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Abstract: Inflammation is activated by diverse triggers that induce the expression of cytokines and
adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions
that help the immune system clear the primary cause of tissue damage, whether this is an infection,
a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of
strong mediators of inflammation occur, while long-term changes occur to specific groups of cells.
Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate
damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity
if they remain active beyond the boundaries of essential function. The transcriptional regulator NF«xB
enables some of the fundamental gene expression changes during inflammation, as well as during
tissue development. During recurrence of malignant disease, cell stress-induced alterations enable
the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the
immune system. A number of those alterations occur due to significant defects in feedback signal
cascades that control the activity of NF«B. Specifically, cell stress contributes to feedback defects as
it overrides modules that otherwise control inflammation to protect host tissue. NF«B is involved
in both the suppression and promotion of cancer, and the key distinctive feature that determines
its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of
this question, namely the mechanism that enables a divergent response of cancer cells to critical
inflammatory stimuli and to cell stress in general.

Keywords: chromatin; histone; cell stress; unfolded protein response; inflammation; nuclear factor
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1. Introduction

After the function of a tissue is disrupted, inflammation is activated by diverse molec-
ular triggers, which induce the expression of cascades of cytokines and adhesion molecules,
permitting a succession of essential molecules and cells to deliver stimuli and functions that
mobilize the immune system to clear the cause of the disruption of tissue function, whether
this is an infection, a tumor, or a trauma. During inflammation, both short-term changes as
well as long-term changes occur, involving specific groups of cells; short-term changes in-
clude the expression and secretion of potent mediators of inflammation, which have drastic
and mostly local effects, while long-term changes include cellular transdifferentiation for
some types of cells that need to regenerate damaged tissue [1,2]. Long-term changes also
include death for cells that engage with and destroy the primary cause of inflammation,
such as those types of immune cells that can be detrimental to tissue integrity if they remain
active beyond the limits of the tissue area that was initially functionally compromised.
Especially short-term changes in gene expression during inflammation are terminated by
specific negative feedback signals [3]. These negative feedback signals protect local tissue
from destruction by excessive inflammation [4].

During cancer, mediators of inflammation often enter a regulatory mode that allows
their expression in an almost constitutive manner, which is typically accomplished by
changes in the chromatin that may extend several thousand kilobase pairs away from
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their transcription start site; such regulatory elements are enhancers that are characterized
by increased histone H3 acetylation at the N-terminus on the lysine residue at position
27 [5]. This transcriptional activity is associated with the bromodomain-containing factor
BRD4, which also binds to acetylated lysine-310 of the subunit RelA (p65) of the activity of
transcription factor NFkB, maintaining persistently active NF«B in malignant tumors [6].
The transcriptional regulator NFkB is a key factor that enables some of the fundamental
changes in gene expression during inflammation, as well as during tissue development,
both in physiology as well as in pathology.

During the recurrence of malignant disease, diverse alterations enable the growth
of cancer cell clones that are substantially resistant to therapeutic intervention and to the
immune system [7-9]. Cellular stress and chromatin remodeling have been linked to a
certain degree of “lineage infidelity” that is characteristic of recurrent cancer [10-12]. A
number of those chromatin alterations occur due to significant defects in feedback signal
cascades that control the activity of NF«B [13-15].

Although the transactivator NF«kB is a protein dimer that can be composed of different
subunits, which are activated through at least three pathways, canonical, non-canonical,
and atypical [16-20], in this paper we focus mainly on the p65/p50 heterodimer that is
activated by the canonical pathway. From the diverse types of posttranslational modifica-
tions that activate the p65 (RelA) subunit [21], here, we mainly direct our attention to the
phosphorylation on its serine amino acid residue in position 276, because this modification
allows p65 to recruit chromatin-modifying protein complexes that allow for activating the
expression of genes by increasing chromatin accessibility [22]. In contrast, these genes
may be constitutively accessible in cancer “stem-like” cells due to the presence of chro-
matin modifications in the basal state. This fact alters the way that these malignant cells
respond to cell stress, and it has not yet been adequately addressed. Other aspects of
NFkB function in cancer, such as the different interactions of NF«kB with oncogenes, and
the resulting effects on cell fate and cell phenotype have been exhaustively studied and
reviewed elsewhere, [23-33] and will only be mentioned here in connection with the key
distinguishing feature of relapsed cancer, namely the abnormal response to NF«B inducing
cell stress.

2. Cell Stress Enables Diverse Events That Can Be Divided into Restricted
and Inflammatory

Cell stress can be broadly viewed as a metabolic imbalance that may have a vari-
ety of causes and that leads to diverse cascades of events that are either restricted to the
cell undergoing the disruption of metabolism, or communicated to other cells and extra-
cellular structures in a manner that helps the organism adjust to a potentially adverse
condition [34-37]. Failure of the stress response can lead to defects in tissue structure,
function, and development [38]. The connection between metabolic imbalance and stress is
also manifest at the level of a clinical meta-analysis [39].

Cell stress activates two main types of responses: the endogenous response, which
aims to absorb the impact of cell stress, and inflammation, which aims to mobilize several
different cell types that can have effects on the entire organism. The endogenous response
to cell stress involves adaptive triggers of mechanisms for macromolecule degradation,
which recycle damaged components or misfolded proteins primarily through the lysosome,
enable the cell to reuse amino acids and other building blocks, and ultimately to survive
by conserving nutrients and energy and preventing further damage [40-42]. This way,
by containing the damage response within the cell, the endogenously contained stress is
restricted. Restricted cell stress prevents the cause of metabolic imbalance from disrupting
tissue function [43].

3. Switch from Cell Stress to Inflammation

Conditions that are not resolved in the cell and lead to imbalanced generation of
oxidized molecules trigger inflammation, and this may lead to chronic conditions [44].
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Inflammation is also directly triggered by molecular patterns that are generated from
dead cells or bacterial or viral constituents [45—47]. The primary response to inflammatory
triggers is the expression of molecules that enable progression of the signal cascades
which permit completion of the sequence of events that are needed to resolve the cause of
functional disruption in the tissue. However, persistent activation of inflammatory gene
expression may lead to defective signal processing in cells and chronic inflammation [44].

While persistent triggers of cell stress cause chronic inflammation, the activation of
mechanisms that permit cell survival out of pace with the function of host tissue and in
the presence of mutations in key regulators of cell growth sets the stage for cancer [48].
There are multiple mechanisms in place that generate signals to terminate inflammation
and to stem cancer growth; both are rooted in the function of the immune system [49].
In particular, the activation of inflammation triggers signal cascades that inevitably lead
to production of anti-inflammatory mediators and the growth of abnormal cells triggers
signals for destruction by the immune system. Central to both processes is the activation of
the transcription factor NF«B, a dimer of proteins of the Rel family that is held inactive in the
cytoplasm by proteins of the I kappa B family [50]. Upon phosphorylation by IKK complex
proteins and induction of I kappa B proteolysis, the Rel dimer enters the nucleus to activate
the transcription of diverse genes; a number of those genes provide feedback to NF«B,
which is decisive for the net effect of the activation [51]. Importantly, the I kappa B alpha
(IkBa)-encoding gene NFKBIA does not have a nucleosome-blocked transcription start site;
thus, NFkB activates this negative feedback gene regardless of activating phosphorylation
on the Rel subunits, while inflammatory genes and most other downstream targets require,
for example, phosphorylation of RelA serine residue 276,which enables the recruitment of
histone-modulating complexes [52-54]. NF«B signaling is restricted by negative feedback
control mechanisms that operate at every level of the NFkB-activating pathways [55]. A
number of protein phosphatases restrict NF«B signaling at multiple levels, and normally
cell stress inactivates specific phosphatases to permit NF«B signaling [56,57]. For example,
superoxide inactivates protein phosphatase 2A by nitrative modification of its substrate-
binding subunit B56y [58]. In acute myeloid leukemia (AML), overexpression of protein
phosphatase 2A inactivator SET is associated with a poor prognosis [59].

