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Abstract 

Berarducci, A. and R. Verbrugge, On the provability logic of bounded arithmetic, Annals of 

Pure and Applied Logic 61 (1993) 75-93. 

Let PLQ be the provability logic of IA, + G?,. We prove some containments of the form 

L c_ PLQc Th(V) where L is the provability logic of PA and V is a suitable class of Kripke 

frames. 

1. Introduction 

In this paper we develop techniques to build various sets of highly undecidable 
sentences in Ido + i2,. Our results stem from an attempt to prove that the modal 
logic of provability in Ido + Ql, here called PLSZ, is the same as the modal logic 
L of provability in PA. It is already known that L s PLSZ. We prove here some 
strict containments of the form PLSZ c T/z(%) where %’ is a class of Kripke 
frames. 

Stated informally the problem is whether the provability predicates of Ido + Q2, 
and PA share the same modal properties. It turns out that while Ido + !Sl 
certainly satisfies all the properties needed to carry out the proof of Godel’s 
second incompleteness theorem (namely L E PLQ), the question whether 
L = PLQ might depend on difficult issues of computational complexity. In fact if 
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PLQ # L, it would follow that ZAO + Sz, does not prove its completeness with 
respect to Ey-formulas, and a fortiori IA0 + Ql does not prove the Matijasevic- 
Robinson-Davis-Putnam theorem (every r.e. set is diophantine, see [6], [3]). On 
the other hand if IA0 + Q1 did prove its completeness with respect to _Z:)- 
formulas, it would follow not only that L = PLQ, but also that NP = co-NP. The 
possibility remains that L = PLQ and that one could give a proof of this fact 
without making use of provable J$completeness in its full generality. Such a 
project is not without challenge due to the ubiquity of _X:-completeness in the 
whole area of provability logic. 

We begin by giving the definitions of L and PLQ 

Definition 1.1. The language of modal logic contains a countable set of 
propositional variables, a propositional constant I, boolean connectives 1, A, 
+, and the unary modality q . The modal provability logic L is axiomatized by all 
formulas having the form of propositional tautologies (including those containing 
the O-operator) plus the following axiom schemes: 

1. q (A-, B)-, @A+ q B). 
2. q (OA+A)+ CIA. 

3. q iA+ q CIA. 

The rules of inference are: 

1. If tA+ B and kA, then l-B (modus ponens). 
2. If IA, then F CIA (necessitation). 

Definition 1.2. Let T be a Zf-axiomatized theory in the language of arithmetic 
(see [ 11). A T-interpretation * is a function which assigns to each modal formula 
A a sentence A* in the language of T, and which satisfies the following 
requirements: 

1. I* is the sentence 0= 1. 
2. * commutes with the propositional connectives, i.e., (A* B)* = A*-, B*, 

etc. 
3. (CIA)* = Prov,(‘A*l). 

Clearly * is uniquely determined by its restriction to the propositional 
variables. The presence in the modal language of the propositional constant I 
allows us to consider closed modal formulas, i.e., modal formulas containing no 
propositional variables. If A is closed, then A* does not depend on *, e.g. (01)* 
is the arithmetical sentence Provr(‘O = ll). 

Definition 1.3. Let PLQ be the provability logic of IA0 + Q1, i.e., PLD is the set 
of all those modal formulas A such that for all IA0 + O,-interpretations *, 
IA,,+ Q1 IA*. 
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It is easy to see that PLQ is deductively closed (with respect to modus ponens 

and necessitation), so we can write PLQ t A for A E PLQ. Our results arise from 

an attempt to answer the following: 

Question 1.4. Is PLQ = L? (Where we have identified L with the set of its 

theorems.) 

The soundness side of the question, namely L E PLO, has already been 

answered positively. This depends on the fact that any reasonable theory which is 

at least as strong as Buss’ theory S: satisfies the derivability conditions needed to 

prove Godel’s incompleteness theorems (provided one uses efficient coding 

techniques and employs binary numerals). For the completeness side of the 

question, namely PLO E L, we will investigate whether we can adapt Solovay’s 

proof that L is the provability logic of PA. 

We assume that the reader is familiar with the Kripke semantics for L and with 

the method of Solovay’s proof as described in [9]. In particular we need the 

following: 

Theorem 1.5. L t A iff A is forced at the root of every finite tree-like Kripke 
model. (It is easy to see that A will then be forced at every node of every finite 
tree-like Kripke model. ) 

Solovay’s method is the following: if L H-A, then the countermodel (K, <, It) 
provided by the above theorem is used to construct a PA-interpretation * for 

which PA t+A*. 
The reason Solovay’s proof cannot be adapted to Ido + Q, is that it is not 

known whether IA,, + 52, satisfies provable CC$-completeness (see Definition 2.1) 

which is used in an essential way in Solovay’s proof. 

2. Arithmetical preliminaries 

Definition 2.1. Let r be a set of formulas. We say that a (Ef-axiomatized) theory 

T satisfies provable r-completeness, if for every formula a(x) E r, 

Tla(xl,. _. , x,)- Prov,(‘a(i,, . . . , in)‘). 

It is known that PA, as well as any reasonable theory extending IA0 + exp, 
satisfies provable z:‘-completeness. 

