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1 Introduction 

There is the so-called "the hardest logic puzzle ever", you can look at it in wiki. Once I 

solved this puzzle. In the task, you need to come up with the right question to Gods in 

order to find out the truth. Tackling the solution for the first time, I exhausted possible 

options for questions in a few days and did not come close to a solution, and in general 

it seemed that there could be no other questions in principle, a strange feeling: "how it 

happened if there is a solution, why can't I think of?" Unable to cope with the task, I 

postponed the decision. After a year's break, I returned to the problem and with a fresh 

mind noticed a way to fundamentally complicate the question for Gods, and then the 

solution quickly opened! Comprehending this case can give a general theoretical rec-

ommendation - you need to make the question fundamentally more complex in all 

senses. The questions that I could come up with in the first iteration of the solution were 

too simple. And the main difficulty was just how to move on to a fundamentally more 

complex issue. To complicate questions, I took two universal steps. First, I added new, 

random properties to the existing logic at all levels of abstraction, and in the second 

step I generalized the properties of the resulting logic, and did this in a circle many 

times until the generalized material reached complexity enough to express the solution. 

And I always observe this general scheme, in all problems for which there is no typical 

solution - a transition from less complexity of logic to greater complexity is required. 

Therefore, it seems plausible to suggest that the defining feature of thinking is the abil-

ity to create logically organized material of the necessary complexity. Subsequently, I 

came to a small theory with the help of which one can formally think according to the 

same principle by which I thought when I was solving the hardest puzzle. 
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2 Logic of thinking 

About thinking in general. When considering thinking, it is impossible to abandon four 

fundamental characteristics: productivity, logicity, spontaneity, and complexity. If even 

one of these characteristics is absent, then there is no thinking. Therefore, thinking in 

general form is the spontaneous production of logically organized content of a certain 

complexity. 

 

Logic in general. Logic implies the main, the secondary and their dynamics. There is 

no logic without connections and levels of abstraction. Consequently, any logically or-

ganized content can be structured as a hierarchy of interconnections, where content 

from higher hierarchies is more significant than content from lower ones. Transfor-

mations that preserve the content hierarchical ordering property are logical operations. 

Any defined set of possible sequences of logical operations is some logic. Logic will 

be spontaneous if the set of possible sequences of logical operations is random. 

 

The above definition of logic is very convenient in the sense that it allows you to select 

a special set of objects, any operations with which are logical operations. The hierarchy 

of interconnections can be written literally, for example, in the following form: ((ab)c) 

is a rooted tree, the levels of which correspond to the levels of significance of the con-

tent, and each node of the tree contains a collection of arbitrary identifiers - which is 

interconnected content. For convenience, I skip separating characters when writing 

identifiers, so each letter is a separate identifier. The collection can be empty and the 

identifiers can be repeated. For example, there may be trees like this: (a), ((aa)(aa)), 

((a)(b)), (ab(cd(efg(a)))), (ab(ab)(ab)(aabb)), (a(b(cccc(dd)(ee)))) and the like. It 

is convenient to operate with such trees as strings, so from now on I will speak simply 

- strings. Isomorphism’s of strings are identical, for example, ((a(b))c) ≡ (c((b)a)). On 

the set S of all possible strings of the specified type, any operations of the type S → S 

will be logical operations, so any sequence of string transformations will correspond to 

some kind of logic. This logical universality of content is suitable for the logic of think-

ing in general. 

 

The logic of thinking. As I said, in the process of solving the “hardest puzzle”, I was 

doing two types of iterations: adding random properties in the logic of questions and 

generalizing. Consequently, for the logic of thinking, an operation of analytical gener-

alization is necessary - an Abstraction that deduces the main and discards the secondary, 

so that theories of things can be built. And also a procedure for adding random proper-

ties to different levels of the hierarchy is necessary - Deduction, which adds new prin-

ciples to logic so that complex theories of things can be built. Thus, two operations - 

Abstraction and Deduction on the set S define the logic of thinking. 

