A is a non-counterfactual proposition
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and C contains counterfactual terms without counterfactual antecedents.8

To see how these truth conditions work for both forward and backtracking
counterfactuals, recall the modified firing squad example from above with ex-
ogenous variables UC , UX , and UY and structural equations C = UC , S = C,
X = S ∨ UX , Y = S ∨ UY , and D = X ∨ Y . Suppose that, in the actual world,
the court does not order execution and neither X nor Y choose to shoot, so
(UC , UX , UY ) = (0, 0, 0). Consider the counterfactual ‘If X were to shoot, the
prisoner would die.’ Here, the relevant interventions are UX = 1 and UC = 1;
in both cases, X = 1, so D = 1, so the counterfactual is true. Now consider the
backtracking counterfactual ‘If X or Y were to shoot, the captain must have
signaled.’ The relevant interventions are UX = 1, UY = 1, and UC = 1, and
under the interventions UX = 1 and UY = 1, S = 0, so the counterfactual is
false. This makes sense given the model: since it is possible that X or Y decides
to shoot without receiving the signal, X or Y shooting does not entail that the
captain signaled. Note, however, that if one did not include the possibility of
X and Y deviating from the signal through the exogenous variables UX and
UY , this backtracking counterfactual would be true, as in the model from the
previous section.

3 Logic of Exogenous Intervention Models

Similarity-based models for counterfactuals rely on selection functions f(A, u) :
P(U)×U → P(U), which assign a world u and antecedent A to a set of closest
relevant A-worlds to u. The exogenous intervention model defines a selection
function by f(A, u) = {u|iS : iS ∈ Iu(A)}. The logic for similarity-based models
of counterfactuals built from selection functions is well-understood; restrictions
on the selection function f correspond to axioms for the conditional >.9 The
best-known logic for counterfactuals is Lewis’s VC, which corresponds to six
axioms on selection functions:

CS1: if w ∈ f(A, u), then w ∈ [A]
CS2: if u ∈ [A], then f(A, u) = {u}
CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅
CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)
CS5: if f(A, u) ∩ [B] 6= ∅, then f(A ∧B, u) ⊆ f(A, u)
CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]

However, many authors have recommended weaker logics than VC. Pollock
(1981), for example, recommends a logic SS, where we replace CS5 by CS5′:

8An example of a right-nested counterfactual will be discussed in §5. Note that left-nested
counterfactuals are often excluded from counterfactual analysis, c.f. Briggs (2012); this issue
is also discussed in Vandenburgh (2020).

9See the classic text of Lewis (2013) or the recent surveys of Nute and Cross (2001) and
Arlo-Costa (2019).
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CS5′: f(A ∨B, u) ⊆ f(A, u) ∪ f(B, u).

The selection function for exogenous intervention models defined above sat-
isfies the axioms for Pollock’s logic SS. We verify the satisfaction of these six
axioms below:

CS1: if w ∈ f(A, u), then w ∈ [A]

Proof. Suppose w ∈ f(A, u), so w = u|iS for some iS ∈ Iu(A). Since iS ∈
Ru(A), u|iS ∈ [A] by the definition of Ru(A), so w ∈ [A].

CS2: if u ∈ [A], then f(A, u) = {u}

Proof. If u ∈ [A], then the empty intervention i0, which changes no exogenous
variables, is in Ru(A) since u|i0 = u ∈ Ru(A). Since i0 ≤ rS for every other
possible intervention rS ∈ Ru(A), i0 is the unique minimal element in Ru(A)
and the only element in Iu(A). Since f(A, u) = {u|iS : iS ∈ Iu(A)}, f(A, u) =
{u|i0} = {u}.

CS3: if f(A, u) = ∅, then f(B, u) ∩ [A] = ∅

Proof. If f(A, u) = ∅, then Iu(A) = ∅, so Ru(A) = ∅. Since [A] ⊆ Ru(A),
[A] = ∅, so f(B, u) ∩ [A] = ∅.

