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Abstract. In 1960-62, E. Kähler developed what looks as a generaliza-
tion of the exterior calculus, which he based on Clifford rather than exterior
algebra [1], [2] and [3]. The role of the exterior derivative, du, was taken by
the more comprehensive derivative ∂u (≡ dxµ ∨ dµu), where “∨” stands for
Clifford product. The dµu represents a set of quantities to which he referred
as covariant derivative, and for which he gave a long, ad hoc expression.
We provide the geometric foundation for this derivative, based on Cartan’s
treatment of the structure of a Riemannian differentiable manifold without
resort to the concept of the so called affine connections.

Buried at advanced points in his presentations [1], [3] is the implied
statement that ∂u = du+ ∗−1d u∗, the sign at the front of the coderivative
term is a matter of whether we include the unit imaginary or not in the
definition of Hodge dual, ∗. We extract and put together the pieces of
theory that go into his derivation of that statement, which seems to have
gone unnoticed in spite of its relevance for a quick understanding of what
his “Kähler calculus”.

Kähler produced a most transparent, compelling and clear formulation
of relativistic quantum mechanics (RQM) as a virtual concomitant of his
calculus. We shall enumerate several of its notable features, which he failed
to emphasize. The exterior calculus in Kähler format thus reveals itself as
the computational tool for RQM, making the Dirac calculus unnecessary
and its difficulties spurious.

1 Introduction

In the preface of his authoritative book “The Dirac Equation”, B. Thaller
states:

Perhaps one reason that there are comparatively few books
on the Dirac equation is the lack of an unambiguous quantum
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mechanical interpretation. Dirac’s electron theory seems to re-
main a theory with no clearly defined range of validity, with
peculiarities at its limits which are not completely understood.
Indeed, it is not clear whether one should interpret the Dirac
equation as a quantum mechanical evolution equation, like the
Schrödinger equation for a single particle. The main difficulty
with a quantum mechanical one-particle interpretation is the oc-
currence of states with negative (kinetic) energy. Interaction
may cause transitions to negative energy states, so that there is
no hope for a stability of matter within that framework. In view
of these difficulties R. Jost stated “The unquantized Dirac field
has therefore no useful physical interpretation”. Despite this
verdict we are going to approach these questions in a pragmatic
way. A tentative quantum mechanical interpretation will serve
as a guiding principle for the mathematical development of the
theory. It will turn out that the negative energies anticipate the
occurrence of antiparticles, but for the simultaneous description
of particles and antiparticles one has to extend the formalism of
quantum mechanics. Hence the Dirac theory may be considered
a step on the way to understanding quantum field theory.[4]

To speak of the Dirac equation is to speak mainly about relativistic
quantum mechanics (RQM). But, for this purpose, a replacement of Dirac’s
mathematical formalism already exists. It is Kähler calculus. Written in
German, it has been under the radar except briefly a few decades ago for
highly specialized topics. And it has been overlooked that his superior ver-
sion of RQM is a virtual concomitant of his calculus; one only needs to let
the mathematics speak.

The most outstanding feature of the Kähler calculus (KC) is being
the refined, formally adequate representation of the exterior calculus cum
coderivative. This differentiation involves Hodge duality, operation which
does not belong to exterior algebra but to Clifford algebra. One should do
the calculus of differential forms in Clifford rather than exterior context.

The exterior calculus was born in 1899, almost in passing in an E. Cartan
paper [5], in the area of differential equations known as Pfaff systems. But
it did not get traction for many decades. By his own admission Chern’s
best paper is from 1944 [6]. In it, he almost apologetically, justifies his use
of “the theory of exterior differential forms, instead of the ordinary tensor
analysis ... ” as a matter of convenience.

In 1960-1962, Kähler produced his calculus (KC) [1], [2] and [3]. In the
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last decade of his long life, he returned to this topic [7], not to the topic
of Kähler metrics and Kähler manifolds [8], for which he is best known. A
similar comment applies to his work on Cartan-Kähler theory of exterior
systems[9]. One should perhaps take this as a statement of what he consid-
ered to be the most important work of his life, or perhaps the one to which
one should pay greatest attention. The aim of this paper is to show that,
even though the direct and indirect applications of the exterior calculus are
many and important, they still pale in comparison with the fact that, in
Kähler form, it yields the magnificent version of RQM of which we speak
in the second half of this paper [For indirect applications, see for instance
those of Kähler manifolds, as described by Bourguignon [10], and numerous
papers on global differential geometry by Chern].