De Jongh, Jumelet and Montagna [5] showed that Solovay’s result can be 

extended to all reasonable _Er-sound theories T satisfying provable _E:‘- 

completeness. More precisely it is sufficient that the provability predicate of T 
provably satisfies the axioms of Guaspari and Solovay’s modal witness com- 

parison logic R-. So Solovay’s result holds for ZF, I& and IA0 + exp. 
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On the other hand it is known that if NP # co-NP, then IA, + 52, does not 
satisfy provable E’:-completeness or even provable A,-completeness. In [13] the 
second author proved that, if NP # co-NP, IA, + 52, does not even satisfy 
provable completeness for the single E:-formula 

44 v) = 3.~ (Prf,,,+&, u) A VY <~iPrf~~,,+&, v)). 

One possibility, although unlikely, remains: to adapt Solovay’s proof to 
IA0 + Sz, it would suffice that ZAO + Ql satisfies provable Ey-completeness for 
sentences, and we cannot rule out this possibility even assuming NP # co-NP. By 
[5] it would actually suffice to have provable 2:-completeness for all closed 
instances of o(u, v) where u and v are instantiated by Godel numbers of 
arithmetical sentences. 

In view of the above difficulties, we try to do without 2:-completeness. In the 
rest of this section we state some results about IA,, + Q, which in some cases 
allow us to dispense with the use of X:-completeness. The following proposition 
is proved in [15]: 

Theorem 2.2. ZA, + Q, satisfies provable .I$-completeness. 

By abuse of notation we will denote by q iA both the arithmetization of the 
provability predicate of Ido + Szr and the corresponding modal operator. OA is 
defined as d3A and q l+A as q A A A. If A(x) is an arithmetical formula, we will 
write Vx q (A(x)) as an abbreviation for the arithmetical sentence which 
formalizes the fact that for all x there is a ZAO + L2,-proof of A(i), where X is the 
binary numeral for n. If A and B are arithmetical sentences, q A 6 q IB denotes 
the witness comparison sentence 

3~ (Prf,,,+,, (x, ‘A’) A VY <x +‘rfid,,+n,(y, ‘B’)). 

Similarly CIA < q IB denotes 

3 (P&,+,,(x, ‘A? A VY ~xlPrfi~,,+n,(y, ‘Bl)). 

OkA is a formalization of the fact that A has a proof in IA0 + Sz, of Godel 
number sk. So q A < IJB can be written as 3x (OxA A -Cl,B). (Note that all the 
above definitions are only abbreviations for some arithmetical formulas and are 
not meant to correspond to an enrichment of the modal language.) 

Remark 2.3. Since the proof predicate can be formalized by a 2’l;-formula, we 
have IA, + Sz, t CIA--t q IUA and Ido + 9, t 0,A-t q O,A. 

Definition 2.4. By an IA0 + S2,-cut we mean a formula Z(X) with exactly one free 
variable x, such that ZA,, + Q2, proves that Z defines an initial segment of numbers 
containing 0 and closed under successor, addition, multiplication, and the 
function w, (see [15]). We write x E Z for Z(x). 
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Given an Ido + Q2,-cut Z, IA,, + Q, can formalize the fact that Z defines a model 
of Ido + 9,. It follows that for any arithmetical sentence 0 we have: 

Proposition 2.5. ZA,, + Q, E Cl(@)+ q ( @‘), where 8’ is obiai~e~ from 8 by 

rela~iuiz~ng all the ~~a~t~~ers to I. 

Note that if a X:-formula is witnessed in a cut, then it is witnessed in the 
universe. Thus we have: 

Remark 2.6. For every Ido + O,-cut I, and every J$-formula a(~~, . . . , x,), 

ZAo+~n,tx,~Z~...~x,~Z~d(xl ,..., x,)--t(~(x~ ,,.., x,). 

The use of binary numerals is essential for the following proposition (see [7]): 

Proposition 2.7. For any ZA, + Q;2,-cut I, Ido + Q2, t Vx 0(x E I). 

Making use of an efficient truth predicate (as in [7]), Verbrugge [13] proved the 
following result: 

Theorem 2.8 (Small reflection principle). IA, + 9, t t/k q (!&A -+ A). 

An immediate corollary is the following principle (originally stated by Svejdar 
for PA): 

Corollary 2.9 (Svejdar’s p~nciple). Ido + 52, t CIA---f q l(ClB c CIA --+ B), 

Using Solovay’s technique of shortening of cuts, it is easy to prove the 
foltowing: 

Proposition 2.10. There is an Ido + L&-cut J, such that for each Zt-formula 

@I, * * f 7 xn) we have: 

IA, + fi& I- J(q) A . . * A J(xn) A d(x,, . . . , x,)-+ [70(x,, . . . , x,). 

Proof. The proof is similar to the proof of provable $-completeness for 
Ido + 52, (see [HI). Therefore we only give a sketch of the proof. By induction 
on the structure of the formula, one can prove that for each A,-formula A with 
free variables x1, . . . , x,, there are k, I and m such that 

ZA,+IR,~Vx,, . . . , ~,V~Vy(x=max(xl,...,x,)~~y(=2”A’~k”~~’+m 

A&X,, . . . , G)+ 32 CY WA,,+&, rNi~, . . . , Q’)). 