CS4: if f(A, u) ⊆ [B] and f(B, u) ⊆ [A], then f(A, u) = f(B, u)

Proof. Suppose f(A, u) ⊆ [B] and f(B, u) ⊆ [A]. To show that f(A, u) ⊆
f(B, u), we must show that, for all iS ∈ Iu(A), there is some jS∗ ∈ Iu(B) such
that u|iS = u|jS∗ . Suppose iS ∈ Iu(A). Since f(A, u) ⊆ [B], u|iS ∈ [B], so
iS ∈ Ru(B). Then there is a jS∗ ∈ Iu(B) such that iS extends jS∗ . But since
jS∗ ∈ Iu(B) and f(B, u) ⊆ [A], u|jS∗ ∈ [A], so jS∗ ∈ Ru(A). This means there
is an i′S′ ∈ Iu(A) such that jS∗ extends i′S′ . But since iS and i′S′ are both ≤-
minimal elements and i′S′ ≤ jS∗ ≤ iS , iS = i′S′ = jS∗ , so u|iS = u|jS∗ . Since we
have shown ∀iS ∈ Iu(A),∃jS∗ ∈ Iu(B) such that u|iS = u|jS∗ , we have shown
that f(A, u) ⊆ f(B, u). The proof that f(B, u) ⊆ f(A, u) is parallel, showing
that f(A, u) = f(B, u).

CS5′: f(A ∨B, u) ⊆ f(A, u) ∪ f(B, u)

Proof. Suppose u|iS ∈ f(A∨B, u), where iS ∈ Iu(A∨B). Since u|iS ∈ [A∨B]
by CS1, u|iS ∈ [A] or u|iS ∈ [B]. Suppose u|iS ∈ [A]. Then iS ∈ Ru(A),
so there is some jS∗ ∈ Iu(A) such that iS extends jS∗ . Since jS∗ ∈ Iu(A),
u|jS∗ ∈ [A] ⊆ [A ∨ B], so jS∗ ∈ Ru(A ∨ B). This means there is some i′S′ ∈
Iu(A ∨ B) such that jS∗ extends i′S′ . But since i′S′ ≤ jS∗ ≤ iS and iS and i′S′
are both ≤-minimal, iS = i′S′ = jS∗ , so ∃jS∗ ∈ Iu(A) such that u|iS = u|jS∗ ,
so u|iS ∈ f(A, u) ∪ f(B, u). If u|iS ∈ [B], a parallel proof shows that u|iS ∈
f(B, u) ⊆ f(A, u) ∪ f(B, u). Therefore, f(A ∨B, u) ⊆ f(A, u) ∪ f(B, u).

CS6: u ∈ [A > C] iff f(A, u) ⊆ [C]
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Proof. Follows immediately from the definition of [A > C] in §2.

Note that the exogenous intervention model does not satisfy Lewis’s logic VC
as it admits counterexamples to CS5 and the corresponding logical principle:

(A > C) ∧ ¬(A > ¬B)⇒ (A ∧B) > C.

The counterexample to this is the same as found in Pollock and translated to
causal models in Hiddleston. Suppose three switches S1, S2, and S3 control two
lights L1 and L2 with structural equations L1 = S1 ∨S2 and L2 = S2 ∨S3. The
causal diagram for this model is as follows:

S1 S2 S3

L1 L2

Suppose all three switches are off (Si = 0) and, consequently, both lights are
off (Li = 0). The counterfactual ‘If L2 were on, S1 would be off’ is true since
both interventions which set L2 = 1, S2 = 1 and S3 = 1, leave S1 fixed at 0.
Additionally, it is not the case that ‘If L2 were on, L1 would be on’ since setting
S3 = 1 is an intervention which fixes L2 = 1 without setting L1 = 1. However,
it is not the case that ‘If L1 and L2 were on, S1 would be off’ since (S1, S3) =
(1, 1) is a minimal intervention setting the antecedent true. This provides a
counterexample to the logical principle corresponding to CS5, showing that the
exogenous intervention model does not validate Lewis’s semantics VC without
additional restrictions on the selection function.

