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0. INTRODUCTION

In this paper the system IL for relative interpretability described in Visser (1988) is

studied.1 In IL formulae A|> B (read: A interprets  B) are added to the provability

logic L. The intended interpretation of a formula A|>  B in an (arithmetical) theory

T is: T + B is relatively interpretable in T + A. The system has been shown to be

sound with respect to such arithmetical interpretations (S̆vejdar  1983, Montagna

1984, Visser  1986, 1988P).

As axioms for IL we take the usual axioms A→ A and

( A→A)→ A (Löb's Axiom) for the provability logic L and its rules, modus

ponens and necessitation, plus the axioms:

(1) (A→B)→(A|>B)

(2) (A|> B) ∧ (B|> C) → (A|> C)

(3) (A|> C) ∧ (B|> C)→(A∨B|> C)

(4) (A|> B)→( A→ B)

(5) A|>A

With respect to priority of parentheses |> is treated as →.

Furthermore, we will consider the following extensions of IL:

ILM  = IL + M, where M is the axiom (A|> B)→(A∧ C|> B∧ C)

ILP    = IL + P,  where    P  is the axiom (A|>B)→ (A|>B)2

We will write |_IL for derivability in IL, similarly for the other systems, but

sometimes we may leave the subscript off.

1 We want to thank Albert Visser who inspired these investigations by asking us to try and find a

useful semantics for the system ILM. We also thank Rineke Verbrugge for a number of corrections.
2 The scheme M is named after Franco Montagna who showed its soundness with respect to PA, even

in the more general case when C is replaced by a Σ-formula. The background of the names of the

schemes P and W is semantic and will be explained in the next section.
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The object of the whole study, undertaken together with Smoryński and Visser is

to obtain for the standard formal systems an analogon of Solovay's theorem:

which are the interpretability logics corresponding to PA, GB etc? Solovay's Theo-

rem shows that the provability logics of all these systems are the same. However,

their interpretability logics are not. Smoryński and Visser have shown that the

interpretability logic of GB and other finitely axiomatizable systems is ILP. It is

conjectured that ILM is the logic of PA and other essentially reflexive systems. A

third system

ILW = IL + W, where W is the axiom (A|>B)→(A|>B∧ ¬A)

is weaker than both other logics, and is conjectured to embody the principles

common to all "reasonable" arithmetics. For more details one should consult

Visser's paper in this volume.

In this paper we restrict ourselves to purely modal properties of the systems

in question. In section 1 the semantics for the different logics is described. In

section 2 the fixed point theorem of L is extended to IL. In the remaining sections

modal completeness theorems are proved for the systems IL, ILP and ILM. The

logics also turn out to have the finite model property, so decidability is a conse-

quence. We are still working on a completeness proof for ILW.

1. SEMANTICS

It is a well-known fact that the modal logic L is complete with respect to the L-

frames  < W, R >, which consist of a set of worlds W together with a transitive

conversely well-founded relation R.

1.1 Definition.  If  < W, R > is a partially ordered set and w ∈W, then

W[w]={w' ∈W|w R w'}.

1.2 Definition. An IL-frame is a L-frame < W, R > with an additional relation Sw,

for each w∈W, which has the following properties:

(i) Sw is a relation on W[w],

(ii) Sw is reflexive and transitive,

(iii) if w', w"∈W [w] and w' R  w", then w' Sw w",

We will often write S for { Sw|w ∈W}.

1.3 Definition. An IL-model is given by an IL-frame < W, R, S > combined with a
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forcing relation with the clauses:

u||_ A    ⇔ ∀v(u R  v ⇒ v||_A )

u||_A|>B ⇔ ∀v(u R  v  and v||_A ⇒ ∃w(v Su w and w||_B)).

1.4 Definition.

(a)  We write F|_
_A iff  F = < W, R, S >, and w||_A for every ||_ on F and w ∈W.

(b)  If K is a class of frames, we write K|_
_A iff F|_

_A for each F ∈K .

(c) KW is the class of frames satisfying

 (iv) for any w, the converse of R ° Sw is wellfounded

(d) KM is the class of frames satisfying

(iv') if u Sw v  R  z, then u R  z

(e) KP is the class of frames satisfying

(iv") if u Sw  v, then u Sw' v for any w' such that w R  w', w' R  u.

The next lemma states that the schemes W and P characterize the classes of

frames KW and KP respectively. Their names refer to the character of these classes:

in KP the relation Sw is persistent over R.

1.5 Lemma (Soundness).

(a) For each A, if |_IL A, then F|_
_A .

(b) For S = W, M, P, respectively, F|–– ILS ⇔ F ∈KS (ILS characterizes KS ).

(c) For S = W, M, P, respectively, if |_ILS A, then KS|_
_A .

