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ABSTRACT
Mitochondrial replacement therapy has been developed 
in order to prevent the transmission of mitochondrial 
mutations, yet it raises ethical concerns, particularly 
regarding the involvement of third- party DNA and the 
risks associated with donor procedures. This paper 
explores an alternative approach using synthetic DNA 
(synDNA) to construct mitochondrial organelles, thereby 
bypassing the need for donor oocytes and bypassing 
risks to donors. We argue that those who support 
mitochondrial replacement techniques as an ethically 
acceptable means of preventing the transmission 
of mitochondrial disease should consider the use of 
synthetic mitochondria as a preferable ethical alternative, 
should it prove technically viable. That this will be 
viable is more than we can demonstrate here. However, 
progress in synDNA technology suggests that it is not 
unreasonable to think that synthetic mitochondria 
creation is feasible, and perhaps even probable.

INTRODUCTION
Mitochondrial replacement therapy (MRT) is 
designed to prevent the transmission of mitochon-
drial mutations by replacing the prospective moth-
er’s mitochondria with mitochondria obtained from 
a donor.1–3 This ensures that women with mito-
chondrial disease can reproduce, while reducing the 
risk that their offspring will suffer from mitochon-
drial disease.

Several ethical concerns have been raised in rela-
tion to MRT. Some have worried that since MRT 
involves the genetic input of three people, instead 
of two as in conventional assisted reproductive 
technologies (ARTs), it would effectively create 
offspring with three parents.4 5 While this pros-
pect has received widespread media attention, in 
the ethics literature there has been more interest 
in ethical concerns regarding the alteration of the 
human germline, and the consequences that this 
might have on future generations.6 Some bioethi-
cists worry about the safety of the procedure, or 
the potential for unforeseen genetic and health 
issues for offspring.7 Others have noted that in 
order to facilitate one woman’s aim of transmitting 
nuclear DNA, another woman has to undergo the 
invasive procedures of ovarian stimulation and egg 
harvesting.8 But another feature of MRT is the need 
to perform an intervention on two eggs in order 
to obtain one that fulfils the requirements of the 
prospective parents.

The purpose of MRT is premised on the desir-
ability of not transmitting faulty mitochondria from 
mother to child. It is not the intention of either 
the intended parents or the healthcare team that 
the mitochondrial DNA (mtDNA) donor would be 

treated as a parent. The law treats mitochondrial 
donors as strangers whose identity and motivations 
are of as little significance as the motivations of 
those who donate blood.9 But the incorporation 
of third- party DNA—even though it is ‘merely’ 
mitochondrial—may open the way for relationship 
claims in the future.10–13 The case of gamete dona-
tion is potentially instructive here, showing that the 
law can change. For many years, both prospective 
parents and gamete donors had been encouraged 
to see gamete donation as a one- off event unlikely 
to be of any significant interest to the offspring. 
This has proved false, and anonymity has been 
removed in many legislatures, sometimes retroac-
tively. Accordingly, those who use MRT today may 
also be subjected to fluctuations in legal and social 
norms that are beyond their power to predict or 
control. We cannot assume, either, that offspring 
will regard their mitochondrial donor as having no 
special significance to them; as with offspring born 
following gamete donation, we simply do not know 
how they may feel.

There may be an alternative to mitochondrial dona-
tion that avoids invasive treatment for donors and 
bypasses the creation of genetic relationships between 
the offspring and any third party. In this paper, we will 
consider the use of synthetic DNA (synDNA)—that is, 
DNA created wholly in the laboratory from its bare 
molecular ingredients—to construct mitochondrial 
organelles to replace the mutated mitochondria carried 
by the prospective mother. In our proposed approach, 
synthetic mtDNA would be introduced into mitochon-
dria in situ, within the egg cell, after the removal of pre- 
existing mtDNA, as described in previous studies.14–16 
This process occurs in culture, avoiding the need to 
extract and reintroduce mitochondria. We consider 
whether such a technique would be preferable to the 
use of mitochondria donated by a third party.