This shows that the exogenous intervention approach to counterfactuals, in
addition to handling both forward and backtracking counterfactuals, has fa-
miliar logical properties. Counterfactual models built on Pearl’s approach to
interventions either do not extend to logically complex antecedents, such as dis-
junctive antecedents, (Galles and Pearl, 1998; Halpern, 2000) or require aban-
doning familiar logical principles such as modus ponens, a consequence of strong
centering, CS2 (Briggs, 2012). Note that the exogenous intervention approach
is consistent with further possible restrictions on the selection function: as dis-
cussed in the next section, Hiddleston offers a stronger conception of a ‘minimal
break’ which leads to slightly different predictions for the truth conditions of
counterfactuals. The classification of specific semantics built on the exogenous
intervention approach through completeness results is left for future work.

4 Comparison to Hiddleston’s Model

Hiddleston’s model of the truth conditions of counterfactuals is most similar
to the exogenous intervention model. Hiddleston evaluates a counterfactual
A > C at u by considering whether C is true in all models which are ‘min-
imal breaks’ from the model in u, where the ‘breaks’ considered for a model
change the values of variables rather than the structural equations. However,
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Hiddleston’s model differs both formally and substantively from the exogenous
intervention model. Formally, Hiddleston does not differentiate exogenous and
endogenous variables and permits indeterministic structural equations. Sub-
stantively, Hiddleston uses a stronger notion of minimality than that motivated
above. Furthermore, Hiddleston’s model does not apply to logically complex an-
tecedents and has not been proven to satisfy axioms of conditional logic. After
discussing the differences between the formal elements of the two theories, I will
introduce Hiddleston’s stronger notion of a minimal break and show how one
could incorporate such a stronger notion in the exogenous intervention model.
This motivates both the flexibility of the model and the benefits of future work
comparing the logical and semantic properties of minimality conditions on ex-
ogenous interventions.

Hiddleston’s theory follows the set-up of §1 with two fundamental differ-
ences: he considers all variables as endogenous and he allows for indeterministic
structural equations such as Pr(Y = y|X = x) = p. The inclusion of exogenous
variables is a minor difference: for a model with only endogenous variables, any
variable which has no parents in the graph G over V can be freely set with no
constraints from its structural equation, since structural equations only involve
the parents of a variable. This means that any such variable can be treated as
exogenous: for any variable Vi such that PVi = ∅, we can add an exogenous
variable Ui such that the structural equation for Vi is Vi = Ui.

Hiddleston’s use of indeterministic structural equations, on the other hand,
introduces a more significant difference from the framework here. However,
as I will argue, the notion of error variables will allow such examples to be
reformulated in the exogenous intervention model. To see how indeterministic
structural equations work, consider Hiddleston’s ceremonial cannon example.
Here, one lights a fuse (L), which has a 95% chance of setting off an explosion
(E), which causes a flash (F ) and a bang (B). The structural equations, in
Hiddleston’s theory, are Pr(E = 1|L = 1) = 0.95, Pr(E = 1|L = 0) = 0, F = E,
and B = E with causal graph:

L

E

F B.

We can handle such indeterminacies with exogenous error variables rather
than indeterministic structural equations. In this example, we would add an er-
ror variable U ′

E representing ‘unspecified inhibiting abnormalities’ and replace
Hiddleston’s structural equation for E with E = L ∧ ¬U ′

E , meaning that E is
activated when L is activated and L is not inhibited by U ′

E .10 The fact that
lighting the fuse leads to an explosion 95% of the time corresponds to the fact

10For Pearl’s discussion of error variables in Boolean models, see Pearl (2009, p. 29).
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that there is a 5% chance the error variable U ′
E is activated, or Pr(U ′

E) = .05.
Removing indeterminacies from Hiddleston’s structural equations is important
because Hiddleston uses indeterministic structural equations to justify interven-
ing on endogenous variables. For example, if we want to intervene to set E = 0,
Hiddleston argues that we can do this by changing the endogenous variable E
directly without changing its parent L; on an exogenous intervention theory,
however, we can only change E by changing an exogenous variable, either L or
U ′
E .

