BAS C. VAN FRAASSEN

PROBABILITIES OF CONDITIONALS

‘He says he’ll pay me every pfennig if he gets
this job as barman at the Lady Windermere
... if, if ... Frl. Schroeder sniffs with intense
scorn: ‘I dare say! If my grandmother had
wheels, she’d be an omnibus !’

Christopher Isherwood, Goodbye to Berlin

Both conditionals and probabilities have been the subject of lively philo-
sophical debate. Lately their interaction has been in the limelight,
through the disputed thesis that P(4—B)= P(B/A), the probability of the
conditional is the conditional probability (of consequent on antecendent).
This thesis is tenable for the Stalnaker conditional if nesting of arrows
is not allowed; for nested arrows I have weaker results. For ease of
reading, I have limited the body of this paper to an exposition of the
philosophical disputes, while the technical results are collected in a many-
sectioned appendix.’

Both for probabilities and conditionals, I shall make a distinction
between interpretations and paradigms. An interpretation, in this con-
text, is a full-fledged account of the subject. A paradigm is something that
guides our attempts to arrive at an interpretation: it is an idea that
explains ‘clear’ cases, breaks down immediately for more complex cases,
but is returned to for inspiration whenever more formal attempts at
interpretation run into their own difficulties.

1. CONDITIONALS

The first paradigm that guided the explication of conditionals was the
idea of this situation: a person asserts A— B (read ‘if A then B’) to signify
that the argument with premise A4 and conclusion B, is valid. The first
obvious extrapolation of this idea is the assertion that it is the exact and
sole function of a conditional to express the statement that a certain
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corresponding argument is valid. And this extrapolation then yields the
following principles for reasoning with conditionals.

(1) If A and A—B are true, then B is true
(Symbolically: A, A— BIFB) (Modus Ponens)

2 A—-BIHA & C)— B (Weakening)

(3) A—B, B—CIFA—C (Transitivity).

There are many logics of conditionals that incorporate these principles,
for the above paradigm led to a number of different (detailed) inter-
pretations of the conditional.

However, these principles can be held only at the cost of ignoring a large
class of cases of conditional assertion, which apparently do not fit the
paradigm. These cases were discussed in the forties by Goodman and
Chisholm, under the heading of contrary-to-fact or counterfactual
conditionals. A typical example is the statement ‘If this match were
struck (now), it would light’, said with reference to a match held up for
inspection. Agreement that this statement is true does not allow the
inference that if this match were a burnt match, and struck now, it would
light. Similarly, it seems that I could truly say of a drinking glass: ‘Were
this glass dropped now, it would break’ but not “Were this glass dropped,
and were the floor covered with foam, the glass would break’. These
examples contravene principle 2 above (Weakening), and once you see
the trick, you can also provide examples that contravene Transitivity
(though not Modus Ponens).

The trick, as everyone saw at once, is no trick at all: many conditional
statements in English carry a tacit ceteris paribus clause on their an-
tecedent. There are two paradigms for this case: what I shall call the
Ramsey paradigm and the Sellars paradigm. The Ramsey paradigm
centres on a person with body of information K. This person asserts
A—B in each of two cases: 4 is compatible with K, and the argument
from K and A to B is valid; 4 is not compatible with K, but minimal
changes in K yield an alternative K (4) compatible with A, such that the
argument from K (4) and 4 to B is valid. Goodman’s original arguments
seem to establish pretty well that we cannot give anything like a general
recipe for finding the correct body K (4), or even for saying what changes
in K are more minimal than others. But the logician adhering to the
Ramsey paradigm is not worried by this, since he seeks generality: he
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asks what principles of reasoning remain correct whatever the recipe be.

The second paradigm is due to Wilfrid Sellars, who considers the
relevant class of conditionals A— B to have a restricted syntactic form:
A is an ‘input’ statement and B an ‘output’ statement. The person asserting
the conditional has a general background theory with principles of form

)] ¢-ing a thing of kind K in conditions C makes it

The conditional (4) has no ceteris paribus clause; it fits the original
‘valid argument’ paradigm. The tacit ceteris paribus clause in conditionals -
that violate principles of Weakening and Transitivity is a tacit specifica-
tion of kind K and/or circumstances C for the antecedent of, say,

(5) If X be ¢-ed, it will (would) .

To a logician this paradigm may seem very limited, because of the
restricted syntactic form. But it is very likely that many problems are
artificially created in logic through syntactic generality, going beyond the
original context of philosophical problems.

There are two main theories of conditionals in which the interpretation
is sufficiently detailed to allow a complete characterization of the logic of
reasoning with conditionals. These are due to Robert Stalnaker and
David Lewis; they are cast in the terminology of the current semantic
analysis of modal logic.

Simplifying a bit, Stalnaker’s theory is this: every statement is true or
false in each possible world (or possible situation, or set-up, if you like);
there is for each world o a nearness ordering of worlds such that « is
nearest o, and if there are any worlds in which 4 is true, there is a nearest
world to o among those in which 4 is true (‘the nearest A-world to o’);
A—B is true in « if and only if: B is true at the nearest A-world to a, or
there are no A-worlds. '

Lewis accepts the basic approach but denies that there must be a unique
nearest A-world to «. Hence he says: A—B is true in o if and only if B is
true at all the nearest A-worlds to a. Besides their more basic agreements,
we find therefore that both Stalnaker and Lewis reject Weakening and
Transitivity, and accept Modus Ponens and a kind of weakened transi-
tivity:

6) A—B,B—A, A>CIFB—~C
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But Stalnaker alone, and not Lewis, accepts

7 (4—B) v (A- 71B) must always be true
(Symbolically: IH(4—B) v (4A— T1B)

where v is the sign of inclusive disjunction (‘and/or’) and 1 the sign of
negation (‘not’).

To the philosophical status of the ‘possible world’ talk and its intelligi-
bility I shall return below. But first I must discuss a technical question:
the question of nestings of arrows, of conditionals whose antecedents or
consequents are themselves conditionals.

2. NESTED CONDITIONALS

The preceding section does not presuppose that nesting of arrows, as in
(A-B)—C or A—(B—C), yields syntactically well-formed sentences, or
that similar constructions in English are meaningful before rephrasing
them. One might hold, for example, that 4A—(B— C) is to be understood as
equivalent to (4 & B)—C, and that when it sounds as if some-one is
saying (A— B)—C he really intends the metalinguistic (4— B)I-C. More
abstruse constructions might be considered totally useless or unintelligi-
ble.

Much to my regret, the facts of discourse do not seem to allow of such
simplifications. I was convinced of this by Richmond Thomason, with
such examples as '

(8) If the glass would break if thrown against the wall, then it
would break if dropped on the floor.

This cannot be construed as of form
(8a) (A-B)IH(C-D)

which asserts a relation between two statements, but must be accepted as
having the form

(Sb) (A—-)B)—»(C—»D)

because it suffers from typical conditional trouble, in that (8) does not
imply



r—

PROBABILITIES OF CONDITIONALS 265

9) If this glass would break if thrown against the wall, and the
floor were covered with foam rubber, then it would break if
dropped on the floor.

Of course, it is still possible to react that one is not interested in the facts of
discourse per se, and that such assertions as (8) and (9) are of no interest
for more substantive reasons either. Much of what follows in this paper
can be read while ignoring nested arrows, or abhorring them; only the last
result I shall discuss benefits from restricting our attention to statements
less complex than (8).

In any case, both Stalnaker and Lewis consider it a virtue of their
account that the truth-conditions for statements involving nested arrows
are provided automatically. For example, let  be the nearest A-world to
o,and y the nearest B-world to f;then clearly, on their account, A—(B—C)
is true at o exactly if C is true at .

To give our discussion somewhat more precision, I shall now state, in
simplified form, the semantic account (essentially) due to Stalnaker.> A
model structure is a couple M=(K,s) with K a non-empty set (the
possible worlds), and s a map such that for each member « of K, and each
subset X of K, s,(X) is a subset of K also; subject to the conditions

(10a)  s,(X)is included in X

(10b)  s,(X) contains at most one member

(10c)  s,(X)={a}ifaisin X

(10d)  If s,(X)= Y and s5,(Y)< X then s,(X)=s5,(Y).

The set s,(X) is the set of nearest worlds in X to o Lewis denies (10b), but
adds other clauses.

An interpretation (this technical usage of the term is to be distinguished
from my earlier use of it) is a function I which assigns to each sentence 4
a subset of K (intended meaning: I(4) is the set of worlds in which A is
true), subject to the clauses

(11a)  I(M4)=K-I(4)

(11b)  I(A & B)=I(A)nI(B)

(11c)  I(AvB)=I(4)uI(B)

(11d)  I(4—B)={u:s,(I(A)<1(B)}
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We say that A is valid (IF A) exactly if I(A)=K for each interpretation I on
each model structure; and that A,,..., A, semantically imply B(A,,...,
A,FB) exactly if I(4;)n...n1(4,)<I(B) for each interpretation I on
each model structure.

A set of possible worlds is called a proposition; to say that sentence 4
‘expresses’ the proposition X means that X is the set of worlds in which 4
is true. The family {I(A): A is a sentence} is called an algebra of proposi-
tions with Boolean set operations, plus binary operator

X-Y={a:s,(X)=Y}.

All this is general for model structures of any conditional logic; in the
present case these algebras of propositions may suitably be called
Stalnaker algebras. The question: what is the logic, i.e. what principles
govern valid inferences for this language? is clearly answered if and only if
we can give an exact account of the class of Stalnaker algebras. This was
done axiomatically by Stalnaker and Thomason; see Appendix Section 1
for a simplified account.

3. A PHILOSOPHICAL DIGRESSION

To the question what principles govern deductive reasoning involving
conditionals, Stalnaker Tiad Lewis give exact replies. But the validity of an
argument does not depend on whether its premises are true; and indeed,
Stalnaker and Lewis have not notably increased our ability to decide
whether particular conditionals are true or false.