Proof. Straightforward.

In Sections 3 and following completeness will be proved for the three systems

IL, ILP and ILM. Actually, ILP will be proved complete with respect to the more

restricted class of frames in which Sw and Sw' are identical on the intersection of

their domains. We will keep writing ILS if we want leave open which system we

are aiming at.

1.6 Example. For each of the systems above,

|_/¬((p|>¬p)∧(¬p|>p)).

Proof. The following is a countermodel:
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u

v

w

p

u

In the above picture only the "extra" arrows for Su are indicated. Note that in an

arithmetical interpretation such a formula would be what is called an Orey-sen-

tence (see e.g. Visser 1986). Note also that one could make this model into one in

which Su is antisymmetric; however, the procedure would make the model

infinite.

In the case of provability logic validity on trees is equivalent to validity on L-

frames. In the case of interpretability logic this is not generally the case.

1.7 Proposition. The formula (p→¬q ∧  ¬q) ∧ (p|> q)→(p|> q ∧  ⊥) is valid on all

ILM-models on trees, but KILM|_
_/  (p→¬q ∧  ¬q) ∧ (p|> q) → (p|> q ∧  ⊥) and hence

|_/ILM (p→¬q ∧  ¬q) ∧ (p|> q) → (p|> q ∧  ¬⊥).

Proof. Left to the reader.

Of course the usual procedure for "stretching out" a partially ordered model into a

tree works in this case. The point is that property (iv') will get lost: it will no longer

generally hold that, if w' Sw w" R u, then w' R u; the only thing one can say of u

then is that it will have a forcing relation identical to that of some successor of w',

and hence the resulting model will no longer be an ILM-model in our sense. For

IL, ILW and ILP, on the other hand, one can restrict oneself to tree models.

2. FIXED POINTS

From the fact that IL is an extension of L it is obvious that to prove the existence of

explicit fixed points in IL it is actually sufficient to find a fixed point  for

A(p)|>B(p), i.e. to find a formula C such that | _ IL C↔(A(C)|>B(C)). For, after that

we can proceed as in the standard proof for L (see Smoryński 1985). One might

conjecture that C = A(T)|>B(T) would do the trick, and in fact that formula does

work for ILM (as the reader may check). However, for IL a more complicated

formula is necessary: C = A(T)|>B( ¬A(T)).  (The even more complicated, but
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more symmetric formula A( ¬A(T))|>B( ¬A(T)) is equivalent to C and

therefore works too.) We will give a semantic proof. (The results of this section

were reached in cooperation with Visser; see Visser 1988P for a syntactic proof). Of

course, the present proof does need the completeness of IL proved in section 3.

2.1 Lemma.

w||_A(T)|> B( ¬A(T))  ⇔  w||_A(A(T)|> B( ¬A(T)))|> B(A(T)|> B( ¬A(T))).

Proof. We first establish some simple general facts, for arbitrary w. If we give them

without comment their proof is trivial. We write u||_max A iff u||_A and

∀v  (u R  v   ⇒   v||_/A), and we write w R u for  w R u or w = u.

(1) w||_D|> E  ⇔  ∀u (w R u∧u||_max D ⇒ ∃v (u Sw v ∧ v||_E));

(2) if w||_  D and w R u, then u||_  D;

(3) if w||_max D, then w||_ ¬D;

(4) if w||_  ¬D, then, if w R u, then u||_ D|>E;

(5) if w||_max D, then, if w R u, then u||_ D|>E;

(6) if w||_max D, then w||_max A(T)  ⇔  w||_max A(D|> E);

by (5), as  w||_  can only be depend on  u||_  for u for which w R u,

since e.g.,  w R v R v' Sv u implies w R u by Def.1.2.(i);

(7) if w||_max A(T), then w||_max A(A(T)|> E),  by (6);

(8) if w||_max A(A(T)|> E), then w||_A(T);

for assume w||_max A(A(T)|> E), then, by (7), w R u ⇒ u||_¬A(T), hence,

for all u with w R u, u||_A(T)|> E. As in (6), w||_A(T) follows from 

w||_A(A(T)|> E);

(9) if w||_  ¬E, then, for all u with w R u, u||_  ¬D   ⇔   u||_ D|>  E;

(10) if w||_max E, then, for all u with w R u, u||_ B( ¬D)   ⇔   u||_ B(D|> E);

(11) if w||_max E, then, for all u with w R u,

u||_max B( ¬D)   ⇔   u||_max B(D|> E);

(12) if w||_max B( ¬D), then w||_max B(D|>B( ¬D));

(13) if w||_max B(D|>B( ¬D)), then w||_max B( ¬D);

for assume w||_max B(D|> B( ¬D)), then, by (12), w||_  ¬B( ¬D).