Otherwise, in most cells, prolonged, unresolved cell stress inactivates specific negative
feedback modulators of NFkB, such as phosphatases, permitting the accumulation of
activating posttranslational modifications on the Rel subunits, which trigger the assembly
of chromatin-modifying complexes; depending on the duration of cell stress, the result may
range from acute to chronic inflammation [60-63]. However, in cancer “stem-like” cells
with exposed chromatin on certain cancer drivers, the complete set of posttranslational
modifications on NFkB is not required, meaning that those cancer cells will readily express
the cancer driver genes with accessible chromatin upon NF«B induction under favorable
metabolic conditions, without the requirement for a complete set of activating modifications
on NF«B (Figure 1).

A number of the NFkB-mediated signal cascades that are activated by immunity
to suppress tumor growth may actually lead to the opposite effect under the influence
of genetic and microenvironmental factors [64]. The main root of cancer cell survival is
the divergent signal processing between cancer and stromal cells, especially in respect to
NF«kB [65]. The divergence in stress signal processing between cancer and stroma is more
evident in leukemia and largely concerns responses to inflammatory mediators [66,67].
Crosstalk between the tumor and stroma is largely influenced by endoplasmic reticulum
stress, with the unfolded protein response (UPR) as a key trigger [68]. As a condition that
modulates tumor development, excessive cellular stress, and endoplasmic reticulum stress
in particular, activate multiple mechanisms that end up supporting cancer growth [69].
This cancer-supporting function is due to the inevitable immunosuppression that occurs
after excessive cell stress and inflammation [70].

Furthermore, cell stress can be directly caused by chemotherapy or transmitted to
the tumor stroma either by inflammatory mediators or extracellular vesicles; the tumor
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stroma is thereby conditioned to support the survival of cancer cells or aggressive cancer
phenotypes. Under the influence of chemotherapy, cancer-associated fibroblasts adopt a
“senescence-associated secretory phenotype” that enhances tumor cell growth and inva-
siveness [71,72]. In general, NFkB has a documented role in the process of adoption of
the “senescence-associated secretory phenotype” that entails secretion of inflammatory
mediators [73].

Direct activation: NFKBIA (encodes IxBa, giving negative
feedback to NF«B)

—  NF«B iNUCTION  a—
Nucleosomes:

Tumor suppressor failure - Normal cells: these genes require Ser276 - phosphorylated RelA

Inflammation

- Cancer “stem-like” cells: certain genes have accessible chromatin

In normal cells, both genes providing positive, and genes
giving negative feedback to NF«B respond to stimulation

and inhibition e : -
In cancer “stem-like” cells, negative feedback to NF«B fails to the extent

that it depends on turning off genes that are found within exposed
chromatin (nucleosome displacement), as these genes do not require
histone modifiers recruited by Ser-276 RelA anymore; those genes can be

Normal cells will ultimately activate negative feedback to readily expressed upon translocation of NFB to the cell nucleus

NF«B by genes such as NFKBIA, miR-146, IL-10, PD-L1
This feedback is intracellular, autocrine, paracrine, and
may become systemic after chronic stimulation

l Cancer "stem-like” cells upon oxidative stress or inflammatory stimuli

: activate NF«B -dependent gene expression with defective feedback:
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types of stromal cells and cells of the immune system suffice to block expression of all gene clusters that would normally switch

off expression to terminate inflammation

I
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: 5 o ———— ot )

host tissue and immune system the immune system, due to activation of cell survival pathways by NF«xB

ultimately induce immunosupression gene targets, however they continue to express NF«B-dependent genes

that encode proteins which ultimately transform host tissue

Figure 1. In most cells, a variety of disruptions in tissue or cellular function activate NF«B posttrans-
lational modifications and nuclear translocation, enabling cells to respond by expressing the genes
that are needed to resolve the primary cause of stress. The NFKBIA (IkBx) gene is readily activated
by NF«B and provides negative feedback. However, most other NFkB-driven genes (underlined bold
text) require specific phosphorylation of Rel subunits (bold font), which recruit histone-remodeling
complexes to increase chromatin accessibility (black arrows). The latter is not required for certain
genes in the exposed chromatin of cancer “stem-like” cells. These cells are, therefore, permitted to
express genes detrimental to the host tissue (red arrows). On the one hand, these cancer “stem-like”
cells respond differently to cell stress and inflammation, and, on the other hand, their unrestricted
expression of key modulators ultimately leads to changes in the host tissue and the immune system.
The impact of such changes in gene regulation can have critical effects on tissue function. Blue arrows
indicate expression and impact of genes that protect host tissue from excessive inflammation.

In AML, extracellular vesicles practically transmit endoplasmic reticulum stress
in vivo from the AML xenograft to the bone marrow stroma, whereby the unfolded protein
response drives osteolineage differentiation of mesenchymal stem cells [74]. The transmis-
sion of extracellular vesicles helps AML cells to remodel the bone marrow stroma [75].

4. Cellular Stress Acts as a Transcriptional Switch Enabling the Recurrence of
Malignant Phenotypes

AML is characterized by distinct cell populations; those cells with the potential for
leukemia initiation were termed leukemia stem cells (LSCs), considered pivotal in the
re-emergence of AML during relapse, endowed with an increased capacity for activation of
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NFkB, and associated with poorer clinical outcomes [76-79]. AML relapse is linked to the
resistance of malignant cells to cell stress.

Specifically, cell stress contributes to feedback defects as it overrides modules that
otherwise control NFkB activity to protect host tissue. As an example, oxidative stress
augments NF«B activity, and leukemia cells can protect themselves either by maintaining
high NFkB activity that is accompanied by expression of its downstream inflammatory
target genes and metabolic genes, or by quiescence and suppression of the metabolism and
by turning off sources of oxidative stress [80-83].

Uncovering the principles of NFkB function defects during recurrent neoplasia is
expected to enable the refinement of the experimental design for agents aiming to neutralize
key elements of resistant cancer. Recently, a screen of compounds for the inhibition of
NF«B led to the selection of emetine as a potential anti-leukemia agent, with both in vitro
and in vivo effects against human AML cells that were transplanted into NSG mice [84].
In NSG mice, similar effects were elicited with the proteasome inhibitor Bortezomib, with
a clear impact on NF«kB and a marked induction of oxidative stress, primarily affecting
LSC [85]. Using piperlongumine as an inhibitor for NFkB showed that the cytotoxicity
mainly affected LSC, without a comparable effect on normal bone marrow cells [86].

Cellular stress also causes phenotype changes and stemness-like gene expression in
solid tumor cells. Either low folate or excessive supplementation with folate induces the
expression of stemness-like genes in human adenocarcinoma cell lines [87,88]. Moreover,
long-term treatment of hepatocellular carcinoma cells with the anti-neoplastic tyrosine
kinase inhibitor Sorafenib induced the expression of ALDH1A1, ABCB1A, CD133, Nanog,
Oct4, and alpha fetoprotein, and enhanced the capacity of cells to cause tumors as xenografts
in mice [89]. Therefore, critical stemness properties of both leukemia and solid tumor cells
are triggered after exposure to potentially cytotoxic conditions that cause cell stress.