Noting these two differences allows us to translate Hiddleston’s examples into
the framework of causal models used in §2 and therefore compare the predictions
of the two models for counterfactual sentences. For example, to translate the
case above, we keep the same endogenous variables and the same causal graph;
we just add two exogenous variables UL corresponding to the only vertex without
a parent and U ′

E corresponding to the error associated with the statistical law
and write the new structural equations L = UL, E = L∧¬U ′

E , F = E, and B =
E. Analyzing this case also indicates the benefit of replacing indeterministic
structural equations with exogenous error variables. Consider a world where the
cannon is not lit and where we want to evaluate the counterfactual ‘If the cannon
were lit, then an explosion would happen.’ Even though, most of the time, an
explosion would happen, Hiddleston predicts this counterfactual is false: there
is always a possible outcome where the cannon is lit but an explosion does not
occur. However, in the exogenous intervention model, this counterfactual is true
in 95% of worlds (where U ′

E = 0) and false in the other 5%. This, I argue, is
a more reasonable approach to the truth conditions of counterfactuals, as there
are many cases where counterfactuals are generally considered true, even with
a small probability of error.

However, Hiddleston does offer a restriction on the semantics for counter-
factuals which may be useful for us. While the exogenous intervention model in
§2 evaluates counterfactuals over all relevant minimal changes to the exogenous
variables, Hiddleston further restricts to those ‘causal breaks’ which are ‘as mi-
nor and as late as is lawfully possible’ (Hiddleston, 2005, p. 643). While the
condition of minimality is enforced in §2 to rule out unnecessary interventions,
we considered all interventions rather than those that are as late as possible in
the causal process. To enforce this additional requirement, we can demand that
the set of variables independent of the antecedent remains as intact as possi-
ble, so that we consider only those interventions which minimally change the
variables independent of the antecedent. Let V(u|i) be the endogenous variable
assignment produced by intervention i in world u, Z the set of variables which
are not descendants of any variables in A, and V(u|i) ∩ Z the largest subset of
variables from Z which have the same value in V(u|i) and in u. We can then
define an order on Iu(A), ≤H , by saying i ≤H i′ iff V(u|i′) ∩ Z ⊆ V(u|i) ∩ Z.

We can then define the counterfactual A > C as true at u iff C is true
under all ≤H -minimal interventions from Iu(A). This offers a restriction on
the semantics in §2 which yields different truth conditions for counterfactuals.
To see that the new truth conditions are different, consider the above example
where the ceremonial cannon was lit, exploded, and the flash and bang occurred
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in the actual world, (UL, U
′
E) = (1, 0). Consider the counterfactual ‘If the flash

hadn’t occurred, the cannon was still lit,’ ¬F > L. On the strict semantics
from §2, this counterfactual is false. There are two minimal interventions which
could turn off the flash, one where the cannon isn’t lit (UL = 0) and the other
where an error prevents the lit cannon from exploding (U ′

E = 1). Since the
cannon is lit in one of these but not the other, the counterfactual is false. On
Hiddleston’s theory and the restricted semantics here, however, the intervention
U ′
E = 1 leaves more independent variables intact (namely L), so it is the only

relevant intervention, meaning the counterfactual is true. Thus, if we modify
Hiddleston’s theory to fit into the exogenous intervention model, we can recover
a restricted counterfactual semantics with slightly different truth conditions
than found in §2. This suggests, more generally, that there is value in considering
possible restrictions to the framework introduced in §2, which can result in
slightly different semantic and logical predictions for counterfactuals.

5 Comparison to Endogenous Interventions: Pearl
and Briggs

Pearl argues that a counterfactual A > C is true if an intervention to produce
A entails C, where we intervene on A by replacing the structural equation for
A with A = 1 rather than changing the values of exogenous variables. Pearl’s
model is limited insofar as it cannot handle logically complex antecedents or
backtracking counterfactuals. However, Pearl draws on extensive evidence from
the theory of causal inference to justify these interventions on structural equa-
tions as the correct representation of counterfactual intervention. And he has
good reason for this conclusion: backtracking in counterfactual reasoning can
lead one to ignore confounders and mistake correlation for causation.