In section 2, we shall give a brief description of the essence of the KC.
In Section 3, we give the proof of the equivalence of the coderivative and
Kähler’s interior derivative. In the interest of brevity, we assume that readers
know some exterior calculus and some Clifford algebra. It will not escape
their attention why the said proof reaches so far; any differential form can
be viewed as a member of both exterior and Clifford algebra.

Section 4 is devoted to enumerating several of the great features of the
RQM that emerges as a virtual concomitant of the KC. The exterior calculus
in Kähler’s version can thus appropriate itself of a RQM without the difficul-
ties of the Dirac theory. The future will be looking down on present math-
ematicians that speak the language of Gauss, Grassmann, Hilbert, Kähler
himself, F. Klein, Riemann and Weyl (to name just a few in a constellation
of mathematical luminaries over one and a half centuries) for failing to un-
derstand the evolution of a mathematical line of development that started
with a Leibnizian prescience, namely his characteristica geometrica [11].

2 A Cartan approach to the KC

Kähler introduced in ad hoc manner a concept of covariant derivative of
differential forms of tensor valuedness. For present purposes, we specialize
that formula to scalar-valuedness. It then reads

dhal1...lp =
∂

∂xh
al1...lp − Γr

hl1arl2...lp − . . . − Γr
hlpal1l2...lp−1r, (1)

where al1...lp stands for al1...lpdx
l1 ∧ dxl2 ∧ . . . ∧ dxlp . This author is not

responsible for this unfortunate approach and choice of connection.
The KC of scalar-valued differential forms only requires a metric struc-

ture. The affine (Euclidean, Lorentzian, etc.) structure is irrelevant. In
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1922, just before his paper on theory of affine connections, Cartan derived
the differential invariants that characterize a differentiable manifold endowed
with a metric.

A summary of his argument follows. He decomposes symmetric, quadratic
differential forms as sums of squares

ds2 =

n
∑

ǫi(ω
i)2, (ǫi = ±1). (2)

The ωi’s are linear in the dxi, but depend not only on the xj but also on
n(n− 1)/2 parameters u. Exterior differentials of the ωi’s can be written as

dωi = ωj ∧ ωi
j, (3)

where the ωi
j are linear in the dx and the du. We writes down

(ωi)δ = 0 (4)

to indicate that there are no du′s in (2).
Cartan develops the consequences of (4) and finds

ωij + ωji = 0. (5)

The system of equations (3) and (5) uniquely defines the ωj
i in the “bundle

manifold”, i.e. of the (x, u), and on sections of this bundle (manifold of
the x’s). This system is familiar from the theory of Euclidean connections,
also improperly known as metric compatible affine connections, which cease
to be affine by virtue of the restriction on the underlying group. But no
connection has been used here. We shall write this system as

dωi = ωj ∧ αi
j , αij + αji = 0, (6)

reserving ωj
i for the actual connection of a manifold, which need not be the

Levi-Civita connection. Kähler’s derivative ∂ is conceived as

∂u = ωµ ∨ dµu = du+ δu (7)

where
du = ωµ ∧ dµu, δu = ωµ · dµu (8)

in the Kähler algebra, i.e. the Clifford algebra determined by

ωµ ∨ ων + ων ∨ ωµ = 2gµν , (9)
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gµν being the inverse matrix of the gλρ, in turn defined by ds2 = gµνω
µων .

It is well known from Clifford algebra that

ωµ ∧ ων =
1

2
(ωµ ∨ ων − ων ∨ ωµ), (10)

and

ωµ · ων =
1

2
(ωµ ∨ ων + ων ∨ ωµ). (11)

Here we are not requiring that the ωµ’s be orthonormal. We are starting to
use Greek indices as we shall reserve Latin indices for 3-space.