Now let J be the cut, which can be obtained by Solovay’s shortening methods 
(cf. [15,8, lo]), such that 

l Ido c f2, t b’x (J(x)+ 3z (z = Y)) and 
l ZAo 4 62, t Vx, y (J(x) A J(y)+ J(x + y) A J(x - y) A J(2’“‘. I”)). 
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For this cut, we have for all A,-formulas A, 

IA, + Sz, t Vxl, . . . , x, (J(x,) A . . . A J(x,J A A@,, . . . , x,) 

+ 3z Prfldo+O,(z, rA(i~, . . . , in)‘)). 

The result immediately follows. q 

In the sequel ‘J’ will always refer to the cut of Proposition 2.10. 

Corollary 2.11. If Sj (i = 1, . . . , k) are 2:‘~sentences, then 

Proof. Let J be as in Proposition 2.10. Work in Ido + Q1 and suppose q (V, Si) 

holds. Since J (provably) defines a model of ZA, + Q2,, it follows q (V, Sf). By 

Proposition 2.10 and Remark 2.6, q l(S:+ q l+S,) and the desired result 

follows. 0 

The above corollary was originally proved by Visser [14] as a consequence of 

the following more general result: 

Theorem 2.12 (Visser’s principle). If S and Sj (i = 1, . . . , k) are $‘-sentences, 

then 

3. Trees of undecidable sentences 

We will rephrase the problem of whether PLQ = L as a problem concerning 

the existence of suitable trees of undecidable sentences. 

Let ie be a class of finite tree-like strict partial orders. Without loss of 

generality we assume that for all (K, -c) E %, K = (1, . . . , n} for some n E w, and 

1 is the root (i.e., the least element of K). By 7’h(%) we denote the set of all 

those modal formulas that are forced at the root of every Kripke model whose 

underlying tree belongs to %. Let < be the non-strict partial order associated to 

<. 

Definition 3.1. Given a tree (K, <) with root 1 and underlying set K = 

11,. . . 7 n}, we say that (K, <) can be embedded (or simulated) in IA0 + O1 if 

there are arithmetical sentences L,, . . . , L, (one for each node) such that, letting 

0 denote formalized provability from ZA(, + Q1, the conjunction of the following 
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sentences is consistent with ZA, + 9,: 
1. L,; 
2. q f(L, v . . . v L,); 
3. q +(Lj-+~Lj) for i#j in K; 

4. lJ+(L,+OL,) for aX:b in K; 

5. q +(L,+O~L,) for a +b in K. 

The following lemma is inspired by Solovay’s proof of the fact that L is the 

provability logic of PA. 

Lemma 3.2. In order for PLQ G Th(%) to be the case it sufices that every tree 
(K, i) E % can be embedded in IA,, + 9,. 

Proof. Suppose A $ Th( 72). Then there is a Kripke model (K, i, It) such that 

(K,<)E%, K=(l)..., n}, 1 is the least element of K, and 11tlA. By our 

hypothesis there exists a model M of Ido + Q, and sentences L1, . . . , L, 
satisfying, inside the model M, the properties l-5 of Definition 3.1. Define an 

Ido + &,-interpretation * by setting, for every atomic propositional letter p, 

p* = Vi,&, Li. It is then easy to verify by induction on the complexity of the modal 

formula B, that for every i E K: 

1. iItB 3 MkO+(L,-+B*); 
2. i It-7B 3 MkO+(Li+iB*). 

The induction step for 0 is based on the following consequences of 1-5: 

1. Mk q +(L;-,OLj) for i <i; 

Since 1 It lA, it follows that M k 1A *, hence Ido + Q, t+A* as desired. 0 

Corollary 3.3. Zf every finite tree (K, <) can be embedded in ZA,, + Q,, then 

PLQ=L. 

Proof. Let % be the class of all finite trees. If our hypothesis is satisfied, then 

LsPLQcTh(%)=L. Cl 

It can be easily verified that the sufficient condition of Lemma 3.2 is also 

necessary. Thus PLS;! c Th(%‘) iff every (K, i) E (e can be embedded in 

IA,, + 52,. Hence a very natural question to ask is: 

Question 3.4. Which finite trees can be embedded in ZA,, + Q,? 

Note that a complete answer to the above question, although interesting by 

itself, may not suffice to characterize PLSZ. In fact if Ce is the set of all finite trees 
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W X Y 

Fig. 1. The trees W, X, Y. 

that can be embedded in IA0 + sZ1, we can in general only conclude PLSZ c 
Th(%). 

In order to describe the results proved in this and previous papers, we need to 
define what it means for a tree to omit another tree. 

Definition 3.5. Let (T,, <,) and (T,, -+J be (strict) partial orders. An homomor- 
phic embedding of (T,, X1) into (T,, -$) is an injective map f : T,+ T2 such that 
for all x, y E T,, x <I y -f(x) -$f(y). If there is no homomorphic embedding of 
T, into T2 we say that T2 omits TI. 

If we try to adapt Solovay’s proof to IA0 + Q, in the most straightforward 
manner, the only trees that we can embed in ZAO + Q1 are the linear trees, 
namely trees omitting (K, <) where K = { 1, 2, 3}, 1 -K 2, 1 -C 3 and 2 is 
incomparable with 3. 

