
Learning as Hypothesis Testing: Learning Conditional and

Probabilistic Information∗

Jonathan Vandenburgh

November 10, 2020

Abstract

The history of science is often conceptualized through ‘paradigm shifts,’ where the
accumulation of evidence leads to abrupt changes in scientific theories. Experimental
evidence suggests that this kind of hypothesis revision occurs in more mundane circum-
stances, such as when children learn concepts and when adults engage in strategic behavior.
In this paper, I argue that the model of hypothesis testing can explain how people learn
certain complex, theory-laden propositions such as conditional sentences (‘If A, then B’)
and probabilistic constraints (‘The probability that A is p’). Theories are formalized as
probability distributions over a set of possible outcomes and theory change is triggered
by a constraint which is incompatible with the initial theory. This leads agents to con-
sult a higher order probability function, or a ‘prior over priors,’ to choose the most likely
alternative theory which satisfies the constraint. The hypothesis testing model is applied
to three examples: a simple probabilistic constraint involving coin bias, the sundowners
problem for conditional learning, and the Judy Benjamin problem for learning conditional
probability constraints. The model of hypothesis testing is contrasted with the more con-
servative learning theory of relative information minimization, which dominates current
approaches to learning conditional and probabilistic information.

In many cases, we learn about the world simply by adding new facts to our ‘stock of
beliefs.’ When we learn a new fact about history, or read the news to learn about what is
going on in contemporary politics, we simply add what we learn to the list of things we believed
beforehand. This kind of reasoning is captured well by the Bayesian model of learning, where
we start with a set of possibilities and learn information which restricts this set of possibilities,
updating how likely we think each possibility is accordingly.

It is well known that this Bayesian model of learning cannot capture all instances of
learning. One notable case is when we learn something surprising, or something that we
regard as highly improbable or even impossible. This can require a ‘paradigm shift,’ or a
radical change in expectations about how the world works, as was the case when a generation
of scientists had to adapt to the evidence supporting the heliocentric model (Kuhn, 2012).
In this kind of learning situation, we start with a theory of or hypothesis about the world
and learn some evidence which cannot be explained by this theory, requiring us to revise the
hypothesis. This leads to a much more drastic change of beliefs than predicted by Bayesian
learning: learning is disruptive rather than cumulative and continuous.

∗Comments are welcome at jonathanvandenburgh2021@u.northwestern.edu.
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While the scientific revolutions discussed by Kuhn are infrequent shifts in the thought of
an entire scientific community, researchers in different fields are finding the model applicable
to more commonplace cases of learning. A popular approach to the psychology of concepts
suggests that children learn concepts by proposing and testing theories of concept membership
(Carey and Spelke, 1994; Gopnik, 1996). For example, learning that dolphins are mammals
rather than fish does not proceed simply by adding dolphins to the list of things that are
mammals, but requires more substantial changes to the theory of what makes something a
mammal versus a fish. Furthermore, experiments on strategic behavior in economics suggest
that people develop theories about how their opponents are strategizing and, when the op-
ponent’s behavior differs significantly from the predictions of the theory, completely abandon
the hypothesis in favor of a new one (Salmon, 2004; Young, 2004).

In many cases, theory change or hypothesis revision occurs after the accumulation of lots
of evidence against the prior theory. This is the case when the learner acquires information
directly, for example by making scientific measurements or by observing a strategic opponent’s
choices. However, language allows people to communicate complex, theory-laden information
in simple expressions. For example, by asserting a conditional ‘If A, then B,’ someone can
communicate the structural relationship between A and B without the need for the learner
to make repeated observations.

This paper uses a model of hypothesis revision to explain how people learn complex,
theory-laden information. The main cases studied are cases where people learn conditional
information (‘If A, then B’) and probabilistic information (‘The probability that A is p’),
including conditional probability constraints (‘The probability of B given A is p’), though
the model is applicable beyond these cases. Throughout, the hypothesis testing model is
contrasted with a more conservative theory of learning which dominates current approaches
to these problems: the information minimization model. The information minimization model
assumes that agents try to incorporate new information while changing as little as possible
about their prior beliefs (Williams, 1980) and has been applied to probabilistic constraints
(Jeffrey, 1990), conditionals (Douven and Romeijn, 2011; Eva et al., 2020), and conditional
probability constraints (Van Fraassen, 1981).

I begin in §1 by discussing Bayesian learning, showing how it offers reasonable predictions
for incorporating information which restricts the set of possibilities. In §2, I highlight a class of
theory-level constraints which cannot be incorporated in Bayesian learning. In §3, I introduce
the hypothesis testing model for learning theory-level constraints incompatible with an initial
theory. I then use the hypothesis testing model to offer predictions for learning three kinds
of information: probabilistic information (§4), conditional information (§5), and conditional
probability constraints (§6). In each case, the predictions are contrasted with those of the
information minimization model.