The Leibniz distributive rule without alternating signs is assumed. We
shall then only need dµω

ν in order to have dµu for any scalar-valued differen-
tial form u. On sections of the bundle (i.e. the manifold of the x′s and u′s′′,
the αν

µ’s are not independent of the ωµ’s. We write αν
µ = Γν

µ λω
λ. Hence

dωµ = ων ∧ αµ
ν = ων ∧ Γµ

ν λω
λ = ωλ ∧ (−Γµ

ν λω
µ). (12)

For u = ωµ, the first of equations (8) becomes

dωµ = ων ∧ dνω
µ. (13)

Comparison of (12) and (13) allows us to obtain two canonical dλ for ωµ,
namely

dνω
µ = αµ

ν , dλω
µ = −Γ µ

ν λω
ν . (14)

A change of indices without consequence allows us to rewrite the second of
Eqs. (14) as:

dνω
µ = −Γ µ

λ νω
λ. (15)

We have here two different covariant derivatives, namely the first of (14)
and (15). In terms of coordinate bases, Γ µ

λ ν = Γµ
ν λ. Then

dνdx
µ = −Γµ

λ νdx
λ = −Γµ

ν λdx
λ = −αµ

ν , (16)

which explicitly shows that the two covariant derivatives are the opposite
of each other, in case this was not obvious from the moment that they were
introduced. We advance that, for notational compatibility with differential
geometry, we choose the option (15). We shall not enter the details but
point out at the fact that the standard divergence of a vector field is the
same as the interior derivative of a differential 1-form when one use (15).
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3 Identification of the covariant derivatives of the

Cartan’s and Kähler’s approaches

Kähler proceeded to simplify Eq. (1), by using that

ωk
i = Γ k

i jdx
j (17)

and obtained

dhu =
∂u

∂xh
− ωr

h ∧ eru, (18)

where ωr
h is our αr

h, where eru is = (dx)ru, and where (dx)r is defined
by gsrdx

r (coordinates dxr do not exist except for rectilinear systems). In
Kähler’s treatment, formula (18) is as ad hoc as the formula (1) form which
he obtained it. The appropriate process to get to (1), if that is what we
want, is to continue the process of the previous section and thus obtain
(18), as we are about to do.

Let ωR be the differentiable r-form ω1 ∧ ω2 ∧ . . . ∧ ωr. Let s be ≤ r
and let ω(s) be (−1)s−1ω1 ∧ . . . ∧ ω̌s ∧ . . . ∧ ωr, where ω̌s means that we

have removed the factor ωs from ωR, after making it the first factor in the
product. Clearly

ωR = ωs ∧ ω(s) (no sum). (19)

Hence
ωs · ω

R = ωs · [ω
s ∧ ω(s)] = (ωs · ω

s)ω(s) + 0 = ω(s), (20)

if by ωµ we mean the elements of the basis reciprocal of the ων , i.e. ωµ ·ω
ν =

δνµ. We thus have

dµω
R =

r
∑

s=1

dµω
s ∧ ω(s) = −

r
∑

s=1

Γ s
λ µω

λ ∧ ω(s) = −
n
∑

σ=1

Γ σ
λ µω

λ ∧ ω(Σ), (21)

where ω(Σ) is ω(s) for σ ≤ r and zero for σ > r. From (20) and (21), we get

dµω
R = −

n
∑

σ=1

Γσ
λ µω

λ ∧ (ωσ · ωR). (22)

Formula (22) applies for arbitrary bases of differential 1-forms. If the ωµ’s
are dxµ’s, the Γ σ

λ µ are the Christoffel symbols. They satisfy Γ σ
λ µ = Γ σ

µ λ.
Thus

dµ(dx
1 ∧ . . . ∧ dxr) = −ασ

µ ∧ eσdx
1 ∧ . . . ∧ dxr. (23)

We require dλu to satisfy the Leibniz rule. Equation (23) and the dis-
tributive property of dλ with respect to addition together yield (18) (in
coordinate bases!).
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4 The Kähler derivative as sum of exterior deriva-

tive and coderivative

It is implicit in Kähler’s work that his derivative is the sum of the exterior
derivative and the coderivative. But the steps in the argument are scattered
over several sections containing a large amount of relevant material. The
proof is thus buried in his work, so much of it that one might overlook the
point that we are making in this paper.

