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X ABSTRACT OF THE DISSERTATION
*Now' and 'Then’':
A Formal Study in théALogic of Tense Anaphora
by
Frank Vlach
Doctor 6fAPhilosophy in Philosophy
University of California, Los Angeles, 1973

Professor David Kaplan, Chairman

Recent work by Hans Kampv("Formal Properties of
'"Now'", Theoria, 1971) and Arthur Prior ("'Now'",'ggﬁg,
1968) has concentrated on the logical properties of 'now',
taken as a tense operator that refers back always to the
moment of utterance of the sentence in which it occurs.
This paper extends the systems of Kamp and Prior to allow
for temporal referenée to previously established contexts
other than the contéxt of the sentence as a whole. An
operator R, corresponding to 'then' is introduced into a
tense logic with the familiar operators G and H. The
function of R is to refer back to previously estabiished
contexts. An additioﬁal operator K is introduced in order
to specify which previously established context an occur-

rence of R within its scope refers to.

ix



A full formal semantics is provided for K and R
within the framework of Montague ('Pragmatics' in R.

Klibansky [editor]}, Contemporary Philosophy - La Philosophie

Contemporaine, Florence, 1968). The primary distinguishing

feature of the semantics is that formulas must Sé evaluated
with respect to ordered pairs of moments rather than just
"single moments. This is because in evaluating the subform-
ulas of a formula it is neceséary to xeep track not only of
what might be called the primary moment, but also of a‘
secondary moment with respect to which subformulas that
occur within the scope of R are to be evaluated. This sec-
ondary momentvis.established by the syntactically closest
occurrence of X within whose scope Ehe subformula in ques-
tion occurs. Thus the following truth conditions hold for
a sentence ¢ and a pair of moments {t,t'):

H¢ is true at {t,t') if and only if ¢ is true at
{£",t') for every moment t" earlier than t.

Gd is true at {t,t'> if and only if ¢ is trﬁe at
(t",tf) for every moment t" later than t.

K¢ is true at (t,t'> if and only if ¢ is true at
{t,t).

R¢ is true at {t,t') if and only if ¢ is true at
{er,et).

A set of axioms is presented for the system With K
and R, and it is proved that the set of axioms is complete,

in the sense that any formula is derivable from the axioms



if and only if it is true ét everykﬁoint of féference {t,t)
according to.every interpretation. The set of axioms,
although of course decidable, cannot be specified as the set
of instances of any finite set of axiom schemata. In fact,
the axioms are arrived at only as the end result of a long
and rather complex construction. Some reasons are given for
the suggestion that the system may not be finitely axiomati-
zable in the sense just specified, but the question remains
open. The proof of completeness is a Henkin-type proof, and
is based on the proof of Cocchiarella ('Tense and Modal
Logic: A Study in the Topology of Temporal Reference',
Ph.D. Thesis, UCLA, 1965), but certain features of the sys-

tem with K and R seem to necessitate complicating Cocchia- '

rella's methods.
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CHAPTER Il
INTRODUCTION

A. The General Outline

-

-1. The 'then' Operator

Hans Kamp [4], [5] and Arthur Prior (8], [9] have
investigated a system of tense logic that contains a formal
analogue of 'now'. This system has, in addition to the
usual tense logical operators G (for 'it will always be the
case that') and H (for ‘it has always been the case that'),
an operator N which is to be read 'it is now the casé that'.

ThHe semantics for N are fairly straightforward. 1In
tense logic truth and satisfaction must always be defined
with respect to a moment of time, and N is interpreted in
such a way that N¢ is true at any given moment just in case
¢ is true at the moment with respecé to which the sentence
in which N¢ occurs is being evaluated. This latter momen
is thought of as the moment of utterance of the sentence.
This gives formulas like ¢<»N¢ and ¢ »GN¢ « HN¢ as theorems,
but not G{¢«N¢), which is false at a moment t if there is
any moment later than t at which ¢ does not have the same
truth value that it has at t.

In Prior [8] an axiomatization is set forward for a



system with N. . In Kamp [5] it is proved that this axiomati-
zation is complete and also that similar axiomatizations can
be given for a certain class of'systems with N by extending
in a certdin way a complete set of axioms for the corres-
ponding system without N.

The operator N always ;hifts the point of temporal
reference back to the moment of utterance. This is a limi-
tation, and removing that limitation (i.e., introducing an
operator that can shift the point of reference to a moment
other than the moment of utterance) produces a stronger
system. -

Consider for example the sentence

(1) Jones is going to cite everyone nQW'drivihg too fast.?

interpreted as meaning that there is one future time at
which the citing is done. This is symbolized in the 'now’
system (under the obvious scheme of abBreviation; and de-
fining F¢ asquﬂ¢, i.e. as 'it will sometime Be the case
that', and P as =-Ha¢, i.e. as 'it has sometime been the
case that') as |

(2) FAx(N D(x) - C(Jx)) |

| But consider instead the sentence

(3) Jones was once going to cite everyone thHen driving too

fast. |

The function of 'then' in 3 as of 'now' in 1 is to refer

back to the moment corresponding to the main verb of the

sentence. In 1 this is the same moment as the moment of



i

|
Qtterance, so that the now operator is sufficient. But 3
cannot be symbolized in the 'now' system, because there is
no way to shift the point of temporal réference to the right
place. It is no use trying

(4) PFAx(N D(x)->C(Ix))
because that says.'Jones was.;nce_going to cite everyone
now dr@ving too fast'.

In order to introdﬁce_an operator for the 'then' of
3, we must provide some means of indicating which previously
establishgd context the 'then' operator refers back to.
There is more than one way to do this (see Appendix). - We
will simply introduce another operator, called the ‘'index
operator', whose function is simply to indicate which mo~-
ment the 'then' operator refers to. We call the 'then'
‘operator "'R' and the index operator 'K'. R will always
shift the temporal reference back to the point of the
nearest (syntactically) occurrence of K within whose scope
the occurrence of R lies. (If the occurrence of R does not
lie within the scope of K, then R behaves exactly as N
~does.) In this way 3 can be symbolized quite simply as

(5) PKFAx(R D(x} - C(Jx))

The preceding examples illustrate an interesting
fact about the N system and the R system; the N systém; in
a certain sense, is not closed under future or past.tenses.
Suppose we define a past tense of a sentence ¢ as a

sentence which is true at a moment t-if and only if ¢ is



true at scme moment earlier than t.3 In this sense, P¢ is a
past tense of any sentence ¢ thgt contains no tense opera-
tors other than G and H, and PK¢ is a past tense of any
sentence $ of the systerm with R. But some sentences of the
N svstem have no past tense within the N system; 2 is one
such sentence.4 The R system contains a past tense and a
future tense for any sentence of the R system, and hence for
any sentence of the N system (since any sentence of the N
system can be translated into.the R system simply by substi-
tuting R for N). The R system can then be thought of as an
extension of the N system that is closed under past and
future tenses. _

A surprising feature of the R system is that it is

strengéhened by the addition of a ‘now' operator. This is

discussed in the Appendix.

2. . Semantics ‘
Like the semantics for the N system, the semantics .
for the R system is quite straightforward. The ﬁrimary
change necessary is that we must evaluate formulas with
respect to ordered pairs of moments rather than just indi-
vidual moments.5 The truth value of a given formula with
respect to a given moment of utterance depends of course on
the truth values of its subparts at moments 6ther than the
moment with respect to which the whole formula is being

evaluated. In particular, we must arrange for the K opera-

\



tor to determine the moment at which subformulas beginning
with R are to be evaluated. We do this by letting the
second term of the ordered pair be the moment at which for-
mulas begfnning with R are to be evaluated, and by letting
K change the second term or the ordered pair. More formally,
we construct our semantics in such a way that the following
truth conditions hold:

K¢ is true at ({t,t'> if and 6nly if ¢ is true at <{t,t)

R¢ is true at {t,t'> if and only if ¢ is true at <ti,tﬁ>

¢ and H of course do not affect the second term, so

that .

G¢ is true at <t,t') if and only if ¢ is true at {tE",EYD,
for every moment t" later than t' (and analogously for H¢).

Changes in the second term of the ordered pairs are

.necessary'only for the evaluation of subparts of a formula
in the course of evaluating the whole formula. Pairs of the
form <t,t) are thus taken as primary. This corresponds to
the fact that R refers back to the moment of utterance
when not within the scope of K, and to the definition of a
logically valid formula as one which is true at every pair
{t,ty in every interpretation.

| We need take no special account of the K and R
operators in the definition of an interpretation. An inter-
pretation specifies a set of moments of time, an 'earlier
than' relation among them, a set of possible objects, and a

function that stipulates which relations hold among which



objects at which times. We use essentially the definition
in Cocchiarella [1], but there is nothing special about this
choice. The K and R operators can be introduced into any
ordinary éystem of modal or tense logic.

The definitions of truth and satisfaction are given

in terms of intensions and extensions following Montague [1].

3. An gxample from English
The final object of the study of formal tense logic
is presumably its application to the study of (very broadiy
,mSpeaking) tensed discourse in natural language. We will not
examine English tenses in this paper, but we ought at least
to give some indication of the sort of English expression
that can be symbolized in the system with K and R but not in
the system with N. In order to do this we will simply quote
one_example from an actual text and make a few comments.
. (6) When I'looked that way I saw that, some way off,
so far that they must mark some kind of settlement
or farm well beyond the limits of the town, more
lights showed. , '
I turned along the path at a trot, chewing
at my chunk of barley bread as I went.
The lights turned out to belong to a fair-sized
house whose buildings enclosed a courtyard. )
The key phrase in this example is the phrase 'the
lights' in the third paragraph. This can be symbolized
only by relating it to 'more lights showed' in the first
paragraph, using the index operator to indicate the point of

temporal back-reference. In order to see this, let us

simplify 6 by leaving out detail irrelevant to the present

t



éoint:
'(7) When Jones looked to the left, some lights showed.
| Later, the lights turned ocut to belong to a house.
Suppose we introduce the following scheme of abbre-
viation: T
Q: Jones looks to the left
L(xiz x is a light
S(x): x shows
T(xy): x turns out to belong to y
H(x): x is a house
Then 7 may be symbolized as -
(8)  PR(QAVX(L(x) A S(x)) a
VYF (H(y) » AX (R(L(x) » S(x)) > T(xy))))®
It is easy to see why 7 cannot be symbolized without
‘the index operator. If we begin
" (8) P(QAVX(L(x) A S(x)) A FAx(. . .
we are lost, because there is no way tb specify the lights
that showed at that one particular'moment'when Jones turned
left--we can specify all the lights'that ever showed on any’
occasion when Jones turned left, but that may include more
lights. |
We could try P(Q aVx(L(x) a S(x) A VYF(H(y) A F T(xy))}]
but this fails to say that all of the lights that showed
turned out to belong to a house.

We see no way to svmbolize 7, and therefore 6,

without the use of the index operator.



6 was chosen as an example because it is typical of
the fragments of English that actualiy occur and that cannot
be symbolized in a system that does not include something
like the index operator. It is clearly not an odd piece of
English; a few pages of reading in almost any continuing
narrative will reveal a similér example. It shares the
following features with most other examples:

(a) It occurs within a continuing narrative where
the passage of time.is indicated by the ordering of sen-
tences. Subject to certain other indicators, it is as if we
were to read each sentence as preceded by the phrase 'very
shortly afterwarés' or ‘'before the situation changed very
much'. Our formal system is inadequate in that there is no
way of indicating that there is a very limited amount of
time between the moment when the lights were seen and the
"moment that they turned out to belong to the house, but
éven in a system that contained a formal analogue of 'very
shortly afterwards' the index and 'then' operators'would
still_be needed to express 6. . |

(b) The temporal back-reference extends over
sentence and (in this case) even paragraph boundaries.

(¢} The tempofal back-reference is not actually
made by any use of the word 'then'. .

(d) The key phrase involved in the temporal back-
reference is of the form 'the' followed by a plural noun

phrase. It might be possible to read the phrase 'the



--lights' in the third paragraph.of 6 as elliptical for 'the
lights that I saw when I looked.that way': but the phrase
‘when I looked that way' can only be taken as indicating a
reference back to the context of the first paragraph. Since
the fictional utterer of 6 may have looked the appropriate
way many times, it is only this form of contextual back-
reference that makes it possible to specify the intended

lights.

4. Completeness

In Chapter III an axiom system is introduced and in
Chapter IV it is proved that the axiomatization is complete,
~in the sense that the formulas that are derivable from the .
axioms are exactly those that are true at every moment of
every interpretation. The axiomatization is rather unsatis-
factory, since the axioms are a rather complex decidable set
of formulas rather than a set that can be represented as #he
instances of some finite number of schemata. It is not
known whether a more satisfying axiomatization cén be found,
but there are certain features of the system with K and R
that suggest that a complete finite set of schemata may not
be possible. This matter is discussed further in Chapter
III.

The completeness proof is of the genefal sort of
Henkin [3], as extended in Kripke [6] and most particularly

in Cocchiarella [1], the methods of which were adapted as



closely as possible. However, it was necessary to revise
Cocchiarella's methods considerably, as is pointed out at

the beginning of Chapter III.

B. Set Theoretical Background

This undertaking is carried out within Zermelo-
Fraenkel set theory. We will set forward here only those
definitions of set theoretical notions that may be of par-
ticular use in what follows, or the notation of which may
not be fully standardized in the literature of set theory;

{A(x):F(x)} is the set of objects y such that y is
A(x), for some x such that F(x); in particular, {x:F(x)} is
the set of objects x such that F(x). S(A) is the power set’
of A, or the set of subsets of A. AVB is the set of objects
x such that x ¢ A and x ¢ B. FYX)A(x) is Wa(x):F(x)}.

We assume that w, or the set of natural numbers is
defined in sﬁch a way that each natural number is identified
with the set of smaller natural numbers. In particular, 0
is the empty set. max(m,n) is the iarger of the two natural
numbers m and n. & is.tﬁe (finite) number of objects in A,

(x,y), or the improper pair of x and y, is {Ix}{xyl}l}.

s is an I-sequence if and only if
(1) s is a set of improper.pairs
(2) For each x,y and z, if (x,y) ¢ s and (x,2) ¢ s,
then y is z.

(3) I is the set of objects x such that for some y,

10



(X,y) € s.

[
[}

lh(s), or the length of s, is that I such that s i
an I-sequence.

s is a finite sequence if and only if s is an n-

sequence, for some n ¢ w. s is an infinite sequence if and

only if s is an w-sequence.

'C th

If s is an I-zeqguence and i ¢ I, then S;r OF the i—

mn

term of s, is that object x such that (i,x) ¢ s.
AI is the set of I-sequences s such that for each
ie1I,s; €A, |
. If s and t are finite sequences, then s"t, or the
" ‘concatenation ¢f s and t, is s {(1+1h(s) t, )q.< 1h(t) }.
s (stllisp) Diltim
.If s is a seéuence, then s1A is the set of objects

If s is a sequence then s

(1,s ) such that i e A,
{xY, or the l-tuple whose only term is %, is {(0, x)},

{x,y), or the 2-tuple (or brderea'pair) whose terms are, in

order, x and y is {(0,x){1,y)}; and so on for each natural
number.

AxB is the set cf ordered pairs {x,y) such that
X ¢ Aand v ¢ B.

A relation is a set of ordered pairs.

If R is a relation, then xRy if and only if <x,y> ¢ R.

If R is a relation, then R réstfxdted to A is Ra(axa).

f is a function if and only if £ is a relation and

for each x,y and z, if xfy and xfz, then y is z.

1l



We define the notions of the domain of R (Dom(R)),
the range of R (Rng(R)), the field of R (F1ld(R)), the

converse of R, (i), and the relative product of R and S,

(R/S), in the usual way.
| f is a one-to-one function if and only if f is a
function and f is a function;
If f is a function and x ¢ Dom{f),; then f(x), or the
value of f for the argument x, is that object y such that
xfy.

A set A is denumerable if and only if there is a

one-to-one function whose domain is A and whose range is g.
A relation R is reflexive if and only if for every x
in the field of R, xRx. |
‘A relation R is sxémetric if and only if for every x
and y, if xRy then yRx.

A relation R is antisymmetric if and only if for

every x and &, iﬁ xRy and x # y, then not yRx.

A relation is transitive if and only if for every

x,y and z, if xRy and yRz, then ¥Rz,
A relation is connected if and only if for every x
and y in the field of R, either xRy or yRX or x is y.

R is an eguivalence relation if and only if R is a

relation that is transitive, reflexive, and symmetric.

R is a reflexive linear ordering if and only if R is

a relation that is transitive, reflexive, antisymmetric and

connected,

)

12



We note the following trivial theorem:

71, If R is a reflexive linear ordering, then R restricted

to A is a reflexive linear ordering.
C. Syntax

We now turn to the syntax of the object language. In
this section we construct a language that consists of the
ordinary predicate calculus together with the familiar
one-place tense operators G and H and two new one-place
operators g‘and R., The definitions of all the necesséry
syntactic notions are included here. Most of these notions

are familiar and will be defined without comment.
1. The Basic Syatactic Notions

.Dl. The following are the symbols:

k=

(read 'the negation symbol')

(read 'the conditional symbol"')

la’

ie

(read 'the universal quantifier symbol')

1<.

3 (read 'the jEE variable symbol', for each j e w)

Ej,k (read 'the th k-place predicate symbol', for
each j,k ¢ w)

Qj,k (read 'the th k-place operaﬁion symbol', for

each j,k ¢ w) |

(read 'the identity symbol')

1o

g (read 'the future tense operator')
h

(read 'the past tense operator')

13



r (read 'the 'then' operator')

.k (read 'the index operator')

We must ensure, of course, that all of the different

symbol-denoting expressions used above do, in fact, denote

distinct symbols. We may do this by identifying each symbol

with a distinct natural number, or by adding all of the

necessary distinctness axioms to those of the set theory.

D2. | (1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)
(9)

T is a k—-place predicate letter if and only if =

is <hj x>+ for some j e w. -
[4

6§ is a k-place operation letter if and only if §

is {o. ,), for some j € w.
=] 'K

T is a non-logical constant if and only if 7 is a

predicatelletter or an operation letter.

T is a propositional constant if and only if w is

a 0-place preéicate letter.

§ is an individual constant if and only if § is a

0-place operation letter.

Vi OF the‘kEE'individual variable, or just
variable, isv<gk).

o¢ is an individual variable if and only if o is

Vit for some k é We '
Iv is the set of (individual) wvariables.

An expression is a finite (possibly empty)

sequence of symbols.

D3, ¢ (read 'it is not the case that ¢') is d"

——

14



D4.

D5.

D6.

sets

(6->Y¥) (read 'if ¢, then ¥') is <c>""p
n=t¢ (read 'n is identical with z') is <e>"n"t

Aad (read 'for all a, ¢') is o

Hé (read 'it has always been the case that ¢') is {h)"¢

G (read 'it will always be the case that ¢') is (g}"¢
R is <rd"¢ |
K¢ is <" ¢

From this point forward, '”' will often be omitted.

Va¢ (read 'for some a, ¢') is ﬂAdw¢
(6 vy) (read '¢ or Y') is (~¢= 1Y)
(6 AY) (read '¢ and ¥') is =(¢= =)
(besP) (read '¢ if and only if ¢') is ((d=9) A (V> )’
L (read 'it is always the case that ¢') is
(Hd A (¢ 4 G4))
M{ (read 'it is sometimes the case that ¢') is ~L=¢
Pé (reaa *it has sometime been the case that ¢') is .
=H-¢
F¢ (read 'it will sometime be the case that ¢') is

G

.~

A language is a set of non-logical constants.

Tm, or the set of terms, is the intersection of all the -
I' such that |
(1) Every variable is in I', and

(2) If 6 is a k-place operation letter and

15



v [, ] n n
;0"'.'2;]{-1 € I', then § CO cee Kk-le T.

The following trivial theorem justifies a form of

induction on the set of terms.

72, If (1) every variable is in T and
(2) fof each k ¢ w, k-place operation letter § and
terms CO""'Fk-l e T, GCO"'Ck—l e T,

then every term is in T.

p7. AFm, or the set of atomic formuias is the set of

expressions n=¢ such that n and ¢ are terms, together with
the set of expressions ﬂ"co“...“ck_l where 7 is a k-place

predicate letter and Lgs...sgy 4 2re terms.

p8. Fm, or the set of formulas, is the intersection of all
~tpe sets ‘T such that

(1) Every atomic formula is-in T

(2) If ¢,¢ ¢ T and a is.a variable, then =¢, (¢->1V),

Aod, Ho, Go, K¢ and R¢ € T,

The following theorem is a simple consequence of the
preceding definitions. It will be used throughout without
further acknowledgement both in the proofs of further

theorems and as a justification for inductive definitions.

T3. If (1) every atomic formula is in I' and
(2) for all formulas ¢,y and variables a, if ¢ ¢ T

and ¢ ¢ I', then =6, (¢>V¥), Aad, Ho, G, K¢ and

16



R ¢ T;

then every formula is in T.

Since the set of expressions is denumerable, we will
allow ourselves to speak of the ksh expression; and we will
also speak of the kEE member of various subsets of the set

of expressions.

D9. If 0,f are expressions, then 6 occurs in & if and only

if there are expressions Z,n such that & is z"6%n.

Dl0. If ¢ is a formula, then £v(¢), or the set of free
variakles of ¢, is defined recursively as follows:
() 1If ¢ is an atomic formula, then fv(¢) is the set,
of variables that occur in ¢
(2) £v(o>¥) is EV(S)EV(Y)
(3) £v(hag) is fv($)r{al
(4) £v(-¢), £v(H$), £v(GP), £fv(K¢) and fv(R¢) are all
£v(¢)

Convention: From here forward it is assumed that

a,B,y (also o', etc.) are variables; n,t are terms; ¢,y and

X are formulas; and I' is a set of formulas.

Dll., St, or the set of sentences, is the set of formulas

such that fv(¢) is 0.

D12, If L is a language, then TmL, or the set of terus of

L, is the set of terms ﬁ such that every non-logical con-

\
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i
g .
stant that occurs in n is in L. AFmL, FmL, and StL are

I

defined in the analogous manner.

D13, L(I), or the language of T is the set of non-logical

constants that occur in some formula in T.

-

D14. We define 9'contains R outside the scope of K by the

following recursion:

(1) If ¢ is atomic; then ¢ does not contain R
outside the scope of K.

(2) ¢ >y contains R outside the scope of K if and
only if ¢ contains R outside the scope of K or ¥
contains R outside the scope of K.

(3) K¢ does not contain R outside the scope of K,

(4) R¢ contains R outside the scope of K.

(5) =-¢, H¢, Gd, and Aad each contain R outside the
scope of K if and only if ¢ contains R ocutside

the scope of K.
2. Substitution

D15, (Recursive) If £,E' are terms or atomic formulas,

then E' is obtained from £ by replacing 0 or more occur-

rences of (the term) n by n', if and only if one or more
of the following holds:

(1) & is &'

(2) £ is n and &' is n'

(3) There are k, Ty Lpreverly g9 C'O""'C'kul such

18



(4)

that k € w, 7™ is a k-place predicate letter or =
is a k-place operatign letter, £ is wco...ck_l,
E' is ﬂc'o...c'k_l, and, for each i < k, c‘i is
obtained from Ci by replacing 0 or more occur-
rences of n by n'.'

There are terms Z, ', 6 and 6' such that ' is
obtained from 7 by replacing 0 or meore occur-
rences of n by n', 0' is obtained from 6 by
reélacing 0 or more occurrences of n by n', £ is

=6 and &' is z'=08'.

D16. R(¢',d,¥',¥), or ¢' is obtained from ¢ by replacing 0

or more occurrences of (the formula) ¥ by ¢', if and only if

one or more of the following holds:

(1)
(2)
(3)

(4)

¢' is ¢

$' is V' and ¢ is Y

There are formulas ¥, X', 6, 0' such that ¢' is
x'+0', ¢ is x>0, R(x',x,¥',¥) and R(e',e,w',¢)
There aré formulas X,x' such that R(Y',x,¥"',¥)
and either ' is ax' and ¢ is =y, ¢' is Hy' and

¢ is Hy, ¢' is Gy' and ¢ is Gy, ¢' is Ky' and ¢'
is Ry' and ¢ is Ry, or there is a variable o such

that ¢' is Aayx' and ¢ iS'Aax.

D17. We define RP(4¢',¢,¢',¢), or ¢' results from ¢ by re-.

placing 0 or more positive occurrences of ¥ by y', and

RN(¢',¢,9',¥), or ¢' results from ¢ by replacing 0 or more

19



!
i
!
negative occurrences of ¥ by ', together recursively as

follows:
(1) If ¢' is ¢, then RP($",6,V',¥) and RN(o', 6,9, ¥)
(2) ' If ¢' is ¥' and ¢ is Y, then RP(¢',4,¥',¥)
{(3) If ¢' is not ¢, and it is not the case that both
¢' is ﬁ' and ¢ is @, then
(a) If there are formulas ¥,%x',6,6' such that ¢
is x> 6 aﬁd_¢' is x'=»6', then
(i) RP(¢',4,¥',¥) if and only if both
RP(6',6,¥',¥) and RN(X', X, V', ¥)
(ii) RN(¢',¢,¥',¥) if and only if both
RN(6',6,%',%) and RP(x',X,¥' V)
(b) If there are formulas ¥,¥' such that ¢' is
~x' and ¢ is =¥, then
(i) RP(¢',¢,9',¥) if and only if
CRN(X'4 %o V')
(ii) RN(¢',¢,V¥',¥) if and only if
RP (X', Xs V' ¥)
(c) If there are,formulés X,X' such that either-
¢' is HY' and ¢ is HY, ¢' is GX' and ¢ is
GX, ¢' is KX' and ¢ is KX, or ¢' is RY' and
¢ is RYX, then
(1) RP(¢',¢,¥',¥) if and only if
RP (X', X, V' V)
(ii) RN(¢',9,¥',¥) if and only if
RN (X', X, %', V)
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(d) If there are formulas ¥,x' and a variable a
such that ¢' is Aax' and ¢ is Aoy, then
(i) RP(¢',¢,¥',¥) if and only if
‘ RP(X"»Xe V' 4 )
(ii) RN(4',¢,¥',¥) if and only if
. RN (X' sy Xe¥'s¥)

D18, If f is a function;. . Dom(f) € Iv, =2nd Rng(f) € Tm, then

‘rep(¢,f), or the replacement of variables in ‘¢ according to

£, is introduced recursively as follows:

(1) If o is a variable, then
(a) If o e Dom(f), rep(a,f) is £(a)
(b) If o ¢ Dom(f), rep(a,f)'is a

. (2) If m is a k-place operation letter or a k-place

predicate letter and Tpreserly_y are terms, then
rep(ﬂco...ck_l,f) is rep(co,f)...rep(ck_l,f)

(3) If t,r' are terms, then rep(z=t¢',f) is
rep(z,£)=rep(z',£) |

(4) (a) rep(+0,£) is -rep(d, )
(b) rep(é>w,£) is (rep(s,£) > zep(y,£))
(c) rep(Mod,f) is Arep(q,f)rep(¢,f)
(d) rep(H¢,f) is H rep(d,f)
(e) rep(G¢,f) is G rep(é,£f)
(f) rep(X¢,f) is K rep(é,f)
(9) rep(R¢,f) is R rep(¢,£f)

T4, If £ is a term or a formula, £ and g are one-to-one
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. functions, Fld(f) € Iv, Fld(g) € Iv, Rng(f} ¢ Dom{(g), and
each variable that occurs in £ is in Dom(f), then rep(§,g/f)

is rep(rep(&,q).,£f).

Proof: A trivial induction, using T2 and T3.

D19. If f is a function, F1d £ ¢ Iv, and each variable that
occurs in some formula in T is in Dom(f), then REP(T,f) is

the set of formulas ¢ such that ¢ is rep(y,f), for some

v e,

D20. If £ is a term or a formula, then ra(d,n,E), or the

result of replacing all occurrences of a by n in £ is

rep(£,f), where £ is {<a,n)>}.

TS, If £ is a term or a formula, then
(a) ra(o,0,&) is &
(b) If o does not occur in g, then ra(d,n,&)'is E
(c) If o does not occur in n, then o does not occur in

ra(o,n, &)

Proof: (a), (b) and (c) are all immediate conseguences

of D20, T2 and T3.

T6. If B does not occur in £, and £ is a term or an'atomic

formula, then ra(B,a,ra(a,B,£)) is E.A-

Proof: A trivial induction.

T7. If B does not occur in ¢, then

(a) If o ¢ £v(4), then fv(ra(a,B,9)) is £v(¢)
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(b) If a ¢ fv(¢), then fv(ra(a;8,¢)) is
(£Ev($) ~{a}b)s {8}

Proof: Let T be the set of formulas ¢ such that the
theorem hélds for all o and B. ‘ '
(1) Suppose that ¢ is an atomié formula and § does not
occur in ¢.

(a) If o f fv(¢), then o does not occur in ¢ and, by
T5b, ra(a,B,9) is ¢ |

(b) If o ¢ £fv(¢), then a is not B. By T5¢c,
fv(ra(e,B,9)) is (£v($)~{ab)c {8}

(2) Suppose that ¢ ¢ I' and B does not occur in =¢. Then

B does not occur in ¢.

(a) If o ¢ fv(-4), then o ¢ £v(¢) and fv(ra(d,8,~¢){

. is fv(wré(d,6,¢)) is fv(ra(a,B,9)) is fv(¢) is
fv(=¢) .

(b) If ¢ € fv(=4), then a e £v(¢) and fv(ra(d,s,-vd;))
is fv(wra(a,6,¢)5 is fv(ra(a,B,d)) is )
(£v()~{ad) o (B} is (£v(~¢)~{al)s{B}.

(3) Suppose that §:¢ ¢ T and 8 does not occur in (¢ y).

Then B occurs neither in ¢ nor in V. .

(a) If o ¢ £v(¢>y) then o ¢ £v(), o ¢ £v(}) and
£v(ra(a,8,6> ) is fv(rale,8,4) > rala,8,)) is
£v(ra(a,B,6))vEv(ralo,8,9)) is £v(¢jufv(y) is
£v (¢ >9) . h

(b) Suppose a € fv(¢-’w); suppose further, without

loss of generality, that o € fv(¢) and o e fv ().

23



(4)

Then fv(ra(a,B,¢->y)) is fvi{ra(a,B,$)> ra(a, 8,¥))
is fv(ra(a,B8,9))vfvirale,B,y)) is (£v(¢)w{a})u
{BluEv(Y) is ((Ev(d)vEv(¥))n{al)u{p} is

' (Ev(o> p)v{al)u B,

Suppose that ¢ ¢ I' and B does not occur in Av¢.

. (a) Suppose that o ¢ fv(Ay¢). We take three cases:

First, suppose that o is y and a € £v(¢).
Then, since ¢ é r, fv(ra(ao,B,¢)) is fv(¢) and
fv(ra(a,B,AY¢)) is fv(nBra(o,B,¢)) is
fV(ra(a,B,¢))&{B}vis fv(¢)~{B)} is (since B does
not occur in ¢) £fv(¢).

Second, suppose that o is ; and o € £v(¢).
Then, since ¢ ¢ I', fv(ra(o,B,9¢)) is |
(£v(¢)v{a})v{B} and fv(ra(a,B,Ayd)) is
£v(ABra(a,8,9)) is fv(rala,B,$))~{8} is
((Ev(9)~{abuw (BN ~{B} is (£v(Avé)u{p})~v{B}.

" since B does not occur in Ay¢, this is fv(Ayd).

Third, suppose that o is not Y. Then
o € £v(¢). Since ¢ e I, fvira(o,B8,¢)) is £v(¢) -
and fv(zraio,B8,Nyd)) is f£v(Ayralc,B,9)) is
fvirala,B,6))v{y} is fvie)niy} is £v(AyYe).

(b) Suppose that o € fv(Ay¢). Then o is not y and
o ¢ fv(¢). Since ¢ € T, fv(ra(a,B8,¢)) is.
(£v($)~n{a})uv{B}. Then fv(raka,B,Ay¢)) is
£v{Ayra(o,B,4)) is fv(ralo,B,¢))*{y} is
((£v($)~{al)u{p)A{y}. Since o, B and y are
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distinct, this is ((fv(¢)~{yDv {8} ~{a}, which is
(£v (AY$) v {B}) v{al.

(5) Suppose that ¢ ¢ I'; then (as in case (2)) H¢, G$, K¢

and'R¢ are all in T.

Proper substitution is defined in such a way that any
term may be properly substituted for any variable in any
formula. This is done by using the familiar device of re-
placing any bound variables that lead to a conflict of

variables.

(1) If ¢ is an atomic formula, then ps(n,c,¢) is
ra(o,n,9)
(2) (a) ps(n,a,=¢) is =ps(n,a,d)
(b) ps(n,e,4+y) is (ps(n,a,¢) > ps(n,a,y))
(e} (i) ps(n,a,ABd) is AB if a ¢ £Vv(ABY)
(ii) ps(n,a,AB$) is ABps(n,a,¢) if
a €& £v(AB¢) ana B does not occur in n .
(iii) ps(n,o,ABd) ié Ayps(n,d,ra(B,Y,¢)):
where y is the first wvariable such
that v éccurs neither in n nor in ¢,
if o € £fv(AB$) and B occurs in ﬁ
(@) ps(n,o,HY) is H ps(n,a,é) |
(e) ps(n,a,G$) is G pS(n,a,fb).