 

Operation of Abstraction. Acts on the principle of detecting a common property for 

a group of objects. On the set S, this principle can be expressed literally: ((ab)(ac)) 
⇒ (a(bc)). The general letter "a" can be put out of the parentheses, thus raising its 
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level in the hierarchy of abstractions, we can say that the letter "a" has become a ge-

neric feature for everything lower in the hierarchy, and the remnants are merged in 

common parentheses because they are interconnected through the generic sign “a”. 
After the action of the operation, the construction of the string is “simplified”, the loss 

of insignificant information (compression) occurs, which is also characteristic of natu-

ral generalization procedures. The rule of Abstraction can be generalized. The rule is 

valid for any substrings, any given string. If any group of substrings is at the same 

level of the hierarchy, for example, (...()()...), (...()()()...), (...()()()()...), ..., 
(...(...()()...)...), (...(...()()()...)...), ..., and if any combination of substrings contains 

the same content, for example, like this (...(ab)(aabb)...), or this 

(...(ab)(aabc)(aabbcc)...), then any piece of matching content can be put out of the 

parentheses, for example like this ((ab)(aabc)(aabbcc)) ⇒ (ab(aс)(aabbсс)), or 

like this  ((ab)(aabc)(aabbcc)) ⇒ (a(babcabbcc)), or this ((ab)(aabc)(aabbcc)) 

⇒ ((ab)abc(aabc)) and there are still many options left. The content that is putted 

out from the parentheses is underlined. As you can see, after putting out the general 

content, the remnants in the parentheses must be merged. You can put out from the 

parentheses not only identifiers, but also substrings, for example, (((a(b))(c(b))) ⇒ 

((b)(ac)), and if there are empty parentheses, they must be discarded, for example, 

(((a(b))(a(b))) ⇒ (a(b)()) ≡ (a(b)). Since a string can be simplified in many alterna-

tive and mutually exclusive ways, the Abstraction rule must be performed sequen-

tially, that is, in one step, you can make only one simplification for any one group of 

parentheses and one selected piece of content. Using the Abstraction rule, for any 

given string, you can sequentially construct the set of all possible simplifications in all 

possible alternative ways, using recursion. For example, consider the string 

((a)(bc(a))(bc(a))), and write down all possible simplifications: on the first iteration 

its be ((a)(bc(a))(bc(a))) ⇒ (b(a)(cc(a)(a))), ((a)(bc(a))(bc(a))) ⇒ 

(c(a)(bb(a)(a))), ((a)(bc(a))(bc(a))) ⇒ (bc(a)((a)(a))), ((a)(bc(a))(bc(a))) ⇒ 
((a)(a)(bbcc)), ((a)(bc(a))(bc(a))) ⇒ ((a)bc(a)), now apply the Abstraction rule to 

the results obtained at the first iteration, where possible (b(a)(cc(a)(a))) ⇒ 

(b(a)(cca)), (c(a)(bb(a)(a))) ⇒ (c(a)(bba)), (bc(a)((a)(a))) ⇒ 
(bc(a)(a)),  ((a)(a)(bbcc)) ⇒ (a(bbcc)), ((a)bc(a)) ⇒ (abc), again apply the Ab-

straction to the results of the second iteration (b(a)(cca)) ⇒ (ab(cc)), (c(a)(bba)) ⇒ 

(ac(bb)), (bc(a)(a)) ⇒ (abc), that's all, there are no more options, the procedure re-

cursively converged. Thus, with the help of recursion, we have decomposed the 

source, complex string into many simple and prime strings. Recursive decomposition 

of the source string into a set of prime ones using the Abstraction rule, I will call the 

Abstraction operator A: S→2^S, to summarize, we write, A[((a)(bc(a))(bc(a)))] = 
{(b(a)(cc(a)(a))), (c(a)(bb(a)(a))), (bc(a)((a)(a))), ((a)(a)(bbcc)), ((a)bc(a)), 
(b(a)(cca)), (c(a)(bba)), (bc(a)(a)), a(bbcc)), (abc), (ab(cc)), (ac(bb)), (abc)}, 

the specified multiset of Abstraction results contains all possible generalizations of 

the source string. 