Let η be the linear operator that acting on differential r-forms, uR, yields

ηuR = (−1)ruR. (24)

Let a a differential 1-form and let A be an arbitrary element of the Clifford
algebra. Recall the well known relation

aA = a ∧A+ a · A, (25)

where

a ∧A =
1

2
[aA+ (ηA)a] (26)

and

a ·A =
1

2
[aA− (ηA)a]. (27)

From (27) with a = dxµ and A = v, we get

dxµ ∨ v = (ηv) ∨ dxµ + 2dxµ · v, (28)

to be used further below.
A differential form, c, is said to be constant if dµc = 0. By virtue of the

Leibniz rule, we have
dµ(u ∨ c) = (dµu) ∨ c. (29)

We often use redundant notation (like using the parenthesis in this case) for
greater clarity. We have

∂u = du+ δu (30)

where
du ≡ dxµ ∧ dµu, δu ≡ dxµ · dµu. (31)

We now proceed with the proof. Let z be the unit differential n-form,

z = dx1 ∧ dx2 ∧ dx3 ∧ idxu. (32)
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Recall that
∗ u = u ∨ z, ∗−1u = (−1)(

n

2
)u ∨ z, (33)

and
∗−1 d ∗ u = (−1)(

n

2
)d(u ∨ z) ∨ z. (34)

We use that z is a constant differential and that

dxµ · (u ∨ v) = (dxµ · u) ∨ v + ηu ∨ (dxµ · v). (35)

We replace u and v with dµu and z :

d(u ∨ z) = dxµ ∧ (dµu ∨ z) = dxµ ∨ (dµu ∨ z)− dxµ · (dµu ∨ z)

= ∂u ∨ z − δu ∨ z − (ηdµu)dx
µ ∨ z. (36)

Taking into account (28), the Clifford product of the last term of (36) by z
on the right becomes

−(ηdµu) ∨ dxµ ∨ z = −dxµ ∨ dµz ∨ z + 2(dxµ · dµu) ∨ z

= −∂u ∨ z + 2δu ∨ z. (37)

Hence

d(u ∨ z) = ∂u ∨ z − ∂u ∨ z − ∂u ∨ z + 2δu ∨ z = ∂u ∨ z (38)

and, therefore, (34) becomes

∗−1 d ∗ u = (−1)(
n

2
)(δu ∨ z)z = δu. (39)

We further have, from (30),

∂u = du+ ∗d ∗ u, (40)

as we wanted to prove.

5 Kähler version of relativistic quantum mechan-

ics

Kähler’s version of relativistic quantum mechanics (RQM) has gone largely
unnoticed. Worse yet is the fact that those who have cited his papers on
the subject —a rare event in recent decades— appear not to have noticed
its great advantages over Dirac’s theory. We proceed the document this.
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The Kähler equation, to which he deferentially but improperly referred
as Dirac’s equation, reads

∂u = au, (41)

where a is some input scalar valued differential form and where u is not
required to be a spinor but just a member of the Clifford algebra of dif-
ferential forms. Juxtaposition of symbols (in au but not in ∂u) is here an
alternative for the symbol ∨. No valuedness other than scalar is needed for
present purposes.

Kähler used equation (41) to solve the hydrogen atom with little “extra
effort”. To be sure, one does not reach the fine structure in a couple of steps.
But the effort involved lies in the development of rich theory of structural
nature, thus useful for other purposes. With the same equation and also
almost effortlessly, this author derived from (48) the Pauli-Dirac equation
and, in one more page, the Foldy-Wouthuysen Hamiltonian.

In Dirac’s theory, one usually restricts oneself to electromagnetic cou-
pling. As pointed out by Thaller, the range of validity of that equation
is not clear. Whereas Kähler considered ∂u = 0 to be the equivalent of a
Dirac equation, others would not think so. This equation defines (strict)
harmonicity, a topic that is not associated with Dirac, except perhaps in
some recondite publication. This is to be contrasted wiith the fact that
Kähler gave the title “Integrals of the Dirac equation ∂u = 0 in three di-
mensional Euclidean space” to one of the sections of this 1962 paper. In
passing, we shall give here some inklings about unusual applications, thus
extended range of validity, of his equation.

The fact that the KC allows us to obtain results in a new, simpler way
does not have per se much more than anecdotal evidence. But there is the
transcendental feature of (41) that u need to be a spinor, i.e. not belong
to an ideal of that algebra. So, it is not an equation for just particles of
spin 1/2. It also applies to fields that have lost connection with any specific
particle.