(f) ps{n,o,K¢) is K ps(n,a,9)
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(g) ps(n,a,R¢) is R pS(n,a,¢)

The rank of ¢ is the number of sentential connectives
and quantifiers in ¢. It is sometimes convenient to prove
that all formulas belong to a certain class by induction on

the ranks of formulas.

D22, 1rk(¢), or the rank of ¢, 1s‘1ntroduced recursively as
. follows:

(1) 1If ¢ is aﬂ atomic formula, then rk(¢) is 0

(2) rk(-¢), rk(hoo), xk(H¢), rk(Go), rk(K¢), and

— - rk(R¢) are all rk(¢)+1

(3) rk(¢=>y) is rk(¢)+rk(P)+1

T8. (a) rk(ra(a,n,¢)) is rk(¢)
(b) rk(ps(n,a,4)) is rk(¢) .

Proof: A trivial induction using T3

T9. (a) .ps(a o,%) is ¢
(b) If a ¢fv(¢), then ps(n, a 8 is ¢ _
(c) If o does not occur in 1, then o ¢ fv(ps(y,a o))
(@) 1If a ¢ fv{4) and y is a variable, then
fv(ps(y,e,4)) is (£v($){a})s{y}

Proof: (We proceed by induction on the rank of ¢.)
Let T be the set of formulas ¢ such that (a), (b) and (c)
all hold for ¢.
(1) Suppose that ¢ is an atomic formula

(a) ps(a,a,4) is ¢, by Tsa
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(2)

(3)

(4)

(b) If a ¢ £v(¢), then o does not occur in ¢, and
ps(n,a,¢) is ¢, by T5b.

(c) Follows immediately from T5c.

(d) ' Follows immediately from T7b.

Suppose that ¢ is -y, for some ¢ € T.

(a) psla,a,vP) is =ps(a,a,P) is -¢.

.(b) If o ¢ £v(-y), then o g fv(y) and ps(n,a,y) is

Y. Then gs(n,a,ww) is aps(n,a,P) is =,

(c) If a does not occur in n, then o f fv(ps(n,a,¥))
and o ¢ fv(ps(n,o,Y)).

() If o € fv(¢), then fv(ps(y,a,9)) is
fv (~ps(y,o,¥)) is fv(ps(y,a,P)) is-(fv(¢)¢{a})u
{y} is (Ev(e)nviaDu v} |

Suppose that ¢ is ¢ »>YX, for some y,X ¢ '« This case

is similar to case (2).

Suppose that ¢ is ABy for some Yy ¢ T'. We take two

cases; | ’

First, suppose that o is B.

(a) By D21, ps(a,a,ABY) is ABY.

(b) By D21 again,‘ps(n,a,Asw)'is Aﬁw.n

(c) Suppose that o does not occur in n. Since
o ¢ £V(ABY), ps(n,a,ABY) is ABY and o ¢
fv(ps(n,a,ABY}). |

(d) Since o is B, a ¢ fv(¢) and tﬁis case holds

vacuously.

Secondly, suppose that o is not B.
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(a) If o ¢ £v(ABY), then ps(a,a,ABY) is AB$, by D21.

If. o ¢ fv(ABY), then (since B does not occur in

a) ps(a,a,ABY) is ABps(a,a,¥). Since ¢y ¢ T,

+ this is ABy.

(b) Suppose that o ¢ £fv(ABY). Then, by D21,
ps(n,o,ABY) is ABy.
(c) Suppose that o does not occur in n. Since y e T,

a ¢ fv(ps(n,a,¥)). We take three subcases:

(i) If o ¢ £v(ABY), then (D21) a ¢
£v(ps (n,0,ABY)) .

(ii) If o e Ev(ABY) and B does not occur in n,
then ps(n,a,ABY) is ABps(n,a,¥), and o ¢
fv(ps(n,o, ABY))

(iii) = Suppose that o € fv(AgY) and B occurs in n.
Let y be the first variable that occurs
neither in n nor in . Then ps(n;apABwi is
Ayps(n,o,ra(8,y,¥)). By T8 and the induc-
tive hypothesis, a ¢ £v(ps(n,a,ra(B,y,9))1),
and hence o ¢ £v(ps(n,o,ABY)) .

(d) Suppose that o ¢ fv(¢). We take two subcases:
(i) v is B; then ps(y,a,¢) is Ay'ps(y;a, .
ra(B,vy',¥)) (where y' is the first variable
that occurs neither in y nor in ¢); and
£v(ps (v 0, 0)) is £v(ps (y,a,ralB,y',9))n
{y'} is (by the inductive hypothesié and

T8) ((fv(ra(f,y',v))r{a})uly}in{y'} is
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((Ev(za(B,v',¥))~v{aDv{y' Duly} is
((Ev(za(B,y', ¥))8{y' Dalab v {y} is (by T7)
((Evip) v{8N v {aP i {y} is (£v(e)r{aDu{y}.

'(ii) vy is not B; then ps(y,a,¢) is AR(ps{y,as9))
and £v(ps(y,a,4)) is £v(ps(y,a,¥)){B} is
i(féfw)&{a})d{y})¢{8} is ((Evp)n{g})n{a})v
{vy} is (fv($)~{aBuv{vy}.

(5) If ¢ is Hy, Gy, Ky or Ry ard ¢ ¢ I, the proof is

analogous to that for case (2).

3. - Other Syntactic Notions

It will be convenient in the following chapters to

HAGKABGO to the formula ¢. We also wish to distinguish the

' universal part and the tense pact of a generalizer. The

universal part of HAaKABGO is AaABO and .the tense part is
HKG0. The following definitions introduce these notions

formally.

D23. (1) We define the class of n-level generalizers

recursively as follows:
(a) T is a O-level generalizer if and only If

T is 0.
(b) T is an n+l-level generalizer if and only

if 1 is HE, GE, KE or Aok, where T is an
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(2)

(3)°

D24. (1)

(2)

n-level generalizer and o is a variable.

¢ is an n-level generalization of ¢ if and only

if ¢ is 1"¢, where T is an n-level generalizer.

V is a generalization of ¢ if and only if ¢ is

an n-level generalization of ¢ for some n ¢ w

(including 0).

Tt is a universal generalizer if and only if T is

a generalizer and neither HE, GE, nor K§ occur

in 1, for any E&.

¢ is a universal generalization of ¢ if and only

if y is 1"¢, where T is a universal generalizer.

D25. If T is a generalizer, then the universal part of

and the tense part of T are defined together recursively as

"follows:’

(1)

(2)

The universal part of 0 is 0.

' The tense part of 0 is 0.

If T is a generalizer, § is the universal part of
T and t' is the tense paft of f, then
(2) If o is a variable, then the universal part
of Aot is AaE, and the tense part of Aot
is 1'.
(b) The universal part of Ht is E.
The tense part of HT is Hf'.
(c) The universal part of Gt is E.

The tense part of GT is Gf'.

30



(d) The universal part of Kt is &.°

The tense part of Kt is Krt'.

D26. If T is a generalizer, then t' is a subgeneralizer of
T if and only if T and t' are generalizers and there is a

generalizer & such that 7t is 3 LN

p27. (1) ¢ is a closure of ¢ if and only if ¢ is
hag...ho o ¢, wheré fv(¢) is {agreeesa 1}

(2) The standard closure of ¢ is the formula

Aao...Aan_l¢, where ao""'dn-l are (in order)

- the free variab1e§ of ¢.

If T is a finite set of formulas, we will need the
(standard) conjunction and disjunction of the formulas in T.
If T is empty, we choose a tautology for the conjunction
. of the férmulas in T and a contradiction for the disjunction
of the formulas in T, in'grder to preserve the rule that a
conjunction is true if and only if ‘all of its conjuncts are
true, and a disjunction is true if and only if at least one

of itk disjuncts is true.

p28. (1) If I is finite, then CJ(I'), or the conjunction

" (in order) of the formulas in I', is defined

recursively as follows:
““(a) If T is 0, the conjunction (in ordery of
the formulas of I is .<P£0,0>—)<EO,O>

(b) If T is 1, the conjunction (in order) of
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(2)

(c)

the formulas 6f I' is ¢, where ¢ is the
formula in T.

If T 2 2, then the conjunction (in order)
of the formulas in T is (9 A y), where ¢ is
the first formula in T and ¢ is the con-

junction (in order) of the formulas in

Tng}.

If T is finite, then DJ(T), or the'disjunctioﬂ

(in order) of the formulas in T, is defined

recursively as follows:

(a)

(b)

(c)

1f T is 0, the disjunction (in order) of
the formulas of T is <E£o,0>.,"<250,0>'
If T is 1, the disjunction (in order) of

the formulas of T is ¢, where ¢ is the

' formula in T.

If T 2 2, then the disjunction (in order)
of the formulas in T is (¢ v §) where ¢ is
the first formula in T and ¥ is thé dis-
junction (in order)'of the formulas in

Tv{¢}.
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CHAPTER II
SEMANTICS
A. The Formal System

1. Interpretations; Intension and Extension

We begin this chapter by setting out formally the
svstem described in the Introduction. The following
definitioqs (D29-D36) are constructed according to the
general framework provided in Montague [7]. In particular,
we follow Montague with regafd to the notions of intension’
and extension.

We begin by defining the notion of an interpretation.

This definition is essentially unchanged from that presented
in Cocchiarella [1], énd we will not argue in this paper for
the definition given. However, this is chosen only és one
possible beginning; systems corresponding to ours could ﬁe
constructed analogously building upon many systems of ténse
logic or modal logic. Ia the case of modal logic, it would
be natural to read the analogue of the 'now' operator as
‘actually'. The index operator seems to have no one natural

reading either within tense logic or within modal logic.

D29. If L is a language, then  is an interpretation for L

if and only if there are T, 4, U, G such that:
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(1) 4 is {T,4,0,G)>
(2) G ic a function with domain L

(3) < is a reflexive linear ordering,_the field of <

is T and T # 0

(4) U#0

(5) For each m ¢ L, G(w) s a function with domain T
(6) For each k~place predicate letter m ¢ L and each
teT, G(m(t) € UF

(7) For each k~place operation letter 6§ &€ L and each

t e T, G(6) (t) is a function from Uk into U

D30. 1If Q;is an interpretation and Q is {T,é,U,G), then

(1) The set of moments of ¢ is T

(2) The set of possibie objects of ¢, or %L' is U

(3) The set of points of reference of ¢ is TxT

(4) The language of ¢, or Ek' is Dom(qg)

D3l. If g is an interpretation for L, q'is~(T,é,U,G) and

terT,

t,

then Ext afc), or the extension of ¢ at t (aécording

tod ) is introduced for an arbitrary term g of L by the

following recursion:

(1) Ext (v.) is that functionh H with domain g?
t,G n
such that for each x ¢ Dom(H), H(x) is X
(2) If § is a k-place operation letter in L and
NgreserNpe g are terms of I, then
Extt,afsnof"nk-l) is that function H with

dqmain u” such that for each x € Dom(H), H(x) is
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G(8) (£) ({Ext, _(ng) (x) oo Exty (n 1) (D)

We think of Ext n) (x) as the object denoted by the

t,&f.

term n at t, if the variables in n are assigned values

according to x.

D32, If 4 is an interpretation for L and n is a term of 14,

then Intafn), or the intension of n (according to&) is that

function H whose domain is the set of points of reference of
G, and such that for each {t,t'Y ¢ Dom(H), H({t,t'>) is

EXtt,aén)'

D33. If & is an interpretation and 4 is {T, é,U,G) then

(1) t iz-t', or t is earlier than t' (with respect

tod), if and only if t ¢ t' and t # t'

(2) t iz‘t',‘or t is later than t' (with respect to

&), if and only if t' ik t

D34, If ¢ is an interpretation for L and ¢ is {T,4,U,G),

then ;nﬁﬁ}¢), or the intension of ¢ (according toe@.) is
introduced for an arbitrary formula ¢ of L by the following
recursive definition: .
(1) If ¢,n are terms of L, then Intagc=n) is that
. function H with domain TxT such that for each
e, 'Y e TxT, H({t,t'>) is the set of x ¢ UY
such that EXtt,aéC)(x) is‘Extt’aﬁn)(x)
(2)° If 7 is a k-place predicate letter in L and

Ngree+sNy_q are terms of L, #hen Intafwno...nk_l)
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(3)

(4)

(5)

(6)

(7)

(8)

is that function H with domain TXT such that for
each {t,t") ¢ TxT, H({t,t')) is the set of x ¢ UY
such that <EXtt,a(n0) (X) pess 'EXtt,a,_(_nk—l) (x)> e
G(m) (t)

If ¢ is a formula of L, then Inta}w¢) is that
function H with domair TXT such that for each

i e TxT, H(i) is meInﬁz}¢)(i)

If ¢,V are formulas of L, then Inta}¢-+w) is

that function H with domain TxT such that for

each 1 ¢ TxT, H(i) is the set of x ¢ u® such

.that either x ¢ Intafw)(i) or x ¢ InE&(¢)(i)

If ¢ is a formula of L, then Inta}Avn¢) is that
function H with domain TXT such that for each

i e TxT, H(i) is the set of x ¢ U® such that for
each vy ¢ U, x; ¢ Intaj¢)(i)'

If ¢ is a fprmula of L, then IntafH¢) is that
function H with domain TXT such that for each
{e,t) ¢ TxT, H(LE,t'S) is the set of x e'ﬁw
such that for each t" ak t, x ¢ Intaé¢)(<t",t'>)
If ¢ is a formula of L, then In%sz¢) is that
function H wich domain TXT-such that for each
{e,t') € TXT, H({t,t')) is the set of x € U”
such that for each't" ik t, X ¢ Inﬁaf¢)(< ",t')

If ¢ is a formula of L, then In%Z}K¢) is that

- function H‘with domain TXT such that for each

<t,t5> ¢ TxT, H({t,t")) is Inta}¢)(<t,t>)

36



'd

(9) If ¢ is a formula of L, then IntajR¢) is that

function H with domain TxT such that for each

<trt'> C‘._ TxT, H({t,t')) is Inta‘(d)) (&e',t'>)

2. Satisfaction and Truth
We list the following definition primarily in order
to clarify the relation between intensions and the more

familiar notion of satisfaction.

D35. If ¢ is an interpretation for L, ¢ is a formula of L

and <t,t'> is a point of reference of &, then x =zatisfies

¢ at {t,t'>(according to¢) if and only if x € Inezf¢)
((tlt'>) .

D36. If 4 is an interpretation for L, & is {T,4,U,G), ¢ is

a formula of I, and i € TxT, then ¢ is true at i (according

to4) if and only if Inta‘(cb) (i) is u®.
We list some immediate consequences of D34.

T10. If Gzis an interpretation, t and t' are moments of &,
x ¢ U, $ and ¢ are formulas, and n ¢ w, then

(a) x € Int ((¢ P)) (&k,t'>) if and only if either.

X

o

Inta£¢)(<t ') or x € Int (¢)(<t £'>)

In%af(¢/\¢))((t D) Af and .only if both

Intd}¢)(<t RANY) and x ¢ Int (w)(<t £'S)

Int ((¢e»¢))(4t t'>) if and only if either

"

(b) x

”
m

ey

() x
| x ¢ Int (¢)(4t t'>) and x ¢ Int (w)(<t t'>) or
x ¢ Int, (9) (LE,t"D) and x Inta(w) (L, t'>)
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(d) x e InﬁZ}an¢)((t,t'>) if and only if there is an

ae qz’such that xg c Inez}¢)(<t,t'>)
(e) x e InEZ}P¢)(<t,t'>) if and only if there is a

t" <&, t such that x € Inta"(cb) (£E", %)

(£) x ¢ InﬁlfF¢)((t,t'>) if and only if there is a
t %k t such that x ¢ In%z}¢)((t yE')

(g) x e InEL}L¢)(<t,t'>) if and only if for each
moment t" of &, X ¢ Inezf¢)((t“,t'>)

(h) x e In%z}M¢)(<t,t'>) if and only if, for some

moment t" of &, X e Ingﬂf¢)(4t":t'>)

Proof: Each part is an immediate consequence of the
appropriate clauses of D34. Parts (g) and (h) also use the

fact that éi—is a connected relation.

The following remarks ((a)-(g)) are simple conse-
quences of D34 and D36; we list them here in order to
facilitate the discussion of the intuitive motivation for
the semantics presented above. Suppose that @ is an inter-
pretation for L, & is (T,é,U,G), t and t' are moments of &,
u is a variable, ¢ is a sentence of L, ¢ and'd are indivi-.
dual constants in L and S is a one-place predicate in L.
Then (omitting mention of the relativization to&): '

(a) c=d is true at {t,t'y if and only if G(c) (t) (0) is

G(d) (t) (0). |

(b) Sc is true at {t,t') if and only if {G(c) (t) (0)> &

G(S) (£) . '
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(¢) Ausu is true at {t,t') if and only if for every x ¢ U,
{x» ¢ G(S) (t).

(d3) H¢ is true at {t,t'> if and only if ¢ is true at
{(e,t", for e§ery moment t" eariier than t.

(e) G¢ is true at <{t,t') if and only if ¢ is true at
{t",t'), for every moment t" later than t.

(f) K¢ is true at <t,t') if and only if ¢ is true at
{t,t).

(g) R¢ is true at <t,t') if and only if ® is true at

e,

3. What the 'then' Operator Does

If we omit clauses (8) and (9) from D34, and K and R
from the language, we have the system of Cocchiarella (11.
if we omit only cléuse (8) from D34 and the index operator
from the language,.then we have the result of adding the
'now' operator (here written 'R') with the semantics giVen‘
in Kamp [4], to the system of Cocchiarella [1].

In the full system with K and R, the interpretation
of R remains the same, but it is important to no*ice that
it is no longer possible to read it as.'now', except in
certain contexts.

In the.introduction, it was stated that 5
( PKFAxX(R D(x) » C(Jx)) ) is a correct symbolization of 3
('Jones was once géing.to cite everfone then driving too

fast.'). As a further intuitive justification and clarifi-

cation of our semantics, let us now, step by step, show how



to find the truth value of 5 at a point of reference {e,t)
according to an interpretation Q.

The idea is simple; in order to evaluate a formula,
we must keep track of two moments—--the moment (let us call
it the ‘'primary moment') at which formulas that do not
begin with R are evaluated, and the one (let us call it th>
'secondary moment') at which formulas preceded by R are
evaluated. We thus must take as points of reference
ordered pairs of moments, the first memberé of which are
taken as the primary ncreants, and the second members of
which are taken as the secondary moments. The function of
the operator X is to fix the secondary moment so that R
'will refer back to the context of K. The function of R is
to make the secondary moment:become the primary moment.

T6 continue with the evaluation, 5 is true at {t,t)
according to &
if and only if

There is a moment t' <0Lt such that KFAx(R D(x) »

"C(Ix)) is true at <t',t) (according to &)
if and only if

There is a moment t' ﬁz.t such that FAx(R L (x) ~»

C(Jx)) is true at <{t',t")
if and only if

There are moments t' i&.t and . t" %L t' such that

Ax(R D(x) = C(Jx)) is true at &t",t'D>

if and only if



e

There are moments t' ﬁi.t and t" > t! such that for

all y e u¥, if y satisfies R D(x) at <t",t'D>, then y

satisfies C(Jx) at {t",t")
if and only if

There are moments t' i& t and t" iL t' such that for

all y e u®, if y satisfies D(x) at {t',t'D>, then y

satisfies C(Jx) at {t",t'}
if and only if

There are moments t' ﬂh t and t" i& t such that for

all y e U, if (% € G(D)(t'), then (G(J}(ﬁ“),y} 3

G(C) (t")
if and only if (intuitively speaking)

There are moments t' pefore t and t" after t' such

that everyone driving too fast at t' is cited by

Jones at t".

The latter would seem to state the conditions undér
which 5 is true, and hence our semantics seems to be intui-
tively correct, at least as far as sentences like 5 are
concerned. We see, in fact, that for any formula ¢ of the

language with K and R, PK¢ is the past tense of ¢ and FK¢

is the future tense of ¢.
B. Some Theorems about the Formal System

1. vVvalidity
In-the following two definitions the no;ions of

satisfiability and validity, as opposed to weak satisfi-
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ability and strong validity, are primary. This is because
sentences are evaluated with réspect to their own moments of
utterance, and reflects the fact that R refers back to the
moment of utterance'of the sentence when not within the
scope of K.

The notions of wéak satisfiability and strong
validity are introduced for purely technical reasons,
namely to deal with (proper) subformulas of sentences which
are being evaluated with respect to their moments of utter-
ance. Operators which occur in the original utterance
might not occur in the subforﬁula under consideration, but
will affect the point of reference at which the subformula

is evaluated.

D37. If T is a set of formulas, then

(1) T is satisfiable if and only there is an inter-

pretation & for the language of I', a moment t of
G., and an x ¢ U® such that for each formula

¢ €T, x ¢ Inng¢)(<t,t>)

(2) T is weakly satisfiable if and only if there is
| an interpretation & for the language of I, mo~-
ments t and t' of 4, and an x ¢ ngsuch that for
each f?rmula be T, xe Inikf¢)(4t,t'>)

D38. If ¢ is a formula, then

(1) - ¢ is logically valid if and only if for each

interpretation & and moment t of &, ¢ is true at
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<t,t) (according to &)

(2) ¢ is strongly logically wvalid i1 and only if for

all interpretations & and moments t,t' of &, ¢

is true at <t,t'> (according to @)

Tll. If ¢ is a formula, then
(a) ¢ is logically valid if and only if {-¢} is not
satisfiable.
(b) ¢ is strongly logically valid if and only if

{-¢} is not weakly satisfiable.

Proof: A trivial consequence of D37 and D38

T12., If T is finite, {T,%,U,G) is an interpretation,

x ¢ u” and t,t' € T, then .

(a) x e InSZéCJ(P))(<t,t'>) if and only if for each
¢ €T, x & Int, (¢) (Kt, ')

b)) x ¢ InEZ}DJ(P))(<t,t'>) if and only if for some

¢ T, xe¢ Int&(¢) Kt, t'>)

Proof: A simple induction (on the size of T) using

D28, D34 and T10,

T13. (a) If ¢ is logically valid, then K¢ is strongly
logically valid.
(b) If ¢ is strongly logically valid and ¥ is a
generalization of ¢, then ¥ is strongly logically
+ valid. |

(c) If ¢ is logically valid and ¥ is a universal
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generalization of ¢, then Y is logically Valid.
(d) If ¢ is logically valid and ¢- ¢y is logically
valid, then y is logically valid.

Proof:

(a) Suppose ¢ is logically valid and K¢ is not strongly
logically valid. Then {-K¢y} is weakly satisfiable,
and there are an interpretation &%, moments t,t' of &
and x € Uﬁlsuch that x e InngaK¢)(<t,t'>); then
x ¢ InEZ}K¢)(<t,t')) and, by clause (8) of D34, x ¢
Inakf¢)(<t,t>). But this contradicts the hypothesis.

(b) Suppose that ¢ is strongly logically valid. We will
show by induction that, for any generalizer 1, T¢ is
strongly logically valid.

ﬁy hypotﬁesis 0"¢ is strongly logically valid.

Suppose that, for any n—iéﬁél generalizer 1',
1'"¢ is strongly logically valid. Suppose also that
T is an n+l-level generalizer. Then (D23) there is an
n-level generalizer t' such that 7 is Ht', GT'; Kt' or
Aat', for some vaiiable o. By the inductive hypothe-
sis, 7'"¢ is strongly logically valid.

Suppose that t¢ is not stréngly logically valid.
Then {-1¢} is weakly satisfiable, and there are an
iﬂterpretation %, moments t and t' of 4 and x ¢ q:
such that x ¢ InE&(wT¢)(<t,tf>) and hence x ¢
In%i(r¢{(<t,t'}). We now take four cases, according

to D23,
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(c)

(i} t¢ is HT'¢; by D34 clause (6), there is a
t" '<a;,t such that x f Int&(r'cb) (Kt ,t'>).
'But-ghen X € Inﬁk(wT'¢)((t",t'>), -1'¢ is
weakly satisfiable, and t'¢ is not strongly
logically valid, contradicting the hypo-
thesis.

(ii) 1¢ is Gt'¢; this case is analogous to Ki)
using D34, clause (7).

T¢ is K1'¢; by D34 clauses'(B) and (3)

e
T~

(ii
X € In%ifﬂT'¢)(<t,t>), again contradicting
the hypothesis.

(iv) 7T¢ is Avn¢, for some n ¢ w; then by D34
clauses (5) gnd (3), there is.an a € qz
such that xg‘e InEL(qT'¢)(Zt't>)' contra-
dicting the hypothesis.
Suppose ¢ is logically valid and there is a universal

generalizer T such that t¢ is not logically valid.

Let n be the smallest n ¢ w such that there is an

n-level universal generalizer T such that t¢ is not

logically valid. Then there is a k ¢ w and a formula
¥ such that t¢ is Avkw and § is logically wvalid.
There are an interpretation &, a moment t of & and

x ¢ U” such that x [ IntafAvkw}(<t,t)). By clauses

G.

(5) and (3) of D34, there is an a ¢ Q& such that

xz { Ingﬁfw)(<t,t>). But this is impossible, since

Y is logically valid.



(d) Suppose ¢ is logically valid and ¢ >y is logically
valid, but ¥ is not logically valid. Then there are
an interpretation &, a moment t of £ and an X e %2
such that x ¢ Ingz(w)(<t,t>). By the hypothesis,
X € Inﬁz}¢)(<t,t7) and x ¢ Intd5(¢-aw))(<t,t)). By
clause (4) of D34, x ¢ Inzi}w)((t,t)), which is a

contradiction.

2. Basic Theorems about Intension and Extension
The next five theorems correspond to familiar

theorems about the predicate calculus.

T14., If @ is an interpretation, & is (T,%,U,GD>, x,x' ¢ Um,

. . '
n € TmL and for each n such»that vn occurs in n, Xn is x n’

A
then Extt (n) (%) is Ext (n)(A ).

Proof: Assume that 4 is an interpretation, & is
T,4,U0,6>, x,x" ¢ u? and t e T. Let T be the set of

TmL such that, if for each n such that vn occurs in ny, X

is x , then Ext (n) (x) is Ext, (n)(x'). It is suffl-
n t,(k

t/a

cient to show that TmL < T. We proceed by induction,
» ,

using T2,
(1). Suppose that m ¢ ® and for each n such that v, occurs
in v ¥ is x'n. Then EXtt,afvm)(X) is X is x'm is
ty, ((vm) (x').

(2) Suppose that § is a k-place cperation letter, § ¢ EZ

and/co,;,.,ck_l,e I' Suppose also that for each n

. . . . ,
'such that v, occurs in Gco...ck_l, X is x' . Since
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;0"';’Ck-1 ¢ ', for each i < k, Ext, a}gi)(x) is
(c.)(x'). Then Ext (6;0...;k_1)(x) is

G(G) (t) (KExt (Co) (%) re0e ,Ext (Ck_l) (x)>) is

G(8) (t) ((Ext (r,o) (X')reee ,r.xt (Ck 1) (x')>) is

EXtt, (6;0...ck_l) (x').

T15. If ¢4 is an interpretation, 4 is { T,%,U,G), x,x' e UY,
t,t'e T, ¢ € FmL and for each n such that v, € fv(¢),

X is x'n, then £1E In%zf¢)(£t,t'>) if and only if x' ¢
Int, (9) (K, t'>).

Proof: Suppose that & is an. interpretation and & is
{r,4,U0,G>, Let T be the set of b € FmL such that for all
t,t' ¢ T and x,x' ¢ g? , 1f for each n such that v, € fv(¢),
X is x' 0! then x ¢ Inﬁzf¢)((t,t ?) if and only if x' €
Int (¢)(<t,t'>). We proceed by induction, using T3 to show
that FmL

(1) Suppose ¢ e AFmL ’ t t'e T, X,%x' ¢ u® and for each n
snch that v, € fv(¢), X is x'n.
(a) Suppose there is a k-place predicate letter 7 and .
texms Co,...,%) 4 such that ¢ is L seeerly 4.
Then X ¢ Inﬁa}¢)(<t,t'>) if and only if
) (x)> € G(m) (t) if

t,&( z;]{"':l.
1] "
and only if (T14) <EXtt,afC0)(x Yieoes

CExty (50)(x), ... Ext

Ext ) (x')> € G(m) (t) if and only if x' ¢

t,alPk-1 .
, Int (¢) (Lt,t'D))
n@"’ >

(b) The case where ¢ is z=n for some Z,n ¢ TmL
”
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(2)

similar to case (a).
Suppose ¢,V ¢ T and suppose, for each of the following
seven casés, that t,t', x X satisfy the appropriate
conditions.
(a) x ¢ Int (=¢) ({t,t'>) if and only if x ¢
Int (¢)(<t t'>) if and only if (since ¢ € T) x'
f Int_(¢)(<t,t'>) if and only if x'e
Int (w¢)(<t t")
(b) x e Int (¢-»¢0((ﬁ t'») if and only if either
x ¢ Int&(',“) Kt,t'>) or x ¢ Int&(w) (Kt,t'y) if
and only if either x' ¢ Inﬁzf¢)(<t,t'>) or x' ¢
Int (w)((t,t'>) if and only if x'e
Int (¢«»¢) (L, e'>)
(c) Suppose that x € Int (AV ¢)(<t t'>) (the other
implication is 51m11ar).' Then, for each a ¢ U,

m

X, € Ingﬁf¢)(<t,t'>). Since fv(¢) < fv(Avm¢)u

{Vm}, for each n such that v, ¢ fv(4) and each
m
a)n°
each a ¢ U, x'? € Inta}¢)(<t,t'>), and x' ¢

aebyu, (x ) is (x' Hence (since ¢ ¢ T) for
InsifAvm¢)(<t,t'>)

(d) =x € IntafH¢)((t,t')) if and only if for each

t" ?k.t' X € Intaf¢)(<t",t'>) if and only if

(since ¢ € T) for each t",jk t, x'e¢

Inta5¢)(<t",t'>) if and only if x' ¢

Int’a‘(Hfb) (Kt,t')).

(e) The case for G¢ is similar to the case for H¢.
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(£) x ¢ InﬁafK¢)(<t,t'>) if and only if x ¢
Intaf¢)((t,t>) if and only if (since ¢ € T) x'
€ Intd}¢)(<t,t)) if and only if x' ¢
Int&(Ktb) (<t ’ t>)

(g) The case for R¢ is similar to the case for K¢.

By T3, this completes the proof.

T16. If ¢, is an interpretation, ¢4 is {T,%,U,G), t and n are
terms of the language of &, t ¢ T, and x € ¥ and P € W,

then Extt'afra(VprﬂrC))(X) is Ext, (g)(xExt (n)(x))

Proof: Suppose &% is an interpretatlon, a is
<T,é,U,G),.n is a term of the language of &, t e T, x¢ u?
and p ¢ w. Let a be Ext (n)(x), and let T be the set of
(ra(v_,n,z)) (x)

tia p
is Extt a};)(xi). It is sufficient to. show, using T2, that
’

terms ; of the language of a,such that Ext

the set of terms of the language of @ is included in T.
(1) Suppose ¢ is a variable. We take two cases:

e, (ra(vp,nyc))(x)~is

Ext t, (n)(x) is a is Ext (v )(xp)

(b) 1tz is not Vp, then Extt'afra(vp,n,;))(x) is

(a) ¢t is vp; then (D20) Ext

’° o | p
(T5b) EXtt,af’)(x) is (T14) Extt’a}c)(xa)
(2) Suppose § is a k-place operation letter of L and

Z;O’-.Q’Ck 1 € T then Ext—

’

&(ra(v ln76;0° e Ck"’l) (X)

is (D20) Ext (Gra(vp,n,co...;a(vp,n,ck_l))(x) is

t,@v
G(8) (t) (<Extt’&(ra(vprn, Co)) (x)ye.0sxa (me, Ck"'l) (X)})

gé (by the hypothesis) G(G)(t)((Extt,afto)(xg),...,
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(Ck 1)(xz))) is EXtt,aéaco"'ck-l)(xg)'

T17. If & is an interpretation, @ is {T,¢,U,G), a ¢ U,
x € t”, t,t' ¢ T and v does not occur in ¢, then xz €

In52f¢)(<t,t'>) if and only if xg 3 In%ﬂ}ra(vn,vm,¢))(<t,t'>L

Proof: Assume that ¢ is an interpretation, and @ is
{r,%,U,GY. By Tl4 and T1l6, we have this lemma: If g is a
term of L _, Vi does not occur in ¢, a ¢ U, X ¢ Y and t e T,

3
then Ext (;)(xg) is Ext (ra(vn,vm,;))(xz).

t’ th,
Let T be the set of formulas ¢ of EL,SUCh that, if Vi
does not occur in ¢, then for all a.e¢ U, x ¢ Y and t,t'e
n ' L] L3 m
T, X, € Inﬁzf¢)(<t,t ) if and only }f X, €
Int (ra(v Vo 0)) (¢, t')) . It will be sufficient to show,
u51ng T3, that FmL T. Fof each of the following cases
we will assume that x ¢ U” and t,t'e T. .
(la) If 7 is a k~place predicate letter, ot 1.y are
terms of L, and Vi does not occur 1in ﬂcouuck_lf
then xg ¢ Int (nco...ck l)((t,t')) if and only if

CExt, (¢ o) (X2) e Exty ) (x2)> € G(m) (t) if

el Pk-1
and only if (by the lemma) <Ext (ra(v )V ,go))(x )
ross EXEL (ra(v v, ! o) (%5 ™y e G(n)(t) if and only
if x ¢ Ingz}nra(v A9 )...ra(v Vot Ty l”((t t'))
if and only if (D20) xa €
Intafra(vn,vm,wco,...,tk_l))(<t,t'>).