A first improvement can be achieved using Svejdar’s principle: let %I be the 
class of all trees that omit the tree W = (W, <), the least strict partial order with 
underlying set W = {1,2, 3, 4) such that 1 < 2, 1 < 3 < 4 (see Fig. 1). The second 
author proved in her master’s thesis [12] that for trees in ‘%, Solovay’s proof can 
be adapted using Svejdar’s principle. In other words, PLQ G Th(%,). She also 
proved that the inclusion is a strict one. 

In subsequent work she showed, using both Svejdar’s and Visser’s principles, 
that PLO is included in the modal theory of %$, the class of all trees of height <3. 

A new improvement [2] was achieved by analogous techniques but using a 
different definition of the Solovay constants. In this way it was proved that 
PLQ c Th(7&), where %‘j is the class of all trees that omit the tree X = (X, <), 
the least strict partial order with underlying set X = (1, 2, 3, 4, 5) such that 
1<2<4<5,1<2<3. 

Finally in Section 4 of the present paper, we improve these earlier results, by 
proving: 

Theorem 3.6. PLQ E Th(%J, where %$ is the class of trees that omit the tree 
Y = (Y, <), the least strict partial order with underlying set Y = (1, 2, 3, 4, 5, 6) 
such that 1<2<3<5, 1-~2<4<6. 
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In particular, Theorem 3.6 says that we can embed X but not Y. Note that the 

trees in %& can have an arbitrarily large number of bifurcation points, but each 

bifurcation point except the root can have at most one immediate successor which 

is not a leaf. The root can have any number of immediate successors which are 

not leaves. 

On the other hand, we prove in Sections 5 and 6 that for many classes % of 

trees (and especially for the classes %,, . . . , V& defined above), we cannot have 

PLQ = T/z(%). Therefore, all inclusions mentioned above are strict. More 

precisely we prove that if PLO = Th(%), then every binary tree can be 

homomorphically embedded in some tree belonging to %. So it is unlikely that 

PLQ is the theory of a class of trees, unless PLO = L. 

4. Upper bounds on PLQ 

Our task in this section will be to prove PLQ E Th(V&) using Lemma 3.2. 

Definition 4.1. Given (K, <) E ?$, we say that i E K is a special node, iff i is a 

leaf, and some brother of i is not a leaf. 

For example, in the tree X of Fig. 1, the only special node is 3. 

Definition 4.2. Let (K, <) E %$. Without loss of generality assume that K = 

(1, . . . , n} and 1 is the root. Let J be the cut of Proposition 2.10. By a 

self-referential construction based on the diagonal lemma, we can simultaneously 

define sentences L,, . . . , L,, and auxiliary functions 21, w, S, such that the 

following holds: 

1. If i E K is not special, let w(i) = px q ,lL; (with the convention that 

w(i) = 00 if OLj); if i E K is special w(i) = px E J 0, lLi (with the convention that 

w(i) = w if OJLi). We agree that w is a specific element greater than any integer. 

Note that the definition of w can be formalized in Ido + $2,. 

2. If j is an immediate successor of i in (K, <), let v(i, j) = w(j); otherwise 

v(i,j)=w. 
3. S: K+ K is defined as follows: S(i) = i if for no j E K we have v(i, j) < co; 

otherwise among all the j E K with v(i, j) < m, pick one for which v(i, j) is 

minimal, and set S(i) = S(j). (Note that there exists at most one such j because if 

w(j) = w(j’) < ~0, then there is one single proof of both -Li and lLjc, so j =j’.) 

4. Ido + Q, t L; - EhL, A i = S(1). 

The important point to observe, is that the definition of S can be formalized in 

IA, + Ql and that Ido + Q, proves that S(1) is always defined. This depends on 

the fact that, although S is defined in a recursive way, to compute S(1) one only 

needs a standard number of recursive calls, namely at most d where d is the 



84 A. Berarducci, R. Verbrugge 

height of the tree (K, <) (in fact at each recursive call we climb one step up in the 

tree). Note also that S depends self-referentially on L,, . . . , L,. Finally note 

that, if a, b are distinct immediate successors of i, then the statement v(i, a) < 

v(i, b) is equivalent to a witness comparison sentence in which some quantifiers 

are relativized to J. In particular, if a and b are not special, then v(i, a) < v(i, b) 
is equivalent to the Zy-sentence OlL, < q lLb. 

Remark 4.3. The main differences with Solovay’s construction are the following: 

(1) We do not use an extra node 0 (but this is a minor point since we could define 

Lo as 0~3. (2) 1 n our construction we can only jump one step at a time, namely 

at each recursive call S we can only move from one point to some immediate 

successor. (3) While Solovay employs a primitive recursive function from w to K 

whose definition is not directly formalizable in Ido + Q,, we use instead a 

function S : K+ K which is provably total in Ido + Q,. (4) We jump to a special 

node i E K only if we find a proof of 1Li belonging to the cut J. 

Given (K, <) as above, we will show that L1, . . . , L, constitute an embedding 

of (K, i) in IdO + Q,. We need the following lemma. 

Lemma 4.4. Let L,, . . . , L, and (K, -c) be as in Definition 4.2. Then: 
1. t-•1L,+L,v*--vL,. 
2. tLi+lLjfori#jin K. 
3. tLi+CliL,foriEK. 
4. L1 is consistent with IA,, + Q,. 
5. If j, j’ E K are brothers, then k q lLj ++ q lLj.. 

6. t-L,-+OL,,fora<bin K. 
7. I-L,-,OlL,forai,bin K. 

