
Probable General Intelligence algorithm

Anton Venglovskiy[0000-0001-5780-6572]

Kyiv, Ukraine, 2019

anton.venglovskiy@gmail.com

Abstract. This article contains a description of a generalized and constructive

formal model for the processes of subjective and creative thinking. According to

the author, the algorithm presented in the article is capable of real and arbitrarily

complex thinking and is potentially able to report on the presence of conscious-

ness.

Keywords: artificial general intelligence, algorithm of mind, self-organizing

algorithmic chaos.

1 Introduction

In general, the author relies on the assumption that the logic of the phenomenon of mind

is completely reduced to the logic of the phenomenon of constructive complexity.

Simply put, reasonableness and complexity are one and the same thing and thinking

mean sufficiently complex constructive behaving. Accordingly such phenomena as

“understanding the meaning of things” and “problem-solving”, the author considers as

epiphenomenons in processes with more fundamental logic, which is a logic of con-

structive complexity, that goes beyond these particular phenomena.
In turn, the logic of constructive complexity can be expressed formally and build an

algorithm. This algorithm allows to unlimited create unique content of any given con-

structive complexity, in a formal computing process, as a consequence of this, the al-

gorithm is capable of simulating arbitrarily complex constructive behavior in dynamics.

The author suggests that if in some computing process, possible to simulate arbitrarily

complex constructive behavior, then this process is thinking. Thinking algorithms will

think subjectively if their computational process is closed.

From a purely technical point of view, the process of thinking is self-organizing al-

gorithmic chaos, which in the process of computing is able to spontaneously reach any

complexity of its structural organization.

mailto:anton.venglovskiy@gmail.com

2

2 The logic of constructive complexity

The objects of the logic are abstract theories. Any theory has complexity and this com-

plexity can be explicitly verified. From any theory, it is possible to deduce more com-

plex theories. From any complex theory, simple theories can be derived. For different

theories, inference will be different.

Abstract theories are any things about which it is known only that they are inherent

in constructive complexity because this complexity can be explicitly verified. And it is

also known that from any such thing a closed constructive transition to other, more

complex things is possible and this can also be checked.

Constructive complexity. A complex object is something that can be decomposed into

prime objects. The more prime objects contained in a complex object, the more com-

plex this object. Prime objects cannot be decomposed. The complexity of all prime

objects is the same.

In accordance with the above definition of complexity, abstract theories are divided

into two types: prime and complex. A theory is called complex if using some procedure,

a set of prime theories can be derived from it. In turn, using the same procedure for

prime theories returns a constant result. The complexity of all prime theories is the

same. Due to the fact that the concept of complexity in the logic under consideration is

defined constructively, it can be calculated and compared. Two theories have the same

complexity if they can be decomposed into the same number of prime theories. The

more prime theories you can get from a complex theory, the more complicated the orig-

inal theory.

The logic described above can be expressed in formal operations on strings of a spe-

cial kind.

Set of abstract theories S. To represent theories, strings are used that consist of an

arbitrary sequence of parentheses ‘(‘, ‘)’ and any identifiers inside the parentheses. For

brevity of explanation, further, each letter of the alphabet is considered a separate iden-

tifier. Identifiers can be repeated; each occurrence of the identifier is an independent

syntactic unit. The entire contents of the string must be enclosed in common outer pa-

rentheses. The hierarchy of parentheses in the string is arbitrary, but there must be a

closing one for each opening parentheses. Each correct string defines a tree. Example:

string ((b)a(e)) is correct, while strings (b)a(e), (a(b(e) are incorrect. Another examples

of correct strings: () ≡ ∅ - empty string, (a), (aa), ((aa)(aa)), (bb(b(aaa))(abb)). Two

strings are considered identical if the trees corresponding to them are isomorphic. An

example of how you can rearrange the elements of string: (ab(cd)) ≡ ((cd)ab) ≡ (b(dc)a)

≡ ... ≡ ((dc)ba). Any permutations are permissible if that does not change the tree of the

string. Empty substrings are not significant and are thrown away, for example, (a()) ≡

(a). To reduce writing, repeated items can be written using a repeat prefix, for example:

(aa) ≡ (2a), (aaabbb) ≡ (3a3b), (aa(bb)) ≡ (2a(2b)), ((a)(a)(a)) ≡ (3(a)),

(aaa(aabb)(aabb)) ≡ (3a2(2a2b)).