1 Bayesian Learning

Suppose someone is rolling a die and expects the die to be fair, so that the possible outcomes
are the numbers {1, ..., 6}, each with probability 1

6 of occurring. Upon learning that the die
landed on an odd number, the natural way to update beliefs is to restrict the set of possible
outcomes to {1, 3, 5}, each with probability 1

3 . The new beliefs are formed by conditionalizing
on the proposition that the die is odd: the space of possibilities is restricted to the odd
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numbers and the new probability distribution is given by Pr({n}|odd) = Pr({n}∧odd)

Pr(odd)
. This

procedure of conditionalization defines Bayesian learning.
To discuss Bayesian learning more formally, we start by representing the agent’s belief

space as a set of possible outcomes Ω with a probability distribution π over Ω. When Ω is
finite, the probability distribution π is simply an assignment π(ω) ∈ [0, 1] to each element
ω of Ω such that

∑
ω∈Ω π(ω) = 1.1 The target propositions for learning are subsets of Ω,

A ⊆ Ω, so the set of propositions of interest is A = P(Ω), the set of subsets of Ω. Note that
this resembles the set-up for possible world semantics, where Ω plays the role of the set of all
possible worlds and propositions correspond to sets of possible worlds.

Since π is a probability distribution on Ω and Ω is finite, π gives a probability assignment
to every subset of Ω, or to every proposition in A.2 This is just given by π(A) =

∑
ω∈A π(ω).

For any two subsets A,B ∈ A, we can define the conditional probability π(B|A) = π(A∧B)
π(A) .

Here, the logical operation ∧ is determined by set-theoretic intersection ∩. This gives the
probability that B is true conditional on A.

This allows us to define a procedure for Bayesian updating. When someone with belief
space (Ω, π) learns a proposition A ∈ A, they form a new probability distribution πA over Ω

by conditionalizing on A: πA(ω) = π(ω∧A)
π(A) . Note that π(ω ∧ A) is 0 when ω 6∈ A and π(ω)

when ω ∈ A. This means that learning A restricts to just those outcomes where A is true,
and, for outcomes where A is true, πA(ω) stays proportional to the prior probability π(ω).
This makes sense because we have only learned information about whether the outcome is
in A, not about which outcomes in A are more or less likely. For any proposition B, the
probability of B in the updated distribution is∑

ω∈B
πA(ω) =

1

π(A)

∑
ω∈B

π(ω ∧A) =
π(A ∧B)

π(A)
,

which is just the conditional probability, so πA(B) = π(B|A).
To return to the example of rolling a die, assume that Ω = {1, ..., 6} and π(ω) = 1

6
for each ω. The proposition ‘The die landed on an odd number’ can be represented as
the set A = {1, 3, 5}, where π(A) =

∑
ω∈A π(ω) = 1

2 . Bayesian updating on A leads to
the posterior distribution where the new set of possible worlds is A and for each ω ∈ A,
πA(ω) = π(ω)

π(A) = 1/6
1/2 = 1

3 . This yields the expected updated distribution, where the set of

possibilities is restricted to the three odd numbers, each with probability 1
3 .

2 Theories and Incompatible Constraints

In discussing Bayesian learning, we have modeled an agent’s belief space as a probability
distribution over a set of possibilities, (Ω, π). We can think of this probability distribution as
the agent’s hypothesis or theory about the world, representing which outcomes are possible
and what their likelihoods are. For example, the agent’s belief space from the previous section
encodes the theory that a given die is fair, with the die having an equal probability of landing
on each of the numbers 1 through 6. Similarly, we can think of other theories in terms of

1In the infinite case, we require that there is a sigma algebra Σ representing the set of measurable subsets
of Ω and that π : Σ→ [0, 1] satisfies the following: (i) π(Ω) = 1 and (ii) ∀Ai ∈ Σ, π(∪∞i=1Ai) =

∑∞
i=1 π(Ai).

2In the infinite case, we must restrict to A ⊆ Σ.
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a probability distribution: a theory of human behavior in a situation, for example, would
specify which actions are possible and how likely each action is.3 Theories can also include
other information, like causal information (that rain can cause changes in event plans, but
not the other way around) or the definitions or structures of basic terms (like that fish are
water-dwellers or that mammals have mammary glands).4 While representing theories as
probability distributions over a set of possibilities does not explicitly include this additional
information, we will see how it can be incorporated in the next section and the example in
§5.

Bayesian learning focuses on a specific kind of constraint an agent learns: propositions
expressed as a subset of the sample space Ω. These constraints provide information about
the outcome itself, such as that a die landed on an odd number or that certain actions are
ruled out. However, not all constraints correspond to a subset of the sample space. Two
examples of such constraints are conditional propositions like ‘If the die lands on an odd
number, then the die lands on 3’ and propositions which express probabilistic constraints
like ‘The probability that the die lands on 3 is 1

2 .’ Neither of these propositions introduce
constraints on the outcome itself: the die landing 4, for example, does not settle whether
either constraint is satisfied.

We can think of these propositions instead as providing constraints on the entire belief
space (Ω, π). Typically, the truth values of conditionals (Kratzer, 1986, 2012) and probability
operators (Yalcin, 2010) depend on both a world ω and a set of relevant possible alternatives
to ω, which we can think of as the set Ω. For example, the conditional ‘If the die lands on
an odd number, then the die lands on 3’ does not become true based on the number rolled;
instead, it is true when the set of possibilities Ω satisfies the constraint that 3 is the only
odd number one can roll. Similarly, the probabilistic constraint ‘The probability that the die
lands on 3 is 1

2 ’ is satisfied by any (Ω, π) where π({3}) = 1
2 . For example, if a six-faced fair

die has three 2s and three 3s on it, so Ω = {2, 3} and for each ω, π(ω) = 1
2 , then both the

conditional and the probabilistic constraint are satisfied.
Conditional and probabilistic constraints are examples of theory-level constraints which

restrict the global theory (Ω, π) rather than the outcome ω. Theory-level constraints include
both constraints on the global set of possibilities Ω and constraints on the probability distribu-
tion π. The former case includes conditional constraints, as well as modal constraints about
what is possible and necessary. While I do not discuss modal constraints in detail in this
paper, this category includes cases where people learn about new and unforeseen possibilities
as well as new laws which hold of necessity in all possible worlds. Probabilistic constraints
include the constraint discussed above, that π(A) = p for some A ⊆ Ω and p ∈ [0, 1], as well
as more complex constraints like the conditional probability constraint that π(B|A) = q for
A,B ⊆ Ω and q ∈ [0, 1].