 

Deduction operation. Adds new constructive properties to the source hierarchy, ex-

tends, and always complicates the interconnections hierarchy. On set S, there is a 

simple and natural way to define Deduction. First, note that strings can be written in a 

more compact form if repeating elements are written using a multiplier prefix, for ex-

ample, (aa) ≡ (2a), ((a)(a)) ≡ (2(a)), ((aa)(aa)) ≡ (2(2a)), 
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(aa(bb(ccc)(ccc))(bb(ccc)(ccc))) ≡ (2a2(2b2(3c))), in this notation any string is 

unambiguously unpacked from left to right. The Deduction rule duplicates all ele-

ments of the source string, any given number of times, and is general case defined as 

follows: (a) ⇒ {(2(2a)), (3(3a)), (4(4a)), ...}, that is, from any source string, you can 

get an infinite number of Deductions that will differ in the number of duplicates of the 

source elements. For practical purposes, in order to write down the algorithm, the 

number of duplicates must be fixed, so I define the Deduction operator as D: S→S, 

D[(a)] = (2(2a)). More examples: D[(aa)] = (2(4a)), D[((a)(b))] = (2(2(2a)2(2b))), 
D[(a(b(c)))] = (2(2a2(2b2(2c)))) and the like. As you can see, even if the source 

string is prime relative to the Abstraction rule, then its Deduction will always be com-

plex, that is, it will have a non-empty decomposition into prime strings, for example, 

A[D[(a)]] = A[(2(2a))] = A[((aa)(aa))] = {(aa), (a(aa))}, from this example it is ob-

vious that the source string (a) after Deduction acquired fundamentally new construc-

tive properties that Abstraction detects. 

 

Complexity. Complex things have more generalizations than simple things. The logic 

of an object is more complex the more different generalizations can be established for 

a given object. The Abstraction operator naturally defines the complexity on the set S. 

The more prime strings in the decomposition of source string using the Abstraction 

operator, the more complex the source string is. I define complexity as C: S→N, C[s] 
= |A[s]|, the modulus symbol is the number of elements in the multiset of Abstraction 

results. The operator C can be used to express the main property of Deduction, C[s] < 
C[D[s]], which is obviously by construction. The complexity of all prime strings is the 

same and does not depend on their size and hierarchy, for example, C[(a)] = 
C[(a(b)(c))] = C[(a(b(c))(c(a)))]. However, for prime strings, you can define their 

potential complexity through Deduction, C[D[(a)]] < C[D[(a(b)(c))]] < 
C[D[(a(b(c))(c(a)))]], in which case the potential complexity will depend on the size 

and structure of the source prime strings. 

 

Thinking process. On the set S, Abstraction and Deduction procedures are given, as 

well as complexity is defined. Thus, the logic of thinking is set. Since the specific 

level of complexity of human thinking is unknown, it is logical to assume that a com-

putational process satisfies the criteria for real thinking if it can create spontaneous, 

logically organized content of arbitrary (not limited from above) complexity, and un-

der the assumption of infinite computations, the complexity of the behavior of such a 

process should be infinite. To formally write such a process, an additional string con-

catenation operator is required. For syntax uniformity, the concatenation operator will 

be written as parentheses ({...}), the concatenation operator can be applied to any set 

of strings and result in one string, for example, (A[D[(a)]]) = (A[((aa)(aa))]) = 
((aa)(a(aa))). As you can see, many of the two Abstraction results have been concat-

enated into one string. So, the thinking process in general form: tn = (A[D[tn-1]]); t0 ∈ S. 

This recursive function produces logical, unique and arbitrarily complex content in 

any quantity from any starting value. 

 

Spontaneity. Thinking is spontaneous, no one can predict their next thought. In think-

ing, temporal trends can be identified, so you can predict the direction of thoughts to 

some extent, for example, you can roughly guess what you will think tomorrow, but 
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such predictions are mostly wrong since the origin of trends is also accidental. Collec-

tive forms of thinking, such as the development of science or the history of society, 

are also clearly random. No one can reliably predict history or how this or that scien-

tific theory will develop. Spontaneity is the guarantee of any fundamental novelty and 

this property is not reducible to the effect of a set of external factors, but it is inherent 

in thinking, which is obviously observed in closed subjective thinking. Thereby the 

computational process of thinking must be algorithmically random. In a strict sense, I 

believe that the set of all possible strings that the function tn enumerates at the abstrac-

tion stage is undecidable, and therefore the function tn is algorithmically random, but I 

have no proof. 