8. Zf i is above (i.e. +) a brother of j, then k Li --, q iLj; if moreover j is a leaf, 

then !- Lj+ 17lLi. 
9. Let b > 1 be an immediate successor of the root 1. Then k L,+ q O(~Lb). 
10. t- L1* q +(L;+ q lLj) whenever i, j are incomparable nodes of K. 

Here ‘k’ stands for ‘IA0 + C?, I’. 

Proof. It will be clear from the context at which places we reason inside 

IdO+ Q,. 
(1) and (2) are clear from the definition of the sentences Li and the fact that 

S : K-t K is a total function. 

(3) Li implies that q lL, A i = S(1). If i = 1, q lL, follows immediately; 

otherwise we have w(i) =C 00, and therefore q lLi. 
(4) If L, is inconsistent with IA, + Q,, then IJlL, holds in the standard 

model, so by (l), one of the sentences Li must hold in the standard model. This is 

absurd since each of these sentences implies its own inconsistency. 

(5) First note that k •,lLj~ 0(x E J A q ,lL,). Thus, regardless of whether j 

is special or not, t- q llL,+ q (w(j) = ,ux q l,lL,). Since j and j’ are brothers, 
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1 L,,+ w(j’) < w(j) (because j’ = S(1) implies w(j’) < w(j)). Therefore 

t lI!lL,+ q (L,.-+ KIlLif < OiLi). On the other hand by Svejdar’s principle 

t q 1Lj+ q (O1Lj’ < q 1L, -+lLj,) and we can conclude F q lLj~ q lLjp. 

(6) In Ido + Q, we can formalize the fact that if a consistent theory proves the 

consistency of another theory, then the latter is consistent (we assume that all 

theories contain IA,, + Q, and have a 2:: set of axioms). Hence tOL,, A q l(L,+ 

OL,)+OL,,. It follows that in the proof of (6) we can assume without loss of 

generality that b is an immediate successor of a. Working inside Ido + Q1, 

assume L,. Then a = S(1). Hence w(b) = 00. Now if b is not a special node, then 

w(b) = m+-OLb and we are done. If b is a special node, from w(b) = m we can 

only conclude O’Lh, so we need an additional argument. This is provided by 

point (5). In fact by definition of special node, a has certainly one immediate 

successor 6’ which is not special. Hence from L, we can derive OL,,, reasoning as 

above. By point (5), VLb tf OLhs and we are done. 

(7) can be derived through the chain of implications: Lb+ q iLh-+ 
q C!~L,-+ q bL,, where the last implication uses point (6). 

(8) Let i be above a brother of j, Then by (5), (7) and (3) t L,+ OlLj as 

desired. To prove the second part, assume further that j is a leaf. We need to 

show t L,-+ OiLi. We can assume that i is stricfly above a brother j’ of j (for if i 

itself is a brother of j the desired result follows from (3) an (5)). But then j must 

be a special node, and therefore w(j)=w EJ q ,lLj. So w(j)< w(j’) is 

equivalent to a ,$‘-formula relativized to J, namely 

w(j) < w(j’)*3x EJ (Prf,d,,+n,(X, ‘lLj_‘) A Vy sXIPrf,A,,+n,(y, ‘lL,#‘)). 

Thus by the properties of the cut J (and by Theorem 2.7), t w(j) < w( j’) + 

q lw(j) < w(j’). Now the desired result follows by observing that t Lj+ w(j) < 

w(j’) (as l-j = S(1) + w(j) < w(j’)) and t L;* w(j’) < w(j). 

(9) By (1) and (3), t-L1 + q (Vi>, Li). SO t0 prove t Ll+ q OlLb, it suffices 

to show that for each i > 1 we have l- q (L, - q lLh). This follows from (S), (3) 

and (7). 

(10) If the incomparable nodes i and j are in one of the situations covered by 

point (8), then F Li + q lLj, and a fortiori t L, + q f(Lj+ q hLj) as desired. 

Since (K, -c) omits Y, (8) can always be applied except when the biggest node 

(with respect to <) below i and j is 1 (the root). So assume that this is the case. 

By (2), we have F L1+ (L; + q lLj). In order to show that also t L, + q l(Li+ 

IIlL,), we will make use of Proposition 2.10. Let i’, j’ be the least nodes with 

l<i’<i and l<j’<j. So i’ and j’ are brothers. It follows from (9) that 

t L, - q (O~Li~). Therefore, by Proposition 2.5, t L, -+ q (CiJ~Li~). In the 

presence of q JlLjg, the sentence w(i’) < w(j’) is equivalent to a .X:-sentence 

relativized to J. Therefore, by Proposition 2.10, t L1-+ q (w(i’) < w(j’)+ 
q i(w(i’) < w(j’))). The desired result now follows from the fact that Li provably 

implies i = S(1) which entails w(i’) < w(j’), while Lj provably implies w(j’) < 

w(i’). 0 
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Corollary 4.5. If (K, <) and L1, . . . , L, are as above, then the conjunction of the 
following sentences is consistent with IA0 + a,: 

1. L,; 

2. W(L1 v . . * v L,); 
3. q +(Li*lLj) for i #j in K; 
4. q l+(L,+ OL,,) for a < b in K; 
5. q +(L,-t q liLt,) for a a + b in K. 