5. Documented Impact of Chromatin Remodeling on Malignant Cells

In addition to the promoter and typical enhancer sequences, several genes associated
with cellular phenotype (“identity”), are regulated by additional sequences, with lengths
typically far over 10 kilobase pairs, and characterized by histone H3 acetylation at lysine
residue 27; bound by the “histone-reader” BRD4, these enhancers may be induced by tran-
scription factors, such as NFkB, and have a combinatorial effect on gene expression [90,91].
Having association with the cellular identity, these “super-enhancers” are highly relevant
in cancer. A gene regulated by super-enhancer that has a particular relevance in leukemia,
is MYC [92]. Its protein product MYC is considered an important target in the development
of experimental treatments, because it permits rapid changes in cellular phenotype and
metabolism [93,94]. However, research increasingly recognizes that perturbing chromatin
accessibility is a key aim for experimental anti-leukemia drugs [94].

Histone-modifying enzymes have shown defects in malignant disease and are conse-
quently targeted in developing experimental treatments [95-97]. Defects in the regulation
of histone modifiers are also documented for NFkB target genes other than MYC [98-103].
Through interactions with chromatin-modifying enzymatic complexes, NF«B activates
numerous genes involved in the mediation of inflammatory signals and in coordinating cell
survival [104-107]. In particular, the bromodomain protein BRD4 has been implicated in
NFkB transcriptional induction in response to diverse conditions that include oxidant stress.
Consequently, BRD4 is targeted to inhibit NF«B transcriptional activity in a variety of cancer
cells, and bromodomain inhibition has entered clinical trials [108-112] (NCT02543879).

Chromatin structure-associated tumor drivers include noncoding mutations at chro-
matin loop anchors and domain insulators, altered transcription factor binding, domain
redistricting due to structural variation, and mutations in cohesin and metabolic genes.
While metabolic products can alter chromatin structure—function relationships through
enzymatic processes, there is evidence that non-enzymatic processes link metabolic outputs
and chromatin structure as well [113].
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Adenosine monophosphate-activated protein kinase (AMPK) is activated by metabolic
stress and permits BRD4 placement to super-enhancers regulating leukemogenic genes;
AMPK deletion reduced acetyl-CoA and histone acetylation, displacing bromodomain
proteins from chromatin in leukemia-initiating cells. Furthermore, in both mouse and
patient-derived xenograft AML models, treatment with AMPK and BET inhibitors synergis-
tically suppressed AML [114]. Evolution of AML cells toward developing drug resistance,
or toward relapse, entails convergence of their chromatin compaction status toward a
compaction that is distinctive of LSC, which appeared highly conducive to increases in the
expression of NFkB target genes and appears to be generally independent of the genetic
state [115,116].

The way that the above information can be interpreted is that cellular stress adaptation
of malignant cells, especially in the model of AML, converges chromatin status to an LSC-
like state, which is conducive to the prompt activation of inflammatory gene expression,
independently from the genetic assortment of the primary cancer (Figure 2).

. -
—
. . Dead Cells
Cell stress
—

— Quiescent / Dormant

== Adapted clones .
e -

Inflammatory / Active

Figure 2. A simplified schematic of clone evolution for cancer cells under stress. Inflammation and
cellular stress kill cancer cells by a number of different mechanisms. Defective responses to cell
stress and inflammation, due to genetic or epigenetic inactivation of tumor suppressors under certain
conditions, may permit the adaptation of cancer cells, which can give rise to either inflammatory
or dormant cell clones. Specific aspects of chromatin accessibility, however, enable rather prompt
switches between quiescent and inflammatory phenotypes in response to changes in tissue.

This means that cells during relapse have a chromatin state that enables substantial
flexibility to respond to changes in the metabolic condition of host tissue, and this is clearly
not limited to inflammatory genes, which are, however, a useful lead in the characterization
of dynamic changes in cellular phenotypes. Therefore, the capacity of those cancer cells
during relapse to react to challenging conditions is increased; this is mainly not due to a
permanent genetic change (Figure 3).

Rather, the unfolded state of their chromatin permits rapid changes in gene expression,
which deliver the assortment of proteins that permit those cells to respond to the given
challenge. Increased expression of chromatin-modifying enzymes, and correspondingly
increased transposase-accessible chromatin, are independent adverse prognostic factors for
relapse in pediatric AML [117]. These AML cells are sensitive to proteasome inhibition and
are mainly driven by NFkB activity and oxidant stress [85].

Chromatin accessibility also controls chemotherapy-induced dormancy and reacti-
vation in solid tumors, with non-small cell lung cancer as an example, where cells sur-
viving cisplatin chemotherapy entered dormancy [118]. The evolution of cancer cells
under chemotherapy stress is regulated by transcription factors with binding sites initially
buried deep within inaccessible chromatin. The transcription machinery and dynamic
epigenetic alterations during the process of dormancy-reactivation of lung cancer cells
after chemotherapy was investigated, using an assay for transposase-accessible chromatin
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sequencing (ATAC-seq). Global chromatin accessibility was extensively increased. Tran-
scriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST)
v.2 was used to elucidate transcription factor-target interactions during the process of
dormancy and reactivation. Enhancer regions and motifs specific to key transcription
factors, including JUN, MYC, SMAD3, E2F1, SP1, CTCF, SMAD4, STAT3, NFKBI1, and
KLF4, were enriched in differential loci ATAC-seq peaks of dormant and reactivated cancer
cells induced by chemotherapy.

Genetic aberrations === Cellular Predisposition sy

Primary Tumor
Conditions ey

Altered sensitivity Cell Stress
I Altered Chromatin
Clonal Adaptation Clonal Selection
Immunity l Altered Conditions
& exposure to =) Seclective Pressure <=y Resistant Tumor
Cytotoxic Agents

Figure 3. Inflammatory signal cascades generate conditions that restrict tumor growth, yet at the
same time enable chromatin changes that permit phenotypic diversification and, consequently, the
emergence of clones that are adapted to cell stress. Multiple different adapted clones, with diverse
genetic assortments, may converge in the chromatin status, which is conducive to rapid changes in
gene expression that permit adaptation to changing metabolic conditions and to altered interactions
with the immune system. The type of malignant cell clones that are generated (red arrow) is critical to
the severity of defects that these cells will cause to the host organism, ranging from paracrine effects
to systemic defects in host immunity.

Another line of evidence for the role of chromatin remodeling in paving the way for
NF«kB-driven cancer progression comes from glioblastoma, where NF«B selectively drives
the expression of EZH2 by activating its transcription; then, the final protein product, EZH?2,
once activated, causes a genome-wide change in methylated histone H3K27me3 expression
and distribution. However, due to the pluripotent effect of canonical NF«B signaling, there
was a synergistic cancer-promoting effect of the combination of NFkB and EZH2, which
was detected both at the level of cell culture and cancer subcutaneous xenografts in mice, as
well as at the level of glioblastoma patient prognosis, evident both in disease-free survival
and in overall survival [102].

Thus, relapse in leukemia and solid tumors may be facilitated by increased chro-
matin exposure of cancer “stem-like” cells that survive cell stress by entering a state of
dormancy/quiescence. The increased accessibility of chromatin allows for rapid changes
in gene expression, which enable the emergence of new cell phenotypes that adapt better
to the metabolic challenge. This phenomenon has a key consequence. Cancer cells upon
induction of inflammation become decisively capable of transforming host tissue, and this
affects the disease course (Figure 4).