One characteristic of theory-level constraints is that constraints which are not part of the
initial theory are impossible to satisfy within the theory. This contrasts with constraints on
outcomes, which, even when left open by the initial theory, are still possible to satisfy within

3This is how hypotheses about opponent behavior are formalized in strategic games; see Foster and Young
(2003); Young (2004).

4For some authors, the basic terms (ontology) and the kinds of relationships which are possible in the first
place are encoded in more basic ‘foundation or framework theories’ rather than ‘specific theories.’ In this
paper, I focus on specific theories rather than foundational theories. For more on this distinction, see Griffiths
and Tenenbaum (2009) and Wellman and Gelman (1992).
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the theory. Consider the case where one believes that a die is fair and learns the outcome-
level constraint that the die lands on an odd number. This constraint is not part of the initial
theory, but it is possible to constrain one’s beliefs to satisfy the condition without revising
the theory that the die is fair. On the other hand, if one learns the theory-level conditional
constraint ‘If the die lands odd, it lands 3,’ it is impossible to satisfy this condition without
abandoning the theory that the die is fair. Thus, theory-level constraints which are not
satisfied on the initial theory appear similar to the kinds of constraints Gopnik (1996, p.
496) describes as requiring radical revision to an agent’s theory: ‘If we are committed to the
theory such violations should strike us, not only as surprising, but as being impossible and
unbelievable in an important and strong way.’

We can formalize the notion of a constraint being impossible to satisfy by defining the
likelihood that a constraint is true on a theory. We assume that the constraint C is a sentence
with truth conditions over theory-world pairs, (Ω, π, ω), so that C is associated with the
indicator function χC(ω) : Ω→ {0, 1} which is 1 when C holds relative to (Ω, π, ω) and zero
otherwise. Letting h = (Ωh, πh) represent the initial theory, the likelihood that C is true on
h is

L(h,C) =
∑
ω∈Ωh

πh(ω)χC(ω).

When C is a subset of Ω, C ⊆ Ω, the likelihood that C is satisfied on the theory (Ω, π) is given
by the probability of C, π(C). Such constraints, even when extremely unlikely or surprising,
still have positive likelihood and can be incorporated smoothly through Bayesian learning.5

When C is a theory-level constraint, on the other hand, C either holds or does not hold of the
theory (Ω, π), regardless of choice of ω, so the likelihood such a constraint C is true is either 0
or 1. Theory-level constraints which are false on the initial theory, therefore, have likelihood
zero: these are not just surprising on the initial theory, but are predicted to be impossible to
satisfy within the theory. We call constraints with zero likelihood in a theory incompatible
with the theory. The conditional and probabilistic constraints we have considered are both
examples of constraints incompatible with the theory that a die is fair: on this theory, the
likelihood that either ‘If the die lands odd, it lands on 3’ or ‘The probability that the die
lands on 3 is 1

2 ’ is true is zero and there is no way to incorporate these constraints without
abandoning the theory that the die is fair.6

So far, I have argued that we can think of probability distributions over a set of out-
comes as theories and constraints with likelihood zero on an initial theory as incompatible
with the theory. Incompatible constraints cannot be learned through Bayesian updating and
the incompatibility with an initial theory is what will motivate the need for theory revision
discussed in the next section. It is important to note that psychologists and philosophers

5Note that, on some hypothesis revision models, encountering a constraint which is sufficiently improbable
can trigger theory revision (Ortoleva, 2012). In this case, there is some small number ε such that learning a
constraint C such that L(h,C) < ε triggers theory change. For example, while witnessing 200 coins in a row
land heads has positive likelihood, it may be so low as to trigger theory change.

6Note that the claim that a conditional which is false on an initial theory has zero likelihood assumes that
the truth value of the conditional depends only on the set of possibilities Ω, not on the world ω ∈ Ω. This
assumption seems plausible in the simplified statistical models considered in this paper and corresponds to
Gillies’ (2010) assumption that the modal base of the conditional is closed. However, this assumption conflicts
with strong centering, a common principle of conditional semantics where A ∧ B entails A → B. On strong
centering, rolling a 3 on a fair die entails ‘If the die lands odd, it lands 3,’ while this does not follow if the
modal base is closed.
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of science are often interested in a more robust notion of theory incompatibility than used
here. Some theories, called framework or foundational theories (Wellman and Gelman, 1992;
Griffiths and Tenenbaum, 2009), encode a basic ontology of concepts and the relations which
are possible between these concepts. The kind of incompatibility relevant for these theories
is incommensurability, which occurs when a constraint is not only impossible to realize in an
initial theory, but is impossible to adequately state in the theory. For example, a child learn-
ing ‘Clocks are not alive’ may not even be able to express the new proposition in their prior
vocabulary, which associates life with movement and includes things like clocks and the sun
as alive (Carey, 2009). While learning incommensurable constraints is an important, though
controversial, case of theory revision, this paper focuses on the broader class of incompatible
constraints, which includes the conditional and probabilistic constraints of interest.