I opened this paper with a quote from Isherwood; his Frl. Schroeder
seems to challenge the whole world to refute even the wildest consistent
counterfactual conditional. Possible world discourse may seem to meet
the challenge in principle: even if we cannot tell whether the dear lady’s
grandmother would have been an omnibus if she had been endowed with
wheels, there is, as a matter of objective fact, a set of nearest worlds to the
actual one in which the grandmother is so endowed. And the question
whether in those worlds, she is an omnibus, has an objective answer.

However, one needs to swallow a great deal of metaphysics to take this
seriously. Let me say at once that I do not; there are no possible worlds
except the actual one, in the literal sense of ‘there are’. I see the possible
world machinery just as Duhem saw the rope-and-pulley models of the
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English physicists: such fictions are useful when giving an account of the
surface phenomena — and there is, in reality, nothing below the surface.
In our case the phenomena are the inferential relations among statements,
attested in the inferential behaviour of those engaged in such discourse.
Within the model structure, what is meant to mirror these phenomena is
the algebra of propositions. We introduce possible worlds, and relations
on them, because that yields an intuitively simple, but formally indirect,
way of defining that proposition algebra.

Let me return to the truth-values of conditionals. If there are facts only
about this world, and no counterfacts or facts about other possible
worlds, sentences involving conditionals cannot be evaluated by asking
whether they correspond to the facts. For they are about what is not a
fact. So except for ones that cannot be true — like [4 & (A— 714)], which
just has to be false; and other limiting cases — the truth-value of such
sentences seems to be indeterminate. Stalnaker and also Thomason have
indicated how this may be accepted without imperiling the logic of
inference involving conditionals; and I have elsewhere shown how this
yields a perspicuous way to relate Lewis’ and Stalnaker’s theories to each
other.?

However, this is a bit of an uncomfortable position, for one would like
to say that all sorts of contingent conditionals are true. If this butter were
heated to 150°C, it would melt. Well, these may be the cases in which the
context makes very clear the exact content of that tacit ceteris paribus
clause. But the semantic analysis is in terms of possible worlds, and an
alternative semantics based on the ceteris paribus idea yields a logic that
is a proper part of both Lewis’ and Stalnaker’s logics, and indeed also
of any other logic which we shall encounter in this paper.* So we feel the
inclination to say that even if the truth-values of some conditionals are
indeterminate, there are yet many non-trivial ones that we are entirely
prepared to assert.

I must now state my own position: counterfactual conditionals do not
have the function of stating facts, and in a strict sense, none deserve to be
called true or false. Their function is different, just like the function of
sentences in the interrogative or imperative mood is different.

Before I elaborate this position, I may as well mention at once that
David Lewis considers such positions (in his discussion of Adams) and
rejects them. Lewis writes:®
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I cannot think of any conclusive objection to the hypothesis that indicative conditionals
are non-truth-valued sentences, governed by a special rule of assertability.... I have an
inconclusive objection, however: the hypothesis requires too much of a fresh start. It
burdens us with too much work still to be done, and wastes too much that has been done
already. So far we have nothing but a rule of assertability for conditionals with truth-valued
antecedents and consequents. But what about compound sentences that have such con-
ditionals as subsentences?

I assume that Lewis would voice these same admirably conservative
sentiments in response to similar hypotheses about any conditional or
modal connective. Yet he probably does not mean that it is not a virtue
of a philosophical position, if it spurs its adherents on to new ventures,
such as the development of a pragmatics-oriented alternative to truth-
value semantics. What Lewis intends, presumably, is a challenge: do not
claim any advantages for your hypothesis until you have substantiated
its feasibility in detail. And Lewis assumes that, since the hypothesis must
also eventually yield a characterization of the logical laws of inference,
substantiation will require a full-fledged alternative to the usual seman-
tics, in which concepts like assertability replace concepts such as truth.

This assumption accompanying the challenge I deny. Clearly, if anyone
claims that conditionals, and sentences with conditionals as parts, have a
different function from statements of facts, then he must give an account
of that function. But the account I shall now give implies that, to ferret
out the logic of discourse involving conditionals, it is appropriate exactly
to engage in the usual (possible worlds & truth-values) semantics.

Let us return for a moment to the Sellars paradigm.® A person asserts
that this pat of butter would/will melt if heated. He knows very well that
his experience of heat melting butter in the past does not warrant his
assertion; he has no such simple faith in straight rule induction as
Russell’s chicken. But in asserting the conditional he signifies his alle-
giance to a certain background theory, in which relevant principles of
form 4, about butter and heating, hold. He may be more or less vague on
the theory and the theory in question will be more or less sophisticated;
it might surprise you to find what vague and unsophisticated theories
some of your nearest and dearest have about butter. But his allegiance is
strong, and he will reiterate the conditional with rising volume and timbre
if pressed. For when a man enters a commitment, whether to a scientific
theory or an ideology, he assumes ipso facto the office of explainer. He
undertakes to answer questions ex cathedra, qua adherent of the theory.
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And his use of conditionals has the function of signalling his commit-
ment.

It would be nice to have a formal model for this situation, so that we
could calculate what a man’s ex cathedra answers would be, given his
theoretical commitments, plus observations. I admit this, and that I have
no such model to give. But I add that I can nevertheless describe in-
formally how such a situation develops, and that in a way which shows
the correct approach to the central question: what is the logic of in-
ferences involving conditionals?

Your run of the mill conditional-user has no exact account of how
theories plus facts warrant the assertion of conditionals or complex
sentences involving them. So how does he keep straight how he is to
behave in argument, carried on in such discourse? The situation is similar
to that of a physicist unacquainted with the axiomatic basis of his
discipline. He is willingly bewitched by a heuristic picture, and this
picture guides his inferences. It is also similar to the pictorial way in which
we give set-theoretic or algebraic proofs without reference to any axio-
matic basis. (In a more serious vein, Milton chose to use the language of an
earlier cosmography than that of his own day, when writing Paradise
Lost: and today too, a scientifically educated person can give expression
to his religious commitments through texts or hymns talking of the seven
days of creation and four corners of the earth.) If there is an axiomatic
basis in existence, the heuristic pictures or pictorial talk has no theoretical
interest any more. But when there is no axiomatic basis and we try to
produce one, we proceed by carefully examining the pictures. Recall for
example Helmholtz’s pictorial ‘axiom of free mobility’ and Lie’s formali-
zation in terms of geometric transformations.

By what picture, then, is the conditional-user willingly bewitched,
when he uses such discourse? If pressed, he will talk about imagining
alternative possibilities, and such; he may even give such elegant argu-
ments as Lewis’

I believe that there are possible worlds other than the one we happen to inhabit. If an
argument is wanted, it is this. It is uncontroversially true that things might be otherwise
than they are. I believe, and so do you, that things could have been different in countless
ways. But what does this mean? Ordinary language permits the paraphrase: there are many
ways things could have been besides the way they actually are. On the face of it, this sentence
is an existential quantification. It says that there exist many entities of a certain description,
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to wit ‘ways things could have been’. I believe that things could have been different in count-
less ways; I believe permissible paraphrases of what I believe; taking the paraphrase at face
value, I therefore believe in the existence of entities that might be called ‘ways things could
have been’. I prefer to call them ‘possible worlds’.”

The point to which I agree is that logician’s possible world machinery is a
passable explication of the picture that bewitches users of modal and
conditional discourse. Since that picture is what guides inference, the
logical catalogue of valid patterns of inferences can only be searched out
by exploring this picture, or the logician’s explication thereof. Hence the
success of the usual form of semantics.

4. PROBABILITY

As every knows, there are five Schools or interpretations of probability:
the logical, frequency, subjective, propensity, and Kyburg. I do not wish
to discuss these interpretations, nor align myself with one, but to discuss
paradigms. There seem to me to be two paradigms guiding the inter-
pretation of probability, and their use cuts across the five Schools (though
at least among philosophers if not among statisticians, some Schools
show a distinct preference for one or other). These paradigms I shall call
the epistemic ticker tape and the finite state machine. Each of these is a
conceived situation, or type of situation, in which some probability talk
at least appears eminently intelligible.

A philospher adhering to the first paradigm imagines a subject who has
both knowledge and degrees of belief. His knowledge comes to him on a
ticker tape bearing simple sentences, and his total knowledge at time ¢ is
the content of the tape at t. The tape delivers one message per unit time,
and each time it does, the subject’s knowledge is increased, and he revises
his degrees of belief. And the subject asserts ‘Prob(4)=r"if and only if his
degree of belief that A, equals r.

A philosopher adhering to the second paradigm imagines a subject (or
nature) feeding inputs into a black box with finitely many states. Call the
possible inputs I,,..., I,, and the possible states Bj,..., B,, The box
comes with an instruction sheet giving for each state B; a matrix [p(i, j, k)]
which purports to mean that if the machine is in state B; and input I; is
applied, then the machine transits to state B, with probability p(i, j, k) —
the transition probability. The philosopher likes to refer to this situation as
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a chance set-up, and sees it as his task to explain what the instruction
sheet really means.

Conditional probabilities have a place in both paradigms, but the
guidance which the paradigms give for defining conditional probability
is distressingly less than complete. Consider first the ticker tape. Bayesians
established early on that, if to be rational is to be such that no one can
make book against you, then the degrees of belief of a rational subject at a
given time ¢ must be, mathematically speaking, an assignment of proba-
bilities. Professor Teller’s paper in this volume proceeds in adherence to
the epistemic ticker tape paradigm, and asks whether the conditional
probability P(A4/B) of A given B must be defined by

(12) P(A/B)=P(A & B)/P(B)
which is the usual formula.