So, by (9), for all u with w R u, u||_ D|> B( ¬D)   ⇔   u||_  ¬D;

so, w||_max B( ¬D).

Now we establish the main claim:

⇒:  Let w||_A(T)|> B( ¬A(T)). Assume w R u and u||_max A(A(T)|>B( ¬A(T))).

By (8), u||_A(T). So, for some v with u Sw  v, v||_ B( ¬A(T)). We may just as well

assume v||_max B( ¬A(T)), as u Sw v R v' implies u Sw v' by def. 1.2 (iii). By (12)

this implies v||_B(A(T)|> B( ¬A(T))).
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⇐:  Let w||_A(A(T)|> B( ¬A(T)))|> B(A(T)|> B( ¬A(T))). Assume w R u,

u||_max A(T). By (7), u||_A(A(T)|>  B( ¬A(T))). So, for some v with u Sw v,

v||_ B(A(T)|> B( ¬A(T)). Again we may assume that v||_max B(A(T)|> B( ¬A(T))),

and (13) gives us v||_ B( ¬A(T)).

For completeness' sake we formulate the explicit fixed point theorem which

follows from lemma 2.1 by the remarks above.

2.2 Theorem. For each IL-formula A(p, q1, …, qn) in which p occurs only modalized

(i.e. all occurrences of p are under some  or |>) there is a provably unique IL-

formula B(q1, …, qn) such that | _ IL A(B(q1, …, qn), q1, …, qn) ↔ B(q1, …, qn).

3. MODAL COMPLETENESS: PRELIMINARIES

The usual method in modal logic for obtaining completeness proofs is to construct

directly or indirectly the necessary countermodels by taking maximal consistent

sets of the logic under consideration as the worlds of the model (without

necessarily one consistent set standing for only one world) and providing this set

of worlds with an appropriate relation R. This method cannot be applied here,

since the logic is not compact: some infinite synactically consistent sets of formulae

are semantically incoherent. The solution is to restrict the maximal consistent sets

to subsets of some finite set of formulae. Such a so-called adequate set has to be

rich enough to handle the truth definition, and hence has to be closed under the

forming of subformulae and single negations. Furthermore, for each particular

logic, additional requirements on the adequate set will be needed to be able to

apply the axioms.

3.1 Definition. An adequate set of formulae is a set Φ    which fulfills the following

conditions:

(i) Φ    is closed under the taking of subformulae

(ii) if B ∈Φ, and B is no negation, then ¬B ∈Φ
(iii) ⊥|>⊥ ∈Φ
(iv) if B|> C∈Φ, then also B,  C ∈Φ
(v) if B as well as C is an antecedent or a consequent of some |>-formula in Φ,

then B|> C ∈Φ.

Obviously, each finite set Γ of formulae is contained in a finite adequate set Φ.
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3.2 Definition. Let Γ and ∆ be two maximal ILS-consistent subsets of some finite

adequate Φ. Then

Γ  ∆   ⇔  for each A ∈Γ,  A, A ∈∆, and for some A ∉Γ,   A ∈∆.

Whenever Γ ∆, we say that ∆ is a successor of Γ.

3.3 Lemma. Let Γ0  be a maximal ILS-consistent subset of some finite adequate Φ,

and let WΓ0 
be the smallest set such that

(i) Γ0 ∈W

(ii) if ∆ ∈W and ∆' is a maximal ILS-consistent subset of Φ such that ∆  ∆', then 

∆'  ∈W .

Then

(i)  is transitive and irreflexive on WΓ0

(ii)  For each Γ ∈ WΓ0
,  A ∈Γ  ⇔  A ∈∆ for every ∆ such that Γ ∆.

Proof. As in the case of L (i) is trivial, and so is ⇒ of (ii). For ⇐ of (ii) one needs

Löb's axiom.

One might think that this means that, in essence, the completeness problem for

ILS reduces to defining relations ∆ on WΓ0
 such that

(i)  has all the properties of the relation S in KS

(ii) For each Γ in WΓ0
, B|> C ∈Γ iff, for every ∆ such that Γ ∆ and B ∈∆, there

is some ∆' with ∆  Γ ∆' and C ∈∆'.

The situation is not as simple as that. Before we continue with the completeness

proofs, we will give an example to make this clear.