Consider the case of monetary policy, where a central banker considers lower-
ing interest rates to increase output and inflate prices. Typically, the monetary
policy decision is made based on economic fundamentals, making the decision
endogenous. Suppose a central banker ignores the economic fundamentals and
reasons: if I were to lower interest rates, then economic fundamentals would be
as they usually are when the central bank lowers interest rates, and output and
prices would therefore increase. This backtracking reasoning is clearly erroneous
and confuses the correlation of monetary policy decisions and economic effects
with a causal effect of monetary policy on the economy. Instead, Pearl argues,
we should evaluate the consequences of a monetary policy decision by taking the
fundamentals as given, intervening to set the interest rates to a certain level, and
seeing how (if at all) this affects the economy. Pearl’s approach to interventions
resolves the backtracking problem: the monetary policy decision can remain
endogenous and we can (correctly) consider an intervention as something which
does not change the background fundamentals.

This is a serious obstacle to implementing a theory of counterfactuals which
can handle backtracking counterfactuals: in many decision environments, back-
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tracking seems inappropriate. However, we can resolve this in the exogenous
intervention model by introducing additional exogenous variables. In the mone-
tary policy example, we can treat an intervention not as a break in the structural
equations, but rather as an exogenous variable which influences the interest rate
directly without influencing the fundamentals. We can justify adding this ex-
ogenous variable because, in order for there to be a real possibility of intervening
on an endogenous variable, there must be some way to change the variable re-
gardless of the value of its parents. This is precisely what an intervention is,
and also precisely what an exogenous variable represents. One way of thinking
of the additional exogenous variable is as an error term representing all possible
ways of influencing the endogenous variable not covered by the parent vari-
ables. Since causal models almost never list all possible influences, we expect
such an error variable to exist, even if we consider it negligible in most modeling
circumstances.

When considering monetary policy, for example, any input to the interest
rate decision which does not come from economic fundamentals can be consid-
ered part of the exogenous error term. While in most circumstances we consider
this exogenous input to the interest rate decision negligible, we can certainly
add it to our model. Economists, for example, have tried to isolate situations
in which this exogenous variable is activated by identifying cases when central
banks make decisions which deviate from what is expected based on the eco-
nomic fundamentals.11 Models which consider such exogenous interventions a
salient possibility, such as models where the economy can be subject to a ‘mon-
etary policy shock,’ even explicitly include an exogenous variable influencing
interest rate decisions.12 Therefore, while Pearl would consider an intervention
on interest rates a change to the structural equations, the exogenous inter-
vention model interprets the possibility of such an intervention as an exogenous
variable influencing interest rates. The fact that economists estimate this exoge-
nous effect on interest rates and incorporate an exogenous variable representing
it in their models serves as evidence for interpreting such an intervention as an
exogenous variable rather than a change to the structural equations.

Including sufficiently many exogenous variables in the model allows us to
replicate many of the predictions which arise from Pearl’s account of interven-
tions and counterfactual truth conditions. For any endogenous variable in a
causal model which does not include the possibility of an exogenous shock, one
could simply add an exogenous variable Ui = Vi ∪ {OFF}, where Vi is deter-
mined according to its original structural equation when Ui = OFF and Vi = Ui

otherwise. Activating the exogenous variable can be very unlikely, i.e., Pr(Ui =
OFF) ≈ 1; what matters is that the possibility is included in the model. Setting
the exogenous variable Ui = ui then corresponds to the intervention where one
replaces the structural equation for Vi by Vi = ui. This interpretation in terms
of exogenous interventions satisfies a common characterization of interventions
in causal models (Hagmayer et al., 2007; Fisher, 2017a), where intervening on

11One way of measuring this in the US is by noting when the Fed funds rate deviates from
futures on the Fed funds rate. See Kuttner (2001).