Set S consists of all possible correct strings. On the set S three rules of inference are

defined.

3

“Abstraction” rule. Applies to substrings of a source string. Allows you to put out

from the parentheses (hereinafter PFP) the same content. From any group of parenthe-

ses at the same level, any identical substrings can be taken out of parentheses, according

to the following principle:

 ((a)(b)) ⇒ ∅;

 ((a)(a)) ⇒ (a()) ≡ (a);

 ((ab)(ac)) ⇒ (a(bc));

 ((aa)(aa)) ⇒ {(a(aa)), (aa)};

 ((ab)(ab)) ⇒ {(a(bb)), (b(aa)), (ab)};

 ((a(b))(a(b))) ⇒ {(a((b)(b))), ((b)(aa)), (a(b))};

 ((ab)(abc)) ⇒ {(a(bbc)), (b(aac)), (ab(c))};

 ((ab)(ac)(ae)) ⇒ {(a(bce)), (a(bc)(ae)), (a(ab)(ce))};

 ((ab)(ac)(fe)(fk)) ⇒ {(a(bc)(fe)(fk)), (f(ek)(ab)(ac))};

Applying the “abstraction” rule to the source string, in the general case, a lot of re-

sulting strings can be inferred. By the “abstraction” rule, results are always simpler than

the source string. In the case of prime strings, the result of applying the “abstraction”

rule is empty. The recursive application of the “abstraction” rule allows you to decom-

pose any complex string into prime ones.

A more detailed example of the “abstraction” rule is given in the next section.

“Deduction” rule. According to this rule, from the source string you can get as many

fundamentally new strings as you like, by duplicating all the elements in the source

string any given number of times, according to the following principle:

 (a) ⇒ {((aa)(aa)), (3(3a)), (4(4a)), …};

 ((a)) ⇒ {(((aa)(aa))((aa)(aa))), (3(3(3a))), (4(4(4a))), ...};

 (a(b)) ⇒ {((aa(bb)(bb))(aa(bb)(bb))), (3(3a3(3b))), (4(4a4(4b))), …};

 (a(b(cc))) ⇒

{(aa(bb(cccc)(cccc))(bb(cccc)(cccc)))(aa(bb(cccc)(cccc))(bb(cccc)(cccc))),

(3(3a3(3b3(6c)))), (4(4a4(4b4(8c)))), …};

By the “deduction” rule, from any source string, a fundamentally new and guaran-

teed more complicated string can be deduced and this fact can be checked using “ab-

straction” rule.

“Composition” rule. Any set of strings from S can be combined into one string. For

example: (a), (b), (e) ⇒ ((a)(b)(e)).

4

Thus, a formal system is obtained which satisfies the definition of complexity logic.

Within the framework of the described logic, it is possible to construct an algorithm

that corresponds to the criteria of the subjective thinking algorithm.

3 Algorithm of General Intelligence

The algorithm is a recursive function of the following form:

 tn = (A[D[tn-1]]); tn ∈ S

The function tn produces algorithmically random and structurally unique content

from any nonempty seed string t0 ∈ S. Content that produced in this way spontaneously

organizes itself and its dynamic behavior can be arbitrarily complex. The potential

amount and constructive complexity of such content are boundless. The calculation of

this function is a process of thinking.

“Abstraction” operator A. This operator can be applied to any string from S. The

result of applying the operator to the source string is a set of strings that contains all

possible strings which can be obtained by recursively applying the "abstraction" rule to

the source string. The recursion continues until all possible prime strings are obtained.

Let us consider step by step several examples of the action of A. Let the string be

given ((aa)(aab)(aab)), this string has three substrings located on the same level: (aa),

(aab), (aab), all three substrings have the same content fragments. For a PFP operation,

we can arbitrarily select any combination of substrings. In this example, there are three

different possible combinations of substrings: (aa) (aab); (aab) (aab); (aa) (aab) (aab).