Before we discuss this possibility, it is important to 
note that we do not, in this paper, undertake a crit-
ical analysis of the basis for undertaking MRT in 
general. MRT has been criticised by several ethicists 
on a number of grounds.17–19 However, our aim here 
is simply to show that the use of synDNA offers an 
equally acceptable or even morally preferable way of 
achieving the reproductive goals of women with mito-
chondrial disease. It might also be of interest to lesbian 
couples aiming to undergo ART in order to have chil-
dren related to both partners, and perhaps to women 
whose oocytes are damaged by ageing and could be 
‘rejuvenated’ with the help of synDNA technology.20

Creating synDNA
DNA synthesis involves assembling molecules 
(adenine, thymine, guanine and cytosine) into long 
chains. Over the past two decades, researchers have 
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developed in vitro methods for DNA synthesis via chemical reac-
tions. This enables the construction of DNA sequences outside 
of a cell, in a machine in the lab. These synthetic or printable 
DNA molecules offer the possibility of generating specific DNA 
sequences from scratch. While current synthesis techniques 
face challenges such as cost, time and sequence length limita-
tions, recent advances have substantially improved efficiency, 
addressing these constraints. Moreover, that something is too 
technologically challenging to be done (or done easily) today 
does not mean that it will be too challenging tomorrow, and so 
it is worth thinking about the ethics in advance.

In 2007, the team led by Craig Venter achieved a milestone 
by synthesising and transplanting an entire artificial genome.21 
In this study, researchers completely replaced the genome of 
the bacteria Mycoplasma capricolum with a synthetic version of 
another bacterial genome (Mycoplasma mycoides). The resulting 
bacteria exhibited behaviours consistent with M. mycoides, 
confirming the expected phenotype from the artificial genome. 
Some years later, Venter and his team undertook the task of 
redesigning the entire genome of M. mycoides, removing genes 
deemed unnecessary for bacterial survival in laboratory condi-
tions, and generating the first genome entirely redesigned using 
a computer.22 Advances in synDNA techniques have also been 
achieved in eukaryotic organisms.23 In 2023, it was shown that 
half of the genome of the yeast can be synthetically manufactured 

and replaced in wild- type yeast.24 The same year, this group 
also built a novel extra chromosome that does not exist in the 
wild strain.25 Additionally, the group was able to use synDNA 
techniques to rebuild chromosomes from yeast with structural 
alterations in order to get insights into the function of different 
genomic regions in yeast.26 27

The entire genome of M. mycoides consists of approximately 
1.2 million nucleotides,28 while the yeast genome contains far 
fewer nucleotides than the human (12 million,29 as compared 
with approximately 200 million). While current techniques do 
not yet permit the construction of human chromosome- sized 
strands of DNA, it is already possible to engineer certain human 
sequences. For instance, mtDNA consists of 16.569 nucleotides. 
This is far less than the 1.2 million nucleotides of synDNA gener-
ated for M. mycoides or the 6 million nucleotides generated for 
yeast. On the surface, then, building synthetic human mitochon-
dria ought to be well within current technological capabilities. 
Indeed, several papers in the scientific literature describe tech-
niques to introduce exogenous DNA into mitochondria30–32 and 
even remove pre- existing mtDNA.14–16

Hence, it is feasible to imagine a scenario in which synthetic 
mitochondria could be engineered by first removing pre- existing 
mtDNA, as described in the literature,14–16 and then introducing 
exogenous synDNA21 23 30 32 (figure 1). The removal of endoge-
nous mtDNA could be accomplished using nucleases32—enzymes 

Figure 1 Process of DNA synthesis in order to create synthetic mtDNA molecules to be transferred to mitochondria and 
generate eggs out of synMRT. mtDNA, mitochondrial DNA; synDNA, synthetic DNA.
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that cleave DNA—or by suppressing mitochondrial gene expres-
sion with morpholinos,30 as previously demonstrated. The 
resulting DNA- depleted mitochondria could then be loaded with 
exogenous synDNA through established delivery methods, such 
as electroporation (a technique that uses electrical pulses to tran-
siently open membrane pores)16 or via mitochondria- targeted 
peptide carriers,15 enabling genome replacement without donor 
mitochondria. Techniques such as electroporation may become 
obsolete in a few years, and new methods may arise. What is 
important for the purposes of our paper is that previous authors 
have already (1) removed DNA from mitochondria and (2) 
inserted DNA into mitochondria, so it is a feasible technique. 
This would be similar to MRT but without requiring third- party 
mitochondria. We term this ‘synMRT’ to distinguish this tech-
nique from the conventional one. Absent any evidence to the 
contrary, we assume here that this technique is at least as safe as 
MRT techniques already in use.