Cells that do not have abnormal chromatin accessibility in regulators of inflammation
respond according to the stimulus they receive, by inducing genes that amplify inflamma-
tion cascades and oxidant stress, and interfere with tissue function (such as inflammatory
cytokines and adhesion molecules), and later gradually express new sets of transactivators,
circulating mediators, and other molecules that set the stage for completion of inflamma-
tory processes, to be followed by molecules that switch off the remaining mechanisms of
inflammation and restore tissue function to finally express immune checkpoint molecules
that protect host tissue from being damaged by the immune system [119-132].
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Alterations in the bone marrow

NFkB induction in AML LSC miicroenvironment

NFkB-driven / Oxidant stress-driven, inflammatory gene expression (cxcl8,
cxclt, il1a, il1b, mmp genes, vcam, icam, tnf, myc, stat1, stat3, hifla, miR-155)

Inflammatory cascades advance to completion: tissue restructuring and
induction of terminators of inflammation
(il6, ctsk, oscar, snai1, twist1, vim, tgfb1, i110, miR-146)

Signals for differentiation & restoration of structure & function
(bmp, ocn, opn, flk1, men1)

Signals for suppression of immune responses and protection of tissue (ctla-4, pd-I1)

Impact on AML LSC Impact on host tissue
ALDH1A1 + quiescent AML LSC Immunosuppression

Figure 4. Gene expression is selectively unblocked in “stem-like” cells due to the accessible chromatin
state, which permits the emergence of aggressive cancer (here AML) once a cell enters conditions
that activate NF«kB protein complexes. Cells that are not constitutively activating NF«B initially
respond by positive feedback to inflammation, but ultimately activate negative feedback mecha-
nisms that suppress inflammation and immunity, even if these cells are exposed to inflammatory
stimuli. The nature of the cell signaling network architecture ensures redundancy in mechanisms for
quenching inflammation. Cancer “stem-like” cells activate negative feedback to inflammation too,
but incompletely, due to the perturbed functional state of their chromatin.

During the last stages of this succession, immune tolerance is induced, and immune
checkpoint molecules are expressed in a variety of cells, but, importantly, also in cancer
cells [133-135]. At those stages, the expression of molecules that characterize quiescent
cancer “stem-like” cells, such as the enzyme ALDH1AL1, is also likely to accompany the
expression of immune checkpoint molecules by malignant cells [136,137]. Importantly,
however, due to their aberrant chromatin state, cancer “stem-like” cells can easily give
rise to aggressive clones that revert to high expression of inflammatory genes, and that
regain the capacity for rapid growth. Such rapid responses affect host tissue, impairing
optimum function.

This allows cancer cells to escape destruction and to give rise to aggressive malignant
clones, because their surrounding tissue cannot facilitate effective immune responses. As a
result, the unidirectional generation of inflammatory mediators alters host tissue function.
This is due to the fact that induction of inflammation causes in cancer “stem-like” cells
practically unhindered expression of certain molecules, which alter tissue function by
changing the phenotypes of surrounding cells drastically. It is important to note that the
induction of inflammation in cancer “stem-like” cells also occurs as a result of the metabolic
conditions that push intracellular signaling toward cell growth.

6. NFkB Is Involved in Pivotal Events during Cancer Development

NF«kB, alone or in synergy with other transactivators, induces the expression of a
variety of genes that in addition to inflammatory cytokines, encode modifiers of the extra-
cellular matrix [138], and adhesion molecules [139,140], also include regulators of cellular
protein turnover and cell death, as well as inducible transcription factors, such as hypoxia-
induced factor 1 (HIF1wx) [141-143], the proto-oncogene product MYC [144], Twist1 [145],
and SNAII [146,147]. A substantial part of those gene targets themselves induce or repress
NFkB activity depending on the conditions and the cell phenotype. This mutual regulation
enables the generation of feedback loops that either enhance or suppress inflammation.
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HIF1x was shown to mediate stemness in cancer cells [148], so what would be the role
of NF«kB in general, if it is upstream of HIF1?

In human induced pluripotent stem cells, treatment with p65 siRNA abolished the
expression of the undifferentiated markers Oct3/4 and Nanog and upregulated those of
the differentiation markers WT-1 and Pax-2 [149]. Thus, NFkB is also clearly involved in
promoting stem-like properties, in spite of its core role in inflammation. This happens
because, after inflammation, the stem cell pool needs to be replenished. This would
occur in normal tissue; however, in cancer tissue it could be perturbed to enable the
plasticity of cancer “stem-like” cells. If we add a mutual capacity for interference between
NFkB and steroid hormone receptors to this effect, and amplification of inflammatory
and growth signals by transactivator AP-1, it becomes clear that drastic effects on cell
differentiation status and on host tissue function ensue upon the loss of critical restrictions
in p65 activity [150].

Perturbation of the inflammation vs. regeneration functions of p65 might be illustrated
in the interactions with STAT proteins, which are encoded by p65 target genes: the NF«B
target gene products STAT1 and STAT3 regulate inflammation, and STAT3 may decrease
interactions between IkBx and RelA and thereby provide critical feedback in NFkB-driven
gene expression, affecting the subsets of the NF«kB target genes that are expressed [151-156].
Events, like this STAT3-p65 interaction, have profound effects on gene expression.

Additionally, in cancer cells, specific alterations in their chromatin state may cause
certain genes to be aberrantly activated by NF«kB without the Rel-subunit phosphorylation
that is normally needed to recruit histone-remodeling complexes [27]. This means that
critical genes that normally require multiple steps to be expressed are now aberrantly
induced and cause the increased resistance of cancer cells to cell death that would normally
be triggered by the immune system or by pharmaceutical substances. This happens because
these cancer cells, due to their perturbed chromatin status, adopt partial gene expression
programs for tissue regeneration. They express genes that are intended to protect host
tissue, which turn to protect at least part of the neoplastic tumor. Furthermore, the deregu-
lated expression of inflammatory mediators can be expected to increase oxidative stress
and, thus, DNA damage in host tissue, in addition to oxidative damage in a variety of
macromolecules, which triggers a number of rescue mechanisms for the replenishment of
damaged biomolecules and organelles [41,83]. These mechanisms are exploited by cancer
cells to resist cell death.

A comprehensive list of genes (updated until 2010) regulated by NF«B is provided by
the Gilmore Lab at https:/ /www.bu.edu/nf-kb/generesources/target-genes/ (accessed
on 6 July 2024).

All of these facts provide evidence for NFkB’s involvement both in suppressing cancer
through the immune system and in promoting cancer by neutralizing the immune response
and by blocking a variety of cytotoxic pathways in cancer cells. The way to reconcile all
of the above is to emphasize that NFkB complexes provide an inducible platform for the
relay of signals that initially promote inflammation and finally terminate inflammation to
protect host tissue [157]. This is also evident in the involvement of NF«B in the changes
between macrophage phenotypes during inflammation and cancer, leading to the proposal
to reshape experimentally and ultimately therapeutically the tumor microenvironment via
terminating macrophage recruitment [158].