For each presented combination of substrings, all possible variants of PFP operation

will be created. Step by step PFP for combination (aa) (aab):

first case:

 Choose content ((aa)(aab) (aab)).

 PFP (a(a)(ab) (aab)).

 Merge (a(a ab) (aab)).

 Result (a(aab)(aab)).

second case:

 Choose content ((aa)(aab) (aab)).

 PFP (aa()(b) (aab)).

 Merge (aa(b) (aab)).

 Result (a(b)(aab)).

PFP’s for combination (aab) (aab):

 ((aa)(aab)(aab)) ⇒ (a(aa)(aabb)).

 ((aa)(aab)(aab)) ⇒ (aa(aa)(bb)).

5

 ((aa)(aab)(aab)) ⇒ (ab(aa)(aa)).

 ((aa)(aab)(aab)) ⇒ (b(aa)(aaaa)).

 ((aa)(aab)(aab)) ⇒ (aab(aa)).

PFP’s for combination (aa) (aab) (aab):

 ((aa)(aab)(aab)) ⇒ (a(aaabb)).

 ((aa)(aab)(aab)) ⇒ (aa(bb)).

As can be seen from the above example, for the source string ((aa)(aab)(aab)) there

are nine different cases to putting something out from the parentheses and there are nine

resulting strings for these cases. It’s not all possible PFP cases, but only nine pieces of

the first iteration. It is also necessary to construct all PFP cases for each of the nine

previously obtained results:

 (a(aab)(aab)):

─ (a(aab)(aab)) ⇒ (aa(aabb)).

─ (a(aab)(aab)) ⇒ (aaa(bb)).

─ (a(aab)(aab)) ⇒ (aab(aa)).

─ (a(aab)(aab)) ⇒ (aaab).

─ (a(aab)(aab)) ⇒ (ab(aaaa)).

 (a(b)(aab)):

─ (a(b)(aab)) ⇒ (ab(aa)).

 (a(aa)(aabb)):

─ (a(aa)(aabb)) ⇒ (aa(aabb)).

─ (a(aa)(aabb)) ⇒ (aaa(bb)).

 (aa(aa)(bb)).

 (ab(aa)(aa)):

─ (ab(aa)(aa)) ⇒ (aab(aa)).

─ (ab(aa)(aa)) ⇒ (aaab).

 (b(aa)(aaaa)):

─ (b(aa)(aaaa)) ⇒ (ab(aaaa)).

─ (b(aa)(aaaa)) ⇒ (aab(aa)).

 (aab(aa)).

 (a(aaabb)).

 (aa(bb)).

 So,

A[((aa)(aab)(aab))] = {(a(aab)(aab)), (aa(aabb)), (aaa(bb)), (aab(aa)), (aaab),

(ab(aaaa)), (a(b)(aab)), (ab(aa)), (a(aa)(aabb)), (aa(aabb)), (aaa(bb)), (aa(aa)(bb)),

(ab(aa)(aa)), (aab(aa)), (aaab), (b(aa)(aaaa)), (ab(aaaa)), (aab(aa)), (aab(aa)),

(a(aaabb)), (aa(bb))};

Consider a few more examples.

A[((a)(a(b)(b)))] =

6

 ((a)(a(b)(b))) ⇒ ((a)(ab)):

─ ((a)(ab)) ⇒ (a(b)).

 ((a)(a(b)(b))) ⇒ (a((b)(b))):

─ (a((b)(b))) ⇒ (a(b)).

A[((a(b))(a(b)))] =

 ((a(b))(a(b))) ⇒ (a((b)(b))):

─ (a((b)(b))) ⇒ (a(b)).

 ((a(b))(a(b))) ⇒ ((b)(aa)).

 ((a(b))(a(b))) ⇒ (a(b)).