3.4 Example. It will be obvious that |_/ILS (p|> q∨r)→(p|> q)∨(p|> r). Now, take Γ0 to

be a maximal ILS-consistent set in Φ that contains  p|> q∨r, ¬(p|> q), and ¬(p|> r), as

well as the formulae ⊥, (p∨q∨r), ¬(p∧q), ¬(q∧r), and ¬(p∧r) . It is then

clear that the resulting WΓ0
 will look as follows:

u
v

w

x

p

q

r

It will also be clear that no Su can be defined on this model in such a way that
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u||_p|> q∨r, ¬(p|> q), ¬(p|> r). By doubling W[u] however an appropriate model can

be obtained (the arrows give the additional Su-relations not given by R):

u

p

q

r

p

q

r

u

u

v'

v"

w'

w"

x'

x"

Our strategy in the next section is a generalization of this idea: we will multiply

the maximal ILS-consistent sets by indexing them with finite sequences of for-

mulae. We write τ ⊆ τ' iff the finite sequence τ is a (not necessarily proper) initial

segment of the finite sequence τ'; we write * for concatenation, and, if w = < Γ, τ >,

we write (w)0 for Γ and (w)1 for τ.

Using these pairs we set aside, for each world w and each appropriate formula

C, a specific set of the successors of w indexed by C (the so-called critical C-

successors of w) to provide the counterexamples to the formulae B|>C that must be

falsified in w. We will restrict the relation Sw so that it does not "leave" this set of

C-critical successors. Speaking intuitively, the C-critical successors of w will be the

ones that contain no formula A that "asks for" C (where A is an antecedent and C

the consequent of a |>-formula in w). The next two lemmas show that this whole

idea is feasible. The first one says that indeed a counterexample can be found,

when needed: for each ¬(B|> C) in w a C-critical successor with B in it can be found.

The second one says that we will need to have Sw lead from  C-critical successors of

w to C-critical successors of w: if A|>D is a member of w, and A is a member of a C-

critical successor of w, then yet another C-critical successor of w with D in it can be

found.

3.5 Definition. Let Γ and ∆ be maximal ILS-consistent subsets of some given ad-

equate Φ. Then ∆ is a C-critical successor of Γ iff

(i) Γ ∆ 
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(ii) ¬A,  ¬A ∈∆ for each A such that A|> C ∈Γ.

Note that successors of C-critical successors of Γ are C-critical successors of Γ.

3.6 Lemma. Suppose Γ is maximal ILS-consistent in Φ and ¬(B|>C) ∈Γ; then there

exists a C-critical successor ∆ of Γ, maximal ILS-consistent in Φ, such that B ∈∆.

Proof. Take ∆ to be a maximal ILS-consistent extension of

{D,  D| D ∈Γ} ∪ {¬A,  ¬A|A|> C ∈Γ} ∪ {B,  ¬B}

Note first that the adequacy of Φ insures that all the formulae of ∆ are indeed

available. Secondly, note that if such a ∆ exists, it is indeed a C-critical successor of

Γ: the fact that

{D,  D| D∈Γ} ∪ { ¬B} ⊆ ∆

makes it a successor of Γ, and the fact that

 {¬A,  ¬A|A|> C ∈Γ} ⊆ ∆

makes it C-critical.

Now, if no such ∆ exists, then there are A1, …, Am and D1, …, Dk with

D1, …, Dk,  D1, …,  Dk, ¬A1, …, ¬Am,  ¬A1, …,  ¬Am, B, ¬B |_  ⊥ .

Or, equivalently:

D1, …, Dk,  D1, …,  Dk,¬(A1 ∨ … ∨ Am),  ¬(A1 ∨ … ∨ Am), B, ¬B |_  ⊥

This would mean that:

D1, …, Dk,  D1, …,  Dk, B, ¬B |_ A1 ∨ … ∨ Am ∨  (A1 ∨ … ∨ Am).

In other words:

D1, …, Dk,  D1, …,  Dk|_ B∧ ¬B → A1 ∨ … ∨ Am ∨  (A1 ∨…∨ Am).

Since IL contains L:
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D1, …,  Dk|_  (B∧ ¬B→A1 ∨ … ∨ Am ∨  (A1 ∨ … ∨ Am))

By axiom (1):

D1, …,  Dk|_ B∧ ¬B|> A1 ∨ … ∨ Am ∨  (A1 ∨ … ∨ Am)

In view of particularly the axioms (5) and (3) we have that

|_  A1 ∨ … ∨ Am ∨  (A1 ∨ … ∨ Am)|> A1 ∨ … ∨ Am.

So, by axiom (2):

D1, …,  Dk|_ B∧ ¬B|> A1 ∨ … ∨ Am

Given that A1|> C, …, Am|> C ∈Γ, we also have Γ|_ A1 ∨ … ∨ Am|> C (apply axiom (3)),

and so by axiom (2):

Γ|_ B ∧  ¬B|>  C

Now, it is not difficult to see that

|_  B|>  B  ∧   ¬B

(To that purpose, note first that |_ (B ∧  ¬B) ∨  (B ∧  ¬B)|>B ∧  ¬B. Secondly,

since ILS contains L, |_  (B →(B ∧  ¬B) ∨  (B ∧  ¬B)). So by axiom (1), it is

provable in ILS that B|>(B ∧  ¬B) ∨  (B ∧  ¬B). Combining these two facts we

find |_  B|>  B ∧  ¬B.)