The basic constraints on P(A/B), namely that P(B)=1, and that the
function P(A/B) is itself a probability assignment, are nowhere near
enough to deduce (12). Mathematically at least, there are many alterna-
tives to (12); and David Lewis has defined one for Stalnaker models.
However, Teller’s paper gives a proof, also due to Lewis, that the Bayesian
requirements of rationality also require (12). That is, if the ticker tape
subject revised his degrees of belief other than by conditionalizing to his
increasing knowledge by formula (12), it would be possible to make book
against him. This is a very nice result. Its philosophical significance,
however, is somewhat marred, to my mind, by the lack of realism in the
rational ticker tape subject as model for the scientific inquirer. The latter
will frame theories, suggested but not entailed by his evidence, commit
himself to them, and conditionalize his degrees of belief accordingly.
Although these commitments are open to revision in the light of new
evidence, he will nevertheless make his bets in accordance with these
theoretical commitments in the meanwhile. So a real scientific pilgrim’s
progress violates the rationality conditions on which Lewis’ proof is
predicated.®

It might seem that the finite state machine paradigm is in good shape
to guide the definition of conditional probability. For after all, is the
transition probability not a conditional probability

(13) p(i, j, k)=P(B, next | B;now & I; now)
of the next state given present state and input?
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Indeed; and it is possible to reconstruct the p(i, j, k) from other proba-
bilities so that (13) follows from (12) (see Appendix, Section 2). But the
moment we start varying the conditions, we run into trouble. How are we
to interpret

(14) P(B, next | one of B,,..., B, next)

for example? Well, the transition matrix describes tendencies of the
machine due to its physical make-up; hence the condition in (14) is to be
conceived of as a condition imposed on the physical make-up of the
machine. We put a ‘damper’ on the machine, ‘closing off’ possible states
B, ..., B;_ . Thus the machine has an offspring, the ‘dampened’ machine,
with new transition probability matrices [p*(i, j, k)]. What are these new
matrices to be like? Well, that will depend on exactly what the damper
does; the only real constraint is that after the damper is put on, P (one of
B,,..., B, next)=1. But there must be lots of dampers having that effect,
and only one kind of damper will allow us to calculate p*(i, j, k) using
formula (12). This kind of damper can be described (see Teller’s proof
that (12) must be true if, roughly speaking, P(A/B) is to be functionally
determined by P(A4 & B) alone, and not by other factors). But in the
present context, this is still only one case, and it is hard to see why it
should have such a preferential status.

In both paradigms, there are simple, clear cases, in which formula (12)
appears the correct one. If I am a relatively dull subject, not given to much
theorizing, like Conrad’s Winnie Verloc of the conviction that things
don’t bear looking into much, then I shall have reason only to revise my
degrees of belief by conditionalizing on new knowledge via formula (12).
If T consider a finite state machine, and look only at those conditional
probabilities listed in the transition probability matrices, again I shall see
formula (12) satisfied. Outside these simple realms, all is grey. However,
having noted that (12) cannot be considered sacrosanct, I shall now accept
the usual extrapolation, and henceforth consider conditional probability
to be defined by formula (12) everywhere.

5. THE STALNAKER THESIS

The English statement of a conditional probability sounds exactly like
that of the probability of a conditional. What is the probability that I
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throw a six if I throw an even number, if not the probability that: if I
throw an even number, it will be a six? And if we do not allow nesting of
conditionals, nor conjoining conditionals with other sentences, ‘P(B— A)’
is surely no more than a harmlessly rewritten ‘P(A/B)’ But the rewriting
may not be so harmless if we regard B— A as a full-fledged sentence and
make logical claims about the arrow — even if we do not allow nesting of
arrows. But even if a thesis is not harmless or trivial, it may be true; and
Robert Stalnaker advanced

(15) Stalnaker’s Thesis.
P(A/B)=P(B— A) whenever P(B)is positive

in conjunction with the usual (formula 12) definition of P(A/B). I shall
refer to this briefly as the Thesis. It must be distinguished from Stalnaker’s
secondary claim that the Thesis holds with — being the Stalnaker condi-
tional.®

This secondary claim goes well beyond the Thesis, which supposes
only that we are speaking of some logically respectable conditional. In
the Appendix (Section 2) I shall show that chance set-ups may be re-
garded as Stalnaker models; but there is then in general no obvious way
of getting the Thesis to hold, for the probabilities p(i, j, k) of the transition
probability matrix. Later on (Section 6) it will appear that there is an
unobvious way to do that, involving the fictional introduction of in-
finitely many further possible states not observationally distinguishable
from the ones originally countenanced. In any case, the matter is not ob-
vious even for simple probability statements.

David Lewis has an argument to show that instead, the Thesis is
untenable, on pain of triviality. He deduces, starting from the Thesis, that
no probability assignment can have more than four distinct values. This
demonstration he gave at the Canadian Philosophical Association in
June 1972, and it was a veritable bombshell; for months afterward
everyone believed that the Thesis was defunct.

But Lewis’ demonstration has subtle auxiliary assumptions that go
into his formulation of the problem. He introduces his formulation with
the following persuasive commentary:'°
What needs explaining is the fact that for all speakers at all times... the assertability of

indicative conditionals goes by conditional subjective probability. If we hope to explain this
general fact by the hypothesis that the probabilities of conditionals always equal the corre-
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sponding conditional probabilities, and if we assume that — means the same for speakers
with different beliefs, then the fixed interpretation of — must be such as to guarantee that
those equalities hold ho matter what the speaker’s subjective probability function may be.

It may not be immediately obvious how this commentary affects the
formal reasoning. The key phrase is ‘the fixed interpretation of —’. What
Lewis is actually demanding is that the model structures be such that any
probability assignment (of a large enough class) can be superimposed
without violating the Thesis, and without corresponding changes else-
where in the model structure.

If persuasive English lacks some perspicuity, so does the formalistic
jargon in which I have just restated it. Let us imagine the following situa-
tion. A certain person, who has a certain amount of information, and a
commitment to certain theories, represents the world to himself by means
of a model structure with probability measure P on its set of possible
worlds. In this way he properly allows for his partial ignorance: there are
many ways things might be compatible with his information and theories.
His structure also has a nearness relation among worlds, so that he can
tell in which worlds A— B is true. But he does not know which world is the
actual one; however, if X is a set of these possible worlds in the domain
of P, then P(X) is the probability, according to him, that the actual world
isin X.

Now a revision occurs; this person’s information and/or theoretical
commitment changes in a certain way. His ideas about what the world
is like change; and also the degrees of belief he attaches to the sentences in
his language. So he revises his model structure cum probability measure.

And here, Lewis introduces the requirement that it should be possible
to make this revision by changing the probability measure alone — and
not the constitution of the possible worlds or the nearness relation on
them. What inspires this requirement, which is crucial to Lewis’ reductio?
Would it not seem rather, that our probabilitiés are inextricably involved
in the way we represent the possibilities, and nearness relations among
them, to ourselves? In the finite state machine paradigm, the transition
probability matrix presumably reflects the machine’s physical structure;
if our ideas about the one change, will we not revise our modelling of the
other?

The inspiration for the requirement must doubtlessly be Lewis’
metaphysics, according to which one should always be able to say: let
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the possible worlds in my model structure be those which there actually
are, let the nearness relation on them be the one reflecting their actual and
objective similarities. In this scheme, the probability measure is nothing
but a device to picture our ignorance. Hence it has nothing to do with the
internal constitution of the model structure, which is reality itself. For this
reality of possible worlds exists independent of the mind, its evolution
flows on in its own even tenor;

The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety nor Wit

Shall lure it back to cancel half a Line,

Nor all thy Tears wash out a Word of it.

How very different it looks to those of us who locate all of reality in the
actual world and the representing subject, seeing nothing but manipulable
fictions in the possible world menagerie !

So the logical disaster was precipitated not by Stalnaker’s Thesis, but by
the Thesis coupled with Lewis’ metaphysical realism.

Lewis also has another demonstration about the Thesis, in which it is
considered independently of formula (12), the usual definition of condi-
tional probability. Assume the Thesis, and assume that P(— /B) is a revi-
sion of P such that P(B/B)= 1, and the revision is ‘in some sense minimal".
Then Lewis derives the conclusion that — must be the Stalnaker condi-
tional. The same results would follow a fortiori with (12) assumed; and
this was also proved by William Harper.'! But in this demonstration too
a crucial role is played by the assumption that the probability measure
on the model structure may be revised, without violating the Thesis, and
without changing any other aspect of the structure. (The specific revisions
used are to the zero-one measures P, giving probability 1 to the set {a},
where a is any one of the possible worlds.) But this is exactly the assump-
tion found in the preceding demonstration, justified only by metaphysics,
and not acceptable to me.

In conclusion then, I see the state of the issue as follows: the Thesis
coupled with the usual definition of conditional probability, and the
assumption that — is a logically respectable conditional, does not
reduce to absurdity, and also does not imply that — is the Stalnaker
conditional. There are two questions I want now to explore: first, what
is the minimal logic of conditionals such that the Thesis holds non-
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trivially, and second, is it tenable to assert the Thesis for the Stalnaker
conditional?

6. A MINIMAL LOGIC

Let us now assume the Thesis, and the usual definition of conditional
probability, and the respectability of — as a conditional connective.
What logical principles must hold then? I shall need to introduce some
Auxiliary Assumptions which are meant as explicating the respectability
of the arrow. Henceforth capital letters denote propositions, i.e. sets of
possible worlds; & is intersection, — a certain binary operation, v is
union and 714 or A denotes K—A where K is the set of all possible
worlds.

(16) Assumption. If two propositions must always have the same
probability, then they are identical.

This is not logically precise: I mean that if P(¢ (X, ..., X,))=PW(X4,...,
X,)) for every model structure with probability measure, and all proposi-
tions X ,..., X, in that structure, then ¢(Xy,..., X,)=¢(Xy,..., X,) for
every model structure etc.

17) Theorem. A— A=K, the set of all possible worlds.
For P(A— A)=P(A/A)=1=P(K), using the Thesis and Assumption (16).

(18) Assumption. If A is not the empty proposition then A—B
and A—C are disjoint if B and C are disjoint.

(19) Theorem. A—~(Bv C)=(A—B.v.A-C).

The proof, for the case P(A4)#0, is as follows.

P(A—.Bv C)=P(Bv C/A)=

PB&C.v.B&C.v.B& C/A)=

P(B & C/A)+P(B & C/A)+P(B & C/4)=

P(A>.B& C)+P(A—>.B& C)+
+P(A>B & C).