3 The Hypothesis Testing Model

We are interested in how agents learn from constraints which are incompatible with their initial
theory or hypothesis about the world. Recall that Bayesian learning provides a procedure
where an agent with beliefs (Ω, π) updates their beliefs upon learning a proposition A to
(A, πA). We would similarly like a procedure which takes as input a belief state (Ω, π) and a
constraint C incompatible with this belief state and outputs a new belief state (ΩC , πC) which
satisfies the constraint C and represents a reasonable deviation from the original beliefs.

Since incompatible constraints are not expressible as a subset of the original sample space Ω
and have zero likelihood on the initial theory, agents cannot use Bayesian updating to arrive
at a new belief space. In philosophy, the most popular approach to learning incompatible
constraints involves finding a new probability distribution which satisfies the constraint C
while deviating as little as possible from the prior beliefs. A common measure of how much the
new beliefs differ from the old beliefs is the Kullback-Leibler divergence, which is designed to
measure the amount of information learned in going from the prior to the posterior (Williams,
1980). Since Bayesian updating minimizes the Kullback-Leibler divergence, this seemingly
represents a natural generalization of Bayesian learning. This procedure has been applied
to both conditional and probabilistic constraints: for conditional constraints, this amounts
to learning the material conditional (Douven and Romeijn, 2011; Eva et al., 2020), and for
probabilistic constraints, this amounts to using Jeffrey’s (1990) probability kinematics.

However, there is good reason to suspect that constraints which are incompatible with
a theory should not always lead to minimal changes. Unlike the constraints from Bayesian
learning, incompatible constraints require abandoning the initial theory of the world and set-
tling on a new one. Instead of trying to incorporate these constraints smoothly, it makes sense
to propose that this kind of learning instead involves a ‘paradigm shift,’ where the agent must
go back to the drawing board and find a new theory which can explain the evidence. This
motivates a hypothesis testing model, where an agent starts with an initial theory h = (Ω, π)
and, upon learning an incompatible constraint C, chooses the most appealing alternative the-
ory from a suitable hypothesis space H of possible alternative hypotheses. This model for
learning incompatible constraints receives empirical support in psychology and economics.
In psychology, theory revision is proposed as a theory of concepts, where agents categorize
objects into groups by developing and revising theories about what it means to be a mem-
ber of the kind (Gopnik, 1996; Carey and Spelke, 1994). In economics, hypothesis testing
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is used to explain how people update their theories of opponent behavior in strategic inter-
action, predicting that agents radically revise their theories when confronted with sufficient
counterevidence (Salmon, 2004; Foster and Young, 2003; Young, 2004).

We can break the hypothesis testing model down into two steps. First, the agent finds an
appropriate hypothesis space H consisting of possible theories, H = {(Ωi, πi)}, and restricts to
the hypotheses satisfying the constraint C, HC . Second, the agent chooses a new hypothesis
h′ = (ΩC , πC) from HC . I discuss these two steps in greater detail below.

The difficulty of finding a suitable, manageably sized hypothesis space is likely the reason
why the hypothesis testing model is given little attention, when mentioned at all, as an
alternative to relative information minimization (Diaconis and Zabell, 1982; Halpern, 2017).
Consider again the case of a six-sided die. If possible theories about the bias of the die include
all possible probability distributions over the set of outcomes {1, ..., 6}, the space of possible
theories is not only infinite, but is a five dimensional subset of [0, 1]6 ⊂ R6. If learning a
new constraint like ‘If the die lands odd, it lands on 3’ requires that the agent choose a new
hypothesis from the set of possible theories satisfying the constraint with no conditions on
distance from the prior, the set of hypotheses satisfying the constraint is infinitely large (in
this case, a three dimensional subset of [0, 1]6) and there appears to be no prediction for the
agent’s posterior credences.

However, there are many ways to simplify the hypothesis space for a learning problem
such that the hypothesis testing model can offer predictions. One common method is the use
of parametric models (Casella and Berger, 2002), where the hypothesis space consists of a set
of parameter values which determine the full probability distribution. Consider an example:
suppose an agent is trying to predict the height distribution of a population based on the
height measurements from a small sample set. This agent is unlikely to consider all possible
probability distributions consistent with their sample. Instead, the agent is likely to assume
that the distribution has a certain form, such as the form of a normal distribution. Thus,
the only hypotheses the agent considers are those built from normal distributions, so each
theory in the hypothesis space is completely determined by two parameters, the estimated
population mean µ and the estimated variation in heights σ. Using a parametric model in this
way, the unmanageable hypothesis space of all possible height distributions is reduced to a
smaller set of theories about the height distribution governed by two parameters. This smaller
hypothesis space can offer predictions for learning: if we know the sample measurements the
agent had access to, we can get a unique prediction for the agent’s beliefs about the full
height distribution. §4 uses a parametric model of the hypothesis space to offer predictions
for learning probabilistic information in a simple coin bias case.