Cytokines, such as tumor necrosis factor (TNF), mediate decisive interactions between
the cancer and stroma, with characteristic experiments performed at the lab of Ben-Baruch
demonstrating that TNF-induced NF«kB p65 RelA and TGFf1-induced SMAD3 acted in
parallel in mesenchymal cells to activate the expression and release of factors that affect
other cells in their microenvironment and induce breast tumor cell elongation, migration,
and scattering out of spheroid tumor masses [159,160]. In breast cancer and in prostate
cancer, NFkB-driven signaling activates positive feedback signals between cancer and
stromal cells, whereby canonical, p65-driven signals form positive feedback loops with the
non-canonical NFkB pathway, increasing resistance to hormones and to endocrine ther-
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apy [161]. In cancer cells, p65-driven gene expression conferred metabolic plasticity [162].
Oncogene RAS-induced cell transformation and the acceleration of aerobic glycolysis in
p53-deficient cells required p65 expression [163].

It is very important to note that a number of key interactions of NF«kB with proto-
oncogene products occur at the level of gene expression when both NF«B and tissue
regeneration drivers, such as TGF31 and MUC1, are simultaneously active [27]. NFkB,
TGFB1, and MUC1 interact to change the cellular phenotype, lift growth restrictions, and
deregulate angiogenesis and immunosuppression [51]. Even though a short interval of
coexpression is part of the physiological transition between inflammation and the return to
tissue normal function (re-establishment of homeostasis), in those cancer cells that have
lowered restrictions on NFkB activity, the result is that the coexpression of inflammation
mediators and tissue regeneration and dedifferentiation genes causes a substantial transfor-
mation of the host tissue. For example, TGF(31 has a key role in phenotypic transitions of
leukemia cells that affect their microenvironment [164].

NFkB also activates the expression of the micro RNA species miR-155, a species
overexpressed in many types of cancer, which drives aneuploidy at early stages of cellular
transformation [165,166]. RelA p65 is essential for miR-155 induction in hepatocellular
carcinoma [167]. Micro RNA are short non-coding RNAs thatmediate the repression of
other genes by interference with them at the RNA level based on sequence complementarity.
One micro RNA species may bind to the 3’ untranslated (3'UTR) regions of several target
messenger RNA, and thereby inhibit the gene expression of multiple gene targets within
the same or different signal transduction pathways. Therefore, the impact of p65 in micro
RNA species amplifies the extent of the network of genes and cellular functions affected
by NFkB. However, the micro RNA miR-155 and miR-146 provide two different modes of
feedback regulation to NFkB [168].

The combined action of “mostly positive” (miR-155) and “mostly negative” (miR-146)
NF«kB-miRNA feedback loops fine tunes the NF«B activity during inflammatory processes,
and eventually leads to the resolution of the inflammatory response [169]. It must be noted
that “mostly” is here used to emphasize that micro RNA expression and their gene targets
are highly phenotype-specific and, therefore, can never be expected to remain inert, as a
given micro RNA species may act against inflammation in most cell types, and have the
opposite effect in other cell types, depending on the assortment of signal transducers that
operate in a cell at a given timepoint. We focus here on miR-155 and miR-146, although
there are a substantial number of micro RNA species that interact with NF«B (reviewed
in [169]).

In general, abnormal NF«kB control allows cancer cells to exhibit high levels of tran-
scriptional and phenotypic plasticity [170,171], by altering their chromatin state and thereby
permitting adaptation to cell stress and curtailing the dependence of cell survival on feed-
back signals from the host tissue [27,172]. This means that cancer cells can adapt their
gene expression profiles and phenotypes in response to changing environmental condi-
tions, aiding in their survival, increasing the phenotypic diversity of cancer cell subclones,
and licensing proliferation on metabolically adapted cancer cell subpopulations (a selec-
tion of p65 interactants is given in Figure 5a). Importantly, aberrant feedback to NF«xB
from its downstream target genes increases the functional dichotomy between tumor and
non-tumor cells in response to cell stress. The downstream target gene miR146, for exam-
ple, influences a wide spectrum of other genes that mediate the effects of cell stress and
inflammation (Figure 5b) [173,174].

miR-146 is experimentally tested as an inhibitor of NFkB-mediated effects in the
development of cardiac and bone pathology [175,176]. In breast cancer cells, miR-146 acts
as a negative feedback effector for NFkB, yet the downstream effects of miR-146, and its
potential as a tumor suppressor, are cell-dependent [177].
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Figure 5. Illustrating the complexity of feedback mechanisms helps understand the depth of the
impact of inflammation in cell signaling, which affects both conditions within the cell, as well
as between the cell and its surrounding tissue. (a) A selection of “high-confidence” interacting
proteins/genes with NFkB p65 (RelA) obtained with the platform string (https:/ /string-db.org/,
accessed on 6 July 2024). Details are clarified in the Supplementry Materials Figure S1. (b) An example
of a key NF«kB feedback gene is the micro RNA species miR146. This gene is prospectively associated
with numerous other genes that influence cell stress responses (such as SQSTM1), inflammation
(such as CXCLS), and cell phenotype (such as TGFB1). Source miRNet 2.0 (https://www.mirnet.ca/,
accessed on 6 July 2024).
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In contrast, in both normal and breast cancer cells, miR-146 supports “stemness”, with
target genes in pathways and cellular functions for the exit from quiescence (activation of
the oxidative phosphorylation metabolism, of the G2-M transition, E2F targets, and cell
cycle) and to transcriptional programs that control the stem cell phenotype (inflammatory
pathways, hypoxia, and epithelial-to-mesenchymal transition) [178]. miR-146 is an endoge-
nous inhibitor of inflammation and myeloid cell proliferation; however, its potential as a
tumor suppressor evidently depends on the metabolic state of cells [179].

This means that cancer cells can survive and thrive during nutrient deprivation, hy-
poxia, and immune responses by leveraging aberrant feedback to inflammatory stimuli
and cell stress, and possibly bypassing physiological inhibitors of oncogenesis, such as
miR-146. The process that couples cell stress to adaptation can physiologically entail
sequential activation and inhibition of NFkB, and ultimately lead from metabolic stress
to the induction of antioxidant defense [180-182]. However, the documented function
of NFkB adjustment in physiological adaptive processes underscores its pivotal involve-
ment in cancer development, progression, and resistance to therapy, when feedback or
general restriction to NF«B is impaired [111,114,183,184]. The evidence of the effects of
p65 signal networks in metabolic adjustment of malignant cells highlights the potential
of characterizing and experimentally targeting NF«kB pathways to disrupt the adaptive
mechanisms of cancer cells. This approach should ultimately deliver better options to
improve therapeutic outcomes.

7. The Impact of NFkB-Associated Chromatin Remodeling on Immunity

AML stem-like cells that are most likely to cause relapse can readily activate NF«B-
driven gene expression due to their remodeled chromatin. However, this has an impact on
the rest of the organism, and more than anything else, on their microenvironment. AML
cell mutations already prime leukemia cells for inhibition of the immune response. For ex-
ample, mutated isocitrate dehydrogenase causes the accumulation of D-2-hydroxyglutarate
in leukemia cells, which triggers HIF-1a protein destabilization, resulting in metabolic
skewing towards oxidative phosphorylation, increased regulatory Tcell (Treg) frequency,
and reduced T helper 17 (Th17) polarization [185]. D-2-hydroxyglutarate also inhibits IL-12
secretion by dendritic cells [186] and suppresses antitumor T cell immunity by (a) inhibiting
expression of antigen receptor HLA-DP in AML cells, and (b) impairing human dendritic
cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibil-
ity class II expression [187]. However, 2-hydroxyglutarate accumulation can also cause
aberrations in the regulation of chromatin remodeling and oxidant stress, which could
also predispose mutated isocitrate dehydrogenase AML cells to a divergent response to
inflammation, with a selective NFkB-driven impact on stromal cells [188,189].