By Assumption (18), the propositions involved are disjoint, so

—P[(A~.B & C)v(4—.B& C)v(4A~B & C)]
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Now by (16), we conclude
(200 [A~BvC]=[(4->B& C)v(4~>B & C)v(A—~B & )]

However, by exactly similar reasoning we get, because B=(B & C)v
v (B & C), the following

(21) A-B=(A-B & C)v(A-»B & ()
(22) A-C=(A->B& C)v(A-»B & ()

and noting that the first disjunct on the right in (20) can be repeated, we
derive Theorem (19) by substitution of equals for equals in (20). Again,
the case of P(A4)=0, if allowed to be defined at all, is obvious.

The last theorem has a corollary that (4— B. v.4- B)= K, which is the
peculiar Stalnaker principle first denied by Lewis. To this extent, at least,
Stalnaker’s Thesis is intrinsically connected with Stalnaker’s theory of
conditionals. A second corollary is that, if P(4)#0, then, because
A—B.v.A—>B=K, A>B=A—B. And with this second corollary in
hand, we derive that P(4—>B & C)=P(A—B. & A—C) in all cases,
because of De Morgan’s law and Theorem (19). Hence by (16) again,

(23) Theorem. A—(B & C)=A—B. & A—-C.

We now have three theorems, but do not know yet that modus ponens
holds — as it must, or the name ‘conditional’ is inappropriate. Indeed, in
both Stalnaker and Lewis’s systems, one finds the stronger law

(24) Assumption. (A—>B) & A=(A & B)

to which I hereby agree.

This is where I stop; let me call a proposition algebra (tout court, as
opposed to ‘algebra of propositions in model structure M) any field of
sets with unit K and binary operation — (possibly a partial operation,
e.g not defined for 4— X), such that

(I) (A—B) & (A~C)=(A-.B & C)
(I1) (A—B)v(4-C)=(4-.Bv ()
()  A&A—B)=(4&B)

(Iv) A—-A=K

hold where defined. The minimal logic of conditionals suitable for
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probabilification I shall call CE; it is adequately described by saying
that in any acceptable model structure with probability, the algebra of
propositions must be a proposition algebra in the above sense.

So the Thesis requires logic CE; but does the Thesis allow non-trivial
probability measures for the model structures countenanced by CE?
Indeed, as I shall prove in the Appendix, Section 3,

(25) Theorem. Any antecedently given probability measure on a
countable field of sets can be extended into a model structure
with probability, in which Stalnaker’s Thesis holds, while the
field of sets is extended into a proposition algebra.

which theorem is as essential as the soundness and completeness theorems
for CE, with respect to the criteria of adequacy for our present problem
area.

Principle (III) (Assumption (24)) was introduced somewhat cavalierly
perhaps, as being previously agreed to by all contestants. Even if it is only
reasonable to approach the problem with a strong an agreement with
Stalnaker and Lewis as seems possible, it may be well to look, momen-
tarily, at the status of the Thesis purely vis-d-vis this area of agreement.

First, assume the Thesis, and also the nesting-reducing principle

(26) A—»(A—»B):(A—-»B)
also common to all contestants. Then we derive
(27) P(A—B)=P(A—(A—B))=P(A—B/A)

that is, that the conditional is stochastically independent of its antece-
dent. Conversely, assume principle (III), plus (27), and derive

(28) P(A-B)=P(A—B/A)=
=P(A—B. & A)/P(A)=
=P(4 & B)/P(A)=
=P(B/A)
which is the Thesis. So the agreement, by all concerned, about the Thesis
is that it is equivalent to the stochastic independence between the condi-

tional and its antecedent. This might provide a new fulcrum for the appli-
cation of a philosophical critique or defence of the Thesis.
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However that may be, in Theorems (17)-(25) we have a complete solu-
tion to the problem of the minimal logic CE of conditionals required by
the Thesis. Also, since nesting of arrows plays, at most, an inessential role
in all the demonstrations involved, these results remain if such nesting
is disallowed. I turn now to the Stalnaker logic of conditionals.

6. STALNAKER BERNOULLI MODELS

I may as well say at once that I cannot prove an analogue to Theorem (25)
for Stalnaker algebras. (See note (12)). From the Appendix, Section 1, it
appears that a Stalnaker algebra is a proposition algebra satisfying two
further principles:

) (A>B) & (B—A) & (A—>C).>.(B—C)
(VI) if A is included in B, then B—A is included in A—A.

The second of these is about conditionals with impossible antecedents,
which is like probabilities, conditionalized on a condition with zero
probability, an I shall ignore this (as a mainly technical matter). And (V),
I consider debatable, and not established by philosophical argument; but
I shall not debate it here.

In this section, I mean to show that one can adhere to the use of
Stalnaker models and maintain the Thesis for all conditionals of a few
simple kinds. (If no nesting of arrows is allowed, this solves the problem
entirely; but I cannot so restrict myself with good conscience.) The kinds
of conditionals I shall handle have the forms:

A-B
A—(B-C)
(A-B)—»C

in which A, B, and C themselves contain no arrows.

Imagine the possible worlds are balls in an urn, and someone selects a
ball, replaces it, selects again, and so forth. We say he is carrying out a
series of Bernoulli trials. Now it is possible, is it not, that the selects first
a, then the nearest world to o, then the nearest to that, and so on. In that
case, A— B is true at « exactly if the first 4-ball he selects is a B-ball.

This suggests a way of constructing Stalnaker models, in which proba-
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bilities enter very straightforwardly. Indeed, the proofs I shall then give
about the Thesis in such models, proceed by quite simple probability
calculations. (They were not simple to me until Ian Hacking provided me
with a crucial lemma; but they seem simple now.)

I must interject here that, from the point of view of Stalnaker’s seman-
tics, these models are of a very special variety. (Hence, although I do not
know that the Thesis fails in them for more complicated conditionals, I
expect it does.) To explain this limitation, it is easiest to refer to Lewis’
reformulation of Stalnaker’s semantics. In Lewis’ version, a Stalnaker
model is a couple M ={K, <) in which, for each a in K, <, is a total pre-
ordering of K. (For all present purposes, <, may be taken to be a discrete
linear ordering.) Then the nearest A-world to a is the minimal element by
the <, ordering, of the set {8€K: A is true at B} (=1I(A) for the inter-
pretation at issue). Now note that for each world there is another such
ordering; because, intuitively, not all the worlds may lie on one straight
line. In the models which I construct in this section, however, the following
happens: if «<, and <7, then o<, y. Indeed, think of <, as deter-
mining a series &, B, 4, 7,... and <, another series, say B, 7', ', ... Then in
these models, but not in general, the series g, 7', &',... is in fact the series
B, 7,9, .... So we can think of these models as having their worlds arranged :
on a set of parallel lines very far apart from each other, and on each line,
the worlds are arranged like the numbers, 0, 3, 3, %, .... The reason I have
explained this at length is to make clear that the tenability of the Thesis
for more complex sentences has little to do with what happens in these
special models.

Now let me explain how the construction works. We begin with a
Stalnaker model M= (K, <), and a field F of propositions in M. These
propositions are to be thought of as expressed by zero-degree sentences;
sentences in which there are no arrows. Finally, we have a probability P
which is defined at least for all of F. If A and B are in F, then A>Bis a
well-defined proposition in M, of course; but at this point we don’t know
what P(A4— B) is, nor even whether it is defined.

We now make up the bigger model M*=(K*, <*) where K* is the
set of all maps 7 of the natural numbers into K. The relation <7, on I
where 7 is in K*, is defined by:

p<* g iff there is a number k such that p(k+m)= g (k+m) for
all natural numbers m.
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For obvious reasons, such a map p may be referred to as the sequence
p(1), p(2)...

In this much bigger model M*, the old model M reappears if we identify
member o of M with the series a*=(, f, y,...) which is the domain of <,
ordered by that relation.

Now we look at the field F* of subsets of K formed this way: F* is the
family of all sets

A,®QA,QK*: A,,..., A,in F

where ® is the Cartesian product, and this notation is imprecise, but
perspicuous for:

{n:n(i)ed; for i=1,..,n}.

This construction of F* is such that if F is a (Borel) field, so is F*.

What we have so far is what is called a product construction, and this
has a familiar correlate extension for the probability; I shall use the same
symbol ‘P’ for the new measure as well as the old:

P(4,® - ®A,®K*)=P(4,)... P(4,).

The sets AQ K* in F* may be called zero-degree propositions in M*.
These are the reappearance of the old field F of course, and have the
same probabilities as the correlate old propositions: P(A®K*)=P(A).
Henceforth it will be convenient to abbreviate ‘4® K*' to ‘4’ when this is
not confusing.

In M* we also have conditional propositions, of course, defined by

X - Y={neK*: for all m, if m is the first number such that
n,€X, then m, e Y}

where =, is the series that results from 7 when you cut off the initial
segment 7(1),..., w(m—1).

The nice thing shown in the Appendix at this point is that F* is closed
under —: if X and Y are in F*, so is X — Y. Hence in M*, all propositions
constructible from the zero-degree propositions (by —=,n,\, -),
automatically receive a probability. Note also that if A and B are zero
degree, then 4, and also A— B, is true at « in K iff it is true at o*.

Now I shall show intuitively that if 4 and B are zero-degree, then
P(A—B)=P(B/A). Choose at random a series © of worlds in K. This is



282 BAS C. VAN FRAASSEN

itself a series formed by making a random selection of a world from K,
again and again, ad infinitum. It is just like tossing a die forever. At some
point, say at n(m) we find a world in which A4 is true. Since previous
selections do not influence this one in the least, it is itself nothing more nor
less than a random selection from K. Hence the probability that this first
A-world is a B-world, is just the probability that any world satisfies B
given that it satisfies 4. So that probability is P(B/A). Hence the probabili-
ty that A— B is true in the actual world (about which nothing is specified
a priori except that it belongs to K) is just P(B/A). So P(A—B)=P(B/A).
This proof is made precise in the Appendix, as well as similar, but
longer, proofs that P(4—.B—C) and P(A— B.—C) conform to the Thesis
as well. So at least for these simple conditionals, the Thesis is tenable in
conjunction with Stalnaker’s logic and Stalnaker’s model theory.