(lb) The case for ¢=n, where f and n are terms of Ib0is

similar.
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(2)

Suppose that ¢,V ¢ T,

(a)

(b)
(c)

Suppose that Vi does not occur in =¢. Then

xg (3 Inﬁz}ﬂ¢)(étdﬂ>) if and only if xg ¢

Inﬁa!¢)(<t,t'>) if and only if (since ¢ € T)

X2 # Int, (ra(v,,v;,6)) ({t,t'>) if and only if

xg € Intafﬁra(vn,vm,¢))((t,t'>) if and only if

m ,
(D20) X, ¢ Ingz}ra(vn,vm,w¢))((t,t')).

The case for ¢+ is similar.

Suppose that Vi does not occur in Aa¢. We take
two cases:

(i) o« is v ; then x_ € Int,(Aug) (¢t,t'>) if and
nn '

o b © Inﬁzf¢)(<t,t >)
if and only if for all b ¢ U, x_
Inga}¢)(<t,t'>) if and only if (since ¢ € T)

only if for all b € U, x

€

for all b ¢ U, xﬁ

if and only if x €

€ Ihtajra(vn.vm,¢))((t,t'>)

Inta}Avmfa(v Vo e0)) (CE,tD) Aif and only if

n’’m
(D20) x ¢ In%k(ra(vn,vm,ﬂa¢))(Lt,t')f'

(ii) o is not Vi then'(letting p be the pe w
a1 n . '
such that o is vp) x, € InngAa¢)(<t,t >)

if and caly if for all b € U, xz g P

Inﬁzf¢)(<t,t'>) if and only if for all b e

P n . . . .
u, Xy 4 € In52}¢)‘<t,t >) if and only if

(since ¢ ¢ T) for all b e U, xg 2 3

Inﬁl};a(vn,vm,¢))((t,t'>) if and only if for

. m p '
allb ¢ U, x_ | € Inngra(vn,vm,¢))(<t,t >)
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if and only if kg ¢
Inﬁz}hara(vnpvm,¢))((t,t'>) if and only if

xg ¢ Int (ra(vn,vm,ﬂa¢))(<t,t'>)
(d) Suppose that Vi does not occur in H¢. Then
xg € In%ZfH¢)(<t,t'>) if and only if for all
" n )
t 3z,t' xa
(since ¢ € T) for all t" ik t, xg €

¢ In52}¢)’<t,t'>) if and only if

. . . m
Inﬁz}ra(vn,vm,¢))(<t,t ) if and only if X, €

IntaJH ra(vn,vm,¢))(<t,t'>) if and only if (D20)

Xy € Int, (ra(v,,vp,He)) (Ctpt'>).

(e) The cases for G¢, K¢ and R¢ are all similar to

the H¢ case.

!

This completes the proof.

T18. If @ is an interpretation for L, 4_is {r,4,U,GD,

t,t' € T, x € Uw, n,me w, and ¢ ¢ FmL

, then xg €
m
Inﬁzf¢)(<t’t'>) if and only if x ¢ Ihﬁa}ps(vm,vn,¢))((t,tr>).

Proof: Suppose & is an interpretation for L, @ is

{T7,4,U,GY and n,m ¢ w. ZLet I' be the set of ¢ ¢ Fmy such
e Int,(9) (Lt,t'>) if

X
m

and only if x € Intajps(vm,vn,¢))((t,t')). It is sufficient

that for each t,t' ¢ T and x ¢ Uw, X

to show, using induction on the rank of ¢, that FmL < T.
In each of the following cases, we suppose that t,t'e¢ T

and x € Uw.

(la) Suppose that 7 is a k-place predicate letter and

. , n
CO""'Ck-l € TmL, then xxm €
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(1b)
(2a)

(2b)
(2¢c)

Int, (TLg.e g _y) (&6,£'>) if and only if

n n .
<EXtt,df;0)(xxm)""’EXtt,aka-l)(xxm)> € G(m () if
and only if (T16) <EXtt,a§ra(vn'vm’C0))(X)"'°'
) (x)) ¢ G(w) (t) if and only if

Extt' (ra(vn

a. ler Ck-l
. .
x € In%z}nra(vn,vm,co)...ra(vn,vm,ck_l))((t,t >) if
and only if (D20) x ¢
1 s R 2

ngm}ra(vn,vm,wco...ck_l))((t,t >) if and only if

N . '

(D21) x ¢ Inngps(vm,vn,wco..ck_l)?((t,t >).
The case for g=n, where g,n ¢ TmL, is similar.

n N\, ) . n
X, € In%k(w¢)((t,t',) if and only if X, 4

Xm m

Intaf¢)(<t,t'>) if and only if (by the inductive
hypothesis) x ¢ Inngps(vm,vn,¢))(<t,tf>) if and only
if x ¢ Int (wps(vm,vn,¢))(<t,t'>) if and only if
(D21) x ¢ InthPS(vm,vn,ﬂ¢))(<i,t'>)‘
The case for ¢-» ¢ is similar.
Suppose that B is a variable. Let p be that pe w
such that 8 is vp. We take two. subcases:
(1) v ¢ £v(AB$); we take three subcases:
First, suppose that v ¢ fv(4). Then
x? e Int (AB¢) ({t,t')) if and only if (T15)
X G
X € Inga}AB¢)(<t,t'>) if and only if (D21)
X € Ing&}ps(vm,vn,ﬂﬁ¢))((t,t'}).
Second, suppose that v is B. Then n is p

and xg € Ingz}AB¢)(<t,tJ>) if and only if for

™
- all a € U, xz g € Inﬁmf¢)(<t,t'>) if and only
™
1f for all a e U, xg ¢ 1nta}¢)(<t,t'>) if and
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"only if x ¢ Ingz(AB¢)(<t,t'>) if and only if
(D21) x € Inta}ps(vm,vn,AB¢))((t,t')).

(ii) - v, € fv (AB$) and B does not occur in Vi then B
is not Vi and p is not m. Also, since B ¢
fv(AB9Y) , v is not B, n is not p and xg €

m
Inﬁz}AB¢)(<t,t'>) if and only if for all a e U,
np : . .
X, 4 ¢© Ing¢}¢)(<t,t'>) if and only if for all

: P n . . .
ae U, xa xm.e Inng¢)(<t,t M) if and only if

for all a ¢ U, xP I

a (x ¢ Inta°(¢)((t,t'>) if

P)

a'm
and only if (by the inductive hypothesis! for
all a ¢ U, xg € Ingmfps(vm,vn,¢))(<t,t'>) if and
only if (D21) x ¢ Intafps(vmavn:¢))((tpt'>)-

(iii) v, € fv(AB9) and B occurs in Vo then p is m
and n is not p. Let Yy be the first variable
such that Yy occurs neither in v, nor in ¢ and

let j be that j ¢ w such that vy is vj. Then j

. . n »
is not m, j is not n, and x, €
m

In%m(AB¢)(<t,t'>) if and only if for all a ¢ U,
P e Int,(¢) ({t,t'>) if and only if (T17) for

X a
m . .
all a € U, x§ g P Ingz}ra(e,y,¢)y(<t,t'>) if
m '
and only if for all a ¢ U, xg 3 é
m

Inngra(B,Y,¢))(4t,t'>) if and only if for all

aeu, xg ?Xg)mé Inngra<s,y,¢>)@it,t->) if

and only if (by the inductive hypothesis and
T8) for all a ¢ U, xg é

Inﬁz}ps(vm,vn,ra(e,y,¢)))((t,t'>) if and only if
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e

X € Inﬁzfﬁyps(vm,vn,ra(B,Y,¢)))((t,t'>) if and
only if (D21) x € Int (ps(vm,vn,AB¢))(<t,t'>).
(24) xz € Inﬁx}H¢)((t,t'>) if and only if for each

m n”
" < t, x° e In%zf¢)(<t“,t'>) if and only if (by

a Xn
the inductive hypothesis) for each t" i& t, X ¢
Intafps(vm,vn,¢))((t",t')) if and only if x ¢
Inﬁz}H ps€vm,vn,¢§)(<t,t'>) if and only if (D21) x ¢
Inta(pS(vm,Vn:th)) (t,t'>).
(2e) The cases for G¢, K¢ and R¢ are similar to the case
for H¢.

This completes the proof.

Tl19., If & is an interpretation, t is a moment of 4, X €

Uw, n,n',z and ¢' are terms, ' is obtained from z by

replacing 0 or more occurrences of n by n' and Extt a}n)(x)
’ ’

is Ext (n ) (x), then Ext () (x) is Extt (z') (x).
14

t, trac
Proof: Suppose that 4 is an interpretation, t is a

moment of €, x ¢ Uw, n and n' are terms, and Extt’“fn)(x)
is Ext, (n )(x). Let T be the set of terms ¢ of L such
that for.any term z', if ¢' is obtained from -z by replacing
0 or more occurrences of n by n', then Ext, (C)(x) is
Ex t,aﬁc ) (x). We will show by induction (accordlng to the
clauses of D15) that every term of HL is a member of T.

(1) ¢ is t'; then Ext, (;)(x) is Ext (C ) (x)

(25 t is n and ¢' is n'- ‘then, by hypothesms, Ext (c)(y)

is Ext, (z') (x)
1,
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(3)

There are k,a,go’-oolgk_lfg'opo..l 'é'k-l SuCh that
k ¢ w, § is a k-place operation letter, g is

: ' S t ' = 1
650""’£k-1' 4 is 68§ 0...£ ke1' and for each 1 < k,
E'i is obtained from Ei by replacing 0 or more occur-
rences of n by n'. By the inductive hypothesis, for

. ' \
each i < k, EXtt,afE i)(x) is Ext Ei)(x). Then

tr(l.(
EXtt,afC)(X) is G(G)(t)(<EXtt,aéEO)(x)""'

Bxt, (5,_1) (X)) is G(8) (1) (LBxt, (E'0) (x),..y
Bxt, (E'y_ 1) (0D) is Bxty  (2') (x).

This completes the procE.

T20.

If ¢ is an atomic formula, & is an interpretation and

t and t' are moments of ¢, then In%i(¢)((t,t'}) is

Int t,td) . ‘
rxaf¢)(< ) |

Proof: This is an immediate consequence of clauses

(1) and (2) of D34.
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CHAPTER III
AN AXIOMATIZATION
A. Arrangements

In this chapter we will construct an axiomatization
for the system of Chapter II. In Chapter IV it will be
proved that this axiomatization is complete, in the sense
that any formula is logically valid if and only if it is
derivable from the axioms. Unfortunately, the set of axioms
cannot be represented as the set of instances of a finite
set of axiom schemata. We de not know whether there is a
complete set of axioms for the present system that can be
so represented. The set of axioms will be presented as a
number of axiom schemeta} together with an additional
decidable set of axioms which is arrived at by a compiicated
construction that begins here. |

We begin with a description of the method used to
construct the set of axioms, and an attempt to explain why
this method seems to be necessary. The completeness proofs
in Henkin [3], Kripke [6], and Cocchiarella [1] all follow
what can be seen as special cases of a general method. The
main part of the completeness proof in each case is to show

that each consmstent set of formulas has an 1nterpretat10n.
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In‘each of the proofs mentioned above, the interpretation is
constructed step by step by gradually adding to some struc-
ture made up of sets of formulas. In Henkin [3] the struc-
ture is simply a single set of formulas; in Kripke {6] it is
a tree with sets of formulas assigned to the nodes; in
Cocchiarzlla [1] it is a set of 'moments' with a linear
ordering and with one moment selected as the present one.

‘The structure in each of the above cases is gradually
expanded; that is, an infinite sequence of finite structures
is assembled such that each one of these structirss L5 more
nearly complete than its predecessor. Then an infinite
structure is defined in terms of this infinite sequence of
finite structures in such a way that the infinite structure
includes each of the finite structures and is complete. An
interpretation is then constructed from the infinite struc-
ture in a natural way, and it is shown that the original
consistent set of formulas is satisfiable in that interpre-
tation. The present completeness proof shares all of these
features with the three mentioned above.

We turn now to a comparison-between our completeness
proof and Cocchiarella's, since his system is closest to
ours. In Cocchiapella's proof, the final infinite structure
must be complete in three ways. |

(1) For each formula ¢ of the language of the final in-
terpretation, and each of the sets of ﬁormulas T

that correspond to the moments, either ¢ or =¢ must
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belong to T.

(ii) For each formula =-Aa¢ ‘hat belongs to one of the
sets ofAformulas T, thére muét be a variable B such
that -ps(B,a,¢) € T.

(iii) For each sentence -H¢ that belongs to one of the
sets T', =¢ must belong to one of the sets that are
assigned to the moments that precede the moment to
which T is assigned (and similarly for formulas of
the form =Gé¢).

In the infinite snauence of structures, then, each
structure is constructed from its predecessor by adding
formulas to sets of formulas in order to partially satisfy
one of the three requirements above. In order to satisfy
requirement (iii), it ic also sometimes necessary to add
moments. Our completeness proof will also follow Cocchia-
rella's in this respect.

‘We come now to the main point in which Cocchiarella's
proof differs from our own. In Cocchiarella's system it is
possible to characterize any one of his finite st:ructures
by a formula. For instance, suppose we consider the struc-
ture whose moments are tl,tz,t3,t4 in that order, with t._,3
as the present moment, and such that {¢l}}{¢2}){¢3},{¢4}
are assigned to tl,tz,t3,t4, respectively. The formula
that characterizes that structure is ¢34 P(¢2A P¢1)A F¢4
(call it xo):'i.e., the formula that specifies that those

formulas hold in the order specified by the structure. A
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key fact about this correspondence is'thét any structure in

which Xo 'holds' includes the structure 3defined above. That
is, it has ¢3 in the set of formulas for the present moment,
¢2 in a preceding set, ¢l in a still earlier set, and ¢4 in

a set that comes after the present moment.

This correspondence between formulas and structures
is of central importance in Cocchiarella's proof, as well as
in those.of Henkin and Kripke. In order to ensure that the
initial consistent set of formulas is satigfiable in the
final interpretation, it iz necessary that the characteris-
tic formula of each term of the infinite sequence of finite
structures is consistent with the initial consistent set of
formulas. \

In order to construct the sequence of structures iz,
then, it'is only necessary to show that for any structure B
whose characteristic formula is consistent with T, there is
another structure B' which is more complete than B (in a
certain way) and whose characteristic formula is also con-
sistent with '+ Cocchiarella is able to find a n.ce set of
axioms that ensure that this latter proof can be carried
through. As a particular case consider the structure speci-
fied above and suppose we want to partially satisfy require-
ment (i) by adding either y or -y to. the set of formulas
assigned to tl. The characteristic ‘formula of the result
would be either P (P¢2n P(¢1A P)) A F¢4 (call it xl) or

¢3A P(p, AP (dy 4 7Y))a Fo, (call it x,). To ensure that
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one of the formulas y or =y can be added, it is only neces-
sary that x,=y; v x, can be derived from the axioms (since
if the latter is derivable, and Xo is consistent with T,
then either x; is consistent with I or x, is consistent with
I'). This is relatively simple once it is shown that all
instances of P(¢ v ) » P v Py are derivable. Similar remarks
can be made for requirements (ii) and (iii), although the
situation is more complex, expecially for (iii).

Now consider the system with K and R. Here, since
th: points of reference are ordered pairs of moments, our
structures must be essentially square matrices of sets of -
formulas, rather than just linear orderings of sets cf
formulas. And the fundamental difficulty with the system
with K and R that differentiates it from Cocchiarella's
system is that there seem to be no formulas that character-
ize our structures.(which we call 'arrangements', since each
of them is just a way of.arranging a set of formulas amohg
a square matirx of points of reference). |

In order to facilitate this discussion, we now infro- g
duce the definitions of an arrangement and of some related
notions. We also state now two basic theorems about

arrangements.,

D39. A is an arrangement if and only if there are j,R,F

such that
(l), A is <lel'F>l

(2) 3§ ¢ wulw} and j is not O,
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(3)
(4)

R is a reflexive linear ordering on i,

F is a function with domain jxj,

and (5) For each i € Dom(F), F(i) is a set of formulas.
D40. (a) i<, j if and only if i, 3 e Ay
(b) i <a j if and only if i éA j and i is not j.
D4l. A is a finite arrangement if and only if
(1Y A is an arrangement,
(2) AO e W,
and (3) For each i ¢ onhg, A2(i) is finite.
D42. A is part of B if and only if
(1) A and B are arrangements,
(2) Ao & BO" L
and (4) For e;ch ie AOXAOf Az(l) = B2(1).
D43. If A is an arrangement, then (a) the set of formulas

of A is the union of the range of Az, and (b) the language

of

las of A.

T21l.

(the arrangement) A is the language of the set of formu-

The set of finite arrangements is denumerable.

Proof: Since the union of a denumerable set of

denumerable sets is denumerable, it is sufficient to show

that, for/each{n ¢ w, the set of arrangements A such that

A

0

is n is denumerable.

Hence, suppose that n ¢ w, and let
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| & be the set of arrangements A such tnat A, is n. Let J be

0

the set of functions from nxn into S(Fm). Since nxn is
finite and Fm is denumerable, ¥ is denumerable, and so is
{n}vs(nxn)vF, and so is ({n}uS(nxn)oF)~, But it is easy to

see that a ¢ ({n}uS(nxn)u3)3.

T22., If TI' is finite and k ¢ w, then the set of arrangements
A such that Ao € k and the set of formulas of A is included
in T is finite.

Proof: Suppose T is finite. Since the union of a
finite number of finite sets is finite, it is sufficient to
show that, for each n £ k, the set of arrangements A such
that Ao is n and the union of the range of A2 € T is finite.
Suppose n € k and let A be the set of arrangements A such
that A, is n and the set of formulas of A is included in T.
It is sufficient to show that A is finite. Let ¥ be the set
of functions from nxn into s(T). {n} is finite, and so is
S(nxn), and so is S(T'), and so is %, and sq is ({n}uS(nxn}u
5)3. Hence it is sufficient to show that A ¢ ({n'vS{(nxn)u
5)3. Suppose A ¢ A; then A, ¢ {n}, and A

0
A2 € &, Hence A ¢ ({n}uS(nxn)u7)3.

1 ¢ S(nxn); and

Consider now the arrangement (j,R,F) (call it &),
where j is 2, 0 is ordered before 1, 'and the sets of formu-
las {¢1}}{¢2}){¢3],{¢4} are assigned to <0,0),40,1»,{1,0>,
{1, resnectirely. Graphically, we have
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0,0 -~ {¢;} 0;157~- {¢,}
{1,0> -- {¢5}. L,y == {4,}
We will take 0 as the present moment of every
arrangement, so one formula that holds in A is ¢1A F(¢3/\
K(¢44\P¢2)). But this formula does not characterize A,

because it also holds in the arrangement

{2,2) == 0 {2,0) -- {¢,} 42,15 == {¢,}
(0,2}_ - 0 {0,0) -~ {9,} 0,1y -- 0
a2y -0 1,0} -- {¢;} BRSO

which does not include 2. 1n order for a formula to repre-
sent A, it must (for one thing) hold only in those arxrange-
ments where ¢2 is in one of the sets of formulas on the
same row as <0,0), and there seems to be no férmula for
which this is the case. Adding more detail to the formula
above d&es not help; for instance, the formula ¢1A F(q)3 A
K(¢4A P(¢2A K¢l))) also holds in the 3x3 arrangement shown-
above. In fact, it seems to be the case that every formula
that holds in A also holds in some arrangement that does
not include A. It even seems that every infinite set of
formulas that all hold in A also all hold in somie arrange-
ment that does not include A.

What all this suggests is that it is not possible to
proceed as Cocchiarella does, by asspciating a characteris-
tic formula with each term of the finite sequence § of
arrangements, because there are no such characteristic

formulas. This complicates the process of constructing a



set of axioms. 1In Cocchiarella's system, in order to show
that the characteristic formula of each Zn is consistent
with the original consistent set of formulas one can pro-
ceed inductively, shéwing that the chavcacteristic formula
of Zn entails the disjunction of the characteristic formulas
of the possible choices for zn+l' In our system, no such
procedure is available. Our axioms, so to speak, can't
just say that the characteristic formula of Zn entails the
disjunction of the possible characteristic'formulas of 2n+1.
Since we do not have the absolute notion of the
characteristic formula of an arrangement we must speak of
the n-level characteristic formula of an arrangement (D51) .
The idea is that as n increases, the n-level Eharacteristic
formula of A more nearly chafacterizes A, .What we want ocur
axioms £o say is (roughly) that for any consistent set of
formulas I' and any n e'w, there is an n-place sequence I of
arrangements such that each Zi'is more complete (in a cer-
tain way) than its predecessor, andAsuch that the n-lével
characteristic formula of Z.-1 is consistent with T'. It
will turn out that this is sufficient to prove completeness.

Calling these sequences extension sequences, we

would need only to take, for each n, the disjunction of the
n-level characteristic formulas of all the n-place exten-
sion sequences as an axiom; but there is an infinite number
of such n-place sequences. So we must define instead the

notion of an n-place minimal extension sequence with respect




- +o T and A 50). These latter sequences will do the job of

the wider class of n~place extension sequences, but there
are only a finite number of them (for a given T, A4, and n)
sc that we can state.the disjunctions of their n-level
characteristic formulas (actually, of certain existential
generalizations of their n-level characteristic formulas)
as an axiom.

We begin this procedure with the notion of an exten-

sion of an arrangement.

1. The Extensions or an Arrangement

We think of an extension of an arrangement as being
more nearly complete, in that an extension of. A (so to
speak) specifies which individuals make the existential
formulas of A hold and which moments make the formulas of

A of the form P¢ and F¢ hold.

D44. B is an extension of A with respect to T if and only

if (1) A is part of B

"(2) T is a set of formulas

(3) PFor each i € BOXB0 and each ¢ ¢ T', either
¢ € B2(i) or =¢ € Bz(i)

(4) For each i ¢ BOXBO, variable o and formula ¢, if
Ao € T then either Aa¢ €.B2(i) or there is a
variable B such that =ps(B,o,¢) € Bz(i)

(5), For each m,n € AO and each ¢ € T

(a) Either H¢ ¢ B2(<m,n>) or there is a p such



that p <_ m and ~¢ € Bz((p,n>)

B
(b) Either G¢. ¢ B2((m,n)) or there is a p such

‘that m < p and ¢ € B, ({p/n))

A complete arrangement is one that already specifies

everything about itself.

D45. A is a complete arrangement if and only if A is an

extension of A with respect to the set of formulas of the

language of A.

In building up our set of axioms, we cannot take
account of all the extensions of a given finite arrangement,
since these will not form a finite set. We must instead

consider the set of minimal extensions. The set of varia-

bles A serves to inaicatc which variables may be introduced
into the arrangemenf. By limiting the new variables and
new moments of the extension to finite sets determined by
the arrangement being extended, we ensure that the set of

minimal extensions of that arrangement is finite. In clause

2
0

bles because this would be the number necessary if all the

(3d) of the following definition, we allow B_ “T aew varia-
formulas cf T were of the form Aa¢ and each one had to be
instantiated a£ each of the B02 'points of reference' of B.
Similarly in clause (4) we must allow for 2A02F new moments,
because this would be the number needed to provide a new
moment fof H¢Iand G¢ for every formula ¢ in T and every

'point of réference' of A. What we are really doing here
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is ensuring that the set of axioms is recursive by putting
an upper bound on n in the 'the least n such that...'

operator.

D46. If A is a set of variables, then B is a minimal exten-

sion of A with respect to T' and A if and only if

(1) A is a finite arrangement
(2) B is an extehsion of A with respect to T
(3) For each i,j e B, and each ¢ € Bz(<i,j>) either
(@) ¢ € A,(Ki 3
(b) ¢ €T
(c) For some Y € T, ¢ is.nw or ¢-is Hy or ¢ is
Gy
or (d) There are a formula ¥ and variables o and B
such that Aoy € T, B'is one of thza first
B02P variables in A occurring free neither

in any formula in T nor in any formula of

A, and ¢ is -=ps(B,a,Vy)

723, If B is a minimal extension of A with respect to T

and A, and T is finite, then B is a finite arrangement.

Proof: Suppose that B is a minimal.extension of A
with respect to T and A. Then A is a finite arrangement.
Let j, R, F be AO’ Al’ A2 respectively. Let n be the number
of formulas in I'. Then B, £ 2j2n+5, and B0 € w.

0
Also, by D46 clause (3), if i ¢ Dom(F), then
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CF(L) ¢ Az(i)+n+3n+nB02n, and F(i) is finite.

T24. If A is a finite arrangement and T is finite, then
the set of minimal extensions of A with respect to I' and A
is finite.

Proof: Assume the hypothesis, and let n,j,R,F be

O’Al'Az respectively. Let k be 2j2+n+j+L. Then for

every minimal extension of B of A with respect to T and A,

T,A

B0 < k. .
Now let T'' be the set of formulas ¢ such that either
(a) ¢ is a formula of A
(b) ¢ €T
(c) For some ¢ ¢ T, ¢ is =Y oxr ¢ ié HYy or ¢'is Gy
(d) There are a formula Y énd variables d,B such that
Auﬁ ¢ T, B is one of the first j2n variables in A
‘occuring free neither in T nor in any formula of A,
and ¢ is =ps(8,a,¥).
Then T'' is finite and for every minimal extension
B of A.with respect to I' and A, the set of formulas of B

is included in I''. By T22, then, the set of minimal exten-

sions of A with respect to ' and A is finite.

2. The n—levei Formulas of an Arrangement

Given an arrangement and a point i of the arrange-
ment, we would like to specify the formulas that we think
of as 'hoiding' at that point. This of course depends on

what formulas are assigned to all of the other points of
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 the arrangement. The set of such formulas would in general
be infinite, but we can restrict ourselves to a finite set
by speaking of the formulas of a certain level. The level
of a formula may be thought of as the number of steps in-
volved in constructing that formula from the formulas of the

arrangement.

pD47. If A is an arrangement, i ¢ AOXAO and k ¢ w, then

lev(d,k,A,i), or ¢ is a k-level formula of A at i, if and

only if there are m,n ¢ AO and a finite set of formulas T
such that i is {m,nY, ¢ is the conjunction (in or&er) of
the formulas in ', and for each ¢ ¢ T, either
(@) ¥ e B,(i),
(b) Xk is no@ 0, and there are a formula x and p ¢ Ao
such that p-<, m, lev(x,k-1,A,{p,nd) and ¢ is PY,

A
(c) k is nof 0, and there are a formula ¥ and p ¢ A0
such that m <, p, lev(x,k-1,ALp,nd) and ¢ is Fy,
() k is not 0, and there is a formula ¥ such that
lev(y,k-1,A,{m,m>) and ¢ is Kx;

or (e) k is not 0, and lev(y,k-1,A,{m,nd).

It is convenient to single out one formula as the
strongest k-level formula of A at i. It will turn out that
all the k-level formulas of A at i are derivable from ‘the

k-~level formula of A at i.

D48. If A is a finite arrangement, i ¢ AOXA0 and k ¢ w,

then LEV(k,A,1), or the k-level formula of A at i is that
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formula ¢ such that there are'm,n € A, such that i is {(m,n)>

0
and ¢ is the conjunction (in order) of the formulas Y such
thét either

(a) vy e Az(i)

(b) k is not 0, and there is a p such that p <, m

and ¢ is P LEV(k-1,A,<{p,n>)
(c) k is not 0, and there is a p such that m <p P
and ¢ is F LEV(k-1,3,<{p,nd)

(d) k is not 0, and ¢ is K LEV(k-1,A,{m,n))

(e) k is not 0, and ¢ is LEV(k-1,A,{m,n})

T25. (a) If A is a finite arrangemént, ie€ onAo and
k ¢ w, then lev(LEV(k,A,i),k,A,i)
(b) If A is part of B and lev(¢,k,A,1i), then
lev(d,k,B,i)

(c) If lev($,k,A,i) and k < n, then‘lev(¢,n,A,i)
Proof: These are all trivial consequences of D47

and D48, (c) requires a simple induction using (e) of D47.

The following theorem will bhe important in Chapter

v,

T26. If A is an arrangement and lev(¢,k,A,{m,n}), then
there is a finite arrangement B such that B is part of A

and lev(¢,k,B,{m,nd).

Proof: Assume that A is an arrangement, and let N

be the set of k ¢ w such that, for any formula ¢ and m,n
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€ A, if lev(¢,k,n,<m,n>), then tﬂere is a finite arrange-
ment B such that B is part of A and lev(¢,k,B,{(m,nd). We
will show by induction that N is w.
Suppose first that lev(¢,0,A,{m,nd). Then there is
a finite set of formulas T € A2(<m,n>) such that ¢ is CJ(T).
Let j be l+max(m,n). Let R be the set of ordered
pairs {p,p') such that p,p' < Jj and p éA_p'. Let F be that
function with domain jxj such that, for each {p,p'> € jxj;
(1) if &,p'Y is not <m,nd, F(p,p'>) is 0, and
(i) F({m,n)) is T.
Then B is a finite arrangement, B is part of A and
lev($,0,B,{m,nd). Hence 0 € N.
For the inductive step, suppose that k € N; suppose
also that ¢ is a formula, m;ﬁ € Ays and lev(¢,k+1,A,Zm,nd).
We will assume (721) that all of the finite arrange-
ments have been enumerated in some spandard way . |
Let £ be that funétion whose domain is T, and such
that (i) If ¥ € T and lev(y,k,A,4m,nd), £(y) is the first
~finite arrangement B such that B is part of A énd
lev(y,k,B,<{m,nd)
Otherwise,
(ii) If ¢ is Py, £(¥) is the first finite arrangement
B such that B is part of A and lev(y,k,B,{p,n?),
where p is the first p'é w such that p <y m and
~lev(¥,k,A,<{p,nd)

(iii) If w.is FxX, £(¥) is the first finite arrangement
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B such that B is part of A and lev(x,k,B,{p,n3),
where p is the first p ¢ w such that m <p P and
lev(x,k,A{<p,n)) |

(iv) If ¢ is Ky, f£{y) is the first finite arrangement
B such that B is part of A and lev(¥,k,B,{m,m})

The existence of the finite arrangement B is guaran-
teed in each case by the inductive hypothesis.

Let j be the union of the sets (f(w))o, for ¥ ¢ T.

Let R be Al restricted to j. -

Let F be that functicn whose domain is jxj, and
such that, for each {p,p'y ¢ jxj, F({p,p'>) is the union
of the sets B2(<p,p'>), where B ¢ Rng(£f) and p,p' '3 BO'

Let B be {j,R,F). Then B is a finite arrangement
anG B is‘part of A.’ It_is sufficient to show that for each
formula Y ¢ T, if ¢ satisfies one of the conditions (a)-(e)
of D47 with respect to A, it also satisfies one of those
five conditions with respect to B. We have the following
five cases: A

(a) 'w & A2(<m,n)); then lev(y,0,3,{m,nd). By T"5c,

lev (y,k,A,{m,nd). Then lev(y,k,£(y),{m,n)). By T25b,

lev(y,k,B,{m,nd).

such that p <, m,

0 A
lev(x,k,A,{p,n)) and ¢ is PX. ,Let p' be the first

- (b) There are a formula X and p ¢ A
such p; then lev(y,k,f(¥),{p',n)) and, by T25b,

lev(y,k,B,{p',nd). V satisfies condition (b).

(c) There are a formula ¥ and p € Ao such that m <y Pr
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lev(y,k,A,{p,nd) and y is Fx. This case is exactly
analogous to (b).

(a) There is a fo;mula ¥ such that 1ev(x,k,A,(m,m>) and
is Kx. Then lev(y,k,£(y) ,{m,mD»), and (T25b)
lev(y,k,B,{m,m}). ¢ satisfies condition (d).

(e) 1lev(y,k,A,{m,n)). Then lev(y,k,£(y) ,{m,n)) and (T25Db)

lev(y,k,B,{m,n)).
3. Minimal Extension Sequences

D4S, If T is a set of formulas and n ¢ w, *n iz th2 set of
the first n formulas in T', if there are more than n formulas

in T'; otherwise T#*n is T.

The main part of the completeness proof will be the
construction of a certain w-place minimal extension sequence.
In the following definition {{0},{{0,0>},{<0,0>,07}) is

the null arrangement, which is part of every arrangement.

D50. I is a p—blace minimal extension sequence with

respect to T and A if and only if

(1) £ is a p-sequence; p ¢ wo{w} and p is not 0,
(2) I, is C{0},{K0,0>},{KK0,05,0>1),
and (3) For each k such that k+l € p, 2k+l is a minimal

extension of Ek with respect to T'*(k+1l) and A.

T27. If £ is a p-place mirniimal extension sequence,

m,m' ¢ p, and m £ m', then Em is part of Zm"
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'Proof: A trivial induction.

T28. If I is an n-place minimal extension sequence with
respect to I' and A, then the set of n+l-place minimal exten-
sion sequences I' with respect to ' and A such that ¥ € r!

is finite and non-empty.