Finally, by applying axiom (2) once more, it follows from Γ|_ B ∧  ¬B|> C and

| _ B|>  B ∧  ¬B that

Γ|_  B|>  C

This contradicts the consistency of Γ.

3.7 Lemma. Suppose B|> C ∈Γ and let ∆ be an E-critical successor of Γ with B ∈∆.

Then there is an E-critical successor ∆' of Γ with C ∈∆'.

Proof. Suppose there is not such a ∆'. Then there would be

D1, …,  Dn ∈Γ, and F1|> E, …, Fk|> E ∈Γ such that
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D1, …, Dn,  D1, …,  Dn, ¬F1, …, ¬Fk,  ¬F1, …,  ¬Fk, C |_  ⊥

and, therefore,

D1, …, Dn,  D1, …,  Dn|_ C → F1 ∨ … ∨ Fk ∨  (F1 ∨ … ∨ Fk)

which as before implies:

D1, …,  Dn|_ C|> F1 ∨ … ∨ Fk .

By axiom (2), B|> C ∈Γ implies that Γ|_  B|> F1 ∨ … ∨ Fk and, by axiom (3), Γ|_  B|>  E.

Given the adequacy conditions, this can be strengthened to B|> E ∈Γ. Since ∆ is an

E-critical successor of Γ, this implies ¬B ∈∆, and we have arrived at a contradiction,

since it is assumed that B ∈∆.

4. THE MODAL COMPLETENESS OF IL

In this section we just have to carefully adjoin sequences to the maximal IL-

consistent sets and see that the intuitive ideas of the previous section can be set to

work properly.

4.1 Theorem (Completeness and decidability  of IL). If |_/IL A, then there is a finite

IL-model K such that K|_
_
/A.

Proof. Take some finite adequate set Φ containing  ¬A. Let Γ be a maximally

consistent subset of Φ containing ¬A.

Now, set WΓ to be the smallest set of pairs < ∆, τ >, where τ is a finite sequence of

formulae from Φ, that fulfills the following requirements:

(i)  < Γ, <>> ∈WΓ

(ii)  If < ∆, τ > ∈WΓ , then < ∆', τ > ∈WΓ for every successor ∆' of ∆
(iii) If < ∆, τ > ∈WΓ , then < ∆', τ * < C  >> ∈WΓ for every C-critical

        successor ∆' of ∆.

WΓ is finite. (For every ∆, the number of successors of ∆ is finite. Moreover, if

∆ ∆', the number of successors of ∆' is smaller than the number of successors of

∆.)
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Observation: If < ∆, τ > ∈WΓ and E occurs in τ, then ¬E ∈∆.

Proof: Show with induction on the construction of WΓ that if < ∆, τ > ∈WΓ
and E occurs in τ then ¬E,  ¬E ∈∆.

Define R on WΓ as follows:

w R w' iff (w)0  (w')0 and (w)1
 ⊆ (w')1 .

It is easy to check that R has all the properties required.

Finally, let u Sw v apply if (I) and (II) hold:

(I) u, v ∈WΓ[w]

(II) (w)1 = (u)1 ⊆ (v)1 , or (u)1 = (w)1 * < C > * τ and (v)1 = (w)1 * < C > * σ for 

some C, σ and τ.

We leave it to the reader to check that under this definition Sw will have the

required properties:

We are now ready to define

w||_ p iff p ∈(w)0

and prove that

for each A ∈Φ, w||_ A iff A ∈(w)0 .

Given (ii) it is immediately clear that the model treats -formulae properly.3 So,

the only interesting case to look at in the inductive proof is the one that A is B|> C,

i.e. we have to show that

B|> C ∈(w)0  ⇔  ∀u (w R u ∧ B ∈(u)0 ⇒ ∃v (u Sw v ∧ C ∈(v)0)):

⇐:  Suppose B|> C ∉(w)0. Then ¬(B|> C) ∈(w)0. We must show that

∃u (w R u ∧ B ∈(u)0 ∧∀v (u Sw v →  ¬C ∈(v)0)). Let ∆ be as in lemma 3.6 with (w)0 as

Γ, and take u to be < ∆, (w)1 * < C >>. Consider any v such that u Sw v. Then C occurs

3 An alternative, perhaps more elegant, set up would be to do without (ii). Then one has to use the

equivalence of A with ¬A ⊥ and to adapt the definition of adequate set. Now this equivalence

is used in the treatment of  . (See the end of the proof which can be deleted in the alternative set

up.)
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in (v)1 . By the observation above, ¬C ∈(v)0.