University of Toronto

APPENDIX

For a summary of Stalnaker’s semantics, see the end of Section 2 in the
" body of the text. In this Appendix, I shall use distinct symbols for set-
theoretic operations and sentential connectives (N, U, —; &, v, 1)
except in the case of the arrow.

1. STALNAKER ALGEBRAS

David Lewis gave essentially the following simplified axiomatization® of
Stalnaker’s logic C2:

(A1) FA when A is a propositional tautology

(A2) FA-A

(A3) FA—B) & (B»>A) & (A>C).oB->C

(A4) F(AvB)»A.v(AvB)»B.v:(AvB)»C=4-C.&.B-C
(A5) F(A—B)>(A>B)

(A6).  .FA=B.v.A-T\B

(A7) HA&B)>(4—B)

(R1) if A and FA> B then B
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(R2)  ifH(A;&...&A4,)>Bthen H(C—A,)&... &(C—A4,).5(C—B)

THEOREMS:
(1) H(A—B)& (A>C).=A—(B& C)
) HA—B)v(A—C).=A—(Bv C).

Almost all of this can be proved using (R2); there remains only the fol-
lowing part:

@) FA—(Bv C).>.(A>B.v.A-C)

Suppose the consequent is false; then by (A6) and theorem (1), A»(T1B &
& 71C) is true. So then if the antecedent is true, by (1) and (R2), A—>B is
true after all, contrary to supposition.

Now (A4) can be simplified: suppose that (4 v B)—»A and (4v B)-B
are false; then by (A6) and (T1), Bv B—(A4 v B) and so, via (A2) and (R2),
Av B—C for all C. So Av B is an impossibility and (A4) reduces to: if
Av B is an impossibility, so is A (and so is B mutatis mutandis). Hence
(A4) can be replaced by:

(A4) HAvB)»AvB.>.A-4
Also, (A5) and (A7) can together be replaced by
(AS)  FA&(A—B),=(4 &B).

Accordingly, a Stalnaker algebra of propositions is a field of propositions
(sets) with unit K such that the following principles hold (I){IV) are same
as in Section 6 in body of text):

(D (A»B)n(4-C)=(4-.BnC()

(IT) (A»B)u(A—>C)=(A4—.BUC)
(I1I) An(A-B)=(AnB)

V) A—>A=K

\%) (4—B)n(B—>A)n(4—-C)=(B~C)
(V1) If A< B then BHAS A—A.

(Here (VI) comes from (A4').)
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THEOREMS
(1) If A<Bthen A>B=K.

Forif AcBthen B=AuUB;but A AUB=A—->AuU.A->B=K.
2 If AcB then C»A<C—B.

Forif AcBthen B=AUBso C»B=C—»>AuU.C—B.
3) If 4, A...0 4,S B then C—>4, ... C—A4,= C—B.

For C»4;n...nC-»A4,=C—.4;n...0n 4,, and so by (2), =cC—B.
This recaptures algebraically the effect of (R2).

2. CHANCE SET-UPS AS STALNAKER MODELS

To produce a simple Stalnaker model, consider a probabilistic finite state
machine with input. Let its present state be By, its possible states By, ..., B,,
‘and the possible inputs I, ..., I,,. There is a transition probability matrix
[pi;] relevant given that the present state is B,: the probability that the
next state is B; if one applies input I, equals p;;: Since each input leads to
some outcome, Y ; (p;;)= 1. In the usual picture, the rows sum to one:

] g bR

J

I, | py DPij Pin
I; Dij
1

m pm’l
We can also put this as follows:
P(B; next | B; now & I,)=p;;

Let the set of possible worlds (meaning, possible immediate futures) be the
set of couples <I;, B;>. So the actual world is the one in which the present
state is By, the input I;, and the next state B, and it is represented by the
couple <I;, B;).

With respect to this set of worlds let the proposition I, expressed by
sentence I; be {{I}, B;>:1<j<n} and similarly let B, = {<I;, B,>:1<i<m}.
The set of worlds is linearly ordered in some way. The probabilities are as
follows: for simplicity, let the input be chosen randomly, hence P(I))
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should be (1/m). So let P({<I;, B;>})=(1/m) p;;

PU)=Y, (1/m) Py=(1/m) 3. pyy=(1/m

P(B,)=¥. (1/m) pu=(1/m) Z} Pi

P(I.nB))=P({{I;, Bp})=(1/m) py
P(B;| L)=P(I,~B)/P(I,)=
=[(1/m) Pi;)/(1/m)=
= Dk;j
all as it should be.

Now we consider the nearest ordering It is linear, and since the set is
finite, discrete. So there is for each world (I, B;) a nearest I, world,
namely (I, B,;;> where kij is a number between 1 and n inclusive. The
restriction on this is that if i=k then kij=j. Apart from that, you would
think, it could be anything.

(Ik"Bl)= e B;): kij= 1}
P(B, | I)=P(I,~B,)=Y, {P(I; Bp): kij=1}.
So
Py =Z (i/m) Piﬂs(l’ kij)

where §(x, y)=1if x=y and =0 otherwise.
For any two indices a and b, we have therefore the equation

(1) pab=(1/m); pijé(b’ al])

But that is very surprising!

There are now two questions: will there always be an ordering such
that (1) is true? and when (1) is true, what is the ordering like? The answer
to the first question is NO: in fact, it is difficult to cook up an example in
which (1) is true. As one counterexample, let the matrix in question be

|Bl B, B,

W= W=
o= gl,_.
Ol ;I a
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and consider p, ; in (1). The equation then becomes 3 =§+? and there just
are no other entries summing to Z. (But this problem can presumably be
met by throwing in a large number of extra possible worlds, with fictional
states, and a larger matrix; see the last section of this Appendix.)

3. THE MINIMAL LoGICc CE

I will define model structures with probability; in accordance with my -
own preferences, the algebra of propositions in the model structure is
- specified directly. The procedure of having a privileged family of proposi-
tions (as opposed to the family of all sets of possible worlds) is familiar
from quantum logic, but has only recently become current in modal logic
(for example, in S. K. Thomason).

3.1. Frames

Motivation: in a propositional logic of the usual stripe, the propositions
(=sets of worlds) form a field but not a Borel field. Any field can be
extended to a Borel field; and a function on the original field would not be
a probability measure unless it could be extended to a probability measure
on the generated Borel field. Terminology: a Borel field of subsets of Vis a
sigma-ring of such subsets, to which V itself belongs. A triple {V, F, P) 1
shall call a probability space exactly if P is a probability measure with
Borel field F of subsets of V' as its domain.

DEFINITION. A frame is a triple ¢ =V, F, P) such that V#A4 and
F < domain of P is a field and ¢’ = (¥, domain of P, P) is a probability
space.

Note that ¢ is a frame also; I shall say that ¢ < ¢’ just because their
second members are so related, and the other members pairwise identical.
A member X of F with P(X)+#0 will be called a non-zero set in ¢ (to be
distinguished from non-empty).

DEFINITION. Frame ¢ =<V, F, P) is full exactly if every non-zero set
X in ¢ is the union of a family X* such that P | X* is onto [0, P(X)].

The vertical bar denotes restriction of a function; a probability space is
full exactly if every set of measure r has a subset of measure g, for each
positive g<r.



PROBABILITIES OF CONDITIONALS 287

THEOREM. Every frame can be homomorphically extended to a full
frame (with measure preserved).

Proof. It is necessary only to consider frames which are probability
spaces. If ¢=(V, F, P) is thus, let p*=®[0, 1]=<V*, F* P*) where
V*=V®JO0, 1] the Cartesian product; the members of F* are the sets
X®E with X in F and E a Borel set on [0, 1]; P*(X®E)=P(X). u(E)
where pu is the usual ‘length’ measure on [0, 1] with u([a, b])=|b—a|=
= u([a, b]) and similarly for other kinds of intervals. This is a probability
space — see any textbook under the heading ‘Product measure’. The map
X-X®I[0, 1] is a set homomorphism of F into F* and preserves mea-
sure: P(X)=P(X). 1=P(X) u([0, 1])=P*(X®[0, 1]).

Finally, this is a full frame. For let r be any fraction between zero and
one, and Borel set E=\J{2 , e; where the ¢; are disjoint intervals. If e; has
end points a and a+m let re; be the similar interval with end points a
and a+rm. Then we argue :

P* (X ® U re,-) =) P*XQre)=
i=1

P(X) p(re)=

I
DMes I8 1p18

|
-

P(X) ru(e)=rP* (X ®F)

This suffices; any Borel set differs by measure zero from a countable
union of half-open intervals.

Finally, I will call a frame {V, F, P) finite or denumerable if the field F
is so.

3.2. Proposition Algebras

Let F be a field of subsets of V. I shall call {V, F,—) a proposition algebra
if - is a partial operation with domain GQF, GEF and range < F such
that (where defined)

I (A»B)n(A-C)=(4-.BnC)
(IT) (4—B)u(4-C)=(4-.BUC)
() An(A-B)=AnB

V)  (A->A)=V.
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Deducible properties of —, where defined, are:

(tp0)  If A=Bthen (A—>B)=V

(tp1) A->A=V;from (p5)

(tp2)  (A—>B)=A—(ANB); from (p1) and tp1)

(tp3)  (A->B)=(4—.BnC)u(4-.BnC); from (p2)

(tp4) (A»B)u(4-B)=V

If = has properties (I){(IV), and we define A—B to be 4=B when
defined and to be A U B otherwise, for given sets A, B, then — also has
properties ([}{IV). This shows that the stipulation about the domain of —
is rather innocuous.