Another common approach to simplifying the hypothesis space involves using causal mod-
els (Rehder, 2003; Griffiths and Tenenbaum, 2009). Causal models impose constraints on
how variables are related to each other, reducing the number of possible hypotheses. Causal
models can simplify the hypothesis space by ruling out theories with inappropriate causal re-
lations, like those where the outcomes of games of chance are causally linked with the weather.
Additionally, when learning a new constraint, causal models can be used to delineate different
hypotheses about the explanatory or causal status of the new constraint relative to one’s prior
beliefs. As we will see for conditional learning in §5, learning a conditional ‘If A, then B’
can lead to different causal hypotheses about the relationship between A and B, such as the
hypothesis that A causes B or the hypothesis that B causes A, which adds enough structure
to the learning problem to offer predictions.

7



Using the appropriate tools to build the hypothesis space H is what allows the hypothesis
testing model to offer predictions. This requires figuring out how agents approach a specific
learning problem and how this can be represented mathematically in a hypothesis space.
Unlike the information minimization approach, this procedure depends on contextual features
of the learning problem: while this requires more work for successful modeling, the goal of this
paper is to argue that we can successfully find appropriate hypothesis spaces for a variety of
learning problems and that doing so offers more compelling predictions than the information
minimization model does.

Once we have the space H and have restricted to hypotheses which satisfy the constraint,
HC , we can focus on the problem of choosing a new hypothesis from HC . In some cases,
especially with parametric models as in §4, HC will only have one element: in this case, the
new theory h′ will be the unique element from HC . In other cases, however, HC will have
multiple options for new beliefs consistent with the constraint, even with a simpler hypothesis
space. In this case, we assume that the agent chooses the most likely hypothesis from HC .
We can quantify likelihood with a probability distribution: we assume that the agent has a
probability distribution Pr over HC and chooses the new theory which is most likely according
to Pr.7 In many cases, Pr will offer a clear prediction for the new theory: in the example in
§5, one of the two possible theories in HC will be much more likely than the other.

The story becomes more complicated if all theories are equally likely (Pr is uniform) or
multiple theories are tied as the most likely. In this case, we do not get a unique prediction
for the agent’s posterior beliefs. The agent could be free to choose any of the most likely
hypotheses, or to retain uncertainty over which theory is correct. If the agent retains uncer-
tainty, he or she could keep the entire distribution Pr in mind, yielding an updated belief
state with

ΩC =
⋃

h∈HC

Ωh

and probability calculated as:

πC(ω) =
∑
h∈HC

Pr(h)× πh(ω).

This new belief state includes all outcomes which are possible in any of the theories and
determines the likelihood of each outcome as the expectation of how likely each outcome is,
where the expectation is calculated over all possible theories, weighing theories according to
Pr.

While the hypothesis testing model does offer determinate predictions for the agent’s
posterior distribution in many learning situations, the fact that some situations leave the
posterior indeterminate represents one way the hypothesis testing model differs from the
information minimization model.8 When there are too many plausible alternative hypotheses

7We could assume that Pr is induced on HC through Bayesian updating on a prior distribution over the
entire hypothesis space H, which is reasonable in many examples. However, in many cases (as in §4), HC has
zero probability as a subset of H, so we would have to invoke the Radon-Nikodym theorem to consistently
apply Bayesian updating. See the discussion of conditional expectations in Ch. 7.4.1 of Capinski and Kopp
(2013).

8Note that one can incorporate information minimization in the hypothesis testing model. One could argue
that, for all learning problems, the hypothesis space consists of all possible probability distributions over the
sample space and that the distribution Pr over HC tracks the relative information between a new hypothesis
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consistent with the new constraint, there is no rationally required posterior distribution and
multiple solutions to the learning problem can be justified. In §6, I argue that this is the case
with the Judy Benjamin problem: there are too many possible hypotheses which explain the
new constraint for the hypothesis testing model to offer robust predictions, consistent with
the disagreement about how to solve the problem in the literature.

We can summarize the hypothesis testing model for learning a theory-level constraint C
in the following steps:

1. The agent has a theory h = (Ω, π) and a constraint C which is incompatible with the
theory h.

2. The agent constructs a space H of alternative hypotheses to h and determines HC ,
the subset of hypotheses consistent with C. The agent determines a prior Pr over HC
representing how likely each theory is.

3. If there is a most likely theory under Pr, the agent chooses that theory. If not, the agent
either chooses a theory at random from the most likely theories or retains the entire
distribution over theories, keeping a two-level probability space in mind.

This procedure will become clearer when we consider some examples: probabilistic learning
in §4, conditional learning in §5, and learning conditional probability constraints in §6.

4 Learning Probabilistic Information

Given a belief state (Ω, π) and proposition A ⊆ Ω, a probabilistic constraint is a constraint
of the form Pr(A) = p, or in words, ‘The probability that A is p.’ To consider one case
where hypothesis testing provides a useful approach to learning probabilistic information, we
consider a simple coin flipping example. Suppose someone is flipping a coin twice, so the set
of possible outcomes is Ω = {HH,HT, TH, TT}, where H represents heads and T represents
tails. The agent assumes the coin is fair, so for each state ω, π(ω) = 1

4 .
Now suppose the agent learns the probabilistic constraint ‘The probability the first coin

flip is heads is 0.7,’ or Pr(HH ∨ HT ) = 0.7. This constraint is not satisfied on the initial
theory where the coin is fair: for (Ω, π), π(HH ∨HT ) = 0.5. Furthermore, there is no event
corresponding to the probabilistic constraint and there is no straightforward way to change
the initial theory so that this constraint is satisfied. Note how this contrasts with the case
where one learns factual or observational information: if one learns that the first coin flip
landed heads, it is straightforward to incorporate this information through Bayesian learning
by eliminating TH and TT from the set of possible outcomes.