Proof. The derivation of Corollary 4.5 from Lemma 4.4 follows from a 
straightforward argument which can even be formalized in the decidable theory 
L Y (The axioms of L” are all the theorems of L and all the instances of CIA - A. 
The only rule is modus ponens.) 0 

We have thus shown that every tree of Ce, can be embedded in IA,, + Q. Thus: 

Theorem 4.6. PLQ G Th( %$). 

5. Disjunction property 

In this section we prove the following: 

Theorem 5.1. IF PLQ= Th(%), where % is a class of finite trees, then every 
binary tree can be homomorphically embedded in some tree belonging to Ce. 

In particular, since the binary tree Y cannot be embedded in any member of 
yde,, it will follow that the inclusion PLQ c Th(%J is strict. 

We will use the fact that PLQ has the ‘disjunction property’ as proved by 
Franc0 Montagna (private communication). 

Definition 5.2. A modal theory P has the disjunction property if for every pair of 
modal sentences A and B, if P I- q A v q B, then P EA or P t B. 

It is known that L has the disjunction property. 

Theorem 5.3 (Montagna). PLQ has the disjunction property. 

Proof. Suppose that for some IdO + S2,-interpretations ’ and l we have IA0 + 
Q2, t+A(p”) and IA,, + Q1 t+ B(p’), where p contains all propositional variables 
occurring in the modal formulas A and B. We have to prove that there is an 
IdO + Q2,-interpretation * such that IdO + sZ1 I+ (EiA v q !B)*. 

By multiple diagonalization, define for all pi EP an arithmetical formula pi” 
such that 

IA,+ Q, tpi” -(OA(p*) s q B(p*) A p:) v (OB(p*) < DA@*) A p:). 
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We will show that IA, + Sz, W (CIA v q lZ3)*. So suppose, to derive a contradiction, 

that IdO + 9, k q A(p*) v q B(p*). Then 

IdO + Q, k q A(p*) s q B(p*) v q B(p*) < q A(p*). 

Thus, because ZA,, + Q, is a true theory, either 

1. q A(p*)4M(p*) and IdO + Q, Ipi” ++pp for all i 

(by definition of p*), or 

2. q B(p*) < q A(p*) and ZA,, + Szr tp,* *p,T for all i. 

In case 1, we have IdO + 52, t- A(p*), so IdO + Q1 1 A(p”), contradicting our 

assumption. Similarly, case 2 contradicts the assumption IdO + Q, t+Z?(p’). q 

In order to prove Theorem 5.1 we need the following definition. 

Definition 5.4. We define D,, by induction. 

l DO=T. 

l D,+,(p, r) = O(D,(p) A q +r) A O(Di(p) A q l+lr), where p is of length i, and 

all propositional variables in p, r are different. 

The main property of the formulas D,, is expressed by the following lemma. 

Lemma 5.5. Zf K is a jinite tree-like Kripke model with root k such that k IF D,,, 
then we can homomorphically embed (see Definition 3.5) the full binary tree T, of 
2”+l- 1 nodes into K. 

Proof. By induction on IZ. 

Base case. Trivial: TO contains only one point. 

Induction step. Suppose that k It D,+,(p, r), i.e., 

k It O(D,(p) A q l’r) A q (Di(p) A lJ+lr). 

Then there are nodes kI, k2 such that k < kI, k < kZ, k, It D,(p) A q +r and 

kz II Di(p) A [7+-v. By the induction hypothesis, we can homomorphically embed 

a copy of the full binary tree Ti of bifurcation depth i into the subtree of K that 

consists of all points ?= kl . Analogously, we can homomorphically embed a copy 

of Ti into the subtree of K of points &k,. 

Because k, It q +r and kzlt q +lr, we may conclude that k, and k2 are 

incomparable and that the two images of Ti are disjoint. Therefore, we can 

combine both homomorphic embeddings into one and subsequently map the root 

of Ti+r to k. Thus an homomorphic embedding of T,+l into K is produced. 0 
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Theorem 5.1 is now an immediate consequence of the following: 

Theorem 5.6. Let Ce be a class of finite trees such that Th( %) has the disjunction 

property. Then for every n, Th( %) + D, is consistent. Thus every binary tree can 

be homomorphically embedded in some member of %. 

Proof. Let P = Th(%). Note that P 2 L. We prove by induction on n that P + D, 

is consistent. 

Base case. Trivial. 

Induction step. Suppose as induction hypothesis that for any p consisting of i 
different propositional variables, P + D,(p) is consistent. In order to derive a 

contradiction, suppose that P klDi+l(p, r), that is 

P 1 q l(lD,(p) v Xl+r) v q (lD,(p) v lO+lr). 

Then by the disjunction property, either 

1. PklDi(p) v Xl+r or 

2. P I-ID,(P) v 4Jf~r. 

We show that 1 cannot hold. By the induction hypothesis, P t+lDi(p). Since 

r does not appear in D,(p), we can take r = T. But then PkO+r, so 

P t+lDi(p) v lO+r. 
By an analogous proof, we can show that 2 cannot hold, which gives the 

desired contradiction. 0 

Note that in the proof of the fact that Th(%) + D, is consistent we have only 

used the fact that Th(%) is a consistent modal theory extending L and satisfying 

the disjunction property. The same proof can therefore be applied to PLQ 
yielding: 

Proposition 5.7. PLQ + D,, is consistent. 