The definition of proposition algebra is suggested by the properties of a
model structure in which the sentences A receive propositions A and
(A—B)={x:s(4, x)e B} where s is a (partial) operation subject to the
restrictions

(s1) 5(4, x)e A

(s2) if xe A then s(4, x)=x
but no others. I do not think all proposition algebras could be produced
this way, since N {(4—B;):i=1, 2,...} might be empty while no member
of that set is. But could any proposition algebra be homomorphically

extended to one so produced? I don’t know.
With reference to (III), define [4, B]=(A—B)— (AN B). Then

(@)  [4 BAC]=[A4, B]A[A, C]

(92) [4, BuC]=[4, B]u[A4, C]

@) [4,B]ls4

@)  [4,BJu[4,B]=1

(q5) if AcBthen [4, B]=4

(tal) [4, A]=1

(tq2)  [4 B]=[4, AnB]

(tq3) [4, B]=[4, BnC]u[4,BnC]

follow from (I)+(IV); and (q1), (92), (q4), (q5) together imply (I}{IV). (Note
that (q4) implies (q3).)
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Hence I shall take (q1), (42), (q4), (q5) as defining a proposition algebra
when convenient.

3.3. Models

A model is a combination of frame and proposition algebra:
A model is a quadruple M =V, F, P,—) such that {V, F, P) is a frame
and (V, F,—) is a proposition algebra, and

(ml)  A-—Bisdefined at least if A and Bare in F and 4 is non-zero
(m2)  P(A—B)=P(AnB)/P(A)if P(A)#0 for all A, Bin F.

The proviso on (m2) is not operative if — is not defined except as required
by (m1), but there is no need to be so stringent. I am willing to say even
that P(4— B)= P(B/A) whenever A— B is defined, for I regard conditional
probability as an undetermined concept when the antecedent is a zero
set; P(A4/A) and P(B/A), for example, may be any two numbers you like
between 0 and 1 inclusive, or undefined if you like. The mathematical
theory of probability certainly requires no choice among these options.

THEOREM. If ¢ is a denumerable full frame, then there is a model
M={¢',—) such that p<¢".

The proof will be long and I shall begin with intuitive commentary and
lemmas. Let ¢ =(V, F, P) be a denumerable full frame (recall that this
means that F is denumerable). For 4 and B in F and A non-zero, I shall
want to choose a set [4, B]< A.

P(AnB)
P(4)
For let P(An B)=y and P(A)=x=y-+m then it is necessary to show that
(y/x)—y<1—x hence that f(y)= (x?—xy+y)<x. Actually this function
increases from x? when y=0 to x when y=x:
x*—xy+y<x’=x(y+n)+(y+n)

<x?—xy—xn+y+n
because 0<n—xn for 0<x<1.

LEMMA 1. —P(AnB)<1—P(A)if P(4)#0

So it appears that for [4, B] we can choose an appropriately large subset
of A.
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Now let us go on to [ 4, C], [4, D], and so on for all the other sets in F.
Well, in choosing [4, B] we also chose [4, B], namely A—[A4, B]. To
choose [4, C] it will suffice to choose [4, BN C] and [4, BnC]; see
(tg3). So we can choose [4, BN C] and [4, BN C]; then [4, C] is deter-
mined and we choose [4, BnCnD],(4,BnCnD],[4, BAnCnD],
[4, BAC D] and that determines [A, D], and so on. The question is
only whether [4, B C], which is a subset of [ 4, B] is not meant, ever, to
have a probability greater than that of [4, B]. No:

(AnBnC)

P P4
LEMMA 2. i
P(4)

P(AnBNC)< P(A)

P(ANB)
when P(4)#0

For let P(AnBnC)=z; P(AnB)=y=z+m; P(A)=x=y+n. Then

(#/x)—z<(y/x)—y
<(z+m/x)—(z+m)
<(z/x)+(m/x)—z—m

because 0< (m/x) —m when 0<x< 1.

So it appears that [ 4, B; n...n B, ;] can be chosen as an appropriately
large subset of [4, B, n...nB,].

After this long preamble — which, I hope, was inhaltlich rather than
contentious — the proof should be transparent.

Proof of theorem. Let ¢ =V, F, P) be a denumerable full frame and G
the domain of P. Given that ¢ is full, G must be uncountable (having a
cardinality at least as high as the range of P). Let F be enumerated as
Ay o Ay

The strategy of the proof is to define a series of fields Fo= F, = F,<...
and to define — first for F, then for F, and so on. Here F,, must be finite
and included in F, F,, ,  is defined to be the least field containing F,, and
every set A— B with 4 a non-zero set and 4, B bothin F,,, and 4,, . The
union F*=\J{2, F; is then a field closed under —.

The process of definition of — is exactly the same at each stage, since
there are no principles of form ‘if R(4, B) then R(4—C, B—CY)’; in this I
fall short of Stalnaker’s logic.
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9 This process of definition consists simply in choosing subsets [ 4, B] of
A — this yields also [4, B], its relative complement; then [4, B C] of
[4, B] and [4, BN C] of [A4, B] - which yields also [4, BnC], [4,
BN C]; and so on. In each case, one chooses a subset of appropriate
measure, which is possible given the above lemmas and the reflection that
the frame is full.

I will add only this stipulation: if choosing subset X of set Yin the above
construction, then X must be A if the appropriate measure is zero, and X
must be Y if that measure is P(Y).

The quadruple <V, F*, P,—) is now clearly a model, provided only
that (V, F*,—) is a proposition algebra. It suffices to check (ql), (q2),
(94), (q5). The operation [4;, A;] for A; non-zero is defined to be the
union of the sets [4;, A% N...n A%, N A;] where A is either A, or A,
These are all disjoint sets, and subsets of A4, The definition guarantees
(q1) and (q2) immediately. Also (q4) holds because the union of all the sets
[4;, A¥n...0 A% | 0 A¥] covers A.

Finally, if 4, A4; then

P(4inAtn..0AL 0 )
P(4) 5
so (because of my stipulation above) the sets of which [4;, 4;] is composed
by union already cover A. This establishes (q5).

3.4. Logical System

The logical system which corresponds to the proposition algebras is CE;

(A1) Axiom schemata as for propositional calculus
(A2) F(A—B)=(4A—.A & B)

(A3) FA—(B>C)>.(A>B)>(4-C)

(A4) FH(A—B)>(4>B)

(A5) HA & B)=>(4—B)

(A6) F(A—B)v(4—1B)

(R1) A A>BB

(R2) If F A=B then H(C—A)=(C—B)

(R3) If F A=B then H(4—C)=(B—~C)

(R4  If+A>B then FA—B
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Here (A2) and (R2) are redunbant. CE is sound for the described family of
models.

Details. Let M=(V, F, P,—) be a model and v a map of the sentences
into F such that v(4 & B)=v(4)nv(B), v(T14)=v—v(A4), and v(4—B)=
=v(4)—-v(B) where defined, and =v(4>B) otherwise. Then all the
theorems of CE receive value V:

(ad A3) v(A)-v(B>C).n.v(4)»v(B)=v(4)->.v(B>C)n
nv(B)sv(A4)-v(C) by (I) and (II); if (A—(—)) is not
defined, similarly for the horseshoe.

(ad A4) v(A) " v(4—B)< v(B) in either case; see (I1I)
(ad A5) , see (III)

(ad A6) see (tp4)

(ad R2 and R3) if v(A=B)=V then v(4)=v(B)

(ad R4) if v(A> B)=V then v(4)< v(B); see (tp0).

Completeness. This is proved by putting together the usual complete-
ness proof for CE and Stalnaker’s completeness proof for his probability
semantics.? Let ¥ be the set of all maximal consistent CE theories,
X(A)={aeZX: Aea} and define X(4)—>ZX(B)=ZX(A—B) Finally, for an
arbitrary member o of 2 and any subset X of Z, let P(X)=1 if ae X and
=0 otherwise. Then (X, F = {Z(A4): A a sentencel}, P, is a model.

Details. That F is a field follows from (41). That (X, F, —) is a proposi-
tion algebra:

(11) tA—(B & C).=.(A—B) & (A—C) via (A3), (R4)

(12) tA—(Bv C).=.(A—B)v (A—C) via (A3) and (A6)

13) A & (A—B).=.4 & B via (A4) and (A5)

(14) F(A—B)v (A— T1B): see (A6)

(15) if F 4> B then +4— B; see (R4).
This yields conditions (I}HIV). That P is a probability measure on the
powerset of X' is trivial. That F is closed under — is also trivial. So only
condition (m2) remains. Suppose P(Z(A4))#0. Then it equals 1 and
Aeo. But then A— Beu iff B is in « too, via (13). above or via (A4) and (R5).
So then P(X(A4)-ZX(B))=1 iff P(Z(4)nZ(B))=1; otherwise both are
zero. So for X, YeF, we have P(X— Y)=P(X n Y)/P(X) when P(X)#0.

This ends the proof.
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4. STALNAKER BERNOULLI MODELS

In Section 1 above, Stalnaker algebras are equationally defined. They
differ from proposition algebras in general by obeying two further princi-
ples; and also by having — everywhere defined (not a partial operation, as
I have allowed in Section 3 above).

We begin with a probability space (K, F, P) as in the preceding section
of this Appendix. From this we form the structure M =(K*, F*, P); the
symbol ‘P’ is used ambiguously between the original measure and the
product measure. The construction of M is the usual product construc-
tion (for sequences of stochastically independent events, as in repeated
tosses of a die). Hence: K* is the set of denumerable sequences of members
of K (here identified with maps 7 of the natural numbers into K, but also
depicted as n=<n(1), ©(2), %(3),...»). F* is the family of sets (generating
sets)

A ® - ®A,QK*={neK*: n(1)ed, &...& n(n)eA,}

formed from sets A, ..., 4, in F. Finally P is the product measure with
domain F* (which is a Borel field because F is) defined by

P(4,® - ®A4,®K)=P(4,)... P(4,).
If = is in K*, let 7,, be the sequence defined by:
T(k)=mn(m+k—1)

so that m,, = {m(m), m(m+1),...>. Define the operation — on the powerset
of K* by

X Y={neK*: for all m, if m is the first natural number such
that m,, is in X, then 7, is in Y}

(For the case in which there is no X-world ‘accessible to’ 7 —i.e. no m such
that =, is in X — Stalnaker introduced an ‘absurd world’, but the same
effect is gotten by the present definition; namely that 7 is in X—Y in
that case for any Y.)