The hypothesis testing model proposes that the agent incorporates this constraint by
considering a salient space of alternative hypotheses to the theory that the coin is fair. A
natural approach is for the agent to assume that the coin is biased and that the probabilistic
constraint is communicating information about the coin bias. In this case, the agent is using
a parametric model, where the parameter governing the hypothesis space is the coin bias

h′ and the original hypothesis h. In this case, the highest probability alternative theory will be the one
which minimizes the distance from the prior, so the predictions of the hypothesis testing model and minimum
information model coincide. As argued in this paper, however, this is often not the most natural choice for the
hypothesis space.
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θ ∈ [0, 1], where the coin lands heads with probability θ and tails with probability 1−θ. Note
that this hypothesis space is a restriction of the space of all possible theories, excluding, for
example, theories where the coin bias varies over time, and that the choice of this hypothesis
space is what offers a prediction for how the agent updates beliefs.

The initial theory is that the coin is unbiased, so θ = 0.5. When this theory proves
inconsistent with the new probabilistic information, the agent considers other possible biases
the coin may have. Intuitively, we expect the agent to update beliefs so that the bias of the
coin is now 0.7, since this is the only theory consistent with the probability of the first coin
flip landing heads being 0.7.

In fact, we can show that θ = 0.7 is the only hypothesis which satisfies the probabilistic
constraint, so that if H = [0, 1], HC = {0.7}. We can show this by calculating, for every bias
θ, the full distribution over outcomes, πθ: πθ(HH) = θ2, πθ(HT ) = πθ(TH) = θ(1− θ), and
πθ(TT ) = (1 − θ)2. Recall that we formalized a theory as a probability distribution over Ω:
here, the parameter θ summarizes the information of a complete theory (Ω, πθ). A hypothesis
θ satisfies C if Pr(HH ∨HT ) = 0.7, which occurs when θ2 +θ(1−θ) = 0.7; θ = 0.7 is the only
hypothesis satisfying this criterion. Since HC = {0.7} has only one element, the agent only
has one hypothesis to choose from which satisfies the constraint, so the agent would adopt
this theory. On this theory, where the coin bias is θ = 0.7, the new distribution over Ω after
learning the constraint C, πC , is given by πC(HH) = 0.49, πC(HT ) = πC(TH) = 0.21, and
π(TT ) = .09.

We can contrast this with the predictions offered by Jeffrey conditioning, which is the
approach to incorporating probabilistic constraints which minimizes the Kullbeck-Leibler di-
vergence. On Jeffrey conditioning, given a constraint Pr(A) = p, a distribution π is updated
to πJ by πJ(ω) = pπ(ω|A) + (1 − p)π(ω|¬A). In the above case where A = HH ∨ HT
and p = 0.7, we get the following updated distribution: πJ(HH) = πJ(HT ) = 0.35 and
πJ(TH) = πJ(TT ) = 0.15. This means that the probability that the second coin flip will
land heads is 0.5. This follows from the fact that the updated distribution minimizes the in-
formation changed from the prior distribution: the new information changes the expectation
for the first coin flip, but not the second coin flip. However, it is more intuitive to suppose
that the information which changes the bias of the first toss carries over to the second coin
toss, showing how theory-based learning offers a more plausible learning prediction than the
relative information minimizing approach.

5 Conditional Learning

Another class of constraints which can trigger hypothesis revision are conditional constraints.
Assume we have a theory (Ω, π) where Ω represents the set of possibilities and π determines
the relative likelihood of these possibilities. Suppose A,B ⊆ Ω are two propositions and
consider the conditional proposition ‘If A, then B,’ represented A → B. We can think of
A → B as being true relative to the theory (Ω, π) if all A-worlds are B-worlds, so A ⊆ B.
This follows the standard quantificational approach to the conditional (Lewis, 2013; Kratzer,
1986; Gillies, 2010).

To show how theory revision plays a role in conditional learning, we consider an example
where the information minimization method fails: the sundowners problem (Douven and
Romeijn, 2011; Douven, 2012). In this case, we suppose that someone considers the possibility
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that it will rain later (R) and predicts whether sundowners (a kind of party) will occur (S). We
assume the agent initially thinks these events are independent and each has probability 1

2 . We
can represent the original theory by a set of possibilities Ω = {R∧S,R∧¬S,¬R∧S,¬R∧¬S},
each with probability 1

4 . Suppose this person then learns the constraint ‘If it rains, then
sundowners will be canceled,’ R→ ¬S.

Since the agent represents it as a relevant possibility with probability 1
4 that it rains and

sundowners occurs, R∧S, this conditional is false on the agent’s initial model. This means that
the agent must find a new theory which, at minimum, eliminates R∧S as a possibility since the
new conditional constraint rules it out. The new theory which satisfies this constraint while
changing as little as possible is the theory where one eliminates R∧S from Ω and redistributes
π according to Bayesian updating, so the other three possibilities all have probability 1

3 . This
is the approach which minimizes the Kullback-Leibler divergence and is equivalent to updating
by the material conditional, where we only eliminate the worlds where R ⊃ ¬S is false, which
are the worlds where R is true and S is true, R ∧ S. This updating procedure, however, has
counterintuitive results. In particular, in the new distribution, Pr(R) = 1

3 , meaning that the
agent now thinks it is less likely to rain than he or she did initially. However, the conditional
constraint that sundowners will be canceled in the event of rain does not communicate any
information about whether it will rain, so it seems that the agent should keep Pr(R) constant
at 1

2 .
Assuming that the conditional requires developing a new theory of the world provides

more intuitive results. Initially, the agent believes that rain and sundowners are independent
of each other, so that neither variable has any effect on (or is relevant for determining) the
other variable. However, the conditional can only be true if there is some relationship between
the variables, so the agent must consider different possible theories about how the variables
are related. The relationships between variables can be encoded in causal models, so the space
of alternative hypotheses the agent considers is a set of causal models.