Proof: Assume I is an n-place minimal extension
sequence -with respect to I' and A. By D50, n is not O.
Also, either I__; is £{0},{{0,05},{&K0,0>,03}) or %, _, is
a minimal extension of I_ with respect.to I'*(n-1) and A;
in either case

(1) For each i,j ¢ En-l,o and each ¢ & Zn_l’z((i,j>)
either | '

(@) ¢ €5, ,KiI»

(b) ¢ € I'*(n-1)

(c) Tor some Yy ¢ I'*(n-1), ¢ is -~y or ¢ is HY or ¢

is Gy |

(d) There are a formula’w and variaples o and B such

that Aap ¢ T'*(n-1), Aoy is a formula of Ziwpr B
is one of the first Zn_l’ozf?TH:TT variables in
A occurring free neither in any formule in
‘P*(p—l) nor in any formula of zn-l' and ¢ is
~ps(B,o, ).

We construct the new arrangemént B as follows:

Let j be I Let R be I _, ;. Let F be that function
: 14

n"l,o.
whose domain is jxj and such that, for each m,k ¢ 3
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F({m,k>) is'En_l’2(<m,k))u(P*n)u{H¢:¢ ¢ I*n}u{Gd:¢ e T*n},

Note that B is an extension of Z__, with respect to
F*ﬁ. In addition, by (1) and the above, B is a minimal
extension of I _,. Hence £"¢BY is an n+l-place minimal
extension sequence with respect to T.

It remains only to show that there are only finitely
many n+l-place minimal extension sequences with respect to
I and Asuch that I € &', but this follows immediately from

T24.

729, If A is a set of variables, then there is an w-place

minimal extension sequence with respect to T and A.

Proof: By T21, there is an enumeration f of the set
of finite arrangements. Let I be that sequence such that
(a) I, is {(0},{<0,05},{&K0,0>,051)

(b) For each n & w, Z is the first (according to f)

n+l
. L} .
arrangement A such that (20,...,Zn) {A% is a minimal
extension sequence with respect to T and A.
By T28, & is a minimal extension sequence with

respect to T and A.

D30, TIf A is a set of variables, then the set of n+l-place
minimal extension sequences with respect to I' and A is

finite and non-empty.

Proof: (By Induction) The set of l-place minimal

extension sequences with respect to I' and A is"

{<{£0},{<0,0>},{ K0,0>,05}>>}.

76



Suppose n & W and the set of n+l-place minimal exten-
sion sequences with respect to T' and A is finite and non-
empty. The set bf n+2-place minimal extension sequences
with respect to T and A is the union'of the sets S such that
for some n+l-place minimal extension sequence I with respect
to T and A, S is the set of n+2-place minimal extension
sequences L' with :espect to T and A such that £ € Z'. But
then (by the inductive hypothesis and T28) the set of n+2-
place minimal extension sequences with respect to T and A
i¢ the union of a finite and non-empty set of finite and

non~empty sets, and hence is itself finite and non-empty.

4. Characteristic Formulas
The following definition reflects the decision to

regard 0 as the ‘present moment' of any arrangement.

D51. If A is a finite arrangement and n ¢ w, then CH(A,n)

or the n-level characteristic formula of A is LEV(n,3,40,0>).

The set of axioms that result from the construction
in this section will be specified according to the follow-

ing definition.

D52. If A is a denumerable set of variables and m,n e w,

then CH*(I',A,n,m) or the m-level characteristic formula of

the nth extension of T and A, is the disjunction (in order)

of the formulas Vao...Vak_1CH(Zn,m) where I is an n+l-place

minimal extension sequence with respect to I' and A, and
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uo,...,ak_l'are (in order) the variables in A that occur

free in CH(Zn,m).

T31. If A iz a denumerable set of variables, then

CH*(T,!,n,m) is logically valid.

Proof: Suppose that A is a denumerable set of
variables, and let L be the language of T. Suppose also
that ¢ is an interpretation for L, ¢ is {r,2,U,GY, t €T
and x e u”. Then, by D38, it is sufficient to show that
for each m,n € w, x ¢ IngLfCH*(P,A,n,m))((t,t}).

We will show this by constructing an w-place minimal
extension sequence I such that for each m,n ¢ w, X ¢
Intafvho...Vak_1CH(Zn,m))((t,t}} (wﬁere Qyrecerly g are as
in D52). Thus, for each m,nue w, X will satisfy some dis-
junct of CH*(I,A,n,m) at <{t,td.

For this construction we will need to progressively
select members of T and U. Let C be a choice function on
sTA{0}, and let C' be a choice function on SuU~{0}.

In the following definition, ¥(n,E) is a relation
that is to hold if E is an entity that specifies the way in
which £n+l is constructed from Zn. ¥ is always a l5-tuple,
since there are many aspects of this construction that must
be kept track of. In the definition A is the arrangement
corresponding to En in the construction and B is the one
corresponding to Zn+i.

The construction of I must of course depend on
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- reflecting at each stage a greater part of the structure 5f
the interpretation ¢. In order to do this we must keep
track of functions that relate the moments of the arrange-
ment at each step to.the corresponding moments of ¢; in the
definition below, r and s are such functions. Each variable
that is introduced into one of the Zn as an instantiation
(i.e., according to clause (3d) of D46) must be related to
a member ‘of the universe of ¢; a and b are the functions
that do this. Here b is an extension of a, just as s is an
extension of r and B in an eiztension of A. We need not
have included y and z in E, since y is determined by x and
a, and z by x and b, but it is done as a matter of conven-
ience. Yy is a sequence that satisfies CH(A,mi and similarly
for z and CH(B,m). | .

Tﬁe terms g,h,c,d and e are instrumental in building
up ©' from 0. The function g specifies what new moments of

¢ must be reflected into B, in order to 'account for' form-

0
ulas of the form G¢ not being satisfied, and similarly for

h and formulas of the form H¢. The function C associates
new moments of B with new moments of ¢. The function d
specifies what new individuals of & must be assicmed to
variables that occur in formulas of A to 'account for' form-
ulas of the form Aad not being satisfied, and e assigns one

1,

of the individuals specified by 4 to each of the new varia-
bles introduced into B.

Clause (12) of the following definition indicates



how B is to be specified in terms.of A and E. Put briefly,
B is the interpretation formed by adding the moments Dom(c)
to AO, using the order induced by ¢ and s, and assigning to
each <p,p') ¢ B0 a certain set of formulas specified by A,

G, z and the already defined functions s,g,h,d and e.

Definition A. We say F(n,E) if and only if there are

°,A,r,vy,a,g,h,c,s,d,e,b,z,B and ©' such that all of (1)-(12)

(241

hold: (1) is the lS-tﬁple (@,A,r,y,a,g,h,c,s,d,e,b,z,B,65
-~ (2) ©is {a,r,y,a) and ©' is {B,s,z,b}
(3) ‘A is a finite arrangement, r is a one-to-one
- function, Dom(r) is AO’ Rng(r) ¢« T, y ¢ Um, a is
a function, Dom(a) ¢ Iv and Rng(a) € U
(4) h is that function such that
(a) Dom(h) is the set of triples {p,p',9) such

that p,p' € A ¢ € T*(ntl), and y ¢

0’
InﬁaJH¢)ﬁ<r(P),r(P')>)

(b) For each <{p,p',9) ¢ Dom(h), h((P:P'r?)) is
C(T'), where T' is the set of t ¢ T such.
that r(v) Zk t and v ¢ Inta!7¢)((t,r(p')))

(5) g is that function such that
(a) Dom(g) is the set of triples {p,p',¢> such

that p,p' ¢ A ¢ ¢ T*(n+l), and y ¢

0'
Int&(G¢) (Lx(p),x(p")>)

(b) Tor each {p,p',$) & Dom(g), g(p,p',9>) is

C(T')., where T' is the set of t ¢ % such

that t >, r(p) and y €'Inta§1¢)(4t,r(p')>)
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(6) ¢ is a one-to-one function from the first

TRng(g)v Rng (h) ) “Rng (r) natural numbers not in AO
onto (Rng(g)uRng(h))mRng(r)

(7) s is ruc

(8) d is that function such that

(a) Dom(d) is the set of quadruples {p,p',¢,a)
such that p,p' € Dom(s), o ¢ £fv(9), v ¢
In%tha¢)(<§(p),s(p'))) and Ao¢ € T'*(n+1)

(b) For each (p,p',¢,vj) ¢ Dpom(d), d((p,p',¢,v§q
is C'(R), where B is the set of v € 7 such
that yi'; ¢ Int&(ﬂfb) ({s(p),s(p')>)

(9) e is a one-to-one function such that

(a) Rng(e) is Rng(d)

(b) Dom(e) is ihe set that contains the first
Rng(d) variables B ¢ A such that B occurs
free neither in any formula in T'*(n+l) nor
in any formula of A

.(10) b is ave

(1) =z is that infinite sequence such that
(a) zj is yj, if vj € ivaom(b)
(b) Z is b(vj), if vj ¢ Dom(b)

(12) B is that arrangement such that

(a) B, is A, uDom(c)

0 0 .
(b) By is the set of pairs {(p,p'> such that
' '.1_.._ '
p,p' ¢ B0 and s(p) &s(p )
(c) B2 is that function F with domain BOXB0
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such that for each p,p' g B F(p,p'>) is
the union of the following seven sets:
(1) 2,(p,p'>), if pip' € Ag
(1i) the set of formulas ¢ € T'*(n+l) such
that z ¢ Inez}¢)(<s(p),s(p')>)

(iii) +the set of formulas =¢ such that ¢ e
T*(n+l) and z ¢ In51}¢)((s(p),s(p')>)

(iv) the set of formulas H¢ such that ¢ €
I*(n+l) and z e Intd§ﬁ¢)((s(p),s(p')>)

(v) the set of formulas G¢ such that ¢ ¢
T*(n+l) and z € InngG¢)((s(p),s(p')>)

(vi) the set of formulas ﬂps(ﬁ,a,¢), where
{p,r' 4,0 ¢ Dom(d) and B is
&(a(p,p's,0M))

(vii)' the set of formulas <+¢ such that for
some o, Acd € T*(n+l), v €
mtajAa¢).<<s<p>,s(p'>>5, and o ¢ fv(¢).

Let C" be a choice function on SBA{0}, where B is
the sét of 4~-tuples (A,r,y,a) such that A is an airangement, -
r is a function from a natural number into T, y ¢ Um, and a
is a function such that Dom(a) ¢ Iv and Rng(a) & U.

We use C" and Definition A to define a sequehce of
4-tuples A. For each n, Zn will be the first term of the
4-tuple An‘

Let A be that infinite sequence defined as follows:

(1) A, is L{0},{<€0,03},{<K0,0>,0)}>,{{0,t2},x,0>



(2) For each n ¢ w"An+l is C"(B), where B is the set of
4-tuples {A,r,y,a) such that there is a E such that

F(n+l,5), E. is An and Z., is {a,r,y,a).

0 14
Let ¥ be that infinite sequence such that for each
n e¢ w, ZnisAnO.
’
The following Lemma states that the sequences A and

¥ behave in the manner claimed before Definition A.

Lemma B. The following seven clauses hold for each n ¢ w.
In order to make the statement of the lemma more easily
readable, let A,r,y,a be those objects such that An is
{(p,xr,y,a), and let B,s,z,b be those objects such that An+1
is (B,s,z,b). Then of course Zn is A and Z .4 is B.

(1) There is a E such that §(n+l,E), An is”:‘0 and An+1
is 514

(2) B is a minimal extension of A with respect to I'*(n+l)
and A

(3) s is a one-to-one function from B0 into T, r £ Sy and
for each p,p' ¢ Bye {p,p'> ¢ By if and only if
s (p) éa,_ s(p")

(4) (a) a<b
(b) b is a function
(c) For each B ¢ Dom(b), B ¢ A
(d) For each B ¢ Dom(b), B occurs free in some

formula of B

(ef' For each B ¢ Dom(bva), B does not occur free in

any formula of A nor any formula in T'*(n+l)
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(5) For each j such that vy ¢ A, 2, is"xj

(6) For each ¢ ¢ T*(n+l) and 3j such that vj ¢ fv(¢), zj

is Yj
(7) For each p,p' ¢ B, and ¢ ¢ B2(<P:P'>), zZ €

Int&(cb) (Ks(p) ,s(p')>)

Proof: We will prove Lemma B by induction on n. Ye
omit the case where n is 0, since the construction involved
is entirély similar to the ‘one involved in'the inductiQe
step. Therefore, we suppose that (1)-(7) all hold for n,
and we will show that they also hold for n+l.

Let £ be a 1l5-tuple such that %(n+l,E), An is Eo and

An+l is 514. Let 0,A,r,v,a,9,h,c,s,d4,e,b,z,B and 0' be

those objects such that ¥ is (0,A,r,y,a,g,h,c,s,4,e,b,2,B,

. : . 4 '
©'>; then A is 6 and A ., is ©O'.
Since A is a finite arrangement, Ao ¢ w. By Defini-
tion A parts (6) and (1l2a), B0 € w. By Definition A parts'
(3)-(7), s is a one-to-one function from B, into T. By

0
Definition A part (12b), B1 is a reflexive' linear ordering

on B. By Definition A part (l2c), B is a finite arrange-

ment. By Definition A parts (9), (10); and (11), z ¢ u®.

By Definition A parts (10), (9), and (8), b is a function,
| Dom(b) € Iv and Rng(b) € U. Following through the clauses
of Definition A, we see that there are g',h',c',s',d',e',

b',z',B',0", and &' such that &' is (©',B,s,z,b,g',h',c',

s',d',e',b',z',B',0") and F(n+2,E'). Then the set @ is

non-empty, where & is the set of 4-tuples {B',s',z',b'> such
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that there is a &' such that #F(n+2,3'), z  is {B,s,z,b)

0
and E,, is {(B',s"',z'",b'">. Let 0" be C"(a). Let E' be a
15-tuple such that 3(n+2,£!), E'O is {(B,s,z,b) and 5'14 is

e". Let g',h',c',s',d',e',h',z' and B' be those objects
such that ' is {o',B,s,z,b,g',h*,c',s',d',e',b',2z',B',0").
Then A ., is {B',s',z',b'y and DI is B'. Thus (1) hold:
for n+l.

We must now prove (2); that is, that B' is a minimal
extension of B with respect to T*(n+2) and A.

By Definition A paxi (12), and the fact that B is a
minimal extension of A with respect to T'*(n+l) and A, it
follows easily that clauses (1)-(4) of Defini#ion 44 hold.
In order to show that clause (5a) of D44 holds ((5b) is
of course analogous),.suppose that p,p' ¢ BO' ¢ € T*(n+2;,
and H¢ ¢ B'2(<p,p'>). By Definition A part (12c iv),

z' € InEZfH¢)(<s'(p),s'(p')>). By the inductive hypothesis
clause (6) and T15, =z ¢ InEZfH¢)(<s'(p),s'(p')>). By the
inductive hypothesis clause (3), z ? In€23H¢)(<s(p),s(p')>).
By Definition A part (4a), {p,p',¢) € Dom(h'). Eince

z ¢ InngH¢)((s(p),s(p')>), there is a 't & T such that

s (p) ZL t and z ¢ Inesz¢)((t,s(p')>), and hence n({p,p',9>)
is one such. Let t' be h{{p,p',¢>). By Definition A parts
(6) and (7), t' ¢ Rng(s'). Let q be,s'(t')., Then z ¢
Inﬁajv¢)(<s(q),s(p'ry). Again, by the inductive hypothesis
clauses (3) and (6) and T15, z' e In%z}v¢)((s'(q),s'(p'))).

By Definition A part (l2c iii), =¢ ¢ B'2(<q,p'>). By Defi-
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nition A part (12b), p >p, g, completing the proof that B'
is an extension of B.

Now in order to show that B' is a minimal extension
of B, Qe neea only show that clauses (3) and (4) of D46
hold.

For clause (3) of D46, suppose that p,p’' ¢ B'0 and
o e B‘2(<p,p')). Then ¢ must belong to one .of the seven
sets listed under Definition A part (12c). If ¢ belongs to
some set other than (vi) or (vii) it follows immediately
thit ¢ satisfies clause (3) of D46.

Suppose first, then, that ¢ € (vi); then there is a
formula y and variables o and B such that ¢ is -ps(B,a,¥),

{p/p', by0) ¢ Dom(d') and B is e'(d'(p,p',¥,ad)). By Defini-

tion A parts (9) and (8), Dom(e') = Rng(e') = Rng(d") &
Dom(d’y ¢ B' (2-TF(miD); that is, Feg(@') ¢ B' o> TF(wr2y.
Hence, (Definition A part (9)) B is one of the first
B'02°T?TSI§T variableé in A that occur neither in any form-
ula of B nor in any formula in T'*(n+2).

Second, suppose that ¢ ¢ (vii); then there is a
formula y and a variable ¢ such that ¢ is ww) Aoy € T*(n+2),
z ¢ IntajAaw)((S'(p),s'(p'))), and o # fv(y). Let B be the
first variable in A such that B occurs free neither in any
formula in T*(n+2) nor in any formula of B. Then, by T9%,
¢ is =ps(B,o,¥), and ¢ satisfies'clause (3d) of D4e6.

For clause (4) of D46, we proceed as follows: By

Definition A pért (4), Dom(h") ¢« Boz-r?(n+2$. By Definition
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part (5), Dom(g') = Bo2 T* (n+2) . Hence we have Dom(c") =

(by Definition A part (6)) Rng(g')vRng(h") ¢ Rng(g')+Rng(h')
< Dom(g')+Dom(h') < 2802"*Zn+25; that is, Dom(c") £

2B02'T§(n+25. By Definition A part (l2a), B'0 is B0+Dom(c'5.

2 e————— 2 m————r
[ %k f - < 3
Hence B 0 < B0+2B0 I'*(n+2), and B 0 B0 < 2B0 I'* (n+2).

This coxpletes the proof of (2).

By the inductive hypothesis s is a one-to-one func-
tion from B0 into T. By Definition A parts (12) and (4)-
(7), s'.is a one-to-one function from B'0 into T. By Defi-
hition A part (7), s ¢ s'; also, by Definition & pért (12b),
for each p,p' ¢ B'O, (p:/P'> e B'1 if and only if s'(p) <a°
s'(p'). Hence Lemma B part (3) holds.

By Definition A part (10), b £ b' and Lemma B part
(4a) hclds. By the inductive hypothesis (clause (d)), for
each B ¢ Dom(b), B occurs free in some formula of B. By
Definition A part (9b), for each B ¢ Dom(e'), B does not
occur free in any formulé of B. Hence Dom(b) and Dom(e')
are disjoint, b' is a function, and Lemma B part (4b) holds.
Lemma B part (4c) holds also, since if 8 ¢ Dom(b'), then
either B ¢ Dom(b), in which case (by the inductive hypothe-
sis)B ¢ A ; or B € Dom(e'), in which case (by Definition A
part 9(b)) B € A.

For Lemma B part (4d), suppose that'B ¢ Dom(b').
Then either B ¢ Dom(b) or B € Dom(e'). If B ¢ Dom(b), then

(by the inductive hypothesis) B occurs free in some formula

of B and (since B' is an extension of B) B occurs free in
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some formula of B'. Suppose, on the other hand, that B ¢
pom{e'). Then (Definition A part (2)) e'(B) ¢ Rng(d'), and
there is a 4-tuple {p,p':¢,0Y such that p,p' ¢ Dom(s'), o ¢
va¢), z ¢ InngAa¢)((s'(p),s'(p')&), Aa¢ € T*(n+2), and
e'(B) is d' ({p/p's6,a%) . Then B is €' (a' (Kp,p'/¢,ad)). By
Definition A part (12c vi) =ps(B.oa,¢) ¢ B'2(<p,p'>), and -
hence =ps(B,a,9) is a formula of B'. By T9d, B ¢
fv(-ps(B,a,¢)), and B occurs free in some formula of B'.

Lemma B part (4e) follows immediately from Defini-
tion A parts (9) and (10). This completes the proof of
Lemma B part (4).

To show Lemma B part (5), suppose that vj ¢ A.
Then Vj ¢ bom(b'), and z'j ig Z4e But by the inductive
hypothesis, zj is xi.

For Lemma B part (6), suppose that ¢ ¢ T*(n+2) and
vj ¢ fv(¢9). If vj 4 pom(b'), then (by Dgfinition A part
(11)) z'j is zj. Suppose, then, that vj ¢ Dom(b'). Ey
Definition A part (9), vy ¢ Dom(e'), and hence vy € ﬁom(b).
Then z. is b(j), by the inductive hypothesis; and z'j is

J
b'(j) is b(j), since vy ¢ Dom(e'). Therefore z'j is Zge.
It remains only to show Temma B part (7). Suppose
that p,p' ¢ B'0 and ¢ € B'2(<p,p'>). We must show that z'¢€
Inszf¢)((s'(p),s'(p')>). We take seven cases, according to
which of the seven sets listed uﬁder,Definition A part (12c)
¢ belongs to: -

(i) p,p'e B0 and ¢ ¢ B2(<p,p'>); by the inductive
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(ii)

(iidi)

(iv)
(v)

(vi)

hypothesis, z ¢ Inezﬂ¢)(<s(p);s'(p')>); by Defini-
tion A part (7), z € In52}¢)(<s‘(p),s'(P')>). By
Definition A parts_ (9), (10), and {l1l), for each j
such that vj occurs free in ¢, zj is z'j. Hence,
by T15, z' ¢ Intaf¢)(<S'(p),s'(p')>).

Follows immediately |

There is a formula Y such that ¢ is =y, P ¢ T*(n+2),
and z % Inssz)(és'(p),s'(p'))). Then z' ¢

Int (¢) Ks'(p),s'(p'))). '

Follows immediifr.ly

Follows immediately

There are a formula ¢ and variables o and B such
that ¢ is wps(B,o,w)( (p,p',¢,a> ¢ Dom(d') and B is
5'(d'((p,p';w,a>)). Let j be that number such that
& is vj and let u be 4'{({p,p',¥,0ad). By Definition
A part (8), z ¢ IntajAvjw)(Ls'(p),s'(p'))); hence
there is a w € U such that z% €
In%ajﬂw)((s'(p),s'(p')>), and zg €.
Intaf-ny)((s‘(p),s'(p'))). Let Vj' be g'fu). By
Definition A part (9b) (since Aoy is a formula of B)

vj, does not occur in ¥; then (by T15) za a ¢

‘al WANEY 23! .
Inglfww)(as (p),s'(p')») and zZy c

J
u
s 1

Int, (=) (<s' (p),s' (p'))) . qince u is (za Y i\,

j
23 (;3 )y € Int)(=y) Ks'(p),s'(p')>). By T18, za

¢ Int (ps(v ,,v ) Ks! (p),s (p')>); that is, zj'e

Intdj¢)(<s (p),s (p')y). By T9d and Definition A



parts (9)-(11), and since zj, is u, for each j" such
that Q“,occurs free in ¢, (zg')j" is z'j"; hence,
by T15, z' ¢ Int, () ((s'(p) /s’ (p')>).
(vii) Suppose there is a formula ¥ and a variable o such
that ¢ is -y, Aap ¢ T*(n+2), z ¢
Int, (Aay) ({s' (p):S'(p').>) and o ¢ fv(¢). Let j be
that number such that o is Vj' Then there is a w ¢
U such that zg ¢~Intafﬂaw)((S'(p),s'(p')>). But by
_T1l5, since vj e fv(¢), z ¢ Ingﬁ}w)(<s'(p),s'(p')>).
Then z € In%ﬁ(ww)((s'(p),s'(p')>) and, oy Lamma B
part (6) and T15, z' € Ing2}¢)(<s'(p)ys'(P')>)-
This completes the proof of Lemma B part (7) and also

the proof of Lemma B.

We were to show that for each m,n € w, x ¢
InEL(CH*(P,A,n,m))((t,t>). Suppose then that n ¢ w, and let
A,r,y,a be those objects such that An is {A,r,y,a); then Zn
is A,

If n is 0 and m ¢ w, then x ¢
IngifCH*(F,A,m,n))(<t,t>) by Tl2a, since CH*(T,A,0,m) is
CJ(0). Suppose then that n is not 0. By Lemma B part (7),

for each p,p'e¢ A, and each ¢ ¢ A2(<p,p'>), y €

0
Inﬁz}¢)(<r(p),r(p')>). Also, by Lemma B part (3), for each

pP/P' ¢ Ayr P <y P if and only if r(p) iu‘r(p').

Lemma C. For each m ¢ w, each p,pf ¢ AO and each formula ¢

such that lev(¢,m,A,{p,p'>), vy ¢ Inta5¢)(<r(P)rr(P')))-
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We will prove Lemma C by induction on m. Suppose

first that p,p' ¢ A, and lev(¢,0,A,{p,p'>). Then by Lemma B

0
part (7) and Tl2a, y ¢ Intd‘(‘b) (&) ,x(p') D).
For the inducﬁive step, suppose that for each p,p' ¢
AO and each formula ¢ such that lev(¢,m,A,{p,p">), ¥ ¢
In%ﬁ}¢)((r(p),r(p')>). Suppose also that p,p' ¢ A0 and
lev(¢,m+1,A,{p,p">). Then there is a finite set of formulas
I'' such that ¢ is CJ(I''), and for each Yy ¢ T', ¢y satisfies
one of the conditions (a)-(e) of D47. By 712, it is suffi-
cient to show that for esch ¢ ¢ T', y ¢
Inﬁsz)(<r(p),r(p')>). Suppose then that ¢ ¢ I''; we take
five cases, according to the clause pf D51 that y satisfies:
(a) ¢ ¢ A2(<r(p),r(p')>); then by Lemma B pért (7Y, v e
Int (¥) (<x (), (P1)S) |
(b) There are a formula y and p" ¢ A, such that p <, p",
lev(yx,m,A,{p",p'>) and ¢ is Px. By the inductive
hypothesis y ¢ In%ﬁfx)((;(p"),r(p')>). By Lemma B
part (3), r(p) <a°r(p")- By Tl0, y ¢
Tnt, () (2 (D) /2 ("))
(c) This case is similar to case (b).
(d) There is a formula ¥ such that lev(y,m,A,{pr,pd>) and ¥
is Kx. By the inductive hypothesis, y ¢
Int (X) (x(p),r(p)>). By D34, y e
InEZfW)(<r(p),r(P')>)
(e} lev(y,m,A,{p,p'>); then, by the inductive hypothesis,

y ¢ Int, (¥) (Kx(p),x(p')>)
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N b

This completes the proof of Lemma C.

Suppose now that m ¢ w; it is sufficient to show that
X € InEZfCH*(P,A,n,m))((t,t)).

By Lemma C, T25a, and D51, y ¢
InﬁZ}CH(Zn,m))((r(O),r(O)}). By Lemma B part (3) and the
definition of A, r(0) is t and y ¢ Ing&fCH(Zn,m))(<t,t>).
Let Ogreeerly g be (in ofde:? the variables in A that occur
free in CH(Xn,m). )

By k applications of T10, y ¢
Inﬁz}Vao...Vak_lCH(Zn,m))((t,t)). py Lemma 3 part (5), for
each j such that v. ¢ A, y. is xj. Therefore, by T15, and

J J
since no free variable of Vao...Vak_iCH(Zn,m) is in A, x €
Inﬁi(Vao...Vak_lCH(Zn,m))((t,t)). But now, by T1l2 and D53,
X € In%szH*(P,A,m,n))((t,t)). This completes tha proof of
T31.

The following theorem will be proved in an informal
way, since a strict proof would require the introduction of

a good deal of formal apparatus.

T32. The set of formulas CH*(I',A,n,m), where A is a denum-

erable set of wvariables and n,m ¢ », is decidable.

Proof: First we give a procedure for deciding
whether a formula ¢ is CH*(0,A,n,m), for some A,n,m such
that A is a denumerable set of variables and n,m € w. By

D46 and D50, for each n-place minimal extension sequence I
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with respect to I' and A and each i €n, I is ({0}, {<0,0>},
{<Z0,0>,0>}>. Hence, for any denumerable set of variables
A and m,n ¢ w, ¢ is CH*(0,A,n,m) if and only if ¢ is
cH(<{0},{£0,60},{<0,0%,0>}>,m); but the latter formula is
easy to construct using D48,

Now we give a procudere fcr deciding whether a‘form-
ula ¢ is CH*(I',A,n,m) for some I',A,n,m such that T is non-
empty, A is a denumerable set of variables and n,m ¢ w. We
note that for any such T,A,n,m, CH*(T,A,n+l,m) and
CH*(T,A,n,m+l) are both longer than CH*(I',A,n,m). This
puts an upper bound k (the length of ¢,say) on the values
of both n and m that need be considered; that is, ¢ cannot
be CH*(T,A,n,m) where k < n or k < m.

As for I', it is a simple consequence of D46 *hat for
any n,m, CH*(I',A,n,m) is CH*(I'*n,A,n,m). Also, for any
ryA,n,m, if ¢ is CH*(I'*n,A,n,m), then'every member of I'*n
occurs in ¢. Thus, if ¢'is CH*(I',A,n,m) for any T,A,n,m,
it is CH*(I'',A,n,m) for some subset I'' of the set of“formu-
las that occur in ¢.

For any possible denumerable set of variables A, only
those variables in A thzc occur in ¢ can be relevant to the
construction. Similarly to the preceding case, if ¢ is
CH*(I',A,n,m) for any T',A,n,m, it is CH*(P,A,n,m) for some
subset A' of the set of variableé that occur in ¢.

Putting all of this together, in order to see whether

¢ is CH*(P,A,n{m) for any appropriate T,A,n,m, it is only
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neceésary to see whether ¢ is CH*(T,A,n,m) for some subset
NF of the set of formulas that occur in ¢, some subset A of
the set of variables that occur in ¢, and some n,m < k.

But this leaves only a finite number of tests, each of which
is accomplished by mechanically constructing one cf the

formulas CH*(T,A,n,m), where I',A,n,m are as just specified.
' B. Derivations

In this section we present an axiom system and define
th¢ notion of a derivation. Then we look into the matter of

which formulas follow from the axioms.
1. The Axioms

D53. (a) © is a restricted axiom if and only if tlere is a

formula ¢ such that 6 is a universal generalization of

(RAl) ¢~ K¢

(b 6 is a generai axiom if and only if there are
formulas ¢,y and X, variables o and 8, and terms g aﬁa n
such that 6 is a generalization of one of the following:

(GAL) ¢ (¥ ¢) |

(GA2) (6> (P X)) > ((4>9) = (6> X))

(GA3)  (~d=>-Y) » (V> ¢)

(Gad4) Aoa(d=9) > (Ao >Aop)

(GA5) ¢ Aap, where o ¢ £v(¢)

(GA6) n=r > (¢>1), where ¢,V are atomic formulas and VY is

obtained from ¢ by replacing 0 or more occurrences
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(GA7)
(GA8)
(GA9)
(GAL0)
(GAL1)
(GA12)
(GA13)
(GAL4)
(GA15)

~ (GA16)
(GA17)
(GA18)
(GA19)
(GA20)
(GA21)
(GA22)

(GA23)

of n by ¢

vao=n, where a does not occur in n
o=B » Loa=B

H(¢ > ¥) > (Ho » HY)

G(d~>1y) » (Go~GY)

1 + HH¢

G +GGo

¢ -\»Gi’d)

.o > HF¢

¢ » K¢, where ¢ does not contain R outside the scope
of K

-Kpe? K¢

K(¢ > ¥) » (K > K¢)

NoK¢ +» KAod

K(¢o RY)

R(¢>y) » (Rp~ R‘P)'

L¢ = R

R¢ <> LR

K CH*(T,An,m), where A is a denumerable set of

variables

This set of axioms is by no means independent. In

fact, about half of the axioms GAl-GA22 can be proved from

the remaining axioms by a procedure similar to that used in

the proof of T88. It is possible to weaken GA23 in such a

way as to eliminate most of this redundancy, but this would

complicate things considerably without offering any compen-
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sating advantages.

The redundant axioms are left in for two reasons.
First, to leave them out and then re-introduce them as
theorems'would necessitate a number of rather tedious proofs
without any purpose except to make an axiom list, which is
rather unsatisfying in any case, somewhat neater.

Second, it is not known that there is no finite set
of axiom'séhemata that is a complete set of axioms for the
present system, and it is hoped that this set of axioms
might provide a clue to such a finite set of axiom schemata,
if there is one. The present set of axioms is constructed
on the set presented in Cocchiarella [1]. Our axiom GA23 is
meant to correspond to Cocchiarella's axiom P a Py >P(p A P)v
P(Pé s Y) v P(¢p o PYP) and the corresponding one with F, in
that it corresponds to the fact thaﬁrthe ‘earlier than'
relation among moments is a connected one.

But GA23 alsc provides for the more complex relations
among points of reference that are involved in the matrix
strucﬁure of our interpretations. There may be a finite set ’
of axiom schemata that accounts for these relations. If so,
of course, that finite set of axiom schemata together with
GAl-GA22 would be a complete set of axioms.

We take modus ponens as the only inference rule. The
axioms have been constructed in such a way as to make other

inference rules superfluous.
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2. Derivations and Theorems

D54. A is a derivation of ¢ from T if and only if A is a
finite sequence, Alh(A)—l is ¢ and for each n < lh(A) either
(1) An e T,
(2) An is an axiom,

or (3) There are j,k < n such that Aj is Ak-»An

In the following definition, parts (a) and (b) are
taken to define the natural notions, corresponding to the
fast that the operator R refers back to the present moment
when not within the scope of K. The notions defined in (c)
and (d) are introduced for purely technical reasons. They

turn out to be useful in the completeness proof.

p55. (a) If T is a set of formulasAand ¢ is a formula,

then T + ¢, or T yields ¢, if and only if there

is a derivation of ¢ from T.