Avoiding harm
The process of oocyte retrieval requires hormonal stimulation 
to induce the maturation of multiple eggs within the ovaries, 
followed by a surgical procedure to extract the eggs. In conven-
tional MRT, this process of oocyte retrieval is carried out both 
on the prospective mother and on the mitochondrial donor. 
Oocyte retrieval is moderately invasive and poses risks. One 
of the most severe immediate risks is ovarian hyperstimulation 
syndrome, which in rare cases has led to death. Consent proto-
cols for oocyte retrieval emphasise that donors should carefully 
consider the physical and emotional aspects of the process.33 
From the perspective of avoiding harm, it seems evident that a 
novel technique with similar outcomes to the current ones, but 
fewer risks, should be preferable; and synMRT does seem to 
offer this opportunity.

If synDNA could be used, it would offer a clear advantage, 
since only the prospective mother would be exposed to the risks 
and discomfort of oocyte retrieval.

There may be concerns about risks to the offspring, as well as 
ongoing risks that arise through the transmission of the synthetic 
mitochondrial DNA to future generations. This might well be a 
concern if we imagine that scientists are devising new forms of 
mtDNA that diverge from previously known variants. However, 
in practice, there is no reason why mtDNA would need to be 
designed de novo. Instead, it could be made to match, nucleo-
tide for nucleotide, either the mitochondria of the prospective 
mother (minus the mutation), or of some other person who is 
known to be healthy. In this way, the synthetic mitochondria will 
pass to the offspring but will not involve any new genetic form, 
but a preexisting variant shared by millions of people.

Since the synthetic mitochondria would carry the same infor-
mation as other mtDNA, like the ones used in MRT, the genetic 
risks involved appear fairly minimal. That is, there is no reason 
to think that errors in DNA transcription would occur, or that 
unknown variants would be used. If there were risks, therefore, 
they would not be connected with the DNA itself, but with the 
methods by which the DNA is produced. Synthetic mtDNA 
would be created in a laboratory: it might be infected with 
contaminants, or its functioning might be affected in unfore-
seen ways because of the unusual nature of its origins. Mistakes 
could be made. Undoubtedly, this is something to think about 
in the context of synMRT. However, the possibility of error or 
contamination represents problems for the technique, not with 
it; it tells us that it ought to be pursued with care, not that it 
ought not to be pursued at all.

Additionally, it is worth noting that existing MRT procedures 
also involve interference with natural processes in ways that may 
carry unknown implications both for future offspring and future 
generations.34 Yet it is not obvious that the concerns in one case 
refer to anything qualitatively different from the concerns in 
the other; hence those who believe MRT is acceptable ought 
probably to regard the use of synDNA in the same situations as 
acceptable.

Third parties
A second issue raised by the use of current MRT techniques is 
the involvement of a third party in the reproductive project of 
the prospective parents. Offspring born following conventional 
MRT inherit genetic material from individuals with whom they 
may not have a direct familial relationship. It is interesting 
to note that the advent of MRT has fuelled strong arguments 
against the genetic conception of reproduction, further calling 
into question the degree to which the parent–child relationship 
is essentially a genetic one.35

However, for many people, genes do indeed play an important 
part in their reproductive and parenting aspirations, even if 
bioethicists tend to be critical of this. So although the assumption 
that genes are the essence of parenthood, or reproduction, has 
been subject to criticism in the literature,36 37 this is not neces-
sarily mirrored in the fertility industry, nor in society generally. 
MRT is based on the idea that genetic reproduction is such a 
fundamentally important thing that it justifies the extraordinary 
technological, invasive and legally complex medical machinery 
being used to perpetuate it. For the purposes of this paper, we do 
not take a stance on this debate. However, it is worth noting that 
it does not matter whether people are mistaken to place weight 
on genetic relationships. What matters is that such beliefs and 
values may be at the root of suffering that arises when people 
feel compelled to ‘allow’ third party genetic material into their 
reproductive projects. And, as we noted, while the law currently 
treats mitochondrial donors as strangers with no particular 
claims or responsibilities in respect of a child born through 
MRT, legal conventions can and do change.