⇒:  Suppose B|> C ∈(w)0. Consider any u such that wRu and B ∈(u)0.

Let us first assume that (u)1 = (w)1 * < E > * τ.  In that case we can apply lemma 3.7 for

Γ = (w)0 and ∆ = (u)0 to obtain an E-critical successor ∆' of Γ with C ∈∆'. It suffices

now to take v = < ∆', (w)1 * < E >>. It is clear that v fulfills all requirements to make

u  Sw  v.

If (u)1 = (w)1, then all we know is that (w)0 (u)0. Note, however, that every suc-

cessor of Γ is a ⊥-critical successor of Γ. (By axiom (4), |_ F|>⊥→ ¬F; hence if

F |>⊥ ∈Γ, then ¬F ∈Γ, and therefore ¬F,  ¬F∈∆ for every ∆ such that Γ ∆.) So

we can apply lemma 3.7 for Γ = (w)0, ∆ = (u)0, and E = ⊥, in order to obtain a (⊥-

critical) successor ∆' of Γ with C ∈∆'. Take v = < ∆', (w)1 >.

5. THE MODAL COMPLETENESS OF ILP

5.1 Definition. A set Φ of formulae is ILP-adequate  iff

(i) Φ    is adequate in the sense of definition 3.1

(ii) if B|> C ∈Φ, then also (B|> C) ∈Φ.

Clearly, each finite set Γ of formulae is contained in a finite ILP-adequate set Φ.

5.2 Theorem (Completeness and decidability  of ILP). If |_/ILP A, then there is a finite

ILP-model K such that K|_
_
/ A.

Proof. Take some finite adequate set Φ containing  ¬A. Let Γ be a maximally

consistent subset of Φ containing ¬A.

In constructing the model, we multiply the maximal ILP-consistent sets similarly

as with IL while at the same time transforming the model into a tree in the

standard manner. The purpose of making the model into a tree is insuring that a

unique immediate predecessor exists for each world. A world in the model will be

a sequence of pairs << Γ0, τ0  >, …,  < Γn–1, τn–1 >,  < Γn, τn >>.
More precisely, WΓ is built up according to the following clauses:

(i)    << Γ, < > >> ∈WΓ

(ii)   If << Γ0, τ0  >, …, < Γn, τn >> ∈WΓ , and ∆ is a successor of Γ then also

         << Γ0, τ0  >, …, < Γn, τn >, < ∆, τn >> ∈WΓ ;

(iii)  If << Γ0, τ0  >, …, < Γn, τn >>∈WΓ and ∆ is a C-critical successor of Γ,

         then also << Γ0, τ0  >, …, < Γn, τn >, < ∆, τn * < C >>> ∈WΓ
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If w = << Γ0, τ0 >, …,  < Γn, τn >> ∈WΓ,  we write ∆w = Γn and τw = τn.

We next define R on WΓ as follows: w R w' iff w is a proper initial segment of w'.

Thus, R is transitive and irreflexive. More importantly, every world different from

<< Γ, < > >> has precisely one immediate R-predecessor.

Note that that the model will treat  properly.

We are now ready to define u Sw v as applying if (I) and (II) hold:

(I) w  R  u, and for every w', if w' R  u then w' R  v

(II) τu ⊆ τv

It is easy to check that under this definition Sw will have the required properties.

Next we define

w| |  _ p iff p ∈∆w,

and prove that

for each A ∈Φ, w| |  _ A iff A ∈∆w  .

Again, the only interesting case to look at in the inductive proof is the one that A

is B|> C, i.e. we have to show that

B|> C ∈∆w  ⇔  ∀u (w R u ∧ B ∈∆u  ⇒ ∃v (u Sw v ∧ C ∈∆v)).

⇐: Suppose B| > C ∉∆w. Then ¬(B| >C) ∈∆w. We must show that

∃u (w R u ∧ B ∈∆u ∧ ∀v (u Sw v →  ¬C ∈∆v)).

Assume w = << Γ0, τ0  >, …, < Γn, τn >>. Let ∆ be as in lemma 3.6 with Γn as Γ. Take u to

be << Γ0, τ0  >, …,  < Γn, τn >,  < ∆', τn * < C >> with the ∆' given by that lemma.

Consider any v such that u Sw v . Then C occurs in τv. As in the previous case, it is

easy to see that this means that ¬C ∈∆v .

⇒: Suppose B|> C ∈∆w and w R u with B ∈∆u. Let w' the(!) immediate predecessor

of u. Note that axiom P and the ILP-adequacy of Φ insure that B| >  C  ∈∆w'.