Crucial for the important subject of conservation laws is the concept of
what he called scalar products of different grades, denoted as (u, v)i, the
grade being n− i. For i = 0, he wrote simply (u, v). The first Green identity
reads

d(u, v)1 = (u, ∂v) + (v, ∂u). (42)

If solutions u and v of an equation satisfy that the right hand side of (42)
is zero, a conservation law follows. Let overbar denote complex conjugate.
Kähler showed that, if −ηa = a, and if u and v are solutions of the Kähler
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equation with input a, then conservation laws

d(u, ηv)1 = 0 (43)

follow and, in particular,
d(u, ηu)1 = 0. (44)

We do not give the definition of (u, v)1, as it would be an unnecessary
distraction here. Suffice to mention our use of the notation < u|v > and
(u|v) for (u, ηv)1, respectively in the Kähler algebras built upon the modules
spanned by (dt, dxi) and (dxi), i = 1, 2, 3. Coefficients nevertheless depend
on t in both cases. But ∂/∂t and thus dt will be absent in the second case

Let C be any constant element of the spacetime algebra such that C2

(i.e. C ∨ C) equals 1. The 1
2(1 ± C) are two mutually annulling constant

idempotents, I±. By virtue of (29),

∂(u ∨ I) = dxµ ∨ dµ(u ∨ I) = dxµ ∨ dµu ∨ I ≡ ∂u ∨ I. (45)

Equations (41) and (45) together imply

∂(u ∨ I) = ∂u ∨ I = au ∨ I = a(u ∨ I), (46)

which shows that the u ∨ I± are solutions of the same Kähler equation as
the u’s. Because their sum is unity, we have

u = u ∨ I+ + u ∨ I− (47)

And because they mutually annul, multiplication of (47) respectively by I+

and I− uniquely defines +u and −u in

u =+u ∨ I+ +−u ∨ I−. (48)

Since (dt)2 = −1, we have the constant idempotents

ǫ± =
1

2
(1± idt). (49)

We take exception to not exhibiting the unit imaginary because ”i” is of the
essence here.

We next assume that the input a of the Kähler equation satisfies ηa = a.
This is the case in particular for electromagnetic coupling, −iE0+eω, where
E0 is rest mass and where e = ∓ |e| is the charge of electron/positron. Kähler
uses that

u =+u ∨ ǫ+ +−u ∨ ǫ−, (50)
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but not necessarily stationarity. After some calculations, he gets

< u|u > =
1

2
(+u,+u) +

1

2
(+u|η+u) ∧ idt

−
1

2
(−u,−u) +

1

2
(−u|η−u) ∧ idt. (51)

It goes without saying that, if

d(u, ηu)1 = d < u|u >= 0, (52)

a conservation law of the form

d(j(1) + j(2)) = 0,

follows. The j(1) and j(2) are spacetime currents that come with correspond-
ing densities, ±1

2(
±u,±u).

The sign definiteness of the charge densities, which are of identical form
except for sign, speaks of the fact that, in Kähler’s quantum mechanics,
the wave function is about amplitude of charge density, not of probability
density. Of course, the Copenhagen interpretation will still work in the
situations in which it is applied, but not because of being a basic tenet of
this quantum mechanics, where it is not a fundamental but a derived tenet.

Endowed with this interpretation of what the two terms in (50) are when
ηa equals a, let us assume stationarity. Kähler then writes u as

u = p+∨ T+ + p− ∨ T−, (53)

where
T± = e−itE/h̄ǫ±. (54)

Though Kähler could have considered solutions p+∨T+ and p−∨T−independently
of each other, he chose not to do so. There is no need for that as, the equa-
tion for u immediately splits into the equations

∂p± ±

(

E

h̄
+ β

)

∨ ηp± − α ∨ p± = 0 (55)

after decomposing a as α+β∨ idt. The two equations differ only by the sign
of the second term. Notice that we have two equations for the same E, not

∂p± +

(

±
E

h̄
+ β

)

∨ ηp± − α ∨ p± = 0. (NOT!)

11



We emphasize that (55) is for coupling more general than electromag-
netic, in which case they would be for positions and electrons respectively.
Notice in (57) that they are associated with the same sign of the energy. No-
tice further that there is neither room no need to eliminate small components
of the wave function as if they belonged to an antiparticle contamination of
the wave function. As is well known, that is the case in Dirac’s theory.