While AML cells may activate NFkB beyond the normal limits that are dictated by
tissue function, their constitutive secretion of inflammatory mediators can lead to the
inhibition of NFkB in immune cells, due to physiological negative feedback, impairing
T-cell effector function [190]. This has negative effects on the disease course. In favorable
AML, the leukemia cells are largely dependent on mediators secreted by cytotoxic CD8 T
cells for signals activating stemness, cell proliferation and cell survival, immune-related
signaling, and growth factor signaling. However, in unfavorable AML, leukemia cells
develop autocrine signaling pathways and grow independently from CD8 T cells [190],
which apparently paves the way for disease worsening.

AML cells in bone marrow also stimulate mesenchymal cells to cause an increase
in the frequency and activity of immunosuppressive regulatory T cells [191]. However,
the interaction with regulatory T cells is not exclusively allowed only to AML cells. In
fact, normal aged hematopoietic stem cells that accumulate genetic mutations entrap
regulatory T cells to shape their microenvironment toward conditions favorable for their
own survival [192].

Similar to AML interaction with T cells, leukemia cells also suppress NFkB-driven
inflammatory gene expression in macrophages to polarize them toward the immunosup-



Int. J. Mol. Sci. 2024, 25, 8621

13 of 29

pressive M2 phenotype. This macrophage polarization can be reversed by inhibiting effe-
rocytosis, the immunosuppressive process whereby macrophages phagocytose apoptotic
cells [193].

In general, during the early stages of cancer development, M1-like anti-tumor
macrophages infiltrate tumors. This is followed by their subsequent polarization into
pro-tumor M2 macrophages later in the course of the disease, along with myeloid-derived
suppressor cells [194]. This M1 to M2 switch occurs through sustained exposure to polariz-
ing factors released by the cancer cells and direct cell-to-cell contact between cancer cells
and macrophages [195]. However, asymmetry in signal processing between cancer cells
and stromal cells can also result in damage to host tissue, which is especially evident in
advanced adenocarcinoma [109].

In conclusion, the remodeled chromatin of advanced cancer cells functions in a manner
that enables swift changes in key phenotypic aspects that enable the protection of at least
part of the malignant tumor from the immune system, by altering interactions of the tumor
with almost every type of immune cell, and on many different levels. A general assessment
of tumor-infiltrating immune cells shows that cancer progression depends on whether
NFkB is activated in immune cells or in cancer cells [196]. This necessitates developing
effective methodologies to track the impact of tumors on the immune system. These
methodologies need to be rigorously tested with the aim of ultimately reaching routine use.

8. Preclinical Effects of Inhibiting Bromodomain Proteins and Their Downstream
Targets in AML

Inhibiting the activity of bromodomain proteins by directly causing their degradation
in AML cells killed both AML cell lines as well as primary AML blast cells directly isolated
from patients. In those experiments, bromodomain and extra-terminal protein degradation
was induced by ARV-825, the heterobifunctional small-molecule degrader of BET proteins,
which contains a ligand for a BET protein connected via a linker to a ligand for the E3
ubiquitin ligase cereblon. AML cell killing was manifest in the submicromolar range and
was accompanied by a series of biological effects [197]. At least a portion of these events
were predictable, especially the decrease in MYC expression, as well as a decrease in the ex-
pression of survival proteins (B cell leukemia/lymphoma 2 [BCL-2], myeloid cell leukemia
sequence 1 [MCL-1], etc.) and the decrease in the expression of the MYC downstream target
PIM1. ARV-825 not only downregulated pro-survival proteins it also suppressed surface
expression of CXCR4 (not total CXCR4) and CD44 in the LSC compartment. Additionally,
ARV-825 reduced intracellular cystine, increased cellular oxidant stress (ROS), and down-
regulated the expression of genes associated with the LSC signature and the Wnt/ 3-catenin
pathway. Consequently, ARV-825 reduced the LSC burden and improved survival in a
mouse model of disseminated AML that was studied both with luciferase-transduced AML
cells, as well as with patient-derived xenografts. It is important to note that ARV-825 gave
better anti-leukemic activity in combination with cytarabine than when used alone.

Coculturing of AML cells with healthy donor bone marrow-derived mesenchymal
stromal cells (NMSCs) and treating them with ARV-825 or cytarabine under normoxic or
hypoxic conditions rendered AML cells relatively resistant to cytarabine. Conversely, sensi-
tivity to ARV-825 was the same in mono- or cocultures and under both O, conditions; thus,
ARV-825 overcame both stroma- and hypoxia-mediated resistance at least to some extent.

At the RNA level, ARV-825 caused a substantial change in the gene expression of
both primary as well as cultured AML cells, with over 1000 downregulated genes and
over 700 upregulated genes meeting the significance criteria (p < 0.01) for a >1 change in
the log2 value. It is important to note that compared with AML cells, ARV-825 exposure
of NMSCs induced a relatively smaller change in the transcriptome: 340 downregulated
genes and 140 upregulated genes met the significance criteria.

All of the above reinforces the notion that at the level of chromatin-reader BET pro-
teins, cellular stress, as modeled here by cytarabine treatment and ROS, causes divergent
responses in malignant cells when compared to non-malignant cells (here NMSCs), and
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clearly affects the interactions between them. A divergent response to cell stress marks,
therefore, a biological property of malignant cells and is tractable at least at the level of
chromatin reader BET proteins (Figure 6).
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Figure 6. A divergent response to cell stress characterizes malignant cells and shapes the pool
of surviving malignant clones after changes in the conditions of their microenvironment. This
phenomenon is especially evident in recurrent cancer. An additional reason why this is important
lies in the fact that by proliferating, cancer cells gain the capacity to generate more phenotypically or
genetically diversified clones (red arrows). By increasing clonal diversity, cancer becomes difficult
to eradicate.

9. Evidence against a Unidirectional Effect of Cell Stress and NF«B Signaling in Cancer

Estrogen-deprived breast cancer cells when exposed to estrogen undergo apoptosis
that is driven by NF«B, which is inhibited by glucocorticoids [198]. Treatment with antie-
strogens initially induces mild UPR through estrogen receptor ERx with the activation of
three sensors of UPR-PRK-like endoplasmic reticulum kinase (PERK), inositol-requiring en-
zyme 1o (IREle), and activating transcription factor 6 (ATF6) in the endoplasmic reticulum.
Subsequently, these sensors interact with the transcription factors MYC, NF«B, and HIF1«,
leading to acquired endocrine resistance. Paradoxically, estradiol (estrogen E2) further
activates sustained secondary UPR via ERa to induce apoptosis in endocrine-resistant
breast cancer. Specifically, persistent activation of PERK triggers the NFkB/TNF axis,
ultimately determining cell fate to apoptosis [199]. Inflammatory cytokine gene expression
gave a positive prognostic effect associated with the activation of innate and acquired
immunity [200]. Furthermore, p65 inhibition led to cancer stem cell enrichment in hormone
receptor-positive/ HER2-negative breast cancer cells, and this effect was mimicked by a
STAT3 mutant deficient in the activation of p65 transcriptional activity [201].

Therefore, the assortment of signaling modules in cancer and stromal cells determines
the effects of cell stress and inflammatory gene expression. Especially in regard to cancer
stem-like cells, inflammation has the natural effect of restraining their growth and activating
immune responses; however, this depends on the degree of cancer stem cell adaptation
and the immune modulators expressed. Evidently, in relapse and in cancer refractory to
treatment, these natural mechanisms are overridden by modules that become available by
chromatin unfolding. The degree to which cell stress and NF«kB can restrain tumor growth
depends on the degree to which their networks are connected to tissue homeostasis [27].