Let us first assume that τu = τw' * < E >. In that case we can apply lemma 3.7

with Γ = ∆w' and ∆ = ∆u to obtain an E- critical successor ∆' of Γ with C ∈∆'. It suf-

fices now to take v = w' * < ∆', τu>. It is clear that v fulfills all requirements to make

u  Sw  v.

If, on the other hand, τu = τw', then all we know is that ∆w' ∆u. Recall
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however that every successor  is a ⊥-critical successor. So, here too, we apply lem-

ma 3.7 for Γ = ∆w', ∆ = ∆u, and E = ⊥, in order to obtain a (⊥-critical) successor ∆' of Γ
with C ∈∆". Take v = w' * < ∆", τu >. 

5.3 Corollary (to the proof of theorem 5.2). ILP is complete with respect to the

frames in which, if w R w', then Sw' = Sw`W[w'].

Proof. It is clear from the proof that, in the model constructed u Sw v iff u Sw' v for

the immediate predecessor w' of w.

The corollary means that we can take the S-relation in ILP to be a rigid rela-

tion, essentially independent of w.

6. THE MODAL COMPLETENESS OF ILM

The completeness proof for ILM is rather more complicated than the ones for the

completeness of IL and ILP. The first problem arises from the fact that to be able to

apply the characteristic axiom (A|>B) → (A∧ C|> B∧ C) we are forced to add the

consequent of this formula to the adequate set, whenever we have the antecedent.

6.1 Definition. An ILM-adequate set of formulae is a set Φ    which fulfills the

conditions:

(i)  Φ    is closed under the taking of subformulae

(ii)  if B and C ∈Φ,   then for each Boolean combination D of B and C

       there is a formula ILM-equivalent to D in Φ
(iii) ⊥|>⊥ ∈Φ
(iv) if B|> C ∈Φ, then also formulae ILM-equivalent to B,  C in Φ
(v)   if both B and C are antecedent or consequent of some |>-formula

         in Φ, then B|> C ∈Φ
(vi)  if B|> C,  D ∈Φ, then there is in Φ a formula ILM-equivalent to

         B ∧  D|> C ∧  D.

With this definition it is, of course, not at all obvious that each finite set is con-

tained in a finite adequate one. The problem in keeping things finite is that with

B∧ D|> C∧ D also (B∧ D) and (C∧ D) will have to be an element of Φ and

these will via clause (vi) generate new formulae in the adequate set, e.g.

B∧ D∧ ¬(B∧ D)|> C∧ D∧ ¬(B∧ D). What we have to show is that this does

not lead to an infinite regress: after a while the process starts delivering formulae
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equivalent to ones which have occurred previously. A little thought will convince

the reader that the next lemma shows just that.

6.2 Lemma. Starting with a finite set of formulae B1, …,  Bn, and and closing off

under the operation of taking (Bi∧ ¬Bj) (adding each new -formula to the

stock) leads to a finite set of L-equivalence classes of formulae.

Proof. By induction on n. In the case that there is only one formula B the process

stops immediately, because (B∧ ¬B) is L-equivalent to B.

Assume the validity of the lemma for n starting formulae and apply the closing off

procedure to B1, …,  Bn+1 . The formulae obtained will be of the forms

(Bi∧ ¬D1∧…∧ ¬Dk) (1 ≤ i ≤ n+1). For each of these classes we have to show that

they contain only a finite number of equivalence classes. Without loss of

generality we restrict ourselves to the case that i=1.

By the induction hypothesis there can be only finitely many formulae

(B1∧ ¬D1∧…∧ ¬Dk) in which the formula B1 has not been used in the con-

struction of D1 , …, Dk . Now consider a formula (B1∧ ¬D1∧…∧ ¬Dk) in which

B1 has been used. This formula is L-equivalent to

(B1∧ ¬B1∧ ¬D1∧…∧ ¬Dk). We now use the fact that

|_L  ¬B1→ (B1↔⊥) and  |_L  ¬B1→ … (B1↔⊥).

From this it easily follows that B1 can, in each of the D1 , …, Dk  occurring in

(B1∧ ¬B1∧ ¬D1∧…∧ ¬Dk), be L-equivalently replaced by ⊥, since ¬B1 occurs

in that formula. Now, each of the Di  is built up in such a manner that B1 occurs

only in the context ¬(B1 ∧…). This means that after replacing B1 by ⊥ we get a

tautology, which can be left out altogether. We end up with a formula

(B1∧ ¬E1∧…∧ ¬Em) in which each of the Ei has been constructed according to

procedure from B2 , …, Bn+1 . We already concluded that there can be only finitely

many such formulae.