What we have said so far is part of the twelve pages on RQM in his paper
[3], part of which is devoted to the fine structure of theH atom. In a previous
paper [2], he had solved the same problem starting with proper solutions for
energy and momentum. For that purpose, he defined idempotents τ±:

τ± =
1

2
(1± idxdy). (56)

They add up to unity, kill each other and commute with ǫ∗. This allows him
to write

u =+u+ ∨ τ+ ∨ ǫ+ ++u− ∨ τ− ∨ ǫ+ +−u+ ∨ τ+ ∨ ǫ− +− u− ∨ τ− ∨ ǫ−, (57)

the ±u∗ being all well defined in terms of u:

±u∗ = u ∨ τ∗ ∨ ǫ±. (58)

One can associate τ± with spin/chirality in the same way as ǫ± is associated
with energy/charge. Kähler then assumed central fields, apparently so that
the system of a cylindrically symmetric particle in a field will not lose this
symmetry by virtue of the non-cylindrically symmetric field. He wrote the
ansatz

u = eimφ−iEt/h̄p ∨ τ± ∨ ǫ∗, (59)

where p depends on (ρ, z, dρ, dz), but not on (t, φ, dt, dφ), where φ is angu-
lar cylindrical coordinate and where m is angular momentum. In view of
the combined (57) and (59) equations, it is clear that both positrons and
electrons fit together at the same time in the Kähler equation.

Another great result of Kähler version of RQM is his treatment of angular
momentum, which he approaches from a perspective of Lie differentiation.
But this differentiation is not what one would expect, as vector fields and
their flows do not enter his concept of Lie differentiation (unless one defines
vector fields as ∂/∂xµ operators and their linear combinations, which neither
Cartan not Kähler do). The major though not unique result of Kähler’s
treatment of angular momentum, ∂/∂φ, is that both orbital and spin angular
momentum are unified ab initio, actually before being born, the meaning of
which we shall explain below.
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Kähler refers to the operators (which cyclic i, j, k)

Xi = xj
∂

∂xk
− xk

∂

∂xj
, (60)

as Lie operators (see formula 22.2 of [3]). All the three Xi are of the form
∂/∂φi, where φi is azimuthal coordinate with respect to the three axes. With
wi ≡ dxj ∧ dxk, the action of Xi on u is

Xiu = xj
∂u

∂xk
− xk

∂u

∂xj
+

1

2
wi ∨ u−

1

2
u ∨ wi. (61)

The argument leading to this equation from “first principles” is given in
section 33 of [1].

We proceed to illustrate how the argument goes. Given operator X,

X = αi(x1, . . . , xn)
∂

∂xi
. (62)

Kähler introduces the differential system

dxi

dyn
= αi(x1, . . . , xn), (63)

which is a familiar system from classical mechanics, where yn is time, t. The
reason for using the symbol yn is that the n − 1 independent constants of
the motion not additive to yn together with yn constitutes a new coordinate
system, yi, and thus

xi = xi(y1, . . . , yn). (64)

In terms of the y coordinate system X reduces to ∂u/∂yn. Kähler then
computes ∂u/∂yn with u = aRdx

R and obtains

∂u

∂yn
= (XaR)dx

R + dαi ∧ eiu. (65)

He has resorted to coordinates (yi) because the different terms on the right
of (62) correspond to different conditions. So application of the sum is not
equivalent to sum of the different partial derivatives. On the other hand,
∂u/∂yn is just one partial derivative, not a sum of them. It is clear that we
have

∂u

∂yn
= αi ∂u

∂xi
+ dαi ∧ eiu (66)

for arbitrary differential forms u.
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Kähler refers to the right hand side of (66) as the Lie derivative of u.
But, by his argument, it is simply the partial derivative, ∂u/∂yn. One does
not need to explicitly compute yn. Equation (66) directly gives as its form
in term of the original coordinate system. A simple example will help with
another remark.

The third component of angular momentum is x ∂
∂y − y ∂

∂x . Two (of
infinite) coordinate system containing φ (i.e. the corresponding yn) are the
spherical and cylindrical ones. φ is determined by its coordinate line, which
is independent of the other coordinates, r and θ or ρ and z. Hence ∂/∂yn is
determined neither by a specific allowed (yi) system, nor by what coordinate
system we choose to express u (Cartesian coordinates in our example).