But all these problems could be circumvented through the use 
of synthetic mitochondria. The basic idea would be that, instead 
of ‘importing’ mitochondrial DNA from a third party, it would 
be possible to build new mitochondria de novo. The relatively 
small size of the mitochondrial genome makes this a not- wholly- 
implausible turn of events. And if used, this would avoid having 
to worry about emotional or even legal ties to a gene- donor at 
some point in the future, because there would be no such donor. 
Accordingly, if an alternative to standard MRT becomes available 
that enables patients to avoid recourse to third- party donors, it 
seems reasonable to view this as a desirable step. People who 
push for such a step may display a degree of genetic essentialism, 
but no less so than the parents involved in standard MRT, or 
indeed many other forms of fertility treatment.

Maybe we are moving too quickly here. If synDNA is used to 
create mitochondria, there is a question to be asked about the 
origin of this synDNA, since presumably there would be some 
person whose ‘healthy’ mitochondria provided the template on 
which the synthetic mitochondria were modelled. One might 
argue that the third- party parenthood issue would in fact remain 
if the synDNA exactly replicates the mitochondria of another 
person. However, unlike nuclear DNA, which is (apart from 
identical twins) linked to a unique individual, mtDNA is inher-
ited maternally and is specific to a maternal lineage rather than 
an individual. This means that only a few versions of mtDNA 
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exist in the human population, and each is shared by many thou-
sands, perhaps millions, of people.

In this sense, mitochondrial DNA is more like a blood type 
than a genome. This undermines the idea that there is a special 
relationship with those who share one’s mtDNA or that one 
has a right to know them or form relationships with them. On 
the other hand, people who share mtDNA have not ordinarily 
made the decision to have their eggs harvested, with all the costs 
and risks that this entails. They have taken no deliberate causal 
role in the process of the coming- into- being of all those who 
share their mtDNA. In this, we can see a difference between the 
mtDNA donor and the person who simply happens to share the 
same mtDNA with the offspring but has taken no active steps to 
bring about this link.

This discussion has some resonance with the debate as to what 
parenthood status inheres in. A conventional mtDNA donor may 
in fact be significant in the narrative of a child’s coming- to- be 
story because of her actions and choices. In the case of synMRT, 
we circumvent the need for a person to donate their mtDNA. 
Thus, whether one takes genetic accounts or causal accounts of 
parenthood to be significant, synMRT offers prospective parents 
a way to avoid the inclusion of others into their parenting 
project, and thereby to bring their project more into line with 
conventional parenthood.

Mitochondrial enhancement
SynMRT could also be used to design other variants for some 
mitochondrial genes. If we look more closely at the content of 
mtDNA, there are a total of 37 genes. Among these, 13 are coding 
genes, meaning they provide instructions for the synthesis of 
proteins essential for oxidative phosphorylation, the process by 
which cells generate energy. These coding genes include subunits 
of the respiratory chain complexes I, III, IV and V, crucial for 
mitochondrial protein synthesis. The remaining 24 genes in 
mtDNA are non- coding genes, comprising 22 tRNAs (transfer 
RNAs) and 2 rRNAs (ribosomal RNAs), which play key roles 
in the translation of the genetic code into functional proteins 
within the mitochondria. Some studies have suggested that 
certain mitochondrial gene variants may be linked to variations 
in endurance capacity. This opens the possibility of what might 
be termed ‘mitochondrial enhancement’, where mitochondrial 
alterations are undertaken to improve athletic performance, for 
example. To date, there is no consensus as to whether this will 
ultimately be possible.38–41 This offers an interesting prospect 
for further research, not least because it seems to undermine 
the claim that mitochondria are insignificant in terms of their 
phenotypic effects.

CONCLUSIONS
In this paper, we argue that if the techniques developed in order 
to synthesise DNA fulfil their potential, they would offer a rela-
tively straightforward path towards the creation of mtDNA. We 
ask whether the use of synMRT would be ethically preferable to 
MRT. We suggest that synMRT would enable the creation and 
transfer of mtDNA without having to retrieve oocytes from a 
donor. Only one woman, the prospective mother, would need 
to undergo oocyte retrieval surgery if synMRT were used. 
Moreover, the creation and use of synDNA in MRT would 
enable prospective parents to feel confident that they are the 
only people who have contributed to their offspring’s genetic 
makeup. There might be risks involved in the creation, storage 
and transfer of synMRT, but it is not obvious that these risks are 
greater than those involved in conventional MRT.

If proven safe and effective, we suggest that those who 
currently accept MRT as an ethically sound means of avoiding 
mitochondrial disease, while allowing women to transmit 
nuclear DNA to their offspring, should regard synMRT as an 
ethically preferable means of achieving these same ends.
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