(b) If ¢ is a formula, then F ¢, or ¢ is a theorem
if and only if 0 F ¢.

(¢y If ¢ is a fcrmula and ' is a set of formulas,

then T E ¢, or I strongly yields ¢, if and only

if Tk y for every generalization ¥ of ¢.
(d) If ¢ is a formula, then E ¢, or ¢ is a strong

theorem, if and only if 0 E d.

733, If } ¢, then ¢ is logically valid.

Proof: By a trivial induction using T13d, it is
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sufficient to show that every axiom is logically valid.

This is trivial for several of the axioms, so we will omit
thé proof for some. In this proof all references to clauses
are to the clauses of D34.

RAl: By Tl3c, it is sufficient to show thaﬁ o> K¢ is
logically valid, for any formula ¢. 'Suppose that ¢—> K¢ is
not logically valid, for some formula ¢. Then there is an
interpretation ¢, a moment t of 4, and X ¢ Ug" such that x ¢
Inta$¢~+K¢)(<t,t>). Then by clauses (3) and (4), x ¢
In215¢)((t,t>) and x ¢ InngK¢)(<t,t>). By cla.s= {3}, X #
In21}¢)((t,t)), which is a contradiction.

GA3: By T13b, it is sufficient to show that, for
any formulas ¢,9, ((w¢~>~¢)-§(w-a¢)) is strongly logically
valid. Suppose that (for sume formulas ¢,y) ((=¢-> -P)—>
(0> ¢)) is not strongly logically valid. Then there are an
interpretation &, moment; t and t' of ¢, and x € qu such
that (i) x € Int, (= ((=¢->-P)~ (V=9))) Kt,t'>)

By clauses (3) and (4)

(i1) =% ¢ Int, (=4~ Y) Kt,t")

and (iii) x ¢ Ing&}¢—9¢)(<ﬁ,t'>)

By clause (4)

(iv) x ¢ Inﬁafw)(<t,t'>)

and {v) x ¢ In%zf¢)(4t,t'>)

By clause (3)

(vi) x ¢ Int (=¢) (Kt,t'>)

By (ii) and clause (4)
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(vii) x e Int, (a¥) (Kt,t'>)
By clause (3)
(viii) X ¢ Ingﬁ}¢)((t,t')), which contradicts (iv).
GA4: By Tl3b, it is sufricient to show that, for any
variable o and formulas ¢ and ¥, Aa(d=>¥) > (Aud»> Aay) is
strongly logically valid. Suppcre that (for some n € w and
formulas ¢ and w)(Avn(¢->q0->(Avn¢ »Aynw)) is not strongly
logically valid. Then there are an interpretation ¢,
moments t and t' of &, and X ¢ %2, such that x ¢
In‘&_(/\vnw » ) > (Av 92> Av ) (LE,t7))
By clauses (3) and (4)
(1) x e Inta‘.'(l\vnw»w)) ({t,t")
(ii1) x € Int&(/\vnqS) (t,t'))
and (iii) x ¢ Intav(/\vnlb) (e, t'M)
By clause (5), there is an a ¢ qz such that
(iv) x;‘ ¢ Int (y) Kt,t'D)
By clause (5) again
(v)  x € Int, (65¥) (<t,t')
and (vi) x) e Int, (9) (1t,t'5)
By clause (4)
(vii) xg € Ingmfw)(<t,t'>); which contradicts (iv).
 GAS: By Tl3b, it is sufficient to show that, for any
variable o and formula ¢, if o is not free in ¢, then
(¢> Aad) is strongly logically vélid, Suppose that (fbr
some n ¢ w and formula d) v ¢‘fv(¢) and (¢+/an¢) is not

strongly logically valid. Then there are an interpretation
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e

¢, moments t and t' of ¢, and-x € 92 such that
(i) x e Intq('v(¢-> Av 9)) (Lt,t'>)
By clauses (3) and (4)
(ii) x ¢ Intdb((b) (LE,t')
and (iii) x ¢ Int, (Av ¢) (Lt,t")
By clause (5), there is an a ¢ %{ such that
(iv) =x ¢ Int, (¢) (Ct,t'>)

. But, by (ii) and T15

(v) X, € Int, (9) (Ct,t'>)

GA6: By T13b, it is sufficient to show hat: Jor any
terms n and r and atomic formulas ¢ and y, if ¥ is obtained
from ¢ by replacing 0 or more occurrences of n by r, then
(n=C * (¢ >Y)) is strongly 1ogically valid. Suppcse that
(for scme terms n and ¢ and atomic formulas ¢ and ¥) ¥ is
obtained from ¢ by replacing 0 or more occurrences of n by
z, and (n=C > (¢ »¥)) is not strongly logically valid. Then
there are an interpretation ¢, moments t and t' of &, and
X € qz’such that

(1) % € Int, (2(n=T (6= 1))) (CE,t">)

By clauses (3) and (4) ”
(ii) x ¢ Int£5n=C)(<t,t'>)
(1ii) =x e In§2}¢)(<t,t'>)
and (iv) x ¢ Inﬁsz)(4t,t'>)
| By clause (1)
(v) (n) (x) is Exty (C) (x)

t G
We take two cases:
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(a) There
there are terms §',©
from £ by replacing 0
is obtained from 6 by

by C.

are terms £,6 such that ¢ is £=0; then
such that ¢ is E'=6', E' is obtained
or more occurrences of n by z, and 6'

replacing 0 or moure occurrences of n

By (iii) and clause (1)}
(vi) Extt,afﬁ) (x) is Extt,&(s) (x)
By (v), (vi) and T19
(vii) Ex t (&) (x) is Ext, (g ) (%)
and (viii) Ex t'a;fe)(x) is Ext 'aée ) (%)
By (vi), (vii) and (viii)

(ix) Ex t A

(E') (x) is Ext

(e ) (%)

By clause (1)

(x)
(b)

X € In22}£'=e’\(<t,t'>), which contradicts (iv)

There are k'“'go""’Ek-l’g'o""’glk—l

such that k ¢ w, T is a k-place predicate letter, ¢ is

nEO...Ek_l, Y is ﬂE'O.

o'y s and, for each i < k, &', is -

obtained from Ei by replacing 0 or more occurrences of n

by t. |
By (iii) and clause (2)
(x1i) (Extt'a(go) (X)yeue ,Extt'd(Ek_l) (x)> € G(m) (t)
By (v) and T19
(xii) For.each i < k, EXtt,déEi)(x) is Extt'aji'i)(x)

By (xi) and (xii) .

(xiii) <EXtt,éLSE'O) (x) ;. "’EXtt,'a;EE'k—l) (x)> e G(m) (t)
By clause (2)

(xiv)

X ¢ In%lfw)(<t,t'>); contradicting (iv)
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GA7: By Tl13b, it is sufficient to show that for any

variable a and term n such that o does not occur in n,

Aoca=n is strongly logically valid. Suppose that n ¢ w, n is

a term and Vi does not occur in n. Then there are an inter-

pretation ¢, moments t and t' of &, and x ¢ gz
- = !
X € In%z} anvn n) (L&, t%)
By clause (3)
X ¢ Inta(Avn~svn=n) (CE, ')

By clause (4)

n
X
Extt'aén)(x)

By clauses (3) and (1)

3 Intqfwvn=n)(<t,t'>)

il n :
Dhtt,afvn)(XExt )) is not Ext (n)(hExt

t,af“)(x
By D31

t,q

Extt'aén)(x) is not Extt (n)(yExt (n)(x))
This contradicis Tl4.
GA8: Suppose n,m ¢ w, and
(i) x </ Intd"(vn=vm--> Lvn=vm) (LE,£9)
Then
] - ) ]
(ii) x ¢ Intdfvn Vm)(<t,t >)
(iii) x ¢ IntaJLvn=vm)(<t,t'>)
By (ii), clause (1) and D31l

(iv) x_ 1is x
n m

such that

20 ()’

By (iii) and T10g, there is a moment t" of a.

such that
(v) x ?/Inngvn=vm)((t“,t'>)
By clause (1) and D31,
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(vi) X, is not X contradicting (iv)

GA9: Suppose ¢ and ¥ are formulas, & is an interpre-
tation, t and t' are moments of 4, and X ¢ q;& By T13b it
is sufficient to show that x e
.Intaj(H(¢'?W)-*(H¢->H¢)))(<t,t}>). Suppose not; then

(i) x e Int&(H(¢ »>§)) ({t,t")

(ii) x e Int&(H¢) ({t,t"D)
(iii) =x ¢ Int&(H¢) (¢t,t'y)
By clause (7), there is a t" iz,t such that
(iv) x ¢ In%sz)éit“,ts\
By (i) and clause (6)
(v) x e Int, (¢ (Lt",t>)
and (vi) x e Intaj¢)((t",t})
But then
(vii) x e IntaJW)(ét",t)), contradicting (iv)

GAll: Suppose ¢ is a formula, « is an interpreta-
tion, t and t' are moments of £, and X ¢ Uz: Suppose also
that x ¢ Int, ((H¢»HH$)) (Lt t"D)

then
(i) x ¢ IntCéH¢) (Lt, ')
and (ii) x ¢ In%szH¢)(Lt,t'>) \
‘By clause (6), there is a moment t" i&.t
such that
(iii) x ¢ IntCL(ch) (CE", %)
By clause (6) again, there is a moment s %7 t"

1 %

such that
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(iv) x ¢ Inﬁxf¢)(<srt'>)

728
by clause (6) and (i)

But since <, is transitive, s iz,t and hence,

(v) x ¢ Ingﬁ}¢)((s,t'>)

GAl3: Suppose

(1) x ¢ Int&(d)"’GPtb) (E, ')

Then
(ii) x ¢ Inqu¢)((t,t'>)
but (iii) x ¢ Int,(GP¢) ({t,t'>)
By clause (7), there is a t" Zk t such that
(iv) x ¢ Int (P¢) ({t",t'D)
Hence,
(v) x € Ingﬁwa¢)((t“{t'>)
Since t iz't", by'clause (6)
(vi) x € InE&}ﬂ¢)(<t,t'>)
Hence,
(vii) x ¢ Int&(cp)' ((e,£'>), contradicting (ii)

GAl5: Let T be the set cf formulas ¢ such that if
¢ does not contain R outside the scope of K, then for any
interpretation &, moments t,t' and t" of 4, Ingzﬁ¢)((t,t'>)
is Intaé¢)((t,t">). We will show by induction that every
formula is in T.

(a) If ¢ is an atomic formula, then ¢ is in T by T20.
(b) Suppose ¢ is P=>x and ¢ does not contain R outside the
scope of K. Then ¢y and ¥ do not contain R outside the

scope of K. Suppose also that @, is an interpretation,
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“(c) -

(d)

t and t' are moments of & and x ¢ %2. Then X €

In%sz-ix)((t,t'>)

if and only if
X ﬂ InEL}w)(<t't'>) or X € In%zfx)((t,t'>)

if and only if (by the inductive hypothesis)

X ¢ Inta!w)((t,t">) or X ¢ IngL}x)(<t,t"})

if and only if

. X € Inez}w-»x)((t,t"))

Hence, Intaf¢)(Lt,t'>) is Ingif¢)(<t,t">)

Suppose ¢ is Ky, & is an interpretation. ind +t.%' and

t" are moments of €. By clause (&), Inng¢)((t,t‘>)

is IntajW)(ét,t>) is Inﬁif¢)((t,t">)

Suppose ¢ does not contain R outside the scope of K

and ¢ is =y, HY, Gy cx Avnw. Then { does not contain

R outside the scope of K. Suppose that & is an inter-

pretation and t,t' and t" are moments of 4. We take

four cases:

(1) ¢ is =Y; then Inp&f¢)(<t,t'>) is
Uw&Inquw)((t,t'>) is (by the inductive hypothe-
sis) U“’«;:cnta(w) ({t,t"S) is Int  (9) ({t,t"))

(ii) ¢ is HY; then In%lf¢)((t,t'>) is the set of x ¢
U@ such that for each s, 1f s < t, then x e

(4 , G

In%ﬁ}¢)((s,t')) which is (by the inductive hypo-
thesis) the set of x ¢ %z-such that for each s,

if s ix-t, then x ¢ Ing¥}¢)(<s,t">).which is

Ihtaj¢)(<t,t">)

105



(iii) ¢ is GY; this is analogous to (ii)

(iv) ¢ is Avnw; then In%nﬁ¢)(4t,t'>) is the set of
X € qg_such that, for each y ¢ qi’ x; €
Intajw)((t,t'>) is (by the inductive hypothesis)
the set of x ¢ Ugisuch that, for each y ét&d x;
e Intdb(tb) (t,t"y) is Int ;_(d’) ({E,t"))

This completes the induction. We show now that, for
any formula ¢ that does not contain R outside the\scope of
K, ¢ »K¢ is strongly logically valid. Supbosec@ is an in-
terpretation, t,t’ are moments of ¢, X ¢ Qz, and x ¢
Intdg(-'(d)-* K)) (Kt,t'>).

By clauses (3) and (4)
(i) x e Int,(9) (Kt t'>)
and (ii) x ¢ InEZ}K¢)(Lt,t'>)
By clause (8)
(iii) x ¢ Int, (§) (LE,t5)
But, by the above induction and (1)
(iv) x ¢ In%2}¢)(<t,t>)
By T13b, every instance of GAl5 is logically valid.

GAl8: Assume n ¢ W, ¢ is a formula, @G is an inter-
pretation, t And t' are moments of @, and x ¢ qz: By T13b
it is sufficient to show that x ¢ InEZ}AVnK¢%-KAvn¢)(4t,t'>).
Suppose that x % In%L(AvnK¢ﬁvKAvn¢)(4t,t'>). Then

(i) x e Ingz}AvnK¢)(£t,t'>)

and (ii) x ¢ InﬁszAvn¢)(<t:t'>)

By clause (8)
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(iii) x ¢ InEZfAvn¢)(4t,t>)
By clause (4), there is an a ¢ qz'such that
(iv)  x, ¢ Int,(9) Kt tD)

By (i) and clause (4)
n

(v) =% ¢ Int, (K¢) ({t,t'>)
U
By clause (8)
(vi) xg e Int,(¢) Kt,ty), contradicting (iv)

_GA19: By Tl3a and T13b, it is sufficient” to show
that, for any formula ¢, ¢~ R¢ is logically valid. Suppose
4, is an interpretation, * ir a moment of &, and x € qz. By
Tl0c, it is sufficient to show that x ¢ Ingz}¢)(<t,t>) if
and only if x ¢ InE&}R¢)(<t,t>). But this fo}lows immedi-
ately from clause (9).

GA2l: Suppose

(1) =x ¢ Inta*;(w-) R¢) (L, t7)

Then
(ii) x e Ingz}L¢)(<t,t'>)
and (iii) x ¢ Inga!R¢)(Lt,t'>)
' By (iii) and clause (9)
(iv) x ¢ Intaf¢)(4t"t'>)
But by (ii) and TlO0g

(v) x e Inta,b(é’) (KE',t'y)

GA23: This follows from T31, Tl3a, and T13b.

3. Basic Theorems about Derivabiliﬁy
The theorems on the following list all correspond to

basic theorems of the predicate calculus. By taking all
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7

universal generalizations of axioms as axioms we ensure the

truth of the deduction theorem in the unrestricted form (£).

T34 L]

(a)

(b)
(¢)
(4)

(e)
(£)

If ¢ is a restricted axiom or a general axiom,
then } ¢

IfTF dand T I'', then I' }F ¢

If ¢ ¢ T, then T I ¢

If T+ ¢ and o is not free in any formula of ¢,
then T F Aa¢

IfTtF dand T 95y, then T + VY

If To{d} F ¢, then T+ ¢V

(9 If T+ ¢, then there is a finite set of formulas
T'" such that I''« Tand T' | ¢

(h) I£ T F ¢>9, then Tul{d} ¥ ¥ -

(i) If T F ¢, then T' } ¢, where T'' is the set of
formulas in T that are noﬁ axioms.

Proof: (a), (b), and (c) are trivial consequences

of D5K5.

(a)

Proof by induction on the length of derivations.

Assume the hypothesis, and assume that A is a deriva-
tion of ¢ from T.

that T F AaAn.

N is 1lh(A). There are three cases.

(iy A e TI'. Then {A_,A > Aar_,Aad > is a derivation
n n'"n n n

of AaAn from I', 'since An* AdAn is an instance of

GAS5.
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- (ii) An is an axiom; then A&An is an axiom and, by
(@, F Aed .

(iii) There are j,k < n such that Aj is Akﬁ-An. By the
inductive hypothesis, there are derivations A' of
Ao(a, > 4 ) from T and A" of AaAk from I'. Then
A'“A"“(ﬁa(Ak* b )= (Aod > Aad ), AaAka'AaAn,AaAn>
is a derivation of AaAn from T, since Aa(Aké'An)é
(AaAk* AaAn) is an instance of GA4.

This completes the induction; therefore, since ¢ is
AlL(A)—l' there is a derivation of Aa¢ from T.
(e) A trivial consequence of D55.
(£) Suppése A is a derivation 6% w.from Tu{¢}. We will
show by strong induction that, for each n < 1h(4),
T} ¢-7An. There are three cases.
(1) An e Tu{¢}. We take two subcases.
(a) A ¢ T; then {'An,(Anf (6> 4)) /(¢ An)> is
a derivation of (¢>4 ) from T, since
(Ane-(¢->An)) is an_instance of GAl."
(b) A is ¢; then {((¢>((¢>9)>¢)) > ({6~
(6>¢)) > (d>d))), (6> ((d> )~ 4)),
(6= (0= $)) > (6> ), (6> (6> ), (o> 0)
is a derivation of (¢->An) from I', since the
first formula is an instance of GA2, and the
second and fourth fo;mulas afe instances of
GAl.

(i) Ap li's an axiom; then (An, (A~ (¢—>An)) e (0> An)>
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(h)

(1)

T35.

(a)
(b)

is a derivation of (¢-%An) from T,

(iii) There are j,k < n such that Aj is Ak'*An. By the

inductive hypothesis, there are derivations A' of
(¢-*Ak) from T and A" of (¢-»(Ak-?An)) from T.
Then A'"A""((6 > (A > D)) > ((4>8) > (6> ))),
((p=a)> (6>2)), (4> An)> is a derivation of
(¢-*An) from T,
This completes the induction. Since ¥ is Alh(A)—l'
there is a derivation of ¢ from T.
Suppose that A is a derivation cf ¢ from T. Let T
be the set of formulas An' for n < 1h(A). Then TaTl'
is finite, and A is a derivation of ¢ from Tal'.
Suppose that A is a derivation of ¢ =y from I'. Then
A ,V) is a derivation of Y from Tu{¢}.
Suppose that A is a derivation of ¢ from I'. Then A
is also a derivation of ¢ from the set of formulas in

T that are not axioms.

(a) IfT % ¢, then T F ¢

(b) If ¢ is a gcuneral axiom, then E )

(c¢) IfT g $ and Te I'', then I E ¢

(@) If£T g ¢, then T E Hé, T g G¢, T g K¢, and for

every variable o, T E oo

Proof:
¢ is a generalization of ¢

If ¢ is a genefal axiom and ¥ is a generalization of
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(c)

(a)

T36.

$, then ¥ is also a general axiom and, by T34a; oy
Assume the hypothesis and that ¥ is a generalization
of . Then T } ¥ and, by T34b, T' } ¢

Assume that T E ¢, and that y is a generalization of
H$, Gé, K¢, or Aad (for some variable a). Then y is

a generalization of ¢ and T | y

If 1t is a generalizer and ¢,y are formulas, then

F t(o»9) = (td> 1Y)

(B)

(B)

Proof: By induction on the level of 7.
By T34c and T34f,  (d=>0) > (d>¥). Hence, if T is
0, F (6> 9) > (16 >T¥)
Suppose that n ¢ w, and for any n-level generalizer T
and any formulas ¢,Y, F t(d>P) = (td->7T¢P). 2Also
suppose T' is an n+l-level generalizer and ¢,y are
formulas. Let T and o be those expressions such that
t' is 1”0 and 1 is an n-level géneralizer. Then ¢ is
a l-level generalizer.

By the inductive hypothesis
(1) + t(od>oy)~> (10d > TOY)

By GA4, GA9, Al0 or GAl7 (depending on o)
(2) l-é (¢ )~ (cp> oY)

Hence,
(3) F T(o(¢>) > (o> 0V))

By the inductive hypothesis again,

(1) F tio(6->v) > (66=>0)) > (10(d> ¥) > T(0d>aP))
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From (3) and (4), there follows
(5) & to(¢=>P) > 1(0)>a)

From-(lf apd (5), there follows
(6) F 10(d>V) > (10¢ > TOY)

But this is just

(7Y F t'(o>P)>(t'd>T"Y)

T37. If T E 6>y and T g ¢, then T E v.

Proof: Suppose T 5 ¢~>¢P and T E é. " Suppose also
that T is a generalizer; it is sufficien£ to show that
'+ Tv.

By the hypothésis

(1) Tt (o)

and (2) T | 1¢
" From (1) and T36
(3) T+ 1¢d>7Y
From (2) and (3)

(4) T F 1Y
4, Theorems about Tautologies

T38. If ¢ is a tautology, then E d.

Proof: -We will not formally introduce the notion of
a propositional tautology, and hence we cannot provide a
full formal proof of this theorem. We note, however, that
GAl, GA2,Iand GA3 correspond to a complete set of axioms for

the propositional calculus.
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Suppose that ¢ is a tautology; then, by the complete-
ness proof for the propositional calculus, there is a deri-
vation of ¢ from GAl, GA2, and GA3. Suppose that t is a
generalizer; oy a simple induction using T37, there is a
derivation of 1¢ from those formulas Ty, where ¥y is one of
the instances of GAl, GA2, and GM3 used in the proof of ¢.
Since all of those formulas Ty are axioms, then (by T34)

F t¢.

T39. If 1 £ n and ¢0A ces A ¢n_l~5w is a tautology, then
(a) If for each i < n, T } ¢i’ then T F ¢

(b) " If for each i < n, T E ¢i' then T E V]

Proof: Assume the hypothesié. We define the
sequence of formulas X recursively as follows:

X is (¢0A cos A¢n_l)

Xpe1 ¥8 O Xy

(e.g., if Xo is PAQ AR, then 23 is

R>(Q> (P> (PaQaR))) )

(a) Suppose, for each i < n, T F ;¢ We will show, by

induction on j, that for each j € n, I' Xy * By

J
T38, T F ¥

n-0°
c / I 1 -~
Suppose T | Xp-q * that is, T | ¢n—(j+l) Xp- (541 *

By hypothesis, T + ¢ and hence (T34e)

n-(j+1)’
I' + Xn=(541) * This completes #he induction.
Then T F Xpen’ that is, T F Xg+ BY T38,

T Xo""”' By T34e, T F y.

113



(b)

T40.

T41.

This proof is analogous, except that we use T37 in

place of T34e.

If T is a finite set of formulas and I'' € T, then
(a) !S-; CJIJ(T) >Cca(r*)

(b) lg DJ(T') > DJ(T)

Proof: A trivial induction, using T38 and T39b

If I' is a finite set of formulas, then T ¢ if and

only if 'k CJ(T) > ¢.

Proof: We will prove this theorem by induction on

the number of formulas in T.

(a)
(b)
(c)

5.

T42.

I is 0; then the result follows by T39a.

T is 1; then the result follows by T34f and T34h.
Suppose 1 £ n and, for each set 6f formulas T such
that T is n, and each formula ¢, T + ¢ if and only if
b CJ(T) > ¢. Suppose also that T is n+l. Let ¥ be the
first formula in T, and let T'' be Tn{y}. Then T v ¢
if and only if (by T34f and T34h) T F y>¢ if and only
if.(by the inductive hypothesis) F CJ(T') » (U ¢) if
and only if (by T39a) + (YA CI(T')) > ¢ if and only if

isince (Y ACI(T')) is CJI(T) ) + CI(T) > ¢.

Theorems about Replacement of Formulas

I£fT E ¢, then
L¢
R¢

(a) Tk
5

(b) T
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Proof: Suppose T E ¢
(a) By T354, T E G¢ and' T E H¢. By T3%, T @ L.

(b) By (a), T g L¢; by GA21 and T39%, T t Ré.

?43. If ¢' results from ¢ by replacing 0 or more occur-

rences of ¥ by y' and E pe yP', then E b d'.

Proof: Assume E Yo P'. The proof is by induction,
following the four cases of Dlé.
(1) ¢' is ¢; then, by T38, g pe> ! .
(2) ¢' is ¥' and ¢ is ¥; hy hypothesis, E der ¢
(3) There are formulas X,X',0,8' such that ¢' is x'=» 8',
¢iSX*B:RWUXW'W),RWHQ&'N),QXQX'rmﬁ
L 60", Then, by T39b, k ¢ero'. '
(4) There are formulas x,x‘ such that R(x',x,w',w) and
E.xe»x'. .We take five subcases.
(a) ¢' is -x' and ¢ is -X; then k ¢&¢', by T39b.
(b) ¢' is HX' and ¢ 1is Hx; by T39%b and T35d,
E H(x~=x') and E H(x'+X). By GA9 and T37,
E Hy - Hx' and E Hy'~> Hy. By T3%h, E [ X
(c) ¢' is GX' and ¢ is Gx; this case is analogous
to (b) except that‘GAlO is used in pl~:e of GA9.
(d) ¢'.is KX' and ¢ is Kx; this case is analogous
to (b) except that GAl7 is used in place of GAS.
(e) ¢' is Rx' and ¢ is Ry; this case is also analo-
gous to (b) except that GA20 is used in place

of GA9.
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T44.

(a)

(b)

If ¢' results from ¢ by replacing 0 or more
positive occurrences of y by y' and E v>y', then
kool

If ¢' results from ¢ by ;eplacing 0 or more

negative occurrences of y by y' and E y->9', then

t o' > .

Proof: SupposeAthat E y=>9'. We prove (a) and (b)

together by induction, following the five clauses of D17.

(1)
(2)
(3)

(4)

(5)

¢' is ¢; then E ¢ >¢' and g o' >

¢' is Y' and ¢ is ¢; by hypothesis, E o>9'

There are formulas X,x',9,6' éhch that'¢ is ¥ »6 and

¢' is y'=>0'. We take two subcases:

(a)

(b)

RP(¢',¢,¢',¥); then RP(8',0,¢',¥), RN(X'IXI\P'IW)I
E X' > x and E 8->06'. By T39b, E d>0'.
RN(¢',d,¥',¥); then RN(6',0,¢9"',¥), RP(X',X,¥' V),

E 9'>0 and E,x-»x'. By T39b, E o' > ¢.

There are formulas ¥X,x' such that ¢' is =)' and ¢ is

-'X'
(a)

(b)

We take two subcases:

RP(¢',,9',9); then RN(X',x,¥',¥) and | x'=>X.
By T39b, E d>9'. |
RN(¢',¢,9',¥); then RP(x',X,¥',¥) and £ x>X'.
By T39b, g o' > d.

There are formulas X,X' such that either ¢' is Hy' and

¢ is Hy, ¢' is Gx*' and ¢ is GX, ¢' is Kx' and ¢ is Ky,

o' is RX' and ¢ is Ry, or there is a variable o such

that ¢' is Aayx' and ¢ is Aax. We take two subcases:
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(a) RP(¢',¢,y",y); then RP(x',x,¥',y) and b x>x'.
By T358, £ H(x?x"), k €(x?x"), |k K(x>x") and
E Na(x2x'). By Té42b, E R(x>x'). By GA9, GAlO,
GAl7, GA&, or GA20 respectively, and T37, E ¢d-~>¢'
(b) RN(¢',¢,¥',¥); then RN(x',x,¥',¥) and k£ x'~>X.
By T35d, E H(X'>X)r kg G(x'>x), | K(x'=x) and
E fo(x'=> x). By T42b, E R(x'~* x). By GA9, GAlO,

GAl7, GA4 or GA20, respectively, and T37, E d'> ¢

From this point forward, reference to T39 will often

be omitted.
6. Theorems about Identity

T45. (a) E n=n
(b) k z=n=n=tg

(c) Ig t=n A n=f >C=§

Proof:

(a) Let B be a variable not occurring in n. Then

(1) k& B=n - (B=n = n=n) GA6
(ii) k -n=n=>-f=n T39D .
(iii) f AB-n=n>AB-f=n T35d, GA4, T37
(iv) E -n=n* Ag-B=n GA5, T39b
(v) & n=n GA7, T39b
() (1) k geno(g=gen=®)  GAG
(i1) k z=n=*n=¢ ' : T45a
(e) (1) ¥ n=t>(g=n>z=E) GA6
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(11) k& t=nan=g->=f T39Db

T46. If n,n',L,t' are terms, and n' is obtained from n by
replacing 0 or more occurrences of ¢t by ', then
& g=g'>n=n'.

Proof: Assume the hypothesis. By GA6,

E z=¢'~> (n=n>n=n'). By T45a, k z=¢'> n=n'.

T47. If 1 £ k and no,...,nk“l, EO""’Ek-l are terms, then.

(a) If 6§ is a k-place operation letter, then

b np=Tg A eee A M =0 7 Nge e o Mg =080t By

(b) - If 7 is a k-place predicate letter, then

b Mp=8g A e e A Mg =0y P (Mg ey 1@ ThgeeeBy )

Proof: The proof is trivial. We will demonstrate
the case for k¥ is 3. Assume that no,nl,nz,co,cl,cz are
terms.

(a) Suppose that § is a k-place predicate letter.

(1) lg No=%g *5n0n1n2=6c0c1c2 T46
(ii) g ny=t, ¥ 6c0n1n2=6602;1n2 T46
(1ii1) g n2=52'*5C091n2=5C0C1C2 T46

(iv) E ng=tp ANy =L, An,=t, >
Sngniny=8Cot1%a (i), (i), (1ii),T45c
(b) Suppose that 7 is a k-place predicate letter.
(1) k ny=t, = (mgnyn, > mLoNyNn,) GA6 |
(1) kg ny=fy > (mgynin, > Mg gin,)  GAG
(iii) E ﬁé=§2"(NCOClHZ'QﬁCOClCZ) GA6
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(iv) g Ng=tg® N =01 A Ny=t, >

(ﬂn0n1n2->ﬂcoclc2) (i), (id) ,(iii) ,T3%

(v) E gg=ny>(n, L2, >mn 0,2,) GAG
(vi) |k gy=n; > (mngz %, >mgn z,) GA6
(vii) l-s- L,=n, > (m']int_:2 -»nnonlnz) GA6
(viii) E Ng=tg » N1=81 ° Ny=Cy >
(MTyL1Ty > TNy N,) (v) 4 (vi), (vii) ,T3%
(ix) | ng=tgn ny=ty A n,=g, >

("”onlnzé*"coglcz) (iv) , (viii)
7. Theorems about G, H, and L

T48. (a)
(b)
(c)
(a) G(o=>Y) > (Fp—~>Fy)

E L(¢>y) » (Lo >Ly)
5
5
k
(e) }g M¢<‘+(P¢v.¢vF¢)
k
k
k
5

L(¢>P)=> (Mp>My)
H(¢ ~¥) > (P> PY)

(£) k (HoA PY)>P(on V)
(@) k (GoATY)>F(6ay)
(h) k(L) >M(6aP)
(i) Lo« =M

Proof: All of the parts are trivial consequences of

GA9 and GAlO.

T49. (a) l-é P(pv P)es (P v PY)

(b) K F(dv P)«> (Fbv Fy)
L
S

(c) k M{¢v ) (M) v MY)
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(@) k£ H(da¥)er (HY 4 HY)
(e) k£ G(¢a)er (GoaGY)
() & L(oap)e (Léa L)
Proof
(@) (1) E H($v)a=$=9)
(ii) & P((év ) A =¢) > Py
(iii). £ P(¢v ) aH ¢ >PY
(iv) E P(ov i) > (Pov PY)
(v) 5 P¢>P(ovy)
(vi) l-é Py=>P(dv )
(vii) & P(¢v ¥) & (Pov PY)

(b) Similar to (a)

(¢) Follows from (a), (b), and T48e

™32.T354
T48c,T37

T48c,T48%

T38,T354,T48c,T37

738,T35d4,748c,T37

@ (1 k aHe (=¢ v 2) 4> (aHamd v =Ha=y)  from (a)
(ii) E He (-?d)v —1111) &> (H-1-1¢I\ H"'l"llp)
(iii) l-s— H(d A V) (Ho A HY) T43
(e) Similar to (d) using (b)-
(£) 'Similar to (d) using (c)
8. Theorems about Quantification
T50. (a) !5 Ao (da P) &> (Aad a4 Aar)
(b)) k Aad AVoy =>Va(d a P)
(@) k Aa(=9) + (Vag> Vay)
(4) E Ado...Aan_lw¢e9an0...Van_l¢
Proof:
(@) (i) K ¢ab>d 738
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(ii) Ao 4 ¥) > Aot T35d,GA4,T37

(iii) "k ¢r Y T38
(iv) & Aa(day) > Aay T35d,GA4,T37
(v) & noldnd) > Aap s Aad (ii), (iv)
(vi) k£ ¢ (4> (da)) T38
(vii) k Aa¢ > (Aap> Aa(é A )i (vi) ,GA4
(viii) g hao a Aap > Ao (d ~ )
(ix) E Aa(d s ¥) & (hada Aap) (V) (vidd)
(b) (1) kK Aole-y) > (Aap~ Aa-y) GA4
(ii) & Acg aVap > ~Aald= =¥)
(iii) k& Aad a Vay=>Val(s ay) T43
(€) (1) k Aa(~>=9) > (Aump>Aa-9)  GA4
(i) kg Aa(é-y) > (Aa=p> Aoad) T43
(1ii1) k£ Aa(e~>¥) > (Vap>Vay)

(d) Proof by induction; let N be the set of n ¢ w such
that, for any variables Qn,...,0,_ and any formula ¢
g Aao...Aan_lw¢eawVao...Van_l¢. It is suff1c1ept to
show by induction that N is w.
(i) 0 e¢ N, since, by T38, E -$>=¢, which is
}5 I\OLO. . ,\ao_l"'(t/(') —‘\jaon . oVa0_1¢
(ii) . Suppose n ¢ iv. By the inductive hypothesis
s e & V e o e - L]
E Moy Ao _q7mha ¢ -Va, Vo _,-Ao_=¢. By
T43 ’ }5 /\aoo . .AOLn"?d)('* "YOLO. . .VOLn(b-

This completes the proof.