With respect to the unification of the two types of angular momentum,
orbital and intrinsic, consider the following. The terms in (66) are not the
same in the x and x′ coordinate systems (This is remedied by the use of
covariant derivatives). Only their sum is. One can add and subtract the
appropriate quantity to the respective terms, so that the sum is unchanged
and the two terms on the right are covariant. (66) then becomes

Xu = αldlu+ (dα)l ∧ elu. (67)

Kähler uses the symbol (dα)i to represent what may be viewed as com-
ponents as a vector of the differential form d(αi

e) under the Levi-Civita
connection (This remark is only for identification purposes of what quanti-
ties are involved; the manifold may not even be endowed with a connection,
i.e. a rule to compare vectors in two tangent spaces).

For Xl,the first (second) term in (67) will yield the first two terms (re-
spectively third and fourth) terms in (64). They represent orbital and in-
trinsic angular momenta. They are “entangled” in (66) before they became
individually meaningful and interpreted as angular momentum concepts in
(64). One could not have deeper unification than that.

Equation (67) involves only the exterior product. Kähler developed this
equation further when the metric does not depend on the coordinate yn.
The Clifford product emerges in the expression for the Lie derivative. He
further specializes it to spacetime. That is how equation (64) results.

Kähler defines total angular momentum not as a vector or bivector op-
erator, but through

(K + 1)u =

3
∑

i=1

Xiu ∨ wi. (68)

The reason for using k + 1 on the left rather than just M (i.e. M = K + 1)
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is that, as he proves

K(K + 1) = −(X2
1 +X2

2 +X2
3 ). (69)

One should not worry about the minus sign. It would not appear if we had
multiply by i in the definition of Xi. Notice that we could have written the
right hand side of (68) as

∂u

∂φi
dxjdxk (70)

where φi pertains to the plane (xj , xk). Hence total angular momentum
is the differential 2-form operator whose components are the ∂/∂φi. This
remark is helpful in understanding the presence of the first exponential and
the factor τ in (59).

We have devoted a lot of text to Lie differentiation and angular mo-
mentum. It is the price we have to pay for illustrating the many subtleties
connected with these concepts. More enticing possibilities are intimated in
the next section.

6 Loose ends and the mathematical owner of rel-

ativistic quantum mechanics

In papers [1], [2] and [3], Kähler gave not a name to his underlying algebra.
In an additional paper of 1964 [12], he summarized results from the afore-
mentioned papers and gave the name of Clifford to the algebra he had been
using, and again in 1992 [7].

We have only focussed on the relation between the coderivative and the
interior derivative. We take it for granted that readers know how to relate
exterior products to Clifford products and vice versa. Kähler’s formula (9.1)
of [3] expresses the Clifford product of two arbitrary elements of the algebra
in terms of exterior products. In particular, one can make one of the two
factors be the unity.

For the reverse process, i.e. to show that the exterior product can be
written in terms of Clifford products, suffice to show that such is the case
for the product of two monomials,

u ∧ v = (adx1 ∧ . . . ∧ dxr) ∧ (bdxr+1 ∧ . . . ∧ dxs)

= abdx1 . . . ∧ dxr ∧ dxr+1 . . . ∧ dxs. (71)

The proof then goes as follows. Let Y i ≡ dxi+1 ∧ . . . ∧ dxs. Then

dx1 ∧ Y 1 =
1

2
[dx1 ∨ Y 1 + (ηY 1) ∧ dx1]. (72)

15



One can express Y 1 as

1

2
[dx2 ∨ Y 2 + (ηY 2) ∨ dx2] (73)

and proceed similarly with ηY 2, and then Y 3, etc. This should be enough
to justify our claim.

There is a Kähler calculus more comprehensive than the one we have
discussed. It deals with tensor-valued differential forms. Kähler considers
the curvature as a tensor-valued differential 2-form. But Euclidean curva-
tures are bivector-valued differential 2-forms, as Cartan already stated [13].
Bivectors are not antisymmetric tensors since the tensor product of anti-
symmetric tensors is not an antisymmetric tensor in general. Curvatures
are members of quotient algebras (not subalgebras) of the general tensor
algebra. We do not find tensor-valuedness to be interesting at all.

There is, however, a very interesting point in Kähler’s dealing with
tensor-valued differential forms. Their components have three series of in-
dices, two of which are for subscripts. One of these two are for covariant
tensors, whether antisymmetric or not. The other one is for differential
forms viewed as functions of r-surfaces. For Cartan and Kähler, differential
forms are not antisymmetric r-linear functions of vectors. The differentiation
of scalar-valued differential forms is determined by the Christoffel symbols.
The differentiation of linear functions of vectors is determined by the con-
nection, whose components will not be given by those symbols when there
is torsion.