This evidence challenges the notion of a unidirectional effect of cell stress and NF«xB
signaling in cancer. The interaction between cell stress, NFkB signaling, and cancer progres-
sion is complex and context-dependent, with the potential for both tumor-suppressing and
tumor-promoting outcomes. This underscores the importance of considering the specific
cellular and molecular context when targeting these pathways for cancer therapy.
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10. Prospects for Marking NF«B and Developing Intervention Methods

NF«kB activity is not triggered by a single inducer. NFkB signaling is still detected
in samples from cancer patients that do not respond to treatment, even if this treatment
involves last-generation agents, such as the tyrosine kinase inhibitor afatinib [202]. In fact,
it was proposed to focus on NFkB in order to overcome the problem of tumor signaling
pathway heterogeneity in osteosarcoma [203]. This can be achieved if enough good data
enable a rigorous assessment. As we discuss below, there are a number of options available,
and the progress that we can expect from novel technologies and improved parameter
detection and registration should lead to even more effective intervention options.

The obvious question that arises concerns where best to focus when the exposed chro-
matin allows cancer cells unlimited options in phenotype changes. The answer is probably
to exploit the inherent defects in cancer cell metabolism, and specifically the enzymes and
organelles that are defective due to the very nature of cancer. Cancer cells develop specific
adaptations in lysosomes, mitochondria, or other structures, such as stress granules [204]
due to the products of the defective neoplastic genome. These adaptations lead cells to
enter a state of death-predisposed metabolic function that can be experimentally converted
to cell death. For example, by using agents that interfere with lysosome function or with mi-
tochondrial function, it is possible to kill resistant breast cancer stem cells [205,206]. Killing
cancer stem cells is also possible by interfering with activators of NF«B, such as the enzyme
ataxia telangiectasia mutated (ATM) kinase that sets in motion multiple mechanisms fine
tuning organelle function to generate cancer stem cells [207]. Another key target group
are proteins, such as SRC3, that mediate signal interference between steroid receptors and
NFkB, and which give promising experimental results [208].

Still, there is the problem of remodeled, dysregulated chromatin in advanced cancer
that needs to be addressed. To this end, a number of experimental and clinical interventions
aim to disrupt the chromatin remodeling of cancer cells. BET inhibitors continue to be de-
veloped and tested with the aim of disrupting NF«kB-dependent gene expression [209,210].
In addition to BET inhibitors, histone deacetylase inhibitors, such as RGFP109, block
NFkB-dependent transcription in cancer cell lines and thereby overcome resistance to
chemotherapy [211]. Furthermore, micro RNA species, such as miR146, are experimen-
tally targeted to inhibit NFkB-dependent inflammation in myeloid cells and leukemia
progression in malignant cells [212]; it must be noted here that micro RNA effects are highly
cell-dependent and, therefore, caution must be applied in using them as NF«B inhibitors.

A wide range of natural substances have been experimentally tested for the inhibition
of NF«B activity and may proceed to the clinic once key aspects of their pharmacodynamic
behavior are successfully addressed, with the most notable example being curcumin,
which may become a powerful anti-inflammatory agent [213-219]. Furthermore, probiotics
decrease NFkB activity and appear to favor the survival of cancer patients [220]. Another
strategy to inhibit cancer-promoting effects of inflammation is to block the recruitment
of macrophages, since this cell type is involved in a great part of the suppression of the
immune response [158].

In general, a great number of diverse substances have been tested and shown to inhibit
NFkB with a potential therapeutic relevance in leukemia; these include upstream-acting
substances, such as proteasome inhibitors, IKK inhibitors, inhibitors of serine/threonine
kinases, such as GSK-3p [221], further upstream tyrosine kinase inhibitors, as well as
flavonoids and sesquiterpene lactones that inhibit either IKK or p65 or both, inhibitors of
the p65 interactome, and also inhibitors of downstream targets, such as the BCL2 family
antiapoptotic proteins [79,222]. However, this field is rapidly evolving, with an increasing
number of interacting modules targeted by experimental agents [223].

Since a great number of NFkB effects occur in the microenvironment through the secre-
tion of cytokines, adhesion molecules, and matrix-modifying enzymes, it is plausible that a
variety of methodologies need to be used to study aspects of inflammation signaling in the
microenvironment, such as three-dimensional model systems that examine the interaction
between different cell types in microenvironments that mimic host tissue [224]. A notable



Int. J. Mol. Sci. 2024, 25, 8621

16 of 29

example is the development of bone marrow organoids for research into the impact of
leukemia on the bone marrow, which may permit precise targeting of the mechanisms
underlying leukemia resistance to therapeutic intervention and to the immune system [225].
The wider application and improvement of single-cell analysis both in clinical samples and
in advanced model systems allows for determining the proportion and response dynamics
of cancer-initiating cells, which immediately suggests the appropriate methodology for
their destruction [226].

11. Use of NFkB as a Target or Biomarker in Cancer Clinical Trials

NFkB is the target in a number of studies of cancer treatment. Over a decade ago,
it had already become evident that inhibition of the proteasome alone could not inhibit
NFkB in AML [77]. High proteasome activity, which positively regulates NFkB activity, is
often observed in AML patients [227], but inhibiting the proteasome can activate cell stress
responses in cancer cells and enable alternative pathways for proteolysis of IkBwx, such
as the lysosome [41]. A number of different trials have begun in recent years, aiming to
evaluate NFkB as a biomarker in cancer, and to assess a variety of conditions and treatments
for NF«B inhibition.

The randomized phase II trial NCT02144675 will evaluate how well choline magne-
sium trisalicylate with idarubicin and cytarabine works in treating patients with AML. The
study will determine if salicylate alters the expression of NF«kB-regulated genes in AML
cells and if NFkB modulation by salicylate alters AML chemotherapy drug efflux.

Study NCT03978624 aimed to determine changes in NFkB and STAT3 in muscle-
invasive bladder cancer after the use of the humanized antibody pembrolizumab and the
selective class I histone deacetylase (HDAC) inhibitor entinostat. The results are awaited.

NCT00503841 aimed to estimate the effect of the EGF receptor inhibitor erlotinib on the
expression of nuclear NFkB and amphiregulin in patients with ER-negative, EGFR-positive,
and IL-1x-positive breast cancer. EGF receptor was expected to drive constitutive activation
of NF«kB in adenocarcinoma cells [228]. However, NFkB activation by other stimuli may
mediate resistance of cancer cells to EGFR inhibitors [229].

Study NCT02546440 was aimed at assaying the NF«B inhibiting and apoptosis induc-
ing drug Dimethylfumarate (DMF) in patients with cutaneous T cell lymphoma. NF«kB
inhibition was achieved, and the group will proceed toward a phase 3 trial [230].

BMX-001, a redox active metalloporphyrin is designed to mimic the center of superox-
ide dismutase. The primary mechanism of action is the modulation of cellular signaling
pathways. BMX-001 inhibits both NFkB and HIF-1x. By inhibiting these pro-survival
and pro-angiogenic transcription factors, BMX-001 augments tumor killing by radiation
therapy and inhibits tumor regrowth. The inhibition of NF«B blocks major components of
the inflammatory cascade, which simultaneously results in the protection of normal tissue
from radiation-induced injury. BMX-001 is also being developed in head and neck cancer,
anal cancer, and rectal cancer, and has been previously granted Orphan, Fast Track, and
Breakthrough designations by the FDA [231-234].