We are now able to strengthen Theorem 5.1 as follows: 

Theorem 5.8. If there exists a binary tree H which cannot be homomorphically 
embedded in any member of %‘, then Th(%) & PLQ. 

Proof. Under our assumption there is some n such that the full binary tree of 

height n cannot be embedded in any member of %‘. Hence Th( %) + D,, is 

inconsistent. On the other hand PLQ + D, is consistent. Cl 

6. Further results 

We give some further results, due to the first author, of the form ‘PLQ + @ is 
consistent’, for various choices of @. In particular we strengthen Proposition 5.7 



Provability logic of bounded arithmefic 89 

by showing that PLQ + D, + 0 nfll is consistent. Note, for a motivation, that 

L = PLQ if and only if every modal formula C$ consistent with L, is consistent 

with PLSZ. The disjunction property will not be used. 

Definition 6.1. Given a tree (K, i) with root 1 and underlying set K = 

{I, . . . , n}, we say that (K, <) can be weakly embedded in IA,, + 52, if there are 

arithmetical sentences L,, . . . , L, (one for each node) such that, letting 0 

denote formalized provability from ZA, + 52 ,, the conjunction of the following 

sentences is consistent with IA,) + 52,: 

1. L1; 

2. q +(Li-+~Lj) for i #i in K; 

3. Cl”1 A 10”-‘l where m is the height of (K, <) (i.e., the maximum 

cardinality of a chain in (K, 0). We agree that El”1 is I and Ok+‘1 is q Ci“l; 

4. q +(L, -+ OLb) for a < b in K; 

5. lJ+(L,+ q lLh) for a {b in K. 

It is easy to verify that ‘embeddable’ implies ‘weakly embeddable’. (The only 

point to check is 3.) We will prove: 

Theorem 6.2. Every finite tree K can be weakly embedded in IA0 + Q,. 

This is to be compared with the previous result Theorem 3.6 saying that every 

tree omitting Y can be (strongly) embedded in IA0 + 9,. 

Note that the fact that K is weakly embeddable in Ido + Q, can be expressed in 

the form ‘PLQ + #K is consistent’, where q5K is a suitable modal formula 

depending on K (i.e., the conjunction of the five sentences of Definition 6.1, 

where the Lj’s are now thought as atomic modal formulas). 

Corollary 6.3. PLQ + D,, + q “+‘I is consistent. 

The proof of the corollary is easy and left to the reader. The idea is that the 

arithmetical sentences needed to prove that PLQ + D, + q l”+‘I is consistent, can 

be obtained as boolean combinations of the sentences Li which weakly embed 

the full binary tree of height II + 1 in ZAo + Q,. 

Theorem 6.2 will be proved with the help of a self-referential construction based 

on an auxiliary tree K, 2 K which is obtained by duplicating each bifurcation 

node of K. The idea is that we can do in two steps what we cannot do in one step. 

Definition 6.4. Given a finite tree (K, 0, we injectively associate, to each 

bifurcation node i of (K, x), a new node d(i) not in K, and we define K1 as K 

union the set of all the new nodes d(i). We make K, into a tree (K,, <J by 

putting each d(i) immediately above i and by stipulating that the immediate 

successors of d(i) in (K,, <J are the immediate successors of i in (K, <). Briefly: 

(K,, <,) is obtained from (K, <) by duplicating each bifurcation node. 
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On a first reading of the rest of this section we suggest to think of (K, -c) as the 
tree Y of Fig. 1. 

Definition 6.5. Let J be the cut of Proposition 2.10. Let (K,, <,) be obtained 
from (K, <) by duplicating each bifurcation node. By the diagonal lemma, we 
simultaneously define sentences Li for i E K, , and auxiliary functions V, w, S such 
that the following holds: 

1. If j E K, is an immediate successor of one of the new nodes d(i) E K, - K, 
then w(j) = ,UX E.Z (O,lLj A OxLd(i)); otherwise w(j) = /JX q ,lL,. 

2. If j E K1 is an immediate successor of i in (K,, c=~), let v(i, j) = w(j); 
otherwise v(i, j) = ~0. 

3. S : K,+ K, is defined as follows: S(i) = i if for no j E K1 we have v(i, j) < a; 
otherwise among all the j E K, with v(i, j) < 00, pick one for which v(i, j) is 
minimal, and set S(i) = S(j). (Note that there exists at most one such j.) 

4. ForiEKi, ZAo+52,~Li~OlL,~i=S(1). 

Remark 6.6. Note that the definitions of S and Li can be formalized in IdO + Q2, 
and that, for the same reason as in Section 4, S(1) is always defined. However, 
we do not necessarily have that S(1) E K. 

Lemma 6.7. Zf a, b E K and b is an immediate successor of a in (K,, x1), then 
ZAo+Q,tL,*OL,,,. 

Proof. We have k v(a, b) = ,ux lJ,lLb and t L,+ v(a, b) = ~0, whence t L,-, 
OLb as desired. 0 

Lemma 6.8. Zf a E K is a bifurcation point, then ZAO + Ql t L, + OL,,,,. 

Proof. We have kv(a, d(a)) = px q ,1L,,,,. Hence as above IA0 + Szi t L,* 

OL,,,,. 0 

Lemma 6.9. Zf a <1 d(a) <1 b and b is an immediate (<I)-successor of d(a), then 

ZA,, + Q2, k OL+~+ Oh. 