T51. If o ¢ £v(¢), then
Aa) k& Ao (o - P)e> (¢ > Aay)
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(b) Mo (Y = ¢) &> (Nay > ¢)

uT

Proof Suppose a ¢ fv(¢)
(a) (1) k ho (¢ >¢) = (¢ Aay) GA4,GA5,T39b
(11) & Na(yp > (6 +¥)) GAl,T35b,T35d
.(iii) Ig Ny > Aa (o~ P) (1i) ,GA4
(iv) k£ =¢ > (¢~ ) T38
(v) k£ Mo=d= Aa(d =) (iv) ,T35¢,GA4
(vi) k£ =¢ > ha(d>19) (v) ,GA5
(vii) k£ (6> Aap) > Aalg->y) (1ii), (vi) -
(viii) E Na (o> P)e> (¢~ Aay) (L) , (vid)

((b) By (a), k£ Ma(=¢=y)e> (=¢>Aamy).
By T38 and T43, E Na(p>d)e> (Vayp » ¢)

T52., If B does not occur in ¢, then i a=B~> (¢e>rala,B,d)).

Proof: (By induction on the rank of ¢.) Suppose
that B does not occur in ¢. If B is'a, then the theorem
follows at once by TBé and T5a. Suppose then that g is not
O |

(a) If ¢ is an atomic formula, then the conclusion foliOWS'
by repeated applications of GA6 and T39b.
(by If ¢ is =Y or ¢ iz Y= x, the conclusion follows by the

inductive hypothesis and T39b. 4

(c) Suppose ¢ is Ayy. Then R is not v. By the inductive
hypothesis, E a=B = (ye>ra(c,B8,P)). We take two cases.

(1) Suppose o is not Y. Thén E a=R > (p>rala,B,¥))

and.t o=8 = (ra(a,B,¥) > y). By T51 and T35d,
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- (4)

(e)
(£)

(9)

E o=B>Ay(¥>ra(o,8,V)) and £ a=8>Ay(ra(a,8,%)>
¥). By GA4 and T39, & o=B8~ (Ayy=Ayrala,B,¥))
and é o=B8- (hyra(a,8,9) > AyY) . By T39 again,
5 a=B-9(Af¢6>Ayra(a,B,w)); put this is

k o=B~>(¢orala, b, ).
(ii) Suppose o is y. By GAR4, T39, and T45b,

E Aoy » (Aa=ra(a,B,¥) > Ao=a=B) and

n

E ABra(a,B,¥) > (AR~ -+ AB~B=a). By GA7 and T39,
E Aoy =Aa-ra(a,B,¥) and i ABra (o, B,¥)> =AB=y.
By GAS5 and 'W'Bc, E -ra(a,B,¥)~> Ao=-ra(o,B,y) and
E -y > AB=y. By T39, E Aoy »ra(a,B,y) and
E AMpra(o,B,¥) >~ ¢. By T35d4 and T5la, E Ao >
Apra(a,B,¥) and k ABra (o, B,V) » Aaw; But then by
T39b, k ¢rrala,B, ) and k oa=B$ (¢e>ralo,B,9)) .
Sﬁppose ¢ is HY. By the inductive hypothesis,
E a=B - (Y ra(o,B,¥)). By T354 and GA9, E Ho=8 >
H(y=>ra(o,B8,¥)) and E Ha#B~¢H(ra(a,B,¢)a'w). By GAS8,
E o=f-~ Ho=B. By GA9, E a=B > (Hy& Hra(a,R,¥)) which
is i a=B > (¢ rale,B,9)).
Suppose ¢ is GY. This is similar to (d).
Suppose ¢ is Ky. By the inductive hypothes.s,
£ o= > (P> ra(a,;B,¥)). By T35d4, GAl7, and T39b,
k- Ko=8 > (Ky<rKra(a,8,y)). By GALS, k o=~ Ka=B. Ry
T39b, I o=B > (¢e>xra(e,B,0)).
Suppose ¢'is RY. By the inductive hypothesis,

E a=B= (Ve ra(o,B,¥)). By T354, GA20, and T39Db,
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E Ra=B - (Ry«rRra(o,B,y)). By GA8, GA2l, and T39b,
E o=f- Ra=f. By T39 again, E a=8 - (Ry«~>Rra(a,B,V}),

which is S a=§-*(¢+*ra(a,8,¢)).

T53, If B does not occur in ¢ and B is not o, then

k5 Aag>ralo,Br¢).

Proof: Suppose that B does not occur in ¢ and g is
not a. By T52, g a=B < (¢ ra(a,B,$)). Hence, E ¢ >
(wra(a;$,¢)ﬁ-wa=8). By GA4, E Aad - (Ao~ra(o,B, )~ Aamo=8).
By GA7, E Aoy -+ <Ao-ra(a,B,$) . By T5c, ® d fvira(o,8,¢)),
and by GAS, E -ra(o,B,9)~ Aa-ra(c,B,¢). By T39Db, E ACd ~>
ra(o,B,9). |

T54. lg Aod >

Proof: Let B be some variable that does not occur
in Aug. Then, bv T53, £ Aaé>ral(a,8,¢). By T35d and T5la,
E Aod~> ARra(a,B,d). By GA7, E VBB=0. and by T50b, E Aag =
VB(B=a nral(e,B,$)). By T52 and T35d, & AB(B=c a ra(a,B,¢)>
$). By T50c, E Aod->» ~AB-¢. By GA5 and T39b, E “AB~¢ > ¢,

By T39b,‘§ hod > ¢.

T55. (a) AoHdb & HAGO

5
(b) g AaG¢§aGAa¢
&

(a) ANaL<> LAO
Proof
(a) (1) § H(Aod - ¢) T54,T35d
(ii) g HAod - Ho ' GA9,T37
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(iii)
(iv)
(v)
(vi)
(vii)
(viii)

(ix)

(x)

(xi)
(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xviis
(xviii)

(xix)

oT T oT ol oT oT ulT

T oT o uT ol ol oT uT ul

nT

Ao (HNad < H)
NoHAod > AoH G-
HAo¢ - AcHAOY
HAa¢-»A&H¢
NoH¢~> Ho
G(ANoH¢ > HY)
FhoH¢ >FH¢

AoF AoH ¢ » AoFH ¢
FAoH ¢ = AoFAdll ¢
FAOH¢ » Awe'B ¢
HFAOH ¢ > HAGFH ¢
AoH ¢ - HAOFH ¢
+¢ > GrHA= G
FHo > ¢
HAoFH$ » HNod
Aol ¢ = HAa

NoH de> HA Qb

(b) Analogous to (a)

T35d

GA4, T37
GA5

(ivj, (v)
T54

T353
T48d, T37
T35d,GA4,T37
GAS5 '

(x), (xi)

- T35d,GA9

(xiii) ,GAl4
GAL3

T43

T354,GA4,T37,T354,GA9
(xiv), (xvii) ,T44a

(vi) , (xviii)

T38,T44

() (i) kAo ¢-> Aot ¢

(i1) E Aol ¢ » Aod 738,T44

(iii) é hoLo > AaGo- T38,T44
(iv) k AaL¢-> LAad (1)y (i1) , (iii), (@), (D)

(v) E LA0O > AcH A Acd A NGO (a) , (b)

(vi) E ANoHO A Acd A AaG¢'*AaL¢ T50a

(vii) k AoLées Lo (iv), (v), (vi)

T56. (a) E a=p~> (9o ps(Biaie))
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(b} & Aap>ps(B,a,9)

() k o=B=(ps(a,y,$)e>ps(B,v,6))
(@) k dops(a, 8, (ps(Brard)))
(e) L If B ¢ £v(¢), then k Aad=ABps(B,a,¢)

Proof:
(a) By induction on the rank of ¢
(1) If ¢ is an étomic formula, the conclusion
' follows by GA6.

(2) If (a) holds for ¢ and ¥, then it holds for =¢
and ¢~=>y Ly T>%L.

(3) Suppose, for each formula Yy such that rk{) <
rk(AE¢), E a=8 > (P«ps(B,a,¥)). There are three
cases.

(1) o ¢ £v(Ag9); then k o=B-> (AE¢wps(B,a,ALY))

by T9b and T38. |

(i1) o ¢ fv(AE¢) and E does not occur in B.
Then £ is not B, & is not o (since § ¢
fv(AEP) ), and & does not beccur in a=8.
By tpe inductive hypothesis, E o=r = (o=
ps(B,a,9)) and | o= > (ps(B,a,¢) > ¢}. By
T35d and TS5la, | a=B >AE(¢ »ps(B,a,d)) and
k o=B*AL(ps(B,0,¢) > ¢). By GA4, k a=8~
(NEd «>AEPS (B,0,¢)) . - But by definition this
is k a=R~ (AEdp<rps (B, a,NEd) ).

(iii) o € fv(AEd) and & occurs in B (i.e. & is b).

Let Y be the first variable that occurs



neither in ¢ nor in B. Then ps(B,a,AEd) is
Ayps(B,a,ra(E,y,é)). By the inductive hypo- |
the§is and T8 E a=R > (ra(g,y, )«
ps(B,a,ra(g,v,¢))). By T39%, k o=8-
(ra(&,v,9) »ps(B,a,ralE,v,9))) and | o=B-
(ps(B,a,ra(g,v,¢)) »ral&,vy,¢)). By T53,
E N >ral(E,v,9). By T39, k a=B = (AED -
ps(B,a,ra(E,y,9))). By T35d4, T5la (twice)
and T49b, k a=B < (AE¢ » Nyps(B,a,ra(&,v,9))).
By T53 and T5c, E Ayralg,y,9) ~
ra(y,E,ra(E,v,9)). By T6, kg Ayra(E,y,¢) > ¢.
By T5la and T5c, k£ Avra(&,v,¢) > Afé. By
T5la and GA4, k a=B > (Ayps(B,a,ra(E,y,9) )~
Nyra(g,y,¢}} and g o= > (Nyps(B,,ralE,v,¢))
- NEd). By T39Db, E a=B » (AEd e ps(B,0, AED)) .
(4) The cases for H¢, G¢, K¢ and R are all analogous
to the correséonding cases of T52,
(b) k Na¢->ps(B,ord)
(L) B is o; follows immediately from T9a and T54.
(2) 8 is not a. By (a) and T3%, £ ¢ = (-ps(B,0,0)>
20=R8). By GA4 and T44, E Aa¢-*(ﬂawps(8,d,¢)9 '
Nama=B). By GA7, k Aad = ~Aa-ps(B,0,¢) . By GAS

-

l‘s‘ /\Ot¢~>PS(B,0t,¢) .

and T9c, & vps(B,a,¢)*,Aawp5(B,&,¢) and hence,

() k o=B=>(ps(a,y,¢)> ps(B,v,9))

(1) o is not ¥y, B is not y. By (a), E Y=o -r (¢ <>
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ps(a,v,¢)) and £ v=8 >(9erps(B,v,¢)). By T39b
and T35, | Av(y=a ay=g > (ps(a.v,9) Ps(B,Y,9))).
By T51b and T9¢, | Vy(y=a »y=8) > (ps (a, Y, §) <
ps(B,Yv,¢)). By T45a, }g a=f -3 a=0 a a=R. éy T53,
\g Ay- (y=a a Y=B) % = (o=0 a a=8) and hence, E a=o A
0=8 > Vy(y=a A y=8) and k o=8>Vy(y=a »Y=B). By
T390, | o=B > (ps(a, Y, d)es ps(B,v,9)).

(2) o is y. By (a), k y=B=(¢ops(B,v,9)). By T3a,
k=8> (ps(a,Y,8)<>ps (B, 7, 8)) .

(3) B isy. By {a), % y=a->(¢ops(e,v,0)). By T4sh,
T39b, and T9a, k a=B - (ps(u,Y,$)e> ps(8,7,0)).

(d) k ¢<rps(o,B,ps(B,a,9))

(1) o is B; then the qonclusion follow's immediately
by T9%a. - |

(2.) a is not B. By (a) and T45b, I-é B=0 > (¢&
ps(B,0,¢)). By (a), k p=a= (ps(B,as¢)«
ps(a,B,ps(B,0,d))) .. Thenlg B=a > (¢~
ps(o,B,ps(B,a,¢))) and [ P=a >(=¢-
-ps(a,B,ps(B,a,$))). By T50c, k VBRB=a » (VB¢ >
VBps (0, 8,05 (8,0,4))) and k VBB=a > (VB=¢ >
VBps(a, B,ps(B,a,9))). By GA7, - VB¢~
VBps (o, 8,05 (B, 0, 4)) and k VBé
VB-ps (o, B8,ps(B8,0,9)). By T54, & ¢->VB¢ and
k =¢= Vg9, Hence, I ¢ >Veps (o, B,ps(Bra,¢)) and
}é ¢ »Npps (o, B,ps(B,a,¢)). By GA5 and T9c,
k Veps(a,B,ps(Bras9))> ps (o, B,pPs(Brosd)) and
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(e)

k. V8PS (as8,PS (B,ar¢)) > S (os B/PS (Brtr9))
Hence, k£ ¢>ps(a,B,ps(B,0,0)) and"g ¢
-ps(a,B,ps(B,a,¢)). By T39b, £ ¢
ps(a,B,ps(B,a,9)).
If B f fv(¢), then E nad<>ABps (B,a,9) . Assume B ¢
iv(¢). By (b), % Aoad>ps(B,a,d). By GA4 and T37,
E N had = ARps(B,a,9). By GAS, E Aad > MBNAa¢d and hence,
E Ao > ABps(B,a,d). By an argument similar to the
above, E ABps(B,a,¢)~3Aups(a,6,ps(6,&,¢)). By (c) and
743, L ABps(8,0,¢} + Aco and hence L Aade ABps(B,a,9) .

9. Theorems about Replacement of Variables

T57.

If f is a one-to-one function, F1ld(f) € Iv, Rng(f) and

Doii(f) are disjoint, all the variables that occur in ¢ are

in Dem(f) and aO""’an-l are all the free variables of ¢,

then

(1)

(2)

(3)

(a) If n is not 0, then
g ao=f(a0)A cen A an_l=f(an_l)~9(¢é¢rep(¢,f))
(b) If n is 0, then E ¢e>rep(d,£)

Proof: (By induction on the rank of ¢)

If ¢ is an atomic formula, the theorem holds by
repeated applications of GA6 and T39b.

If ¢ is =Y or ¢ is ¥- X, the result follows by the
inductive hypothesis and T39b.:

Suppose ¢ is Aay. We take three cases:

(a) a ¢ £v(y). Then f£(a) ¢ £v(rep(y,£)). By GAS5 and

T54, g Aoy« and E Af (o) rep (P, f)e rep(Y,£f). And
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by T39b and the inductive hypothesis, E Acye
A (o) rep (Y, £) .. _

(b) Suppose f\((xp) is {a}. Then fv(rep(y,£f)) is
{f(a)}. By the inductive hypothesis, }_E, a=f (a)>
(pe>rep(yY,£)). By T39b, lg Y= (~xep(y,£)>
~o=f (a)) and }é rep(y,f) > (+yp > ~-£(a)=0a). By GA?,
Ig Aoy -+ (Aa-rep (¥, £) > Ao~a=£(a)) and
E Af () rep (P, £) = (AE(e)~V=>Af(a)~£(a)=a). By GA7
and T39b, £ Aoy >-Aa=rep(y,£). and
!; Af (o) ren (. £)-> ~Af (a)=y. By GAS5 (since f(a) ¢
fv(y) and o ¢ £v(rep(¢,f)) ) k -rep(¥,£)~
Aa-rep (¥, f) andi-é Ay >Nf(a)=P. By T39b, I; Aoy >
rep(y,f) and FE-) At (a)rep (Y, E) = Y. -By T354 and
T51a, l_..';'/\OLUJ <> Af () rep (Y, L) and% AE (o) rep (U, £)~>
‘/\oup; hence }g Aoy »rep (Aav, £).

(c) Suppose a ¢ fv(¢) and fv(¢) is not {a}. Let

CBgrererBag be (in order) the free variables
(pther than a) that occur in V.. By the inductive
hypothesis and T39b, }g Bo=f(80) Aeevah Cn-l=
£(B, 1) > (V> (~rep(y,£) > -o=f(a))) and & B,=
£(By) A veen B _1=f(B _q) > (xrep(¥,£) > Y
~f (a)=0)). Let x be the formula Bo=f(80) A esen
Bn_l=f(8n_l) . By GA4 and T39b, 'é Aoy = (Aay -
(Ao~rep (¥, £) > Na~o=£f (0))) and }g AE(a) X =
(Af () rep (Y, £) » (Af(a)-U>»Af(a)=£(a)=a)). By GAT7
and T39%, IE Aoy = (Ao > wAa-~rep (¥, £)) and
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b Af(a)x«a(Af(a)rep(w,é)é -Af(a)=y). Since
Dom(f)aRng(f) is 0; o ¢ £v(x), £(a) ¢ £v(X),
o ¢ fv(rep(p,£)) and £(a) ¢ £fv(y). Hence, by
Gn3> and T39Db, E ¥ = (hoay »>rep(y,£f)) and E X >
(M (a)rep(y,£)-» ¢). By T5la (twice) and T39b,
E X » (Aap > Af (a)rep(y. £)) and k x ~ (Af(a)rep(y,f)
- AayP). By T39b, E X > (hop«rep(Aay,£)).

(4) The cases where ¢ is HU, Gy, K¢ or Ry are analo-

gous to the corresponding cases of T52.

758, If f is a one-to-one function, Fld(f) ¢ Iv, all the
variables that occur in ¢ are in Dom(f) .and do""’an—l are
all the free variables of ¢, then
(a) If n is not 0, then
E a0=f(a0)A... Aan_1=f(anﬁl)-a(¢e¢rep(¢,f))
(b If n is 0, then E d<>rep(d,£)

Proof: Assume the hypothesis; Let © be the set of
variables in ¢, and let £' be £n(6xRng(f)). Then the hypo-
thesis holds for f' also. Since F1ld(f') is finite, there is
a set of variables 0' such that 0 is equinumerous with 0
and rld(f)a0' is 0. Let g be a one~to-one function from 0
onto ©'. Let h be that one-to-one function from 0' onto
Rng(f') such that, for each 8 ¢ 0', h(B) is £'(§(B)). By
T4, rep(rep(¢,g),h) is rep(¢,£f). Let Goreesr®p be the
free variables of ¢. We will prove fhe case where n is not

0; the other case is similar.

131



By T57, E ao=g(a0)A cos Aah_l=g(an;l):*(¢~+rep(¢,g))-
g(ao),...,g(an_l), of course, are the free variables of
rep(¢,g) . .

By T57 again (since h(g(ai)) is f(ai) ) . E g(a0)=f(aO)A
oo A g(an_l)=f(an__l) - (rep(¢,9)¢«> rep(rep(d,g) ,h)).

By T39b, we have E ag=g(ag) A oun a,_1=9 (e, _4)» glog)=
f(ao) Aeon Ag(an-].),=f(an—.l) =+ (¢s>rep(d,£)).

Singe'none of the variables g(ao),...,g(an_l) occur in ¢
or in rep(¢,£), we have, by repeated use_of T354 and T51b,
5 Vg(uo)...Vg(an_l)(aowgfuo)n ceena g=gla 4)a glog)=
£(ag) A +ee ngla_)=fla ;) > (¢$erep(d,£)).

By T53, E Ag(ao)...Ag(an_l)(a0=g(a0)n ee A an_l=g(an_l)A
g(a0)=f(a0)n cee A g(an_l)=f(un_l)—>(a0=a01§... Aan_l=dn_l A
ao*f(aOXA ...:\an_l=f(an_l)).

By T45a, T504, and T39b, E a0=f(a0)n ...;\OLn__l=f(an_l)—>
Vg(ao)...Vg(an_l)(a0=g(a0)A coo Aan_1=g(ah_l)n g(a0)=f(a0)A
...;\g(an_l)=f(an_l)), and by T39b, i a0=f(a0)A R N

fla, 1)~ (¢e>repi{d,£f)).

T59., If f is a one-to-one function, Fld(f) < Iv, and every
variable that occurs in ¢ or in some formula of T is in
Dom(f), tuen

(a) T F'¢ if and only if REP(T,£f) Fk rep(¢,f)

(b) Tk ¢ if and only if REP (T, £) L rep(¢,f)

Proof:

(a) Assume the hypothesis. First, suppose that I' F ¢.



g

By T34a, there is a finite set of formulas TI'' such
that I''¢ T and I'' + ¢. There is a derivation A of ¢
from I''. Let g be £ (0xRng(f)), where © is the
(finite) set of variables that occur in T' or in ¢.
There is a function h such that g € h, h is a one-to-
ore function, Fld(h) « Iv, and any variable that
occurs in some formula An' for n < 1h(A), is in Dom(h).
We will prove by strong induction that, for any n <
1h(A), REP(T',h) rep(An,h). Suppose that n < lh(A):
there are three cases:
(i) An is an axiom; then é Ah.and, by T39b and T58,
g rep(An,h). Hence, REP(T',h) b rep(An,h).
(ii) An e T''; then rep(An,h) ¢ REP(T',h) and, by T34c,
REP(T',h) } rep(An,h).

(1ii) Thgre are j,k < n such that Aj is Ak*'An. By the
'Eﬁéuctive hypothesis, REP(T',h) F rep(Ak,h) and
REP(T'',h) F rep(Ak*'An,h).

But then REP(T',h) | rep(Ak,h) > rep(An,h)
and, by T34e, REP(I',h) k rep(An,h).

This completes the induction; for any n <
1h(A), REP(I'',h) } rep(An,h). In particular,
REP(T',h) }F rep(é¢,h). Since g = h,

REP(I'',qg) F rep(¢,g). .Since g égrees with £ for
the variables in 0, REP(T',f) F rep(4,f). By
m34b, RER(T,£) - rep(s,f).

Conversely, suppose that REP(I',f) F rep(¢,£f).
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(b)

lo.

D56-

T60.

By an argument similar‘to the one above,

REP (REP (T, £) ,#) | rep(rep(¢,£),£), i.e. T F ¢.
First, suppose T E ¢ and that 1 is a generalizer. Let
t' be that generalizer which is the result of deleting
from T all occurrences of (g}“a, where o does not
occur in rep(¢,f). By a.simple induction using GAS5,
T54 and T43, t trep(¢,f) & t'rep(é,£) . By hypothesis
r - rep(r'rep(¢,f),%). By (a),

REP(T,£) b rep(rep(t'rep(¢,£),£),£). That is,

REP(T,f) | T'rep(¢,f). By T39a, REP(T,f) + trep(¢,£f).
For the other conditional, suppose that

REP (T, £) E rep(¢,£f) and that 1 is a generalizer. Let

7' be obtained as before, this time by omitting the

vacuous quantifiers ovér b, As before, E T¢+1'd. By

hypothesis, REP(I',f) | rep(t'¢,f). By (a), T' } t'¢.

By T3%a, T + t¢.

Consistency

(a) T is consistent if and only if there is a formula -
¢ such that not T F 6.

(by T is inconsiztent if and only if T is not

consistent.

All of the following conditions are equivalent:
(a) T is inconsistent.
(b)) There is a finite subset T' of T such that I'' is

inconsistent,
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(c) There is a formula. ¢ ¢ T such that T } -¢.

(d) For some formula ¢, T' } ¢ b,

Proof: The proof is trivial, and analogous to the

case for the ordinary predicate calculus.

T61. If I' is a finite set of formulas, then T is inconsis-

tent if and only if } =CJ(T).

Proof: Suppose I is a finite set of formulas.
Suppose first that T is inconsistent; then (T60c) there is a
formula ¢ ¢ T such that T } =¢. By T4l, | CT(¥) = =¢. By
738, + CIJ(T)-»> ¢. Hence, F ~CI(I). .

Conversely, suppose that  -CJ(T). T cannot be 0,
since then we have (by T38) k CJ(T); this is impossible (by
T33) since CJ(I) and ~CJ(I') cannot both be logically valid.
Hence, there is a formula ¢ ¢ T'. By T39%a and the hypothe-

sis,  CI(T)->~¢., By T4l, T } =¢, and T is inconsistent.

T62. If Tu{Va¢} is consistent, where o does not occur in

any formula of I', then Tu{¢} is consistent.

Proof: Assume the hypothesis. Then (T60c) not
Tv{Vo¢} - ~Vod. By T34h, not I + Voo <Vad, and hence not
'+ =Ved. Then not T + Aa-~d. By T34d, not T + =¢.

Suppose, for reductio, that I'v{¢} is not consistent.
Then (T60c) there is a formula ¥ ¢ Tu{¢} such that
l'o{¢} + =Y. There are two cases.

(i) ¥ is ¢; then by T34f, T b ¢ > =¢ and T b =¢, contra-
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dicting the above paragraph.
(ii) ¢ is not ¢; then, by T34f, T } ¢ =Y. Hence
T b ¢ =¢. By T34h, Tu{y} | =¢; since y ¢ T, T F =4,

contradicting the above.

763, If Tv{¢} is inconsistent and }+ ¢ ->¢, then Tu{yl} is

inconsistent.

Proof: Assume the hypothesis. Then (T60c) there is
a formula ¥ ¢ Tu{¢} such that Tu{¢} + -x. ~There are two
cases.

(i) x is ¢; then by T34f, T } ¢9+¢, and T + =¢. By
T34b, T + =Y. By T34b, Tu{y} b+ =y, and Tu{yl is
inconsistent (by T60c). ‘

(ii) x is not ¢; then, by T34f, T | x4>w¢. By T34b,
I b y>=¥, and T } $=>=x. By T34h, To{y} & =x.

Since X € I', Tu{y} is inconsistent.

m64, If T is a set of formulas, £ is a one-to-one function,
F13(f) & Iv, and every variable that occurs in some formula
of T is in Dom(f), then T is consistent if and or'ty if
REP(I',£f) is consistent. |

Proof: Assume the hypothesis.

First, suppose that REP(T,f) is not consistent. Then
(T60c) there is a formula ¥ € REP(T,f) such that REP(T,f) |-
~«y. There is a formula ¢ ¢ T such that ¢ is rep(¢,£f); then
-y is rep(~¢,£f). Hence, by T59, I'k =¢, and T' is inconsis-

tent.
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On the other hand, suppose I is inconsistent. Then
there is a ¢ € T such that ' + <$. By T59, REP(T,f) +

ﬁrép(¢,f), and therefore REP(T',f) is inconsistent.

11. Theorems about Arrangements
We now begin a series of theorems that will be used

in the final completeness proof in Chapter IV.

D57. A is an arrangement consistent with ' if and only if

(1) A is an arrangement
(2) For each formula ¢ and each k ¢ w cuzh that

lev(d,k,A,40,0)), Tv{¢} is consistent.

D58. A is a consistent arrangement if and only if A is an

arrangement consistent with 0.

T65. If A is a complete arrangement and A is an arrangement
consistent with I' and the language of I' is included in the

language of A, then T & Aé({0,0)).

Proof: Assume the hypothesis, and assume that ¢ ¢ T.
Since the language of T is included in the language of A, ¢
is a formula of the language of A. Since A is an extension
of A with respect to the set of formulas of the language 5f
A, either ¢ ¢ A2(§0,0>) or «$ € A2(<0,0>). Suppose, for
reductin, that =¢ € A2(<0,0)). Since A is consistent with
I', and lev(=9,0,4,40,0%), Tu{¢} is consistent. But this (by

T34¢c) ic impossible.

T66. If A is an arrangement, m,n € AO, I' is finite and for
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each ¢ ¢ I there is a k £ p such that lev(¢,k,A,{m,nd), then
there are a generalizer T and a formula ¥ such that

leV(UJ:P+4,A,<0,O>) and}g Y=+ =T1=CJI(T).

Assume the hypothesis. Let h be that function whose
domain is T, and such that, for each ¢ ¢ T, h(¢$) is the
least k such that lev(¢,k,A,{m,n)). Let p be the largest
numbker in Rng(h). Then, by T25c, for each ¢ ¢ T,
lev(¢,p,A,<m,nd). By D47, lev(CI(T),p+1,3,{m,nd).

We now take nine cases, according to whether 0 <

A
0; and also according to whetler .n <A n, m

n,

0 is n, or n <

A
is n, or n <y M.
(1) 0 <, nand m <, n. Then lev (pcI(T) ,p+2,A,4n,nd);

lev (KPCJ(T) ,p+3,A,{n,0%); lev(FKPCJ(T),p+4,5,40,0D).
Since (by GAl6, T38, and T43) \; FKPCJ (T) -+ «GKH~-CJI (D),
this completes case (1).

(2) 0 <, nand mis n. Then lev (KCI(T) ,p+2,A,{n,0%);
lev (FRCI(T) ,p+3,A,{(n,0%) . Since (by GAl6 and T43)
E FKCJ (T) = 2GK~CJ ('), this completes (2).

3y o <a D and n <, m. Then lev (FCI(T) ,p+2,A,{n,mS) ;
lev (KFCI(T) ,p+3,4,<n,0%); le\.7(FKFCJ(I’) ,'p+4,A,<0,o>) .

By GAlé6, T38, and T43, }é FKFCJ (T) = ~GKG~=CJI(T) .

~~
W
~

A
T38, lé PCI(T)=> «H~CJI(T).

0 is n and m <, n. Then lev(PCJ(I),p+2,A,{n,n>). By

(5) 0 is n and m is n; then lev(cJ(I), p+l,A,<0,0>). By
T28, }é CI () » =2CT (1),

(6) 0 is n and n <A m; then lev(FCJ(r),p+2,A,{(n,md). By
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A
lev{(KPCJ(T) ,p+3,A,{(n,0%) ; lev(PKPCJ(I),p+3,A,{0,0>).

(7) n <A 0 and m <, n. Then lev(PCJ(T),p+2,A,{n,nd);

by GAl6, T38, and T43, }5 PKPCJ (T)~> =HKH~CJ (T) .

(8) n <y O and m is n. Then lev(KCJ(T),p+2,A,{n,0>);
lev (PKCJ(T) ,p+3,A,{0,0>). By GAl6 and T43,
t PKCJ (T) » =HK-CJ(T) .

(9) n <, 0 and n <, m. Then lev (FCJI(T),p+2,2,{n,nd);
lev(KFCJI(T) ,p+3,A,{n,0)); lev(PKFCJ(T),p+4,A,{0,0)).
By GA9, T38, and T43, l-s: PKCJ (T)~> «HKG~CJiT).

This completes the proof. Note tbat.there are just nine

possibilities for the generalizer t -- GKHO, GKO, GKGO, HO,

0, GO, HKHO, HKO, and HKGO.

T67. If A is a consistent, complete arrangement, m,n ¢ Ao

and lev(¢,k,A,<m,nd), then ¢ ¢ Az({m,n>).

Proof: Assume the hypothesis, and assume that ¢ ¢
Az((m,n>). Since A is complete, =¢ ¢ Az((m,n>). By T25c,
lev(~¢,k,A,{m,nP). By T66, there are a generalizer 1, a
formula ¥ and a j € w such that lev(y,3,A,{0,0>) and é U -
~7t+CJI({¢,+¢}). By T38, E 1=CI({$,~¢}). Hence, g =), and-

{$} is inconsistent, contradicting the hypothesis.

T68. »7 A is a consistent, complete arrangement, m,n ¢ Ao
and ¢ is a formula of the language of A, then
(a) Ifk ¢, ¢ ¢ A (mn)

(b) ¢ e Az((m,n>) if and only if =¢ ¢ A2(<m,n>).
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Proof: Assume the hypothesis."

(a) Suppose E ¢ and ¢ ¢.A2(<m,ﬁ>). Since A is complete,
- ¢ Az((m,nb). By T66, there is a generalizer T, a
formula ¢ and é j ¢ w such that iev(y,j,A,£0,0>) and
E Y= ~T2=¢. By T39b, E T==¢. By T39b again, k -y.
Hence {y} is inconsistent, contradicting the hypothe-
sis.

(b) Since A is complete. either ¢ e AZ((m,n>) or ~¢ ¢
A2(<m,n>). We need only show that'nbt both ¢ €
A2(<m,n>) and ¢ ¢ A:((m,n>). Suppose, then, that ¢ ¢
Az((m,n7) and -~¢ ¢ Az((m,n>). By T66, there is a
generalizer 1, a formula Y and a j ¢ w such that
lev(¢,3,A,40,0>) and ‘g 1])*>—:T-:CJ({¢,-:¢}).. By T38,

E t2CI({¢,~¢}). Bv T39b, E . Henée‘{w} is incon-

sistent, contradicting the hypothesis.