Kähler’s version of RQM is a concomitant of his calculus, which, in turn,
is nothing but the exterior calculus cum coderivative reformulated so that
the underlying algebra is manifestly Clifford algebra, rather than exterior
algebra that is complemented with non-exterior concepts like Hodge duality
and coderivative. Hence (the Kähler version of) RQM, which we have just
shown to be superior to Dirac’s, may be said to be owned by the calculus of
scalar-valued differential forms. The Dirac calculus, a magnificent achieve-
ment of the first third of the twentieth century, is nowadays unnecessary
and should be abandoned.

7 Beyond the relation between the exterior calcu-

lus and relativistic quantum mechanics

At present, RQM has not a well defined boundary with quantum field theory.
The latter can be considered as an extension of the former, but one may
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argue that is not natural nor canonical. There are topics which some authors
consider as pertaining to RQM and that other authors consider as pertaining
to its operator based extension. And there is also the S matrix theoretical
alternative to quantum field theory.

Because of its unparalleled contribution to quantum physics since 1948,
let us mention that Schwinger finds problems with quantum field theory
that his proposed source theory does not have [14]. He also tells us how
sources imitate but supersede S matrix theory, ibid. Sources have much of
the flavor of differential forms, but they still are an ad hoc construction. It
is a concomitant of the main result of this paper that, given the relation
between the exterior calculus and RQM, one should look for an extension of
RQM in the extension of the exterior calculus.

The natural extension of the exterior calculus is differential geometry,
which Cartan and many differential geometers view as the exterior calcu-
lus of vector-valued forms (the bivector valuedness comes in the wash when
the manifold is endowed with a metric). The natural extension of scalar-
valuedness then is vector-valuedness, and some algebra built upon the mod-
ule of vector fields. This takes place very simply through the replacement
of the unit imaginary with “mirror elements in the tangent algebra of dif-
ferential forms in the idempotents. Thus idxdy should be replaced with
ijdxdy. For further details, see a series of papers posted in arXiv, where I
have started the replacement of the unit imaginary with elements of a tan-
gent Clifford algebra (Type Jose G. Vargas on the right hand corner of the
arXiv’s main page and ignore the entries with multiple authorship), We now
give an inkling of what to gain with such a replacement.

The two differential forms idt and idxdy give rise to the eight idempo-
tents ǫ±, τ± and ǫ±τ∗. With one more square root of one, we could build
idempotents ǫ±, τ±, λ±, ǫ±τ∗, ǫ±λ∗, τ±λ∗ and ǫ±τ∗λ∗∗. There are 23 of
them just of the type ǫ±τ∗λ∗∗. What could the λ± be? We skip considering
(1/2)(1± idydz) since the difference with τ± is just a choice of coordinates.
Let us notice in passing that the (1/2)(1± idydz) do not commute with the
τ±, but (1/2)(1 ± ijdxdy) and (1/2)(1 ± jkdydz).

Consider also idempotents of the type λ±

i = (1/2)(1 ± aidx
i), with no

sum over repeated indices. The three λ±

i commute among themselves and
with some of the idempotents previously considered. The issue arises of
what the presence or absence of commutativity implies.

Finally, let ǫ±1 , ǫ
±

2 , ǫ
±

3 , ... ǫ±r be “monary”, i. e not products of other
ones. We can perform all sorts of decomposition of the unity in terms of
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them. Thus, for instance,

1 = ǫ+1 +ǫ−2 = ǫ+1 +ǫ−2 ǫ
+
5 +ǫ−2 ǫ

−

5 = ǫ+1 +(ǫ−2 ǫ
+
5 ǫ

+
6 ++ǫ−2 ǫ

−

5 ǫ
−

6 )+ǫ−2 ǫ
−

5 = ... (74)

where we have introduced parenthesis for greater clarity. If particles are
associated with idempotents, decompositions of this type are a golden rule
for creating all sorts of plausible particle reactions. We could refer to this
mechanism of particle stoichiometry.

That is just an example of what a KC of Clifford-valued differential forms
(i.e. members of the tensor product of two Clifford algebras) could do! If
you have contrasting ideas, it all will be for the benefit of mathematics.
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