In this example, since R and S are the only variables at issue, we consider only two simple
causal models which could satisfy the conditional constraint. We represent these models
graphically, where the nodes refer to variables and the arrows represent causal influence:

R ¬S

¬S R

The nodes at the top of the diagrams without parents are the independent variables, and the
nodes below them are dependent variables whose values are determined by the parents.9

These diagrams only encode how the variables are related to each other, and many prob-
ability distributions are consistent with these causal diagrams. We consider only elements
of HC , or probability distributions over the above causal diagrams which satisfy the condi-
tional constraint. While many such distributions are possible, Vandenburgh (2020) argues
that there is a natural way to use a conditional constraint and causal diagram to uniquely
determine a new distribution. This procedure assumes that the probability of an indepen-
dent variable remains constant, but that the probability of the dependent variable changes
based on the conditional information: for example, in the first diagram where R causes

9For a more detailed introduction to causal models, see Pearl (2009).
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¬S, while Pr(R) and Pr(¬R) remain the same, Pr(¬S) changes according to the formula
Pr(¬S) = Pr(¬S|R) Pr(R) + Pr(¬S|¬R) Pr(¬R). The unique new probability distribution
associated with each causal diagram is given below; a more complete justification for this
procedure can be found in Vandenburgh (2020).

On the first theory, rain is an independent variable, so Pr(R) stays constant at 1
2 . Since

R causes ¬S, the conditional constraint specifies that this causal connection is universal,
so whenever R is true, ¬S is true. This means that R ∧ S is not a possibility and that
Pr(¬S|R) = 1, so Pr(R ∧ ¬S) = 1

2 . Since the conditional constraint gives us no information
about the likelihood of S without rain, we assume Pr(S|¬R) = 1

2 as before, so Pr(¬R ∧ S) =
Pr(¬R ∧ ¬S) = 1

4 .
On the second theory, ¬S has a causal influence on R, so S is the independent variable,

meaning Pr(S) = Pr(¬S) = 1
2 . The conditional constraint is incorporated through the re-

quirement that ¬S is the only cause of R, so whenever R is true, we can deduce that ¬S is
true. This means that R ∧ S is not a possibility and Pr(¬R ∧ S) = 1

2 . When ¬S is true, we
assume the likelihood of R is 50%, since even though we have learned that ¬S has a causal
influence on R, we have not learned anything about how strong this causal influence is, so we
retain the prior beliefs. This means that Pr(R ∧ ¬S) = Pr(¬R ∧ ¬S) = 1

4 .
Since both theories satisfy the conditional constraint C, they are both are in the hypothesis

space HC . However, the first theory is much more reasonable than the second theory. It is
likely that rain causes the cancelation of a party, but it is very unlikely that the fact that
a party is canceled could cause it to rain: it is known that decisions about events do not
have an effect on the weather. This means that the agent’s probability distribution Pr on the
hypothesis space renders the first theory significantly more likely than the second theory, so
that the new theory the agent adopts is the first theory. Notice that this theory offers very
reasonable predictions: the probability of rain remains constant, the probability of sundowners
occurring decreases, and the agent now attributes a causal connection between rain and the
cancelation of sundowners. These predictions are much more plausible than those offered by
the information minimization theory, which predicts that the likelihood of rain decreases.

6 Conditional Probability Constraints: Judy Benjamin

Information minimization methods of learning have perhaps been most controversial in the
case of conditional probability constraints. When A and B are propositions defined over a
set of worlds Ω, a conditional probability constraint is a constraint of the form Pr(B|A) = p,
with p 6= 0, 1. The problem which has drawn attention to the limitations of information
minimization is the Judy Benjamin problem (Van Fraassen, 1981). This problem is based on
the movie Private Benjamin, where Judy Benjamin is dropped into a swampy area and is
trying to figure out where she is. The area is divided into two parts, enemy (Red) territory
and friendly (Blue) territory, and these areas are both subdivided into Headquarters Company
Area (1) and Second Company Area (2). We assume each of the four divisions have equal
area, representing the map as follows:
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B2

R1R2

B1

Here, R1 and B1 represent Red and Blue Headquarters Areas and R2 and B2 represent Red
and Blue Second Company Areas.

Benjamin’s radio is largely ineffective, but she receives the information ‘If you are in enemy
territory, the probability you are in HQ is 3

4 .’ This is a conditional probability constraint,
where if R represents the Red territory, the constraint says Pr(R1|R) = 3

4 . Since Benjamin
is initially uncertain about where she was dropped and each section has equal area, her prior
beliefs ascribe equal probability 1

4 to each possibility in Ω = {R1, R2, B1, B2}. Under these
prior beliefs, the conditional probability constraint is not met since π(R1|R) = 1

2 , so she must
revise her beliefs in line with the new information.