A Phase 1 trial of CA-4948, a small-molecule IRAK4 kinase inhibitor, and ibrutinib,
a Bruton’s tyrosine kinase inhibitor combination in patients with relapsed or refractory
hematologic malignancies has begun. Ibrutinib targets one of the two main pathways
activating NF«B in Bcell malignancies.

Biomarker correlations, such as MYD88-L265P mutations, IRAK4 pathway, and NF«B
inhibition, will form exploratory objectives [235]. The inhibitor of nuclear export Selinexor
in combination with ibrutinib was a tolerable treatment for patients with chronic lympho-
cytic leukemia and non-Hodgkin lymphoma in a phase 1 study [236].

For follicular lymphoma, an intravenous inhibitor for phosphatidylinositol-3-kinase is
approved from the FDA for the treatment of relapsed patients who had received at least
two prior systemic therapies [237]. In lymphoma, this inhibitor is aimed at blocking cancer
cell NF«kB activation.
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NFkB activity is the primary outcome measure that will be used to evaluate treat-
ment of aspirin as well as metformin to prevent recurrent colorectal cancer after surgery
(NCT03047837).

In a study of the proteasome inhibitor bortezomib and the antiviral raltegravir for
human T cell leukemia virus-associated adult T cell leukemia lymphoma, in patients that
achieved a partial response to therapy, the most affected NF«kB targets were more likely to
be repressed after therapy than in patients with progressive disease [238]. This points to
NF«B as the underlying mediator of severe disease course, at least during the time course
of monitoring.

Antioxidant N-acetylcysteine was intended to inhibit NF«kB in the tumor microenvi-
ronment in patients with persistent or recurrent high-grade ovarian, primary peritoneal, or
fallopian tube cancer in clinical trial NCT02569957, but the study was halted prematurely
due to slow accrual.

NF«B will be assayed as a tumor activation marker in a trial of the combination of
chemotherapy and an anti-hypertensive, aiming to suppress myeloid-derived suppressor
cells (MDSCs) in patients with resectable gastric or gastroesophageal junction adenocarci-
noma (NCT05709574).

Proteasome inhibitor bortezomib was beneficial in de novo pediatric AML patients
with low phosphorylation of NF«kB [239]. Activating the phosphorylation of NFkB is a
pathway for proteasome-independent NF«B activation [240,241]. This demonstrates the
clear need for effective NF«B inhibition in patients with high constitutive phosphorylation
of the NF«B subunit RelA, which are resistant to proteasome inhibitors. It is very important
that RelA phosphorylation was convincingly shown to determine the effect of bortezomib,
since inhibiting proteasome can also have NFkB-independent effects on cell survival, such
as stabilizing the apoptotic protein BIM [242,243].

On the contrary, NFkB was not assayed in a trial of bortezomib combined with
homoharringtonine and cytarabine for refractory or relapsed AML, which determined
the treatment as tolerable [244]. As such, the aspect of the molecular response remains to
be determined.

12. Plasticity of Cancer “Stem-like” Cells May Have a Clinical Impact in AML:
ALDH1A1 Is outside of the Box

The clinical impact of phenotype plasticity of cancer stem-like cells becomes visible
when examining ALDH1A1 gene expression in different risk groups of AML, and when
comparing primary and recurrent disease. Plasticity is a characterized property of AML
stem-like cells, and the emergence of clones with high MYC expression is rather com-
mon [245-247]. NFkB and BRD4 are recognized as a potent drivers of MYC expression in
AML stem-like cells [245-248]. Among other effects, MYC increases ribosomal biogene-
sis to enable the capacity of AML cells to proliferate [249]. AML stem-like cells that are
most likely to cause relapse may readily activate NFkB-driven gene expression due to
their remodeled chromatin, exclusively overcome G1 arrest of the cell cycle, and express
antiapoptotic factors, such as BCL2 [250-252].

What is interesting is that the overexpression of RNA from the gene ALDHI1A1 that
encodes an aldehyde dehydrogenase that is well suited to protect quiescent stem cells
from oxidant stress has a negative prognosis in AML, despite the fact that this gene would
be expected to mark leukemia stem cells that do not operate MYC-driven metabolic cir-
cuits [82,253,254]. The way to reconcile this observation is to envision a dynamic continuum
of phenotypes of leukemia stem cells, whereby the few cells that survive chemotherapeutic
intervention may be quiescent; but upon favorable conditions and an inflammatory stimu-
lus, due to their exposed chromatin, they instantly induce MYC gene expression. Making
MYC instantly available means that they can readily express MYC-driven metabolic genes
and proliferate, giving rise to overt disease [83]. Thus, a steady-state high level of RNA from
the ALDHI1A1 gene increases the capacity of leukemia cells to respond adequately to ad-
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verse conditions but does not prevent leukemia “stem-like” cells from generating subclones
with high MYC expression and high metabolism that can give rise to aggressive disease.

Inhibiting ALDHI1 selectively kills leukemia stem cells without killing normal
hematopoietic stem cells, which is a hint of a continuum of phenotypes that operates
exclusively in malignant “stem-like” cells [255]. It will be interesting to learn if ALDH1A1
protein expression, by increasing the available activity of this ALDH enzyme, actually turns
out to be a “last-minute” shield for death-predisposed AML cells. If this is true, then it
opens the way for learning critical details of the basic pathways of selection of resistant
cancer cells and thereby delivers an advanced picture of the biological processes leading to
cancer relapse.

13. Conclusions: The Dynamic Impact of Cell Stress on Cancer Stem-like Cells
Permits Relapse

The substantial impact of BET protein-targeted experimental interventions is promis-
ing. However, it is crucial to recognize that malignant cells can evade treatment by entering
a quiescent, dormant state with corresponding metabolic adaptations. When tissue condi-
tions in the tumor microenvironment become permissive for growth once again, they favor
cancer cell growth, and these adapted malignant clones may divide to generate a diverse
array of subclones, which can cause the recurrence of neoplastic disease. This dynamic
evolution of cancer stem-like cells is facilitated by their chromatin state, which permits
rapid changes in gene expression. Using the term “stem-like” allows us to cover variations
in the genetic assortment, which may converge into a number of essential properties. Thus,
it is important to consider the fact that malignant cells, through diverse stimuli and sources
of stress, may enter quiescence, a dormant state with corresponding metabolic adaptation.

At the heart of this process lies NF«B, a redox-sensitive transcription factor activated
by cellular stress. NFkB orchestrates a multifaceted program, driving the transcription of
genes that promote cell survival, inflammation, and resistance to cell death. This creates
a self-reinforcing loop, where inflammatory signals establish autocrine and paracrine
pathways that further enhance malignant cell survival and proliferation. The flexibility
and adaptability of cancer stem-like cells to cell stress, mediated by NFkB and other factors,
underscore their role in cancer relapse.

In essence, cancer stem-like cells exploit cell stress not inevitably as a dead end, but as
an opportunity to shape their environment and enhance their fitness for relapse. Under-
standing the dynamic impact of cell stress on cancer stem-like cells and the mechanisms
underlying their chromatin state and signaling pathways is essential. This knowledge can
inform the development of more effective experimental methods to prevent cancer recur-
rence by targeting the specific pathways that allow these cells to survive and thrive under
adverse conditions. By unraveling the intricate interaction between cell stress, chromatin
remodeling, and NF«kB signaling, we can ultimately develop more effective therapeutic
strategies that not only target the initial tumor burden but also eradicate these elusive
cancer stem-like cells, finally achieving durable remissions.
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