T69., If A is a consistent, complete arrangement and

m,n;p ¢ A then

0!

(a) If ¢ A2(<m,n>) and ¢-=> Y ¢ Az(Zm,n>), then ¢ ¢
A2( m,n ) |

(b) If ¢ does not contain R outside the scone of K
and ¢ ¢ A2(<m,n>), then ¢ ¢ A2(<m,p>)

(¢) 1If 0 < k and ¢0""’¢k—l é A2(<m,n>), Y is a

formula of the language of A and E ¢0A ced A

¢k_l*-w, then ¢ ¢ A2(<m,n>).

Proof: Suppose that A is a gonsistent, complete
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arrangement and m,n,p ¢ AO.

(a)

(b)

(c)

Suppose ¢ ¢ A2(<m,n>) and ¢> V¥ € Az(dm,n>) but ¢ d
A2(<m,n>). By T68b, =y e A2(<m,n>). Let T bhe
{¢p,0> ¢, 0}, .By T66 there is a generalizer T, a
formula ¢ and a j ¢ w such that lev(y,j,A,£0,0>) and
E Y +712CJI(T'). By T38, E t=CJ(I'). By T39b; E Y.
Hence {y} is inconsistent and A is not a consistent
arrangement, contradicting the hypothesis.

Suppose ¢ does not contain R outside the scope of K,
d e A2(<m,n>) and ¢ ¢ Az((m,P>). By T6Sh; —~d &
A2(<m,p>). By GAl6, GAl7, T68a, and T69%a, K¢ ¢
A2(<m,n>) and =K¢ ¢ A,(m,py).

We will show that ¢ ¢ A2((m,m>). Suppose, for
reductio, that ¢ ¢ Az((m,m>). By D47,
lev(K¢,1,A,{m,p)). By T67, K¢ ¢ AZ((m,p>). But this
is a contradiction, by Té68b.

Since A is compiete, - € Az((m,m>). By D47,
lev (K=¢,1,A,{m,nd). By T67, K¢ € Az({m,n>)7 By
GAl6, T68a, and Té69a, =K¢ € Az((m,n>). But this is
again a contradiction, by T68h.

Suppose 0 < k and ¢0,...,¢k_1_e A2(<m,n>), Y is a
tormula of the language of A and E ¢ A...,\¢k_l->w.
Ry D47, lev(CJ({¢0,...,¢k_1}),O,A,<m;n>). By T67,
CT({dgrennrby_1}) € AyKmm)). By T38 and Té8a,
CT(Ldgrenerbp g D) > (bgnvee Kb ) € Ay (mmy) . By
T6%a, ¢0A .../\¢k_l ¢ Az({m,n>). By T68a and T69a,
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/' Aé((m,n)).

770, If A is a consistent, complete arrangement and m € Ao,

then (a)

If ¢ is a formula of the language of A and E Ko,

then ¢ ¢ A2(<m,m))

(b) ¢ ¢ Az((m,m>) if and only if ﬁ¢ d Az((m,m))

(c)

Proof:

b e A2(<m,m>) if and only if R¢ € A?((m,m>)

arrangement and m ¢ Ao.

Suppose that A is a consistent, complete

_(a) Suppose that ¢ is a formula of the language of A and

E K¢.

By T68a, K¢ € Az((m,m)}.

Suppose ¢ ¢

Az((m,m>); then =¢ € AZGQm,m>). By D47,

lev(K=¢,1,A,{m,m}).

By T67, K+¢ ¢ A, m,m3). By

GAl6, T68a, and T69a, K¢ ¢ A,({m,my). By T68b,

K¢ ¢ Az((m,m>).

(b) First, we will show ; K(pe>K) .o

(1)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)

(x)

k K (6> Ko) > (K(Kd> ) » K(¢e>K$)) T38,GAL7

nT

K¢ > K(K$ » ¢)
K 2+ K=d

K~¢ > K(¢>K9)
Kb » KK¢
K-Ko > K (K¢ -» ¢)
KKo =K (d >Ko)
~K¢ > KK
K(¢+Ko)
K(K¢ > ¢)

nT oT uT o T ol T uT
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T38,GAL7
GAl6
T38,GAL7
GAlS

T38,GAl7

GAlS

(144) , (4v) 4 () , (vid)
(vi), (viii), (1ii),
(i)



(x1) E K(poK$) ‘ (ix), (x) 5 (1)
By part (a), de>Kd € Az(Lm,m>). By T69d, o ->Ko €
A2(<m,m>) and K¢ - ¢ ¢ Az({m,m)). By T69%a, ¢ ¢
A2(<m,m>) if and only if R¢ ¢ Az({m,m>).

(c) This is similar to (b) except that GAl9 is used in

place of the proof that E R(pe>Ko)

T71. If A is a consistent, complete arrangément and
m,n,p ¢ AO, then

(a) If L¢ ¢ A,(Km,p>), then ¢ ¢ A, (n,p5)

(b) If a=8 ¢ A,(Lm,p>), then o=g ¢ A, ({n,p>)

(c) "R¢ & A,(4m,py) if and only if ¢ € A,((p.,PY)-

Proof: Assume the hypothesis;
(a) Suppose that L¢ ¢ Az(émrp>). There are three cases:
(Y n <p M3 then by T69c, H¢ € Az((m,p>). Suppose
that ¢ ¢ Az({n,p>). Since A is complete, ¢ ¢
A2(<n,p>).' By D47, 1ev(P§¢,l,A,£m,p>). By T67,
Pad € A2(<m,p>). By T38, T43, T68a, and T69a,
-Hd ¢ A2(<m,p>). But *+his is impossible, by
T68b.
(2) m is n; then ¢ ¢ A2@(m,p>); by T69c.
(3) m <, n; this case is similar to case (1).
(b} Suppose that a=f € A2(<m,p>). Then by GA8 and T69c,
La=B ¢ A,Km,pY . But then by (a), =8 € A,(n,p>).
(¢) First, suppose that R¢‘e A2(<m;p>). By GA22 and T69c,

LR$ € A2(<m,p>)} By T7la, R¢ ¢ A2(5P1P>). By T70c,
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b e A, ({p,p>).

Second, suppose that ¢ ¢ A2(<p,p>). By T70c, R¢ ¢
A2(<p,p>). By GA22 and T7lc, LR¢ € Az((p,p>). By
T71a, k¢ € A,(Km,p>).

772, If k < n, A is a finite arrangement, and i ¢ AOXAO,

then E LEV(n,A,i)=> LEV(k,A,1).

Proof: Assume that A is a finite arrangement. Let
K be the set of k ¢ w such that, for each m,n ¢ AOXAO,

E TEV (k+1,A,{m,nd) LEV(k,A,{m,n>). By T3%, it is suffi-
cient to show that K is w.

First, suppose that {m,n} ¢ AgxB . There are I,T!
such that LEV(0,A,{m,n)) is CJ(T) and LEV(Ll,A,{m,n3) is
CJ(r'*). Since T'' ¢ I'' (by T40a), E LEV(1l,A,{m,n})~>
LEV(0,A,<{m,n)).

Now, suppose (for the inductive step) that for each
{m,n) ¢ AOXAO, E LEV(k+I,A,(m,n>)¢)LﬁV(k,A,(m,n}). Also
suppose that m,n ¢ AO. There are T',I'' such that
LEV (k+2,A,{m,nd) is CJI(T') and LEV(k+1l,A,(m,nd) is CJ(T).
By T40a and T39b, it is sufficient to show that, for each
Y ¢ I', there is a y' ¢ T' such *hat g-w'* Y. Suppose that
¥ ¢ I'; there are five cases:

(1) vy e A2(<m,n>); then ¢ ¢ T'.

(2) There is a p such that p <, m and ¢ is PLEV{k,A,{p,n’).

A
By the inductive hypothesis, E LEV (k+1,A,{p,n>) >

LEV (k,A,{p,n)). By T35d4, T48c, and T37,

144



}5 PLEV (k+1,A,{p,n>) > ¢. Since PLEV(k+l,A,{p,n)) &€ T'',
there is a ' ¢ I'' such that E P>y,

(3) There is a p'such that m <3 P and Y is FLEV (k,7,{p,n?).
This case is similar to (2) except that T49d is used
in place of T48c.

(4) ¥ is KLEV(k,A,{m,m%). By the inductive hypothesis,
l; LEV (k+1,A,{m,m) > LEV(k,A,<{m,md). By T35d, GAl7,
and T37, E KLEV (k+1,A,{m,m)) >¢Y. Since
KLEV (k+1,A,{m,m)) ¢ T', there is a'w“ ¢ T' such that
kvt b

(5) ¢ is LEV(k,A,{m,n)). By the inductive hypothesis,
|§ LEV (k+1,A,<m,n}) > LEV(k,A,{m,n>) . Since
LEV (k+1,4,{m,n}) ¢ T'', there is a ¥' e f' such that

g ¢'=>y. This commletes the proof.

?73. If k < n and A is a finite arrangement, then

L; CH(A,n) ~ CH(A,k).

Proof: A special case of T72. .

T74., If B is a finite arrangement and A is part f B and

ie AOXAO,

then k LEV(k,B,i)~ LEV (k,A,1).
Prcof: Suppose that A is part of B. Let N be the
set of k ¢ w such that, for each {m,n) ¢ AOXAO,
E LEV (k,B,{m,n)) > LEV(k,A,{m,n}>).
First, suppose that {m,n) ¢ AOXAO; then
l_:’ LEV(O,B,(m,ﬁ'})->LEV(O,A,(m,n>), by T40a.

For the inductive step, supbose that for all {m,n> ¢



.AOXAO, E LEV(k,B,{m,nd) > LEV (k,A,{m,nd) .
Suppose, in addition, that m,n € AO. There are
finite sets of formulas T',I'' such that LEV (k+1,A,{m,n}>) is
CJ(T) and LEV(k+l,B,Zm,n>) is CJ(r''). By T40a and T39b, it
is sufficient to show that, for each ¢ ¢ T, there is a y'e
I'' such that g ¢'>1y., Suppose that ¢y ¢ T'. There are five
cases:
(1) vy ¢ Az(i); then ¢ ¢ Bz(i) and ye T'.

(2) There is a p such that p <, m and ¥ is PLEV (k,A,<{p,n>).

A
By the inductive hvpcthesis, E LEV(Xk,B,{p,np) >
LEV(k,A,{p,n»). By T354, T48c, and T37;

’g PLEV (k,B,{p,n}y) > PLEV(k,A,{p,nD). Since
PLEV(k,B,{p,nd) ¢ T', there is a J"' ¢ P.such that
E_W">¢-

(3) There is a p such that m <A p and ¢ is
FLEV(k,A,4p,n>). This case is analogous to (2)
except that T48d is used instead of T48c.

(4) ¢ is KLEV(k,A,{m,m)»). By the inductjve hypothesis,
lé LEV(k,B,(m,m}) » LEV (k,A,{(m,m}). By T35d, GAl7, and
T37, k KLEV (k,B,{m,m>) -~ $. Since KLEV(k,B,{(m,m?) €
I'', there is a Y' ¢ T' such that E V' Y.

(5) ¥ is LEV.(k,A,{(m,nd). By the inductive hypothesis,

g LEV (k,B,{m,n>) > LEV (k,A,{m,n>) . Since
LEV(k,B,<{m,n>») € T'', there is a y' ¢ T' such that

E =Y.

T75. If B is a finite arrangement and A is part of B, then
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‘ E CH(B,n)->CH(A,n).

Proof: An immediate consequence of T74.

T76. If A is a finite arrangement, i ¢ AOXAO, and

lev(¢,n,A,i), then E LEV(n,A,i)=> ¢.

Proof: Suppose that A is a finite arrangement. Lct
N be the set of n ¢ w such that, for each i ¢ AOXAO and each
formula ¢, if lev(¢,n,A,i) then E LEV(n,A,i)> ¢. It is suf-
ficient to prove by induction that N is @.' First suppose
ie AOXAO, and lev(¢,0.2.i)+ +then g LEV(0,A,i) + ¢, by T40a.

Next suppose that, for each i ¢ onAO and each form-
ula ¢, if lev(¢,n,n,i), then E LEV(n,A,i)> ¢. Suppose also
that i'e AOXAO and lev(¢,n+1(A,i). There are‘j,k d AO such
that i is {j,k>. There are sets T and P'.such thét
LEV(n,A;i) is CJ(I). and ¢ is CJ(I''). By T39b, it is suffi-
cient to show that, for each formula ¢' ¢ T', there is a
formula § € T such that E p+»yP'. Suppose, therefore, that
Y'e T'. Then (D47) there are five cases:,

(1) Y'e Az(i); then ' e T. '

(2) There are a formula x and p ¢ Ao'such that p “a 3,
lev(x,n,A,<{p,kD») and y¢' is Px. By the inductive hypo-
thesis, E LEV(n,A,{p,k>)> x. By T35d4, T48c, and T37,
E PLEV(n,A,{p,kd) = Px. Since PLEV(n,A,(p,k)) e T,
there is a Yy ¢ T such that E /AR /A

(3) '"There are a formula ¥ and p AO such that j <y P

lev(x,n,7,¢{p,k)} and ¥' is Fy. This case is analogous
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to (2).

(4) There is a formula ¥ such that lev(y,n,A,{j,jd) and
is KX. By the inductive hypothesis, E LEV(n,A,L{3,3>)>
Xx. By T354, éAl?, and T37, ; KLEV(n,A,<3,3>)* Kx.
Since KLEV(n,A,{j,3>) € T, there is a ¢y e T such that
E pep',

(5) lev(y,n,A,{j,k>). By the inductive hypothesis,
E LEV(n,A,{j,k)) > {y. Since LEV(n,A,Lj,k>) € I, there

is a ¥ € T such that E VY.

T77. If A is a finite arrangement and lev(¢,n,A,L0,0>),

then é CH(A,n) > ¢.

Proof: Follows immediately from T76.

T78. If A is an arrangement, {CH(A,k+4)} is cecnsistent,

ie¢ AOXAei and E +¢, then not lev(d,k,A,i).

Proof: Suppose A is an arrangement, {CH(A,k+4)} is

consistent, 1 € A XAO, E =-¢, and lev(d,k,A,1).

0

By D47 and T25c, there is a finite set of formulas T
such that, for each formula $ ¢ T, lev(y,k,A,i); and such
that ¢ ié cI(m).

By T66, there is a generalizer T and a formula ¥
such that lev(y,k+4,2,40,07) and E X*=T~+$. By T354, E T2 ¢,
By T39b, k£ ~x. By 777, L CH(A,k+4) » X. By T39b,

E <CH (A,k+4), contradicting the hypothesis.
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12. More Theorems about G, H, and L

779, If T is a generalizer, £ is the universal part of T

and t' is the tense part of T, then g ET'd > Td.

Proof: TFollows by a trivial induction, using T44,

T55a, T55h, and GAlS8.

T80. If F ¢ and ¥ is a universal generalization of ¢, then

V.

Proof: An immediate consequence of T34d

The following theorem establishes that every axiom
of Cocchiarella's system is a strong thecrem. It is a
simple consequence of this that every theorem of Cocchia-

reila's system is a strong theorem of our system.

T81. (a) L POAPY=>P(day)v P(PYap) v P(¢aPY)

(b) ;5 FOaFP>F(daP)v FIFda V) v Fl(da FP)

Proof: We will prove part (a) only, since part (b)
is analogous. Let X be PO aPYP>P(ona P)v P(Phn ) v P(da PY). .
Assume E X. Then there is a generalizer T such that not
 1x. Let £ be the universal part of T and let v' be the
tense part of t. By T79, not  Et1'x. By T80, not F 1'¥.

Let n be that n ¢ w such that t' is an n~level gen-
eralizer. Let I' be the set of formulas that occur in t'y,
and let A be the set of variables that do not occur in 1'¥.

Let m be T. Let 0 be CH*(I',A,m+n+1,5). Then E Ko, since
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K6 is a general axiom.
® is the disjunction (in order) of the formulas

Voo e aVO CH(Z

0 k-1
extension sequence with respect to ' and A and OgreeeOp_q

m+n+l’5)' where I is an m+n+2-place minimal

are (in order) the variables in A that occur free in

CH(zm+n+1’5)'

By T34e and T35a, since not  1'x, not + € *1'x. By
T39a, there is an m+n+2-place minimal extension sequence I
with respect to I' and A and variables Ogreser® q such that

QO""’uk—l are (in order) the variables in A that occur

free in CH(Z and not

m+n+l'5)’

- Yao...Vuk_lCH(Zm+n+l,5)->T'x. By k applications of T5lb,

not Aao...Aak_l(CH(Zm+n+

+ CH(E , ,1¢5)>T'X. By T3%a, uot

1,5)‘71'x). By T80, not

b -cT({cB(Z 1,5),7T'X}). By T61, {CH(Z l,5),ﬂT'X} ié

m+n-+ m+n+

consistent.

Lemma A. For each i &« n+l, edach p,p' ¢ L 0’ and all

m+i,
formulas &,&"
(L) 1If E <&, then wlev(E,l,Em+i,<p,p'>)
(25 If £ e T, then £ ¢ %, ,({p,p'>) if and only if
ki, 20
~E ¢ zm+i'2(<plp'>)
(3) If & eT, E E'> &, and £'¢ I

Kp,p'>) .

..
m+i’2(<p,p ), then

§ e zm+i,2

. ! g ] 1
Proof: Suppose that i 4 n+l and p,p' ¢ zm+i,0'

(1) Suppose that E QE. Since {CH(Z l,S)QﬂT'x} is con-

m+n+
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sistent, {CH(zm+n+l'5)} is consistent. By T75, T63,

and T27, {CH(Z_,.,5)} is consistent. Hence, by T78,

m+1
nOt leV(E,l,Zm+il<pIp|>) L4

(2) Suppose that £ ¢ I'. Then, since zm+i is a minimal

extension of & with respect to I' and A, either

m+i-1

. . .
E ¢ L 2((p,p >) or ~E ¢ Zm+i,2' And it cannot be

m+i,

the case that both £ ¢ I ({p,p'>) and =% ¢

nt+i, 2
Zm+i,2({p,p'>), because then
lev(CJ({E,ﬂé}),1,2m+i,(p,p'>), which contradicts part
(1) (since, by T38, E -CJ({g,=E}).

(3) Suppose £ ¢ T, £ &'+ & E' e Zm*ilz(ip,p'>) and £ ¢
2m+i'2(<p,p'>)- By (2), =& ¢ X
lev(ca({g',~&},0,2

f 1
m+i'2((plp >)- Hence'

m+il<PlP'>). By T25c,
leV(CJ({g',wE},l,Zm+i,<p,p'>). But this is impossible

by (1), since E -CJ ({&',-E}) .

Lemma B., For each i & n, there are b,p‘ ¢ Zm+j 0 such that
o 4

wr"xve )} ({p,p'>), where t" is the (n-1l)-level subgen-

m+i,2
exralizer of t'.

Proof: We proceed by induction. Suppose first that
iis C. I is a minima® extensilon of Z__, with respect to
I'*m and A; since I'*m is T and t'y ¢ T, either t1'Y €
X (L0,0%) or =t'y ¢ I (£0,0>). It is sufficient for

m,2 m,2
this case to show that ~1'y ¢ Em 2((0,0)), so suppose for
’ .

reductio that 1'yx ¢ I ({0,0%). By D47,

. m,2
1ev(r'x,o,zm,<o,o>). By T77, k CH(Z ,0)>t'X. By T75,



I

E CH(Z

a contradiction.
Suppose now that Lemma B holds for i and i < n; that
is, that there are p,p' ¢ zm*i 0 such that =1t"y e
' ’

z ({p,p'>) where 1" is the (n-i)-level subgeneralizer of

m+i, 2
t'. Let o be the (n-(i+l))-level subgeneralizer of Tt'.

Then there are three cases:

(1) <" is Ho. By Lemma A2, Hoy ¢ I (<p,p'>). Hence,

t+i+l, 2

is a minimal extension of Zm . with

since I i

m+i+l
respect to T' and {=t'y}, there is a g such tha:

q <y p and Y ¢ Zm+i+l'2(<Q:P'>)-

m+i+l
(2) 1" is Go. This case is exactly analogous to the

preceding one.
(3) 1" is Ko. We will show that -oy € Zm+i+l'2((p,p>).

Suppose that -oy ¢ I ({p,p%) . Then, by Lemma

m+i+l, 2

A2, 0 € % ({p,p>), and

m+id+l,2
1ev(CJ({T"x,wT"x}),l,2m+i+l,(p,p'>). But this is
inmpossible, by Lemma Al.

This completes the induction.

Hence, by Lemma B, there are p,p' ¢ I such that
m+n,0
%(P¢1\Pw->P(¢A Y)Y v P(PpnAt)wv P(onPYP)) &€ I (Kp,p'>).

m+n, 2

By Lemma A3, P¢ & I 2(4b,p'>) and Py ¢

m+n,
1 J . 1 >
Zm+n’2(<PrP >}= since :_ . is part of I . .., Pde
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P

H-¢ ¢ Zm+n+i’2(4p,p'>) and H-y ¢ Zm+n+1’2((p,p'>). Since
zm-f-n+l

A, there are q,q'e..£m+n+l’0 such that =-¢ €

is a minimal extension of % with respect to T and

m+n

Zm+n+l’2((q:p'>) and ==y ¢ zm+n+1,2(4q"p'>) . By Lemma A3,

ez (q,p'>) and ¥ € I ,(a,pi>).

m+n+l,2
Tnere are three cases, each leading to a contradic-
tion:
(1) g <5 g'. By Lemma A3, (since =y ¢

m+n+l
Trn+l,2 (PrR'?) ) H=(Poay) « Emintl,2 CPP2)

. | F ¢t LR
We will show that Po A € Zm+n+1,2((q P>

Suppose that Poéay ¢ I (g',p'y). By Lemma A2,

m+n+l,2
~(PpAyY) ¢ zm+n+l,2(<q',p'>)- By D47,
lev(CT ({P¢,¥,7(PoA ) D), 1,2, . 4s4a",p"'>). But this
is impossible by Lemma Al, since
£ 2CH({P¢, Y, (PoaP)}).

Since PoA Y e Iy,o09 oA’ >,
lev (CT ({H+(Po» ¥) [ P(POAP) ), 1,2, o qs{P/P'>). But

this is impossible by Lemma Al, since
\g “CI ({H~ (P A ) ,P(PoAYI ]

(2) q' <5 g'. This is analogous to the preceding
m+n+l
case,

'(3) q is q'. By Lemma A3 (since =y € (<p:p'>) ),

Zn'ﬁ-r'n'-l ' 2
H"(cb AN w) € zm+n+l'2(<P:P'>) -

. ] !
We will show that oAy ¢ Zm+n+l,2(<q P>

Suppose that ¢ Ay ¢ I (Kq',p'>); by Lemma A2,

m+n+l, 2
“(dnP)e T m+n+l,2(<q' pP'>). By D47,
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lev(CT({¢, ¥~ (oA }, 1,5 .,{a',p'>). But this is

impossible by Lemma.Al, since §_1CJ({¢pw,ﬂ(¢h P) 1) .

is impossible by Lemma Al, since

Since ¢ A Y e Zm+n+1’2((q'lp}>):
lev(CT({H~ (¢ A 9) ,P(6A ) 1) ,1,2 . . LP/P").

E =CT({H~(¢ny),P(day) ]},

This completes the proof.

T82. (a) k
(b) k&

Proof

(a) (1) &k
(11) &

(ii%) k

(iv) k

(v) &

(vi) k

PG¢ > G

FH¢ > Ho

Fa¢ » HFI'-¢
Ga4¢ > GG
FEF~$ > F=d
F¢ = HF~¢
“H4G~= ¢ > 242G

PG~ G

(b) Similar to (a)

T83. (a)

L

S

(h) E

Proof:

(a) (i) g

(ii) E

(iii)’ E
(iv)

0T

FP¢ > Mo

PF¢ > Mé

Lad » GEL~¢

GPLa¢ A FPG + F (PL~¢ A Po)

L¢ n FP¢ > F (PLn¢ 4 P$)
PL=¢ A P >P(Lnd A ¢)

P(PL=d A ¢) v P(Lad a Pd)

But this

GAl4
GAl2,T38,T43
(ii),T39b

(i), (iii),T44a
(iv),T39b

T38,T43

CAl3
T48g

(1), (ii),T39b

T8la



(v) 'E

(vi) E

(vii) E

(viii) ;

(ix) E

(%) lé

(x1i) E

(xii) E

(xiii) E

(xiv) E

(b) Similar

T84. (a) k

(b) E

Proof

(a) (1) E

(ii) g

(iii) E

(iv) g

(v) lg

(vi) g
(vii)
(viii)

(b) (i)

nT T T

+P (L=¢ n ¢)
“H~Gad >~
PG¢ >~¢
PLa¢ > ¢

<P (PLw¢ A ¢)
=P (L=¢ A P¢)
< (FL~¢ A Po)
SF (PL=¢ o P¢)
= (L=¢ A FP¢)
FP¢ > M

to (a)
MM¢ = Mo

Lo >LLd
PP¢ - Md

FF ¢ = M¢

P vF¢~»Mp
PF$ v FP¢ ~» Mo
PPd v Po v PFo v FPd v

Fov FFo=> Mo

P(Popv dvFod)v

F(Pov bv F) > Mo

DM v M v FMé > M
MM > M '

aLmoLmsd > ali=ad
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T38,T35d

GAl4

(vi)

(vii) ,T44

(viii) ,T35d
T38,T354d
(iv), (v), (ix), (x)
(xi) ,T35d
(iii) , (xii)

(%iii) ,r2sk

GAll,T43,T48e
GAl2,T43,T48e
T48e

T83a,T83b
(1), (ii), (1id), (iv)

T49a,T49b,T43
T48e,T43
(vii) ,T48e

(a)



(i1) K
(iii) 5
T85. (a) E
(b) &

() k

(@ k
Proof

(a) (1) kK
(ii) k&
(1ii) k
(iv) k

vy k&

(vi) %
(vidi) g
(viii) E
(ix) kK
)k

(xi) &
(xii) k
(xiii) g

“LL¢$ » Lo

Lo > LLé

PLo~» L¢ -
FL¢> Lo
ML¢ > L

M¢ >LMé

~$ = HF~¢

~$ > =PGo

29> =P (Hd A ¢ A GO)
“P(~d A P(HO A & AGP))

P4 AnP(HOA ¢ AGPH)

737,743

(ii)

GAl4

743
T38,T44b
T39%5,T35d

P(adAaHpAGAGH) vP(PapaHOA dnCH)v

P(=¢ A P(HO A A Gd))
“P(=¢p A HO ~ ¢ nGo)

= (P~¢ A Ho)
“P(P-daHdA A Gd>5

7 (Pa¢n P(Hb A ¢ 4 GH))
PL$ > Ho

PL$ -~ ¢

PL$ ~ G¢

PL¢ > Lo

(b) Similar to (a)

T81

T38,T35d
T38,T43

(vii) ,T44b,T358
(iv), (vi), (viii), (v) .
(ix)

(iii)
T82a,T44b

(%), (=1), (xii)

(c) An immediate consequence of (a), (b), and T48e. -

(d) (i)

ks

ML=¢ + L=¢
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(ii) lg -vL~1¢) -)-:ML-VQ‘)

(11i) k& Mg ==Ll
- .
S

(iv) Mo - LM . T43

T86., If T is a generalizer that does not contain (k) or

{g) then'ég Lé> Td.

Proof: Tirst define Ln¢ as follows:
(1) 1% is ¢
(2) For each n ¢ w, Ln+;¢'is L™
Let N be the se of 1 « w such that, for any n-level
generalizer T that does not contain (k) or (g», and any m ¢
W, t Lo > 1 1¢.
We will prove by induction that N is wl We have
g 16> 1™ by repeated application of T84b; so 0 ¢ N,
ﬁow suppose that, for any n-level generalizer 1 that
does not contain (k> or <g?, and any m & W, E L¢->Lm1¢.
Suppose also that 7 is an n+l-level generalizer that
does not contain {k> or {g}», and suppose m ¢ . Let T' be
that generalizer such that T is Gt' or T is HT'. Then 7'
is an n-level generalizer. By the inductive hypothesis,
g L¢->IFH1T'¢. By T38 and T44a, E Lm+lT’¢-’LmT¢. By T3%h,
E L¢%’Lm1¢. This completes the induction.
In order to prove the theorem i self, suppose that T
is a generalizer that does not contain (k> or {(g>. By the

0

above induction, E Lé»L 1t¢. But L0T¢ is 1¢.

157



13. Theorems about X and R

T87. E AoKde> KAad

Proof:
(1) k no¢=¢ T54
(ii) E KAod > Ké (i) ,T35d,GALl7
(1ii) E NOKAQ) > AaKd (ii) ,T35d4,GA4
(iv) = KAad = AoKAad GAS5
(v) g KNad > AaKé (iii), (iv)
(vi) t NaK e KA (v) ,GAl8

T88. | ¢=>Ko

Proof:
(1) §¢”K¢ . ‘ RAL
(i1) 'g ~¢ = K¢ ~ RAl
(iii) [ -¢~>-Ké (ii) ,GAlé6
(iv) [k ¢+~ K¢ (1) , (1id)

T89. (a) If } LKL, then g d.

‘(b) If E KL¢, then k£ ¢.

Proof:
(a) Assume } LKL¢, and also assume that T is a generalizer.
It is sufficient to show that k f¢. We take two cases:
(1) (k) does not occur in T. :ILet T',1" be the uni-
versal part of T and the tense part of T respec-
tively. By T8%, é L¢->1t"9d. By T35d,

E T'(Ld->T"d)., By T36, F t'Ldé- 1. By T88



(since F LKL¢), + Lé. By 20, + 1'Lé and hence
F oto.

(2) {k) occurs in t. Let £,T1' be those generalizers
such that T is EKt1' and t' does not contain4(£7.
Let &' be the result of dropping all occurrences
of (k) from £. By repeated applications of GA15
and T44b, E E'K1'd>1d., Let 0,0',p,p' be the
universal part of £', the tense part of &', the
universal part of T', and the,ténse part of ',
respectively. B repeated applications of T55a,
T55b, 187, and T43, E opo'Kp'¢=> E'KT'd. Hence
it is sufficient to show |} opo'Kp'¢. By T80, it
is sufficient to show F o'Kp'¢. By T86,

f_:, L¢~->p"d. By T354 and GAl7, Qg KLy >Kp'd., By
T35d again, ’g o' (KLo~Kp'éd). By T36, + o'KL¢ >
o'Kp'$¢. By T86, | LKL >»0"KLé., Hence b LKL

c'Kp'¢. Since F LKL¢, ¥+ ¢'Kp'd, which completes
the proof.

(b) ‘Follows from (a) and T42a

T90. (a) E(be"K‘P)“KW"lP)

(b) £ KpaKperK(gay)

Proof:
(@) (1) E KY>K(¢~1) " T38,T35d4,GAL7
(11) k£ Kv¢ > K{$~ D) T38,T35d,GAl7
(1ii) k +X¢=>K(¢~=y) } (ii) ,GAl6
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(iv) £ (Ko > Ky)=> K(6=>y)
() £ (Ko>Kp) e K(6> V)

(b) (1) k£ Ko (Kp=>K(d )
(1i) Lk Ko A KY>K($a )
5

k

k

(iii)

K(d a ¥)=> Ko
(iv) K(¢ a ) = Ky

(v) Ko n KUK (da ¥)

TO1l. I-é- K ($p~>Kd)

Proof:
(1) lé K «» KK¢
(ii) }é K(¢->K¢) A K(Kp~> ¢)

(iid) lé K {9 Kd)

T92. k R(¢peK¢)

Proof:
(1) k K((¢=K)o R(9e2K$))
(i1) k K(¢&K¢)-> KR(¢&> K¢)

(iii) k KR(9«>Ko)

n

(iv) E KLR (¢4» Ko)

(v) lg R(¢p«»Kd)

703, !g “Rpe>» R

Proof:9

(1) E K(peRo)
(ii) E K(-0-Ro)

(i1i) E K(=¢ Ra)
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(1) , (iid)

(iv) ,GAl7
T38,T35d4,GAl7
(i)
T38,T35d,GAl7
T38,T35d,GAl7

(ii) , (iid), (iv)

GAl5
(i) ,T90a

(1i) ,T90b,T43

GAL9

(i) ,T44a,GA17
(1i),791

(iii) ,GA22,T44a

(iv) ,T89b

GAl9
(i) ,T43

GAl9



(iv)
(v)
(vi)
(vii)
(viii)
(ix)

(x)
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CHAPTER IV
THE COMPLETENESS PROOF

This chapter contains the final proof of completeness

and the theorems leading up to it.
1. Infinite Minimal Extension Sequences

D59. If I is an w-place minimal extension sequence with

respect to T' and A, then the arrangement corresponding to %

is the triple {j,R,F), where
(é) J 18 k‘g wzk,o
. U .
(b) R ds p % uP,1
(c) F is that function with domain jxj such that, for

[} ] [ N 0 0 U .
each 1 ¢ jxj, F(i) .1is x & wzkfz(l).