Van Fraassen (1981) works out how Benjamin should change her beliefs in light of this
conditional probability constraint if she were to minimize the Kullback-Leibler divergence
between her new beliefs and her prior beliefs. In this case, Benjamin ends up decreasing her
estimation of the likelihood that she is in enemy territory. This is analogous to the problem
identified for conditionals in the previous section, where learning a conditional constraint by
minimizing information always leads to a lower probability for the antecedent of the condi-
tional.10 van Fraassen concludes that this updating procedure is more likely to be the result
of wishful thinking than rational updating, since Benjamin concluded that the odds she is in
enemy territory are lower from a constraint which appears to say nothing about how likely it
is that she is in enemy territory.

We can reconsider this problem from the perspective of hypothesis revision. Initially,
Benjamin is completely uncertain about where she has landed on the map; this is consistent
with the theory that she was dropped randomly on the map, leading to a uniform distribution
over the four quadrants. When Benjamin learns the conditional information that Pr(R1|R) =
3
4 , she must realize that this is inconsistent with her hypothesis. If she were dropped at
random over the area of the map, this conditional probability constraint would not hold, so
her hypothesis must be wrong. This leads her to consider alternative hypotheses which are
consistent with the new constraint. If the new credences are the result of hypothesis revision,
we see that the problem is underdetermined by the information given in the problem: there
are multiple ways Benjamin could revise her hypothesis which are consistent with the new
information.11

For illustration, here are three approaches Benjamin could take to restrict a hypothesis
space to take into account the conditional probability constraint. (1) Benjamin could infer
that the constraint arises because there is a small off-limits area that she could not be dropped

10See the discussion in Douven and Romeijn (2011) and Gaifman and Vasudevan (2012).
11This is also the conclusion of Bovens and Ferreira (2010), who use Shafer’s (1985) theory of protocols to

argue that the ‘structure of the game’ is underdetermined.
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in. Given the fact that the constraint says she is more likely to be in R1 than R2, she would
likely infer that the off-limits area is in R2, making it less likely she is in enemy territory.
(2) Benjamin could hypothesize about where the intended target was when she was dropped,
concluding that the constraint arises because the intended target was either in R1 or B1. In
this case, the likelihood of her remaining in enemy territory remains the same. (3) Benjamin
could infer that the constraint arises because of knowledge about the wind conditions. The
increased likelihood of her landing in R1 compared to R2 likely results from the fact that the
wind is blowing to the right, which again leaves the likelihood of landing in enemy territory
unchanged.

To illustrate how the hypothesis revision approach works formally in this case, I consider
(2) in greater detail, where Benjamin forms a new theory about where the intended target
was when she was dropped. For the probabilistic constraint to be met, we must assume
that the target is not met with perfect accuracy. Thus, if the target is quadrant Q, we can
assume that the probability of landing in Q is 9

16 , the probability of landing in one of the
two neighboring quadrants is 3

16 , and the probability of landing in the diagonal quadrant is
1
16 . This means that Benjamin considers four theories in H: that the target was R1, R2, B1,
or B2. Calculating the full distributions, the only two targets which would give rise to the
constraint Pr(R1|R) = 3

4 are R1 and B1; thus, these are the only two hypotheses in HC .
Absent further information, Benjamin would assign equal probability 1

2 to each hypoth-
esis, but other background information (such as who dropped her and for what purpose)
could weigh in favor of one hypothesis over the other. Assuming Benjamin has no fur-
ther information, she has two hypotheses which are equally likely, so it makes sense for
her to keep both in mind. Keeping both hypotheses in mind, her new beliefs are given by
πC(Q) = 1

2πR1(Q) + 1
2πB1(Q). For example, the new likelihood that she is in enemy territory

is πC(R) = 1
2( 3

16 + 9
16) + 1

2( 1
16 + 3

16) = 1
2 , showing that the likelihood of her being in enemy

territory remains the same.
This illustrates one way in which hypothesis learning can be applied to the Judy Benjamin

problem. Benjamin realizes her initial hypothesis, that she was dropped at random, cannot
account for the new information, so she must revise this to some other hypothesis which fits
the data. Here, her new hypothesis is that whoever dropped her intended for her to land
in either R1 or B1. However, she could have considered a number of other ways to form a
new hypothesis depending on how she believes the information given to her was determined,
suggesting that the problem as traditionally posed is underdetermined by the information
provided.

7 Conclusion

This paper argues that how people learn complex, theory-laden constraints like conditional
and probabilistic constraints is best explained through the model of hypothesis testing. In
this model, people start with a theory of the world, represented by a probability distribution
over outcomes (Ω, π), which proves inconsistent with some constraint C. Upon learning C,
agents choose the most likely hypothesis h′ from the set of hypotheses satisfying C, HC . The
main feature of the hypothesis testing model which offers predictions for learning is the deter-
mination of the hypothesis space H, which the agent develops from the context of the learning
problem. This provides a reasonable account of learning for specific examples of probabilistic
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constraints (‘The probability the first coin flip is heads is 0.7’), conditional constraints (‘If it
rains, then sundowners will be canceled’), and conditional probability constraints (‘If you are
in enemy territory, the probability you are in HQ is 3

4 ’). In each case, the hypothesis testing
model offers more reasonable predictions than the information minimization approach, which
predicts that agents learn conservatively rather than by engaging in disruptive revisions to
an initial hypothesis.
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