 

At this stage of reasoning, the function tn fully satisfies the above definition of think-

ing. This function produces spontaneous (algorithmically random), logically orga-

nized content of any given complexity. Moreover, the complexity is defined explicitly 

and constructively, and thanks to the Deduction operator, it increases iteratively, it 

can be calculated and evaluated, and the logical organization is guaranteed by the syn-

tax and the Abstraction operator, which iteratively generalizes the logic of the pro-

duced content. Thus, the function tn represents an algorithmic form of thinking in its 

pure, ideal form. 

 

Adjustment of generalizing ability and complexity of thinking. As you can see from 

the construction, the complexity of the content produced by the tn function increases 

exponentially, this is impractical. However, there is a natural way to regulate the gen-

eralization and complexity of content over a wide range. Any fixed level of complex-

ity and abstractness of content can be maintained. Due to the specific action of Ab-

straction, highly organized content floats to the upper levels of the hierarchy, while at 

the lower levels of the hierarchy, more chaotic content remains, that is, the content is 

ordered by the level of significance, generality and logical organization. Therefore, it 

is possible to discard the lower, insignificant levels of the hierarchy, that is, you can 

perform additional generalization of content using a cruder method. For example, 

from the string (abc(de(fk(gh)(cn(rt))))) you can extract the most significant part by 

cutting off deep nesting levels, like this (abc(de(fk(gh)(cn(rt))))) ⇒ (abc(de(fk))), in 

showed case a relatively insignificant fragment (gh)(cn(rt)) was removed. The proce-

dure for removing insignificant content can be built into the tn function after the Ab-

straction stage, like this tn = (Truncate[A[D[tn-1]], d]), where d is the depth of the re-

moved content. In addition to deletion of deep nesting, at the Abstraction stage it is 

also possible to selectively leave the Abstraction results, for example, it may make 

sense to leave only prime strings since they are the most generalized, and filter out the 

rest. In general, it is possible to filter the results of Abstraction according to their sta-

tistical significance for each specific practical problem. 

 

Practical use. In order for the described formal thinking process to acquire a mean-

ingful character, it is necessary to feed it a meaningful external signal, encoded with 

strings, according to the following scheme: tn = (A[D[((tn-1)(InputSignaln))]]), if a cer-

tain meaning is encoded in the input signal, then the behavior of the tn process will 

also have a certain meaning. The tn process thinks abstractly in its own internal lan-

guage, in order to understand the content of such thinking, it is necessary to build a 
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model of a common language with the help of a feedback loop and machine learning 

methods. Simply put, you need an automatic translator. 

 

Intelligence. I consider intelligence as an epiphenomenon, that is, intelligence is a de-

pendent, partial and optional form of the general process of thinking. This form of 

thinking can arise in response to a specifically intellectual interaction with the general 

process of thinking. For intelligence to arise in the tn process, the process must be 

viewed as a thinking black box, a kind of "alien intelligence", and it is necessary to 

implement meaningful, intelligent interaction using modern machine learning meth-

ods. 

 

Conclusion. In general, I propose to consider thinking at an extremely abstract level, 

so that even the concepts of things and actions and meaning of things and actions are 

inessential. In my opinion, without such extreme generalization, it is impossible to 

come close to solving the problem of creating a general intelligence. All specifically 

intellectual phenomena like goal-setting, pattern recognition, predictive ability, adapt-

ability, and problem-solving ability are the result of a more universal logic, which I 

call the logic of thinking. This logic does not depend on intelligence and its manifes-

tations. Everything secondary is deliberately discarded and the very phenomenon of 

intelligence is considered secondary in relation to a much more abstract process of 

self-organizing algorithmic chaos. 

 

Additional technical details can be viewed in my manuscript at the link: https://phil-
people.org/feed_items/104211087 
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