797. If B is a finite arrangement, I is an w-place minimal
extension sequence with respect to T and A, and B is paxrt of
the arrangement corresponding to I, then there is a k €¢ w
such that B is part of Zk.
Proof: Assume the hypothesis. Let j,R,F be BO'Bl’BZ
respectively. For each n ¢ j, there is anm € w such that

nez:l For each n € j, let f(n) be the least m € ® such

m,0"*

that n ¢ Zm

0 Let m be the largest number in Rng(f). By
14

T27, J g'zm,O'
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We will show that R € Suppose that‘(p,p[}e R.

m,1°

Then p,p' ¢ j, and p,p' € Zm By the hypothesis, there is

/0°

a k € w such that <p,p" ¢ If Xk £ m, then {p,p") ¢

, DAY
I_ .. by T27. Suppose, then, that m < k and oo ¢ I
[

ny a

Then p is not p', because Em 1 is reflexive, and <p',p> 4
4

* .. By T27, {p',pP ¢ I,_ ,. But this is impossible, since
m'l . kll

{p,p") ¢ zk,l and p is not p'.

Let g be that function whose domain is the set of
pairs {i,¢) such that i ¢ Dom(F) and ¢ & F(i), and such
that, for each i,¢y ¢ Dom(g), g(<i,¢>) is the first k € w
such that 1 € zk,o and ¢ € Zk,z
number in Rng(g). Note that m £ m' and hence, by T27,

(i). Let m' be the largest

. 2 c 5 .
j & Zm',O and R Ym',l
It remains only to show that, for each i ¢ Dom(F),

F(i) ¢ & (i). Suppose i ¢ Dom(F) and ¢ ¢ F(i). Let g be

m.',2 ]
" g({i,$d). Then i € Zg02nd ¢ e I (). Since g¢m’,

(by T27) ¢ ¢ zm',z(i)'

798, If I is an w-place minimal extension sequence with
respect to I and A, then the language of the arrangement

corresponding to I is the language of T,

Proof: Assume the hypothesis. Let A be the arrange-
ment corresponding to I. Let L be the language of A, and
let L' be the language of T.

First, suppose that T ¢ L; then there must be some

)

n ¢ w such that 7 is in the language of Zn. Since Rng(E0 9
4
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is 0, n is not 0., Therefore Zn is a minimal extension of

z with respect to I'*n and A. But, by D46, 7 must occur

n-1 ‘
in some formula of-T.

- On the other hand, suppose that w ¢ L'. Then there
is a formula ¢ € I' such that 7 occurs in ¢. For some n € w,
¢ is the nER formula in T, and hence ¢ € T'*n. Since Z, is
an extension of £n~l with respect to I'*n and A, either ¢ €

T . ({0,0%) or =6e I (€0,05). 1In either case, 7 ¢ L.
n,2 n,2

T99, If § is an w-place minimal extension sequence with
respect to I and A and k € w, then Zk is part of the

arrangement corresponding to I.

Proof: A trivial consequence of D59

T100. If L is a language, T is the set of formulas of L,
and ¢ is an w-place minimal extension sequence with respect
to T and A, then the arrangement correspending to I is a

complete arrangement.

Proof: Assume the hypothesis, and let A be the
arrangement corresponding to ¥. TLet j,R,F be those objects
such that A is ¢(j,R,F). In order to show that A is com-
plete, it is sufficient to show that clauses (3), (4), and
(5) of D44 hold.

For clause (3), suppose that {m,nd> € jxj and ¢ ¢ T.
Then for some k ¢ w, ¢ € T'*k, TLet p be the first p = k such

Then I is a minimal extension of I

that m,n ¢ zp,O' p+l p
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with respect to I'*(p+l) and A. Then either ¢ ¢
2p+l'2((m,n>) or ¢ € 2p+1’2(<m,n>). By T99, either ¢ €
F({m,n>) or +¢ ¢ *({m,nd).

.Clauses (4) and (5) also hold, by similar arguments.
2, Construction of a Complete Arrangement

D60. T is an acceptable set of formulas if and only if the

set of variables that do not occur free in any formula in T

is denumerable.

T10l. If T is a set of formulas, T'' is an acceptable, con-
sistent set of formulas, A is the set of variables that do
not occur in any formula in T'', and n ¢ w, then there is a
¥ such that I is an n+l-place minimal extension sequence

with respect to I' and A, and T' is consistent with CH(Zn,n).

Proof: Assume the hypotl.esis. Then E CH*(T,A,n,n}).
By T63, I'' is consistent with CH#*(T,A,n,n). Hence, there is
a disjunct ¢ of CH*(T,A,n,n) such that T' is consistent with
¢; that is, there is an n+l-place minimal extension sequence

with respect to I' and A such that P'Q{Vao...V CH(Zn,n)}

Ok-1
is consistent, where GgreserOy_q are (in order) the varia-
bles in A that occur free in CH(Zn,n). By k applications

of T62, P'Q{CH(En,n)} is consistent.

7102, If T' is acceptable and consistent and A is the set
of variables that do not occur free in any formula in T,

then there is an infinite sequence & such that
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(1) £ is a minimal extension sequence with respect to T
and A.

(2) For each n €' w, CH(Zn,n) is consistent with I'',

t

Proof: Assume the hypothesis. Let T be the set of
sequences £ such that for some p, I is a p-place minimal
extension sequence with respect to I' and A, and T'' is con-
sistenﬁ with CH(Zn,n), for each n ¢ p.

| Let I be that infinite sequence such that, for each
k ¢ w, Ek is the first arrangement A such that for any
j > k, there is a j-place sequence I' € T such that
$Mk7¢AY € ', (We take ourselves to have defined a standard

ordering of the arrangements; by T21, this can be dore.)

It is sufficient toc show that I ¢ T.

Lemma A. For each k e w, there is an arrangement A such
that for ary > k, there is a j-place sequence I' € T such

j
that Zik"{AY & I',

Proof: Suppose that the lemma does not hold, and lét
k be the first k e wv{0} such that there is no arrangement
A such that for any j > k, there is a j-place sequence L' &
n such that I1k™¢A» € I'.

By T10l, and since all minimal extension sequences
have the same first term, k is not 1. Hence, there is an
arrangement A such that for each j > k-1 there is a j-place
sequence I' ¢ T such that T1(k-1)"¢a> & I'. It follows

from the derinition of I that, for each j = k, there is a
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j-place sequence I' ¢ T such that 1k & §'.

Let A be the set of arrangements A such that
£1k"<AY ¢ T; by the preceding sentence, A is not 0. By T24,
A is finiée. Then for each A ¢ A, there is some j > k such
that there is no j-place seguence I' e¢ T such that
L1kAY e T, Let £ be that function such that Dom(f) is A
and for each A ¢ A, £(A) is the least j > k such that there
is no j-place sequence L' e T such that 21xA) ¢ ', Let
j be the largest number in Rng(f). Then there is a j-place
seqﬁence ' ¢ T such that %1k € %'. Let A be Z'k. Then
A ¢ A. By the definition of f there is no £ (A)-place
sequence I" ¢ T such that ZAk™¢AY € I". But this is a con-

tradiction; since £(a) £ j, I'1(£(2a)) is such a sequence.

It is an immediate conseguence of Lemma A that for
any k ¢ w, Z4(k+l) € T; and therefore (by the definition of

T) that % € T.

T103. If I is an w-place minimal extension sequence with
respect to I' and A, A is the arrangement corresponding to I,
and lev(¢,k,A,40,0>), then there is an n € w such that

- CH(En,n) > ¢.

Proof: Assume the hypothesis. By T26, there is a
finite arrangement B such that B is part of A and
lev(4,%k,B,40,0>). By T97, there is an m ¢ ®w such that B is
part of Em. Let n be the maximum of k and m. By T27, Em

is part of I » SO B is part of L . By T25c, lev(¢,n,B,L0,0)
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By T25b, lev(¢,n,E_,£0,0)). By 777, F cn(zn,n)-w.

T104. If I is an w-place minimal extension sequence with
respect to I' and A, then the arrangement corresponding to I
is consistent with T'' if and only if, for each n e w,

P'u{CH(Zn,n)} is consistent.

Proof: Assume that £ is an w-place minimal extension
sequence with respect to I' and A and let A be the arrange-
ment corresponding to .

Suppose first that A is consistent with I''; n ¢ w
and T'u{CH(Zn,n)} is inconsistent. By T25a,
lev(CH(Zn,n),n,Zn,(0,0>). By T92 and T25b, '
lev(CH(Zn,n),n,A,(0,0>); but this contradicts the hypothe~- .
sis.

Secondly, suppose that A is not consistent with T
but that, for each n € w,_F‘u{CH(Zn,n)} is consistent.
There is a formula ¢ and a k ¢ w such that lev(¢,k,A,£0,02)
and T'v{$} is not consistent. By T1l03, there is anm ¢ w
such that | CH(Z ,m)=>¢. By T63, I‘"u{CH(Zm,m)} is not

consistent, contradicting the hypothesis,

T105 is the key theorem for the completeness proof.
Any arrangement satisfying the conditions of T105 specifies
a model for I'', constructed from the formulas in T'' in the

general manner of Henkin [3].

T105. If I'' is acceptable and consistent, then there is a
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complete arrangement A such that the arrangement'A is con-

sistent with I'' and the language of A is the language of T'.

Prgof: Assume the hypothesis. Let T be the set of
formulas of the language of T'' and let A be the set of
variables that do not occur free in any formula in T'. By
T102, there is an infinite sequence I such that (1) £ is a
minimal extension sequence with respect to I' and A,‘and
(2)° For each n € uw, CH(Zn,n) is consistent with I''.

Let A be the arrangement corresponding to £. By
7106, A is complete. By T104; A is consistent with I''. By

T98, the language of A is the language of T'.
3. The Expansion of a Set of Formulas

PD6l. If £ is a term or a formula, then ex(f), or the
'exgansioh of £, is rep(&,f), where f is that function with

domain Iv such that for each k € w, f(vy) is Vok®

P62, EX(I'), or the expansion of T, is the set of formulas
ex(¢), for ¢ € T. ‘
T106. EX(T) is an acceptable set of formulas.

Proof: Obvious,; since none of the variables Vi

{wvhere ¥ is odd) occur in any formula of EX(T).

In the final completeness proof, we replace the con-
sistent set of formulas T by EX(T') in order to obtain an

acceptable set of formulas. Theorems 107 and 108 guarantee
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the properness of this procedure.

T107. T is satisfiable if and only if EX(T) is satisfiable.

Proof: First, suppbse that I is satisfiable. Then
there is an interpretation {T,%,U,G), a t ¢ T, and an x ¢ yv
such that for each ¢ ¢ T, % ¢ In%a(¢)((t,t>). Let x' be
that sequence such that for each k ¢ w, x'2k is X, and
x'2k+l is X0 By an easy induction, it may be shown that
for gach formula ¢ of the language of T, x ¢ Ing&}¢)(<t,t>)
if and only if x' ¢ InE&(ex(¢))(<t,t'>), and hence that
EX(T') is satisfiable.

Conversely, suppose that EX(T) is satisfiable and let
x be a sequence that satisfies EX(I) in some interpretation.
Let %' be the seguence such that for each k ¢ w, x'k is

Xoge* Then x' satisfies T in the same interpretation.
T108., T is consistent if and only if EX(T') is consistent.

Proof: Follows immediately from T64
4. The Completeness Theorem

T109. If I is consistent, then ' is satisfiable.

Proof: Suppose that I' is consistent. Then, by T106
and T108, EX(T) is acceptable and consistent. Let L be the
language of EX(T'). By T105, there is a complete arrangement
A such that the arrangement A is consistent with EX(T) and

the language of A is L.
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Let T,%F be those objects such that A is;(T,é,F).

For each t € T, let ht be that function whose domain
is the set of terms of L and such that for each n ¢
Dom(ht), ﬁt(n) is the first variable B such that fi=n €
F(Lt,0?). By GA7, T68a, and the completeness of A, there

always is such a variable. Hence,

Lemma A. For each t &€ T and each term n of L, ht(n)=n €

F({t,0%).

Temma B, For each t;t' ¢ T and each terms 7,n of L, r=n ¢

F{{t,t'>) if and only if ht(c) is ht(n).

Proof: Iﬂ order to prove Lemma B, suppose that-
t,t'e T and ¢,n € TmL. Also suppose first that g=n ¢
F({t,t'>). By T69b, g=n ¢ F({t,0d). By Lemma A, h,(£)=g ¢
F(<t,0>) and ht(n)=n ¢ F(Lt,0>). By T69c, ht(g)=ht(”}~é
F({t,0)). Now subpose that ht(c) is not ht(n); then there
is a variable B8 that precedes ht(n) such that B=ht(c) é
F({t,0%) . But then by T69c, B=n € F({t,0>), which is impos-
sible, since ht(n) is the first wvariable B such that B=n ¢
F({t,05).

Conversely, suppose that ht(C) is ht(n). By Lemma
A, ht(z;)=c ¢ F({t,0%). Then ht(n)=2; ¢ P({t,0>). By T45
and T69c, r=n ¢ F({t,0d). By T69b, Z=n € F({t,t").

We will now begin to construct the model in which

EX(T) is satisfiable. The set of moments of the model will
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simply be T and the ‘'earler than' relation will be the «
of the arrangement. Let U (which is to be the universe of

the model) ke Rng(ho}. We will show:

Lemma C. For each t,t'é€& T and each term 1 of L, there is

exactly one o ¢ U such that oa=n ¢ F({t,t'>).

Proof: Assume that t,t' ¢ T and n is a term of L;
then by Lemma A, ht(n)=n ¢ F({(t,0»). Suppose that there i=z
an ¢ € U such that o is not ht(n) and a=n € F({t,t'>). By
T69b, o=n ¢ F(Ct,0%). Since hy(n) is the first variable B
such that g=n ¢ FKt,t'>), ht(n) precedes a. By T45 and
769¢c, a=h,(n) € F((t,£'>). By T69b, a=h,(n) € F({t,00).
By T71b, a=ht(n) ¢ F(0,0%). Since o ¢ U, there is a term
¢z of L such that o is ho(c). Then o is the first variable
@ such that a=g ¢ F(0,0%). By T69c, ht(n)=C ¢ F(£0,0>),

. but this is impossible, since h_(n) precedes d.

Lemma D. For each variable o and each t,t' ¢ T, ht(a) is

ht,(a).

Proof: Assume the hypothesis, and suppose that ht(d)
is not h,,(a). By Lemma A, h (a)=a € F((t,03) and h, (a)=a
€ F({t',0?) and hence, by T71b, ht,(a)=a ¢ FKt,0%). Since
ht(a) is the first variable B such that B=d ¢ FKt,0%),
ht(a) must precede ht,(a). But by a symmetrical argument,

ht,(a) must precede ht(d), which is-a contradiction.

Lemma E. For each B¢ U and t ¢ T, ht(B) is B.
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Proof: Suppose that B ¢ U and t ¢ T, Then there is

a texm n of L such that B is ho(n). Suppose also that ht(B)

is not B. Since, by Lemma A, ht(B)=B ¢ F({t,0)), there

must be a variable a such that o precedes B and a=f €

F({t,0%). By T7lb, a=R ¢ F(£0,0»). But then, by T45 and

T769¢, a=n € F(£0,0»). But this is impossible, since B is

the first variable B such that 8=r ¢ F({0,0)).

As the final step in the construction of the odel,

let G be that function whose domein is I and such that

(a)

For each k-place predicate letter m ¢ L, G(w) is that
function with domain T such that for each t ¢ T,
G(m) (t) is the set of seguences o ¢ Uk such that’

TOgeseOy 4 € F Kt,0%).

For each k-place operation letter § ¢ L, G(6) is that
function with domain T such that for each t ¢ T,

G(8) (t) is itself that function £ such that Domn(f) is

Uk and for each o ¢ Uk, f(a) is that B ¢ U such that

60.0. . .dk_1=3 e r (<t10>) o

Let Q. be {T,%4,U,G) and let x be that infinite

sequence such that for each n ¢ w, X is ho(vn).

Then ¢, is an interpretation for L. We will now show

that for each formula ¢ ¢ EX(I), x ¢ In%z}¢)(<0,0)), and

hence that EX(T) is satisfiable. To do this, we need two

preliminary lemmas:

Lemma ¥. For each term ¢ of L and each t ¢ T, Extt aft)(x)
14



is ht(c).

Proof: The proof is by induction, using T2.

(1) If k € w, then Ext aévk)(x) is x

t, is ho(vk) is (by

k
Lemma D) ht(vk)-

(2) Suppose § is a k-place operation letter, NgressrMey
are terms of L, and for each i < k, Exc (n ) (x) is
ht(ni). Then ExL (Gno...nk l)(x) is

G{8) () (Ext, (n ) (%) ;00 Ext, (nk 1) (x)y) is

t.,

G(G)(t)(<ht(n0)""fht(nk—l)>) is that 8 e U such that
5ht(ﬂo) [ 'ht(n]{_l)r'ﬁ c F((t’ 0>) iS (b:\[ Lemma A, T47a,
and T69¢c) that B € U such that 6n0...nk_l=8 ¢ Ft,0d)

is ht(Gno...nk_l).

Lemma G. For each formula ¢ of L, and t,t' € T, X ¢

,In%ﬂ}¢)((t,t'>) if and only if ¢ ¢ F(Kt,t")).

Proof: The proof proceeds by induction on the rank
of ¢. Let A be the set of formulas of the language of L
such that for each t,t'¢ T, x € Iqtd§¢)(4t,t'>) if and
only if ¢ e F({t,t'd).
(1) Suppose that ¢ is an atomic formula of L. Then there
are two cases.
(a) ¢ 1is C=n; for some terms ¢,n of L, Then x €
Int (¢)(<L,t'>) if and only if Ext, (C)(Y) is
Ex t a}n)(x) if and only if (by Lemma F) h (z) is
ht(n) if and only if (by Lemma B) Z=n & F({t,0})

if and only if (by T69b) =n &€ F(Kt,t'>).



(b) ¢ is LU PYRRY where 71 is a k-place.predicate
letter in L and NgreeseNyy are terms of L.
Ther x € Ing&}¢)(<t,t‘>) if and only if
(Extt'a;‘(no) (x) ,...,Extt'av(nk_l) (%)) € G(m)(t) if
and only if (by Lemma F) <ht(n0)""’ht(nk-l)> €
G(w)(t) if and only if (by the definition of G)
\ € . .
ﬂht(no)...ht(nk_l, ¢ F{t,0») 1if and onlyllf (by
Lemma A, T47b, and T69c) Thge My ¢ F({t,0%)

if and only if (by T69b) ¢ ¢ F(Kt,t"D).

-
N
A
0

uppose that ¢ ¢ A:; then x ¢ In%ﬂfv¢)(<t,t'>) if and
only if x ¢ In%z}¢)(<t!t‘>) if and only if (since ¢ ¢
p) ¢ ¢ F({é,t')) if and only if (by T68k and the com-
pleteness of A) ~¢ ¢ F(Lt,t'>).

(3) Suppose that ¢,V ¢ b; then x € Inng¢d>w)(<t,t'>) if
and only if either x ¢ In%hf¢)(<t,t'>) or X &
Inﬁzjw)(<t,t'>), if and only if (since ¢,V ¢ A)
either ¢ ¢ F((t,t'))'or Ve E((t,t')) if and only if
(by T68b, T69c, the completeness of A, and TéQa)
b2 e FlE, D).

(4) Suppose that ¢ ¢ A (We may suppose also that every

formula ¢ such that rk(¥)=rk(¢) is in-A.) and k € w;

then x ¢ Inslp\vk¢)((t,t'>) if and only if for each

B e U, xg ¢ Intaj¢)(4t,t'>) if and only if (since U is
'{xi:i ¢ »w}) for each m € w, xi ¢ In22f¢)(<t't'>) if

_ m
and only if (by T18) for cachm € W, X &

InngpS(vm,vk,¢))((t,t'))_if and only if (by the
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inductive hypothesis and T8b) for each variable B,
ps(B,vk,¢)é F(t,t*>) if and only if (by T68b and

" the completeness of A) for each variable 8,
wpsis,vk,¢) ¢ F({t,t'>) if and only if (by the com-
pleteness of A) Avk¢ ¢ FE, L"),

(5) Suppose that ¢ ¢ A; then x ¢ In%ZfH¢)6(t,t'>) if and
only if for each t" such that t" i&,t' x &
In%hf¢)(4t,t'>) if and only if (since ¢ ¢ A) for each
t" il.t' d e F(LE" £ if and only if for each |
" < t, 6 & F(t",t'>) if and only if (by T68b and
the completeness of A) for each t" <A t, 2¢ ¢
Ft",£'S) if and only if (by the completeness of A)
Ho € F(C{E, ).

(6) If ¢ € A, then G¢ £ A by an argument aznalogous to the
one for case (5).

(7) Suppose that ¢ € A; then x ¢ InEZfK¢)(<t,t'>) if and
only if x € In5&f¢)(<t,t>) if and only if (since ¢ ¢
Ay ¢ ¢ P{KLt,ty) if and only if (by T70b) K¢ ¢ F(<{t,t))
if and only if (by T69b) Xde F(Lt,t'>).

(8) Suppose that ¢ ¢ A} then x ¢ Ip%&fR¢)(4t,t'>) if and
only if x ¢ In%zf¢)(<t',t'>) if and only if (since
de A ¢ FKt',t"») if and only if (by T7lc) R¢ €
F({E,E'>) . |

This completes the proof of Lemma G.

By T65, EX(I') ¢ F({0,0»). Hence, by Lemma G, for

each ¢ ¢ EX(l'), x e In%z}¢)(<0,0)). So EX(I') is satisfiable
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and (by T107) T is satisfiable.

We can now state the final completeness theorems.

v

T110. T is consistent if and only if T is satisfiable.

Proof: If I' is consistent, then T is satisfiable,
by T109.

Conversely, suppose that T is satisfiable and incon-
sistent. Then by T60, there is a finite set of formulas T'
such that '€ T and T' is inconéistent; by T6l, F =¢,
where ¢ is the conjunctioﬂ (in order) or the formulas in T'.
By T33, =¢ is logically valid and therefore {¢} is not
satisfiable. But then TI'' is not satisfiable and neither,

therefore, is T'. This contradicts the original hypothesis.

T1l1ll. F ¢ if and only if ¢ is logically valid.

Proof: If + ¢ then ¢ is logically valid, by T33.
Suppose ¢ is logically -valid. Then {-¢} is unsatis-
fiable and (by T110) {-~¢} is inconsistent. By T60, + =-¢;

and, by T39a, - ¢.
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NOTES

The logical system set forward in this thesis and its
intuitive interpretation were first set forward in full
in a paper, "'Now' and 'Then'", read at a meeting of
the Australasian Association for ILogic, Sydney, August,
1¢70. The completeness proof was not discovered until
1972. -

Of course "is going to' is not a precise translation of

"'F', We use 1 to explain the point of the formal sys-

tem because it seems to be something like tie closest
possible natural English. translation of 2. '

This semantical notion of past tense does not corres-
pond very closely to any ordinary grammatical notion. .
The idea could also be stated as follows: V¢ is a past
tense of ¢ just in case an utterance of § at a given
moment would bhe true if and only if some earlier
utterance of ¢ woulé be true.

This seems obvious but is not entirely trivial to prove.
A proof can be given that there is ro past tense of 2
within the N system (i.e., that 5 is not exzpressible
within the N system) along the lines of the proof in
Kamp [5] that there are sentences expressible with N
that are not expressible without N.

Kamp evaluates formulas with respect to ordered pairs
of moments in Kamp [5], but (as he points out) this is
unnecessary in the W system; formulas in the N system
can be evaluated with respect to single moments if one
moment is distinguished as the 'present' one. In the N
system the evaluation of a formula at a point of refer-
ence {t,t> can only involve other points of reference
whose second term is t. In the system with K and R

~this is no longer the case since K changes the second

term of the relevant point of reference. For K and R
it is essential that the points of reference form a
square matrix.

This is not strictly correct, since 8 does not say that
the moment at which the lights turn out to belong to
the house precedes the moment of utterance. We ignore



that point for purposes of simplicity. A more strictly
correct symbolization would be PKP(Qa Vx(L(x)a S(x)) A
VY (R H(y) n AX((L(x) A S(x}) > R T(xy)]))

‘Intensicn' is not exactly the right word. We use it
because of the correspondence with modal logic and in
particular Montague [7].

Cocchiarella does not set things up precisely as de-
scribed here. We put it this way in order to stress
the fundamental similarities.

The main idea of this proof is taken from Prior [9].
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APPENDIX
A. Stronger Systems

There are other ways of doing the sort of thing that
the system of this paper is supposed to do and many systems
that are stronger than the'present one. The present system
was Ehosen for its relative simplicity, and because it seems
sufficient to handle most actual English examples that would
naturally be expressed withoﬁt the use of expressions that
refer explicitly to times, like 'the first moment'.

However, the present system is clearly limited in ,
that it is possible to refer back from any temporal context
' to only one previously established temporal context. As a
first illustration of this, suppose we introduce into the
system with K and R an additional dperator R', whi¢h is a
true 'now' operator in that it réfefs back always to the
moment of utterance. Then the new system would be more
expressive than the system with just K and R because it
would be possible sometimes to refer back from the same
point to two previously established temporal contexts. For
example, the sentence.

(1) FRF{(AX(A(x)¢> RA(x)) A Ax(B(x)e> R'B(x)))

could not be expressed without R'. For such a system we
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would naturally take 3-tuples as poinﬁs of referénce,
because it would be necessary to kéep track of two (rather
than one) previously established moments.

,Thé system with R' would be like the system without
it in that there would be sentences with R' (e.g. 1) that
would have no past tense (in the sense of page 3) in the
system with R'. As in Chapter II, we could again strengthen
this system by introducing an additional index operatox K';
the operator R', analogousiy to R, would always refer back
to the moment established by K'. In the absence of K' it
would refer back to the moment of utterance. This last
system would be closed under past and future tense, but
would have no true 'now' operator.

For any n € w, we could construct in this way a sys-
“tem with'n paired 'K' operatoxs Kn,....K _; and 'R' opera-
tors RO""'Rn-l' The n+lEB system would always be sffonger
than the nEE system because it would allow back-reference to
one more previously established context.

The limit of this process would be the system that
contains operators Kn and Rn for each n ¢ w. The key points
about the semantics for this system would be as follows:

An jptorpretation would be as before, but a point of
reference would be an ordered pair of an infinite sequence
of moments and a natural number.

Suppose (& is an interpretation, (& is (T,é,U,G>, X €

w .
T, and ¢ is a sentence. Then:
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Ho¢ is true at {x,k) if and only if for each t EZ Xyt
¢ is true at <xt,k}.
. Kj¢ is true at {x,k) if and only if ¢ is true at
. : '
(ka,k>.

Rj¢ is true at {x,k) if and only if ¢ is true at
x5

We would say that ¢ is logically valid if and only
if ¢ is true in each interpretation at each point of refer-
ence {x,0) where all the terms of x are the same. This
reflécts the idea that for each j ¢ w, Rj refers back to the
moment of utterance in the absence of Kj'

There is dlso another’way of achieving the same
strength as the system just described. We could introduce
into Cocchiarella's system just the one operator R, and '
construct the semantics for R in such a way that R refers
- back always to the immediately preceding temporal context.
We could iterate R's to refer back to contcxts further back
than the immediately preceding one.' Thus, the sentence (1)
could be expressed as -

(2) FF(Ax(A(x)¢* RA(x)) A Ax(B(x)¢> RRB(x)))

The sémantics for this system would be set up as
follows:

An interpretation would be as before, but a point of
reference would be any finite, non-empty sequence of moments.

Suppose @, is an interpretation, & is {T,£,U,G)>, x is

a finite, non-empty sequence of moments, and ¢ is a sentence.
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Then:
Ho is true at x if and only if for each

t ¢ is true at xn(t>.

% F1n(x) -1’
.R¢ is true at x if and only if ¢ is true at

x1(1h(x)~-1), if 1 < lh(x); otherwise, R¢ is true at x if

and only if ¢ is true at x.

We would say that a formula ¢ is logically valid if

and only if ¢ is true in every interpretation at every

l-place point of reference.
B. The Propositional Part of the System with K and R

The operators K and R are superfluous in the propo-
sitional part of our system in the sense that, for any
propositional formula ¢, there is a logically equivalent
propositional formula Yy such that neither K nor R occur in
Y. We will now make this claim precise and prove it

informally.

We define the set of propositional formulas as the
smallest set I' that includes all the propositional constants
and such that if ¢,y ¢ T, then =¢, ¢y, H¢, G, Ko, Rp ¢ T.

Two formulas ¢,¢ are Jlogically eguivalent if and only

if ¢y is logically valid, and strongly logically eguiva-

lent if and only if ¢e»{ is strongly logically valid.

We define a GH-formula as a propositional formula ¢

such that neither (k) nor {r) occurs in ¢.

The claim is simply that every propositional formula
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is logically equivalent to a GH-formula.

We define a basic disjunction as a formula ¢v Ry

where ¢,y are GH-formulas, and a basic conjunction as a

formula ¢ A Ry where ¢,y are GH-formulas.

We define CNF (the set of formulas in conjunctive

normal form) as the set of formulas which are conjunctions

of one or more basic disjunctions, and we define DNF (the

set of formulas in disjunctive normal form) as the set of

formulas which are disjunctions of one or more basic con-
junctions.

We need two lemmas in ordexr to establish our claim.

Lemma A. Every formula in CNF is strongly logically equiva-

lent to a formula in DNF, and vice versa.

Proof: The theorem corresponds to the similar theo-

" rem in the propositional calculus and can be established by

a simple argument'involving truth tables, We simply display
as an example the logically valid formula (6 vRY) a (xv RE)
((0aX) ARGV =$)) v (§aRE) v ((4)v-'¢) AR(VAE)) v (XAKY),

where ¢,V¥,x,& are any GH-formulas.

Lemma B. Every propositional formula is strongly logically

equivalent to a formula in CNF.

Proof: We prove the Lemma by an induction on the set
of propositional formulas. Let I' be the set of proposi-
tional formulas that are strongly logically equivalent to a

formula in CNF.
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(1)

(2)

(3)

(4)

If P is a propositional constant, then P is strongly
logically equivalent to Pv R(Pa =«P), so P € T.

Suppose ¢ € I'. By Lemma A there is a formula Y in DNF
sucﬁ that ¢ is strongly logically equivalent to ¢.
Then there are GH-formulas Xgreee Xy go,...,gn such
that ¢ is (XOA Rgo)v Y (xnn REn). Then =¢ is
strongly logically equivalent to w((xop‘REO}v cee ¥
(an REn)) which is in turn strongly logically equiva-
lent to -v(onREO) A ees A ":(an\ REn), ("XOV -IREO) A s
A (qxnv wREn), and (by T93) (wxov Rwio)n ces A

(wxnv RwEn). The last is in CNF, so =¢ ¢ T,

Suppose ¢,¥ ¢ I'., By an argument similar to the pre-
ceding, there is a formula X in DNF such that ¥ is
strongly logically equivalent to +¢. By Lemma A,
there is a formula £ in DNF such that § is strongly
logically equivalent to &. Then ¢~y is strongly
logically equivalent to -=¢ v ¥, which is strongly
logically equivalent to X v &, which is in DNF. So

¢ >V is strongly logically equivalent to a formula in
DNF, and by Lemma A it is also strongly logically
equivalent to a formula in CNF.

Suppose ¢ ¢ T'. Then there are GH-formulas wo,...,wn,
XO""’Xn such that ¢ is strongly logically equivalent
to (wov RXO)A cee A (wnv'Rxn). Then H¢ is strongly
logically logically equivalent to H(wov Rxo)n oo i

H(wnv Rxn). But the latter is strongly logically
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equivalent to (H¢0V RXO)A see A(Hwnv Rxn) thch is in

CNF, so H¢ is in T. )

(5) If ¢ ¢ I', then G ¢ T as in case (4).

(6) Supéose ¢ ¢ T. Then there is a formuia Yy in CNF such
that ¢ is strongly logically equivalent to ¥, so K¢
is strongly logically equivalent to Ky. Let ' be
the result of erasing all the R's from ¥. Then (by
GAl9) Ky is strongly logically equivalent to Ky' which
is strongly logically eguivalent (by GAlEZ) to y'v Kw',u
which is in CNF, since y¥' is a GH-formula. But K¢ is
strongly logically equivalent to ¥'v Ky', so K¢ ¢ T.

(7) Suppouse ¢ g . Then there is a formula ¢ in CNF such
that ¢ is strongly logically equivalent to $. Then,
R¢ is strongly logically equivalent to Ry. Let y' be
éhe'result of erasing all the K's from y. Then (T85)
Ry is strongly logically equivalent to Ry', which is
strongly logically equivalent to {(Y¥'A =y') v Rd'.
Since the latter is in CNF, R¢ ¢ T. .

This completes the proof of Lemma B.

To prove the original claim, suppose that ¢ is a
propositional formula. Then by Lemma B there is a formula
¥ in CNF such that ¢ is strongly logically equivalent to V.
Let Y' be the result of efasing all the R's in ¥, Then ¢
is logically equivalent to ¥', and Y' is a GH-formula.

Although we have not stated it previously, it is

clear from the above proof that an effective function can be
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defined which assigns to each propositional formﬁla a
logically equivalent GH-formula, so that decidability
results about the propositional part of Cocchiarella's
system can be carried over to the propositional part of the

system with K and R.
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