Now, F* is closed under —. For define X (k)= K 1'®X with X (1)=X.
Note that if X is a generating set, so is X (k); moreover, X (k)=X (k) and

©  [X:(k)]=[U2, X](k). So not only for the generating sets, but for
all sets generated from them in the Borel way, we find that X (k) isin F gl |1
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X is. As a special case, define X (0)=K. Then we have

o0 k=1
X Ry=sv] [ﬂ X@()n(XnY) (k)]

k=1l i=1
as the set of worlds 7 such that for some i, 7 is in X (i) and = is in (X - Y).
So X =Y differs from X—Y only by leaving out the ‘impossible ante-
cedent’ case. Therefore

8

X->Y=(X= Y)u[ﬂ X(i)]
i=1
All the operations thereby used to define — are such that a Borel field is
closed under them; hence F* is closed under —.

I turn now to probabilities, and shall designate sets A® K* with 4in F
as zero-degree propositions. Moreover, abbreviate ‘A®K’ to ‘A’ when
convenient; the capital letters 4, B, C, D are to stand only for zero-
degree propositions and members of F (via this symbolic identification).

LEMMA 1. P(A>X)=P(A=X) when P(A)#0. The reason is that
P(N2, A(i))=P(A)... P(A)... which equals zero unless P(4)=1.

LEMMA 2. (Fraction Lemma)‘* In any probability space (W, G, P), if
P(A)#0 then 2, P(A)*=1/P(A).
A) Z P(4

P(4)
P(A)+P(A) (A)+P(74)2 ()
P(A®K*)+P(A® AQ K*)+

P<A®K*u[ T, Z"‘@A@K*])

m=1

For proof consider s=

Il
Il

because the sets in the third line are disjoint. We note that we can continue
these equations as
=P({neK*: n(m)e A for some A})
=P(K*—{ne K*: n(m)e A4 for all m})
=1-P(ARARA®...)
=
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since we are given that P(A4)+# 1. But from the fact that s= 1, the lemma
follows.

THEOREM. P(A—B)=P(B/A) if P(A)+0, for all zero degree proposi-
tions 4 and B. ;

Intuitively: let m be the first number such that 7(m) is in A. The prob-
ability that m(m) is in B is then P(B/A), if B too is in F, the consequtive
events 7(1), #(2),... being independent. Now m could be 1, or 2, or
3,... the probabilities of these disjoint cases being P(A4), P(4) P(A),
P(A) P(A) P(A), and so forth. Hence we calculate

P(4= B)=P(A) P(B/A)+ P(A) P(4) P(B/A)+
+P(A)? P(A) P(B/A)+-- =

—P(4) ,20 P(A) P(B/A)=
=P(B/A)

by the Fraction Lemma.

LEMMA 3. P(A4-»C.—»B)=P(A—C.=B) if P(4-C)#0. This is a
generalization of Lemma 1, the proof being similar and hinging on the
point that P(N®-, (A—C) (m))=P(Z)=0. Now the set Z introduced by
definition contains the sequences 7 such that for each number m, there are
one or more numbers n>m such that n(n)e 4, while the first of these is
not in C. So a fortiori, none of them is in C. So a somewhat bigger set than
Zis
Z, = {n: [for all m, n(m)e AL C] & [for some m, n(m) A]}
and a still bigger set is
Z,={n: for all m, n(m)e AL C}.

Now P(Z,)=0 unless P(4u C)=1.Butif P(4u C)=1then P(4-C)=1,
so then P(A—C)=0— which is ruled out —or else P(A)=0. In both cases,
however, we see that P(Z,)=0; hence also P(Z2)=0.

THEOREM. P(A—C.—B)=P(B/A—C) if P(A-C)#0 for zero-degree
propositions 4, B, C.
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By the preceding lemma, we may concentrate on P(A—C.= B). Let the
first number m such that =, is in A—C be k; the probability that x,,is in B
is entirely independent of the initial sequent 7(1),... n(m— 1); hence this
is just P(B/A—C)—more precisely, in this case, itis P(BQK*/(A® K*)—
—(C®K*)), the very probability that any, random, sequence in K* is in
B if it is in A—>C. The cases are K=1,2,...; and these cases can be de-
scribed for k>1 as:

(a) n(1),..., n(k—2) arein AU C [if any]
(b) n(k—1)isin AnC
(c) n(k)isin A—>C

while for case k=1, we leave out (a) and (b). So we have the calculation
(omitting _i_n_tersection signs where convenient, and so replacing also
AuC by AC):
Let r=P(B/A—C)
P(4—C=B)=P(4—C) r+P(AC) P(4~C) r+
+P(AC) P(AC) P(A-C) r+
+P(AC)? P(AC) P(A-C) 1+ =

=P(4—C) r[l +<§0 P(R)") P(AC)]:

P(AC)]
P(4C)

—P(4~C) r|:1+

by the Fraction Lemma for case P(AC)#0; set this

=P(A—>C) rs
but then
_P(AC)+P(4C) _ P(4) _ 4
=——eiey e AT

=1/P(4A—C)

by the preceding theorem. Hence
P(A-C=B)=P(A—-C)rs= r=P(B/A-C).

Now in the remaining case, P(AC)=0. In that case P(4—~C)=0- which
is ruled out — unless P(4)=0. But if P(4)=0 then P(A—C)=1 and
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P(B/A—C)=P(B). However, in that case also P(A—C= B)=P(B),
because, except for a set of measure zero, any sequence © we pick will be in
A—C. More precisely, if P(X)=1, then

P(X=> Y)=P< U [km: (XY (k)])

k=111

which is the sum of the terms
PXnY()+PX(1)n(XNY)(2)+:

of which all but the first has probability zero; and P(XnY(1))=
=P(X nY)=P(Y) because P(X)=1.

So the theorem holds in all cases. Let me call A—C.—B a left condi-
tional and C—.A—B a right conditional. To prove a corresponding
result for right conditionals I need one more lemma.

LEMMA 4. (Independence Lemma) P(4 nCn A—B)=P(AC) P(A—B)
for zero-degree propositions A4, B, C.

Consider first P(4)=0. Then the lemma holds for any C, because each
side equals zero.

Consider next P(A4)#0. Abbreviate ARQA®... as A* Then A>B=
=A*U(A=B),so

P(Zcm(AaB))=P(/_1Cnf4* UACn(A=B))=

=P(ACn(A=B))
because P(A*) and hence P(AC N A*), equals zero. Now AC=AC(1)
while (A= B)=4B(1)UA(l) AB(2)UA(1) A(2) AB(3)u.... Hence

ACA(A=B)=AU AC(1) AB()UAC(1) A(2) AB(3)v .... Hence also

P(AC n A= B)=P(AC) P(4B)+P(AC) P(A) P(4B)+
+P(AC) P(A) P(AB)+--=

as required.
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THEOREM. P(C—A—B)=P(A—B/C)if P(C)#0, for zero-degree pro-
positions 4, B, C.

By Lemma 1, we can concentrate on C=A—B. Consider first P(4)=0.
Then P(A—B)=1 as we have seen; so P(A-B/C)=1 also. But in addi-
tion, P(C=A—B)=1 because in general, if P(Y)=1 then the probability
that, for random , the first m such that 7,, is in C, is also in ¥, equals 1. So
consider henceforth that P(4)#0. Now C=A—B is the union of the
disjoint sets :

X,=C(1)...C(k—1) [Cn(A-B)] (k)=
=C(1)...C(k—1) {[CAB(K)u CA(k) AB(k+1)u
UCA(K) A(k+1) AB(k+2)u...]Ju C(K) A*(k)}.
Because P(A)#0, A* (k) has probability zero, so that term can be ignored.

Thus % *
P(X,)= P(C)-"'[P(CAB)+ P(CA) P(AB)+

+P(CA) P(A) P(AB)+P(CA) P(4)* P(AB)+:--]=

P(C)-1[P(CAB)+ P(CA) P(4B) 3. P(A)]=

P(C): ! [P(CAB)+P(CA) P(AB)/P(4)]=
P(C)~'[P(CAB)+P(CA) P(4-B)]=
— P(C)~ ' [P(CAB)+P(CAn A>B)]

(by the Independence Lemma),
—P(C)'[P(CAnA—B)+P(CAn A-B)]
(because A N (4—B)=A4B),
=P(C)*"![P(CnA-B)].

Now we can finish the calculation as follows:
P(C=>A—>B)=P( U Xk>
k=1

= i P(C)-"* P(nA—B)=

—P(CAA—B)/P(C)=

=P(A-B/C)
as required.
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The conclusion is that any antecedently given probability assignment
to the zero-degree propositions can be reflected in a Stalnaker model, in
such a way that the first degree conditionals, and what I have called left

and right (second degree) conditionals are in accord with the Stalnaker
Thesis.
NOTES

! The research for this paper was supported by Canada Council grant $72-0810. I alsg
wish to thank Yvon Gauthier, Ian Hacking, William Harper, David Lewis, Robert Meyer,
and Richmond Thomason for helpful comments on earlier drafts of the Appendices.
Further debts to Hacking and Lewis are detailed below; it will be clear that my reaction
to Lewis’ writings colours almost every section.

2 1 give the Stalnaker semantics essentially as simplified by Lewis in his [3].

® This refers to comments by Thomason at the end of [1 1], and my [12, 13]. See also the
critical comments by Lewis on this in his [4, 5].

“ See the Appendix to my [13].

* Lewis [6], p. 10.

6 See also my discussion in [13].

7 Lewis [4], p. 84

8 1 realize that on some views, the scientist does not make theoretical commitments, and
does not believe his theories. So this criticism is based on my views on scientific theories:
see [13].

9 Stalnaker [7].

10 Lewis [6], p. 5.

1 Given in an unpublished paper circulated in April 1972.

12 (Added January 1974.) 1 have just seen a proof by Stalnaker that no such result as
Theorem 25 can hold for his C2.