6.3 Theorem (Completeness and decidability  of ILM) If |_/ILM A, then there is a

finite ILM-model K such that K|_
_/ A.

Proof.  Take some finite ILM-adequate set Φ containing ¬A. Let Γ be a maximal

ILM-consistent subset of Φ containing ¬A. Unfortunately, we need more worlds

than present in the WΓ used in the proofs for IL and ILP.

This time we set WΓ to be the collection of all pairs  < ∆, τ >, with

(i)   Γ ∆ or Γ = ∆
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(ii)  τ is a finite sequence of formulae from Φ, the length of which does

        not exceed the the depth4  of Γ minus the depth of ∆. (So, Γ is only

        paired off with the empty sequence.)

Clearly, WΓ is finite. Note that the sequence τ in a pair < ∆, τ > provides no longer

sufficient information on the "C-critical" status of ∆.

Define R on WΓ as follows:

w R w' iff (w)0 (w')0 and (w)1
 ⊆ (w')1 .

It is easy to check that R has all the properties required.

We say that u is a C-critical R-successor of w if (u)0 is a C-critical successor of (w)0

and (u)1 = (w)1 * < C > * τ .

Let u Sw v apply if (I)–(IV) hold:

(I)      u, v ∈WΓ[w]

(II)   (u)1
 ⊆  (v)1

(III) for each A such that A ∈(u)0 also A ∈(v)0

(IV)  if u is a C-critical R-successor of w, then v is a C-critical

        R-successor of w.

Let us check right away that under this definition Sw will have the required

properties:

(i)   that u, v ∈W[w] if u Sw v, is instantaneous.

(ii)  reflexivity and transitivity of Sw are easy to check.

(iii)  if u, v∈W [w] and u R v, then (I), (II) and (III) are immediate.

As for (IV) it suffices to recall that successors of C-critical successors are C-critical.

(iv) Suppose w' Sw w" R  u. We must show that w' R  u. That (w')1
 ⊆  (u)1 is

        immediate. That (w')0 (u)0 follows from (w")0 (u)0 combined with (III) for

         w', w".

We are now ready to define w| |  _ p iff p ∈(w)0 and prove that in that case w| |  _A iff

A ∈(w)0, holds for each A ∈Φ. Again, we restrict ourselves to the case that A is

B|>C, i.e. we have to show that

4 Γ has depth n if the maximal length of a complete chain Γ = Γ0 … Γm is n+1.
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B|> C ∈(w)0  ⇔ ∀u (wRu ∧ B∈(u)0 ⇒ ∃v(u Sw v ∧ C ∈(v)0)):

⇐: Suppose B|> C ∉(w)0. Then ¬(B|> C) ∈(w)0. We must show that

∃u (w R  u ∧ B ∈(u)0 ∧ ∀v (u Sw v →  ¬C  ∈(v)0)).

Let ∆ be as in lemma 3.6 with (w)0 as Γ, and take u to be < ∆, (w)1 * < C >>. Consider

any v such that u Sw v . Since u is a C-critical R-successor of w, v will be one too.

Therefore, ¬C ∈(v)0.

⇒: Suppose B|> C ∈(w)0 and let u be such that w R u and B ∈(u)0. Let

{ D1, …,  Dn} = { D| D∈(u)0 }. Note that axiom M and the adequacy of Φ insure

that (w)0  contains a formula equivalent to

B∧ D1∧...∧ Dn|> C∧ D1∧...∧ Dn.

Let  us first assume that  u is an E-critical R-successor of w. Then, for some τ,

(u)1 = (w)1 * < E > * τ.   In  that  case we can apply lemma 3.7 with Γ = (w)0 , ∆ = (u)0

and a formula equivalent to B∧ D1∧...∧ Dn|> C∧ D1∧...∧ Dn, rather than B|>  C

itself, as input. In so doing, we obtain an E-critical successor ∆' of Γ with (i) C ∈∆'

and (ii) D ∈∆' for each D such that D ∈∆. It suffices now to take v = < ∆', (u)1 >.

Given that each -formula in ∆ is also an element of ∆', the depth of ∆' cannot be

larger than the depth of ∆. Therefore v ∈WΓ. It is clear that v fulfills all

requirements to make u Sw v.

If, on the other hand  u is not an E-critical R-successor of w, then all we know

is that (w)0 (u)0. Recall once more that every successor of Γ is a ⊥-critical successor

of ∆. So, an application of lemma 3.7 with Γ = (w)0, ∆ = (u)0, E = ⊥, and

B∧ D1∧...∧ Dn|> C∧ D1∧...∧ Dn as input, yields a (⊥-critical) successor ∆' of Γ
with C ∈∆' and  D ∈∆' for each D such that D ∈∆. Take v = < ∆', (u)1 >. 
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