12See, for example, Christiano et al. (2005).
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Vi forces Vi to be independent of its parents: activating Ui so that Ui 6= OFF
leaves Vi independent of its parents.

One major point of difference, which I take to be an advantage for the ex-
ogenous intervention model, is that the exogenous intervention model leads to
a theory of counterfactuals which satisfies strong center (CS2), and therefore
modus ponens, while Pearl’s approach does not. When evaluating a counterfac-
tual where the antecedent A is actual, Pearl’s approach requires changing the
structural equations of the model, affecting some aspects of the actual world,
while the exogenous intervention model predicts that no intervention is required
to set the antecedent true. This is illustrated by the extension of Pearl’s ap-
proach to logically complex counterfactuals in Briggs (2012), who notes that
counterexamples to modus ponens arise in Pearl’s approach for right-nested
counterfactuals.

Consider the modified firing squad case where X and Y can shoot indepen-
dently, without signal S. While one could add additional exogenous variables to
imitate Pearl’s predictions in more cases, I will focus on counterfactuals where
the model with the three exogenous variables UC , UX , and UY is sufficiently
rich. Consider the nested counterfactual ‘If X were to shoot, then if the court
had not ordered it, the prisoner would die,’ represented X > (¬C > D).13 As-
sume the world is (UC , UX , UY ) = (1, 0, 0). Since UC = 1, X = 1, so X is true.
On Pearl’s semantics, we evaluate X > (¬C > D) by replacing the structural
equation X = S ∨ UX with X = 1 and then evaluating ¬C > D. We evaluate
this by replacing C = UC with C = 0, but since the new structural equation
tells us X = 1, we still have D = 1, so this counterfactual is true, meaning
X > (¬C > D) is true. However, ¬C > D itself is false: setting C = 0 without
antecedently setting X = 1 entails that D = 0, so the prisoner does not die.
This violates modus ponens: X and X > (¬C > D) are both true, but ¬C > D
is false.

Contrast this with the corresponding interpretation in the exogenous inter-
vention model. Here, X is still true, and since intervening to set ¬C corresponds
to setting UC = 0, which leads to D = 0, ¬C > D is also false. However, unlike
on Pearl’s approach, the counterfactual X > (¬C > D) is also false: since X is
true in the world, no intervention on exogenous variables is necessary to set X
true, so the consequent ¬C > D is simply evaluated in the actual world, where
it is false. This verdict arises because the exogenous intervention model satisfies
strong centering, where if the antecedent is true in the actual world u, u is the
unique relevant world for counterfactual evaluation. This discussion shows that
the exogenous intervention model can incorporate many of the insights of Pearl-
style interventions while providing more intuitive verdicts for logically complex
counterfactuals.

13Adapted from Briggs (2012, p. 150).
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6 Ambiguity in Counterfactual Semantics

Throughout, I have emphasized how using exogenous interventions to under-
stand the truth conditions of counterfactuals can explain both forward and
backtracking readings of counterfactuals. When a causal model includes a rich
set of exogenous variables, as in models which aim to replicate Pearl’s approach
to interventions, backtracking readings of counterfactuals are suppressed. On
the other hand, when structural equations include fewer possibilities for error,
counterfactuals leave causal relationships intact through backtracking readings.
We saw this in the case of monetary policy intervention, as well as in the origi-
nal firing squad case, where the truth value of the counterfactual ‘If X shoots,
then the captain gave the signal’ depends on whether we include an exogenous
variable governing Shooter X’s ability to shoot without a signal.