Notes to Appendix

! In his ‘Completeness and Decidability ...”. I have modified the axioms and rules in some
obvious ways to ensure continuity with the remainder of my discussion.

2 In his ‘Probability and Conditionals’; this proof is not affected by the apparent
vulnerability of Stalnaker’s paper to Lewis’ triviality results.

3 Ibid.

4 This is the lemma for which I am indebted to Ian Hacking.
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DISCUSSION

Commentator: Giere: I should like you to fill out the motivations to the
paper a little more. We have two paradigms for probability, the ticker
tape paradigm and the sweepstake paradigm. In both cases it seems that
we can say all that needs to be said using regular conditional probabilities.
So why should we bother looking for a way of assigning probabilities to
conditional statements?

Van Fraassen: Actually they arise in both. If you look upon condi-
tionals the way Ramsey did, then iterated conditionals don’t make sense,
but there are many practical situations in which there are iterated
conditionals which people do assert. The question arises whether we
should assign probabilities to these iterated conditionals, and this is a
question whether we should extend the probability calculus to these
English sentences. In my own view we should extend probabilities to such
sentences. For example, I may say “if this glass breaks when I drop it on
the floor then these glasses will break if I throw them against that wall”.
Then we have a claim that is surely not a necessary truth and so one wants
to know the probability of its being correct.

Giere: Still it is not clear why we cannot equally well regard the cases
you mention as examples of complex systems for which we need never ask
about the probability of an iterated conditional but rather simply about
probabilities of various outcomes of trials on the entire complex system.

Van Fraassen: Yes there are some philosophers who claim that we
get by.in science with very little resources in this respect — if they are right,
then the answer to the question doesn’t carry a lot of practical weight. But
the problem of explicating probability discourse in general remains, for
philosophy of language and of logic, if not of science.
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STALNAKER TO VAN FRAASSEN

January 22, 1974

Dear Bas:

When David Lewis brought in his artillary and fired his bombshell at
Stalnaker’s assumption, Stalnaker meekly capitulated. But Van Fraassen,
chivalrously, has rushed to its defense, opening a second front by un-
covering a different assumption which is involved, and diverting the fire
to that one in the hope of saving the first. It is time for me to reenter the
battle — this time on the other side.

I am not sure whether I am a “metaphysical realist” in the relevant
sense, or whether the assumption made by Lewis (and by me) that you
criticize is necessarily connected to such realism. But I am convinced by
your argument that the assumption was essential to Lewis’s argument,
that it was essential to my argument using probability semantics to justify
C2, and that the assumption is untenable. But I am not tempted to re-
embrace Stalnaker’s assumption, since I can get the same trivialization
result from it without “metaphysical realism,” as long as I assume that
the logic of conditionals is C2.

I list the following six theses for reference. 4, B and C are any prop-
ositions. P is any probability function. In my original paper, I used prob-
ability functions which allowed non-trivial conditional probability values
even when the absolute probability of the condition was zero. This com-
plication is irrelevant to the current discussion, and so I will ignore it.
It may be assumed that the conditional probability, P(B/A), is defined
only when P(A)#0. A subfunction, P, is a function defined for any prob-
ability function P and proposition A such that P(4)#0 as follows:
P,(B) =dfP(B/A)'

(1) If P(4)#0, P(4> B)=P(B/A).

(2) Any subfunction is a probability function.

(3) ‘Metaphysical Realism’: The proposition expressed by a condition-
al sentence is independent of the probability function defined on it. So,
for example, the content of the sentence B> C is the same in the context
P(B> C) as it is in the context P,(B>C).

(4) If P(4 & C)#0, P(A>B/C)=P(B/A & C).

302
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(5) The logic of the conditional corner is C2.

(6) For any probability function, there are at most two disjoint prop-
ositions which have non-zero probability.

The aim of my original paper was to derive (5) from (1), and so to
provide an independent motivation for C2. My argument assumed (2)
more or less explicitly, and (3) implicitly. (2) is not really an assumption,
since it follows from elementary probability calculus, and depends on no
special assumptions about conditional propositions. Lewis’s argument
derived (6) from (4). Since (4) follows from the premisses of my argument,
this was sufficient to defeat my project. The argument generalizing (1) to
(4) goes as follows:

% Pc(A & B)=Pc(4) x P¢(B/A)

2 =Pc(4)x Pc(A>B)

3] =P(4/C)x P(4> B/C)

4 P.(A & B)=P(4 & B/C)

5. —P(4/C)x P(B/A & C)

6. So, assuming P(4/C)#0, P(4> B/C)=P(B/A & C).

How does thesis (3) enter into this argument? Without (3), the move
from step 2 to step 3 will involve an equivocation, since 4> B need not
express the same proposition in both places. So Lewis’s argument, which
makes no assumptions about the logic of conditionals, does depend on
(3). But another argument gets exactly the same conclusion from (1) and
(5), without (3), or (2).

Assumptions: (1), (5), and the denial of (6). The argument will show that
a contradiction can be derived from these assumptions. By the denial of
(6), there are at least three disjoint propositions that are assigned non-
zero probability by some probability function. Call them A & B, A& B,
and 4.

I will make use of the following abbreviation:

C=de Vv (Z & (A> B)),
and the following lemmas which can be proved from the assumptions
(1) and (5): g
(7) 1f P(X)#0, then P(X> Y/X)=P(X>Y)

(8) C entails C> ~(4 & B). i i 5 :
Finally, since 4 entails (4 &(A>B))Vv (4 & (4> B)), and P(A)#0, it
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follows that either P(A & (4 > B))#0 or else P(4 & (4> B))#0. I will as-
sume the former, but in case it is instead the latter, interchange B and
B everywhere in the argument, including in the definition of C.

Now, from all these assumptions, it follows that

(9) The following propositions all have non-zero probability: 4 & B,
A& B 4:€ €

Now for the inconsistency argument:

1. P(C> ~(4 & B)/C)=1 by (8)

i P(C)#0 by (9)

3. P(C>~(A & B)=1 from 1, 2, by (7)
4, P(C)#0 by (9)

5. P(~ (A & B)/C)= from 3, 4, by (1)
6. P(C&~(A& B)) # g

O™ T
P((A & B)v (A & (4> B))
T o R RO o
8. P(4 & B)=0 from 7

which contradicts (9).

Note that if we had substituted B for B everywhere, the conclusion
would have been P(4 & B)=0, which also contradicts (9).

As you say, Stalnaker’s logic is one thing, his models are another. The
above argument makes no assumptions about models, and so applies to
the logic, however interpreted. But if one considers things semantically
for a minute, one can see a connection between the above argument and
your shielding effect (Notes, III). (My argument was worked out before
I went through your Notes IIL so the connection was unexpected.)

You define the shielding effect in terms of normal models, but as you
point out, the notion is more general. Say that a proposition X encloses
a proposition Y iff for every possible world ieX, s(X,i)e Y. Then the
following is the generalization of the result you state on page 4 of the
Notes: If thesis (1) holds, then there is no pair of propositions X and Y
such that P(X)<1, P(Y)>0, and X encloses Y. But, for any probability
function defined on any model which assigns non-zero probability to at
least three disjoint propositions, there will be a pair of propositions
meeting those conditions. The above argument can be taken to show
this, since P(C)<1, P(4 & B)>0, and C encloses (A4 & B).



PROBABILITIES OF CONDITIONALS 305

: So where does th?s result leave me? Since I want to keep (5), I can avoid
d1saster‘ only. by rejecting (1). But it is not only to avoid disaster that I
take this option since I think there are good intuitive arguments against
(1). In fact, I am as taken with the distinction between the probability
of the conditional and the conditional probability as I once was with
their supposed identity.

Where does the result leave you? It does answer, I think, the question
you ask on page 297 of your paper. It is not tenable (although it is con-
sistent) to accept the thesis for the C2 conditional. But you don’t like C2
that much anyway, so you can just keep (1) and reject (5). But I think
this would be a mistake.

Suppose there is a general theoretical proposition T which entails a
conditional A>B, or perhaps it entails the theoretical claim that
P(A> B)=r. Since T might be a theory with diverse consequences, the
evidence for or against T — and so the evidence which bears on 4> B,
or P(A>B)=r — could be anything I see no reason to rule out a priori
the possibility that A itself be part of the evidence for or against T. If
it were, then the conditional might not be stochastically independent of
its antecedent (which as you point out the thesis requires). Consider a
concrete example: H, and H, are propositions describing the outcomes
of two flips of a coin. Say H, says that flip 1 comes up heads, and H,
says that flip 2 comes up heads. Suppose (as is very plausible) that it is
known on the basis of general theoretical considerations that the flips
are causally independent of each other, but it is unknown what the bias
of the coin is. Suppose it was drawn at random from a bag of coins half
of which are biased for heads, half biased to the same degree for tails.
On the basis of the causal independence, we know that the truth value
of H, would have been the same as it in fact was whatever the truthvalue
of H,, and this holds for all possible worlds compatible with the general
theoretical assumption of causal independence. Hence, although we may
not know the value of P(H,), we know that P(H,> H,)= P(H,). But H,
still is evidence for H,, since it is evidence for the proposition that the
chosen coin is biased for heads. Thus, in this example, P(H,/H,)>P(H,),
and so P(H,/H,)>P(H, > H,). This result seems intuitively plausible to
me, and it does not depend on any assumptions about the logic of con-
ditionals.

I see that (1) is formally compatible with your logic of conditionals,
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CE, and with any probability distribution defined on all the zero degree
sentences. But I am not convinced that any kind of intuitively satisfactory
semantics can be given for CE which explains why the thesis should be
true. Whatever the truth conditions for conditional propositions (as-
suming they have truth conditions), the effect of the thesis is to impose
the following requirement: for any A with probability between 0 and 1
exclusive, and for any B, the ratio of the measure of worlds in which
A>B is true to the measure of worlds in which it is false will be the
same in the 4 worlds as it is in the 4 worlds. But why shosld this be
true? One does need some intuitive explanation.
Best.
Yours,

BoB STALNAKER
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