Proof. Reason in IA, + Q,. Assume O-L,. We need to prove iIlL,,,,. Let n be 
such that q ,lLh. By provable X:-completeness, q Cl,~Lb. Since VU q (u E J), we 
have q (Cl,~L, AX EJ). By the small reflection principle ~VU q l(L,,,,-+ 

OuLd(o)). so q (L+z, + O,L+, A q l,lLb A x E J). By definition, v(d(a), b) = 

P EJ (OxlLb A 0xL+j). Thus q (L,,,, + v(d(a), b) < m). On the other hand 
the definition of LdCaj gives us q (L,C,,-,v(d(a), b) = cc). Hence q llL,,,, as 
desired. 0 

Lemma 6.10. Zf a E K, b E K1, and a < 1 b, then Ido + Ql k L, --, OLb. 



Provability logic of bounded arithmetic 91 

Proof. By the above lemmas, and by transitivity of ‘proves the consistency 

of’. 0 

Lemma 6.11. If a, b E K, and a {1 b, then Ido + 52, t L,-+ q lL,. 

Proof. We distinguish the case when b <I a from the case in which b is 

incomparable with a. 

Case 1: Let b <, a. From the definitions, t L,-+ OiL,. So we can assume 

b # 1. Reason in Ido + Q2,. If L,, then a = S(l), hence by definition, every b <1 a 

with b # 1 satisfies w(b) < 00. A fortiori q llLb as desired. 

Case 2: Let b be incomparable with a. It follows that in (K,, -c~) there exists a 

node of the form d(i) and two immediate (<J-successors U, Y of d(i) such that 

u =5i a and ZJ =G, b. By definition we have w(u) = p EJ (Cl,iL, A OxLdCij) and 

w(v) = p EJ (Cl,~L, A OxLdCij). By the properties of the cut J, it follows that 

IA, + sZ1 t w(u) < w(v) -+ q (w(u) < w(v)) and the desired result follows from 

the fact that t-L,+ w(u) < w(v) and t L,+ w(v) < w(u). 0 

The next two lemmas follow immediately from the definitions. 

Lemma 6.12. IdO + 52, t Lj-+lLj for i #j in K,. 

Lemma 6.13. IdO + 52, !- q liL, -+ VitK, Lj. 

Lemma 6.14. L, k consistent with Ido + sZ1. 

Proof. Since for every i E K, , Ido + Q, t L; + 13Lj, the standard model satisfies 

AieKj lLi. On the other hand, by the previous lemma, AitK,lLi provably 

implies OL, and the desired result follows. 0 

We now prove the somewhat surprising: 

Lemma 6.15. Zf a is a (<,)-immediate successor of d(i), then 

IdO + 9, t LdCij-+ q llL,. 

Proof. Recall that v(d(i), a) = px EJ (Cl, 1L, A OxLdCij). Reason in Ido + Q,. 

Assume L+). Then there exists x such that El, lLd(i). Hence q O,~LdCiJ. Reason 

inside Cl. Then Cl, lLdCij holds. If for a contradiction L, holds, then v(d(i), a) < 

00. Thus there exists y such that Cl, TL, and OrLdCij. It follows that y <x. Thus 

q ,iL,. Since x is ‘external’, by the small reflection principle lL, holds. 

Contradiction. q 
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Definition 6.16. For i E K, define k(i) as the cardinality of the longest ascending 
chain in (K, <) whose first element is i. So if i is a leaf, k(i) = 1. Extend the map 
i-k(i) from K to K, by defining k(d(i)) = k(i) - 1. 

Lemma 6.17. For every u E K1, l& + QI k L, + q (Vjtluhk(j)<k(u) Lj). 

Proof. Since tL,+ 13L1, we have 1 L,-+ q (VjcK, Lj). SO it is enough to show 
that if j does not satisfy j z 1 u A k(j) -=c k(u), then t L, + q lLj. We have already 
shown that if l(j >r u), then t L, + q lL,. On the other hand if j>, u and 
l(k(j) < k(i)), then u must be of the form u = d(i) and j must be an immediate 
(Xi)-successor of u (hence k(j) = k(u)). But then by a previous lemma FL,* 

0 lLj as desired. 0 

Lemma 6.18. For u E K, , Ido + Ql k L, + @‘“‘I. 

In particular IA0 + Sz, t L,+ Cl”1 where m is the height of K. 

Proof, By induction on k = k(u). The base case is when k(u) = 1. Then either u 
is a leaf, or u = d(i) for some i E K with k(i) = 2. In any case all the nodes a >, u, 

if any, are immediate (<,)-successors of u and 1 L,-, q lL,. But then L, 

provably implies 0 1Lj for every j E K,, and therefore t L, + 0-L as desired. The 
induction step follows from the previous lemma. 0 

6.19. ZAO + Q1 k L, --, TIm-1 1. 

Proof. Clear from the fact that for a < 6 in K, E L, + OLh. 0 

The proof of Theorem 6.2 follows now immediately from all the preceding 
lemmas. 

6.20. If d(i) i, j and j is not an immediate (<J-successor of d(i), then we do not 
know whether IA0 + Sz, t LdCi)+ q lLj holds, or IA0 + Q2, I- LdCi)-, OLj holds, or 
neither of them. 
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