“Deduction” operator D. A “deduction” rule with a fixed duplication parameter cor-

responds to the action of the operator D. For the nearest practical purposes, it is enough

that the duplication parameter is 2. As a result of D[s] execution, all components of the

source string s are doubled. Examples:

 D[(a)] = (2(2a)) = ((aa)(aa));

 D[(aa)] = (2(4a)) = ((aaaa)(aaaa));

 D[(ab)] = (2(2a2b)) = ((aabb)(aabb));

 D[(a(b))] = (2(2a2(2b))) = ((aa(bb)(bb))(aa(bb)(bb)));

 D[((a)(b))] = (2(2(2a)2(2b))) = (((aa)(aa)(bb)(bb))((aa)(aa)(bb)(bb)));

 D[((a)(b(cc)))] = (2(2(2a)2(2b2(4c))));

Composition Operator (). Corresponds to the action of the “composition” rule.

Substantive interpretation of “deduction” and “abstraction” operators. The phys-

ical meaning of the “deduction” operator is as follows. “Deduction” “blindly” adds

qualitatively new information to any original object in a closed way and thereby pro-

duces a fundamentally new object that is necessarily more complex than the original

object. In turn, the “abstraction” operator decomposes the new object into its compo-

nents and, thus, constructively expresses the information added at the “deduction”

stage. You may notice that when performing the PFP there is a loss of information.

Roughly speaking, for this syntax, PFP operation is a universal way to meaningfully

lose information in the absence of any a priori data about the meaning of strings. From

the point of view of the algorithm, all possible variants of information loss, which are

calculated at the stage of “abstraction”, are, in fact, the value of strings. Thus, at each

iteration, the algorithm produces a new and unique syntactic heuristic. And each of the

following heuristics is fundamentally more complex and more informative than the pre-

vious one. At each iteration of the algorithm, fundamentally new knowledge spontane-

ously arises.

7

4 Practical application of the algorithm

In order to solve practical problems using the algorithm, it is necessary to rationally

interact with it in the process of computing, as with an unknown intelligent object.

Consider the ideal case of interaction with the algorithm. Suppose we have unlimited

processing power. Four essential elements are required for interaction:

1. Digital model of an interactive environment, the meaning of which is known.

2. Digital model of the tool that can affect the environment.

3. Encoding algorithm that will encode the state of the environment using strings from

S.

4. Decoding algorithm, which will be in some fuzzy, but rationally motivated way to

decode strings from S and convert them into signals for the tool.

Below is schematic diagram of interaction (in pseudo-code):

S NextThought(S prevThought, S ExternalSignal, int expo-

sure = 1)

{

 S t = (prevThought, ExternalSignal); //composition

 for (int i = 0; i < exposure; i++)

 t = (A[D[t]]); //thinking

 return t;

}

EnvironmentModel e;

S s = encode(e.GetState());

S o = ∅;
while (thinks)

{

 o = NextThought(o, s);

 e.ImpactTool.perform(decode(o));

 s = encode(e.GetState());

}

To optimize the calculations, you can use many short strings in parallel, and control

the growth of their length in two natural ways:

1. Cut out content that is located in parentheses of deep nesting, because it is more

chaotic than content located shallow. Shallow content is highly organized because it

has “surfaced” from the depths as a result of iterative abstractions.

2. Carry out rational selection and grouping of strings at the stage of composition. For

example, select only prime strings. In a general way, you can select and grouping

strings based on preferred statistical properties.

8

5 The concept of the meaning of things in the logic of

complexity

Any thing can be defined and meaningful only in a constructive relation to other things.

In this paradigm, the meaning of things is defined in a potential and continuous way.

This means that a hypothetical record of one’s own exhaustive definition for any thing

will be infinite and infinitely complex. In the logic of the complexity of each thing,

corresponds is a certain syntactic representation, and the meaning of the thing is a po-

tentially possible syntax, to which a constructive transition from actual syntax can be

made. If the amount and complexity of the potential syntax are infinite, then the source

entry is informative and corresponds to some meaningful thing. Each entry in the logic

of complexity is informative. From the indicated positions, the tn function can be con-

sidered as a process of unrolling the inner meaning of things, which corresponds to an

intuitive idea of the thinking process.