While one might think that the dependence of truth conditions on model
variables introduces too much context sensitivity, there is good reason to think
that such flexibility is necessary to accurately represent counterfactual reason-
ing. There are many cases, such as the case of monetary policy intervention,
where agents (in this case, economists) disagree explicitly about the causal
model and, specifically, which variables are and are not subject to exogenous
shocks. In these cases, where people, even experts, do not agree on the cor-
rect causal model, we expect disagreement on the truth values of counterfactual
sentences.14

An instance of this kind of disagreement which has received attention in
the philosophical literature is the possibility of both forward and backtracking
readings of the same counterfactual. Consider the situation from Jackson (1977),
also discussed in Khoo (2017): your friend Smith is on top of a building about to
jump, but steps off. You say, ‘If Smith had jumped, he would have died,’ which
appears true. Your friend Beth, however, hears you say this and disagrees,
arguing that Smith has no desire to die, so if he had jumped, there would
have been a net or something else intervening to prevent his death, so she
claims, ‘If Smith had jumped, he would not have died.’ The first prediction
about the counterfactual is a forward reading, while Beth’s interpretation is a
backtracking reading. The original speaker probably had a simple causal model
in mind: jumping off a building leads one to die, so there is one exogenous
variable UJ , J = UJ , and death is determined by J , D = J . However, Beth
proposes a different causal model: there is the possibility that some condition,
like a net, will prevent jumping from causing death, and this is likely the case
in the actual world due to Smith’s psychology. Now, we have two exogenous
variables, UJ and U ′

D, where J = UJ and D = J ∧ ¬U ′
D. Beth claims that

U ′
D = 1, so the counterfactual J = 1 > D = 1 is false in her model of the

world, even though it was true in the original model. The other examples
of backtracking counterfactuals in the literature can be handled similarly by
describing different causal models for the forward and backtracking readings of

14Note that I leave open what constraints, if any, govern the choice of an appropriate causal
model. For one approach to this problem, see Woodward (2016).
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the counterfactuals.15

Note that, among theories of counterfactual interventions, the exogenous in-
tervention model is uniquely suited to explain how forward and backtracking
readings can arise for the same counterfactual. Pearl’s approach to interven-
tions does not allow for backtracking readings, offering no way of explaining
backtracking readings of forward counterfactuals. While Hiddleston’s theory
may be able to incorporate both readings, the account would be less clear with-
out exogenous variables. In the above case, Hiddleston would need to either
include an endogenous variable specifying the condition which prevents Smith
from dying or replace the deterministic structural equation with an indetermin-
istic one, though without the ability to comment on which worlds validate the
forward counterfactual and which worlds validate the backtracking counterfac-
tual. The exogenous intervention model counters Lee’s (2015) claim that the
ambiguity of counterfactuals exhibited in forward and backtracking readings
requires separate causal models for intervention and extrapolation, offering an
explanation for how both readings can arise with one theory of intervention.16

7 Conclusion

In this paper, I argued for the use of exogenous interventions to capture the se-
mantics of counterfactual sentences. On this approach, a counterfactual A > C
is true in a causal world u if C is true in all worlds formed by intervening to set
A true, where an intervention is a change to exogenous variables rather than
structural equations. In contrast to competing models, this approach can han-
dle both forward and backtracking counterfactuals, applies to logically complex
antecedents, and satisfies the axioms of a familiar counterfactual logic, Pollock’s
SS. This approach can be extended by considering additional restrictions on
the selection function, as illustrated in the reformulation of Hiddleston’s theory
in §4, and can capture many of the intuitions of Pearl’s approach to counterfac-
tuals, provided the model includes sufficiently many exogenous variables. The
sensitivity of the framework to the choice of exogenous variables can also explain
disagreement about counterfactuals and how we get forward and backtracking
interpretations of the same counterfactuals, a fact other causal approaches to
counterfactuals fail to explain.

15This interpretation of backtracking counterfactuals as arising from disagreement about
the causal model differs from the ‘historical modality’ account of backtracking found in Khoo
(2017).

16Lee (2017, p. 90) offers another example, Nuclear , motivating the need for a dual theory of
intervention and extrapolation in causal models. In this example, no variable changes make a
given antecedent A true, but Pearl-style intervention can make the antecedent true. However,
the modification of Pearl’s theory in §5 where we associate interventions with exogenous
variables resolves this division between intervention and extrapolation.
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