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1.2. An Introduction to Validated Methods for Initial Value Problems

for Ordinary Differential Equations

Ken Jackson

Computer Science Department

University of Toronto

Toronto, Canada, M5S 3G4

Email: krj@cs.toronto.edu

Compared to standard numerical methods for initial value problems (IVPs)

for ordinary differential equations (ODEs) , validated methods have two important

advantages: if they return a solution to a problem, then

1. the problem is guaranteed to have a unique solution, and

2. an enclosure of the true solution is produced.

We survey validated methods for the numerical solution of fVPs for ODEs. de

scribe several methods in a common framework, and identify areas for future

research.

This is joint work with Prof. Ned Nedialkov.
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1.1. Stabilization of Dynamical Systems by bounded feedbacks

R. Gabasov, P.M. Kirillova (Minsk, Belarus)

The stabilization is one of the actual problems of differential equations. It

consists in constructing such the feedbacks that after closing properly unstable

systems become asymptotically stable. A stabilization problem is essentially com

plicated if bounded feedbacks are used. Synthesis problems of stable dynamic sys

tems invariant with respect to large exterior disturbances and robust with respect

to large variations of systems parameters are of great importance. At solving the

problems mentioned, methods of synthesis of optimal feedbacks turn out to be

very effective. In the report a new approach to the solution of optimal synthesis

problems is described. Linear, quasi-linear, piecewise-linear and nonlinear opti

mal control problems are .under consideration. Results of computer experiments

are given which demonstrate efficiency of algorithms suggested. Applications of

methods of optimal synthesis for the solution of various stabilization problems

are presented. Examples are given.
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1.2. An Introduction to Validated Methods for Initial Value Problems

for Ordinary Differential Equations

Ken Jackson

Computer Science Department

University of Toronto

Toronto, Canada, M5S 3G4

Email: krj@cs.toronto.edu

Compared to standard numerical methods for initial value problems (IVPs)

for ordinary differential equations (ODEs) , validated methods have two important

advantages: if they return a solution to a problem, then

1. the problem is guaranteed to have a unique solution, and

2. an enclosure of the true solution is produced.

We survey validated methods for the numerical solution of IVPs for ODEs. de

scribe several methods in a common framework, and identify areas for future

research.

This is joint work with Prof. Ned Nedialkov.
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1.3. Mean-square stability analysis of numerical schemes for stochas

tic differential equations

Taketomo Mitsui

Graduate School of Human Informatics

Nagoya University

Nagoya 464-8601, Japan

tom.mitsui@cc.nagoya-u.ac.jp

 

 

Stochastic differential equations (SDEs) represent physical phenomena domi

nated by stochastic processes. As for deterministic ordinary differential equations

(ODEs). various numerical schemes have been proposed for SDEs under the prin

ciple of discrete variable methods. Numerical stability of the schemes turns out.

then, to be more crucial for SDEs. We will describe the concept of the mean-

square stability, and show its criteria for several schemes applied to scalar and

vector SDEs.

This is a joint work with Y. Saito. Gifu Shotoku Gakuen University.
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1.4. Spectrum and Periodic Solutions of Functional Differential

Equations

Toshiki Naito

The Univesity of Electo-Communications

Chofu, Tokyo 182-8585. Japan

naito@e-one . uec .ac.jp

In this talk, I will give an introduction to several results in the theory of

functional differential equations. They are obtained by Naito and his colleagues:

Nguyen Van Minh. Yoshiyuki Hino, Tetsuo Furumochi, Jong Son Shin, Satoru

Murakami and others. We are interested in the study of the following equation:

u'(t) = Au{t) + F(t,ut) + f(t),

where A is the infinitesimal generator of a Co semigroup on a Banach space E.

u-t is a function segment of u at time t defined as ut{8) - u(t + 8), -co < 0 < 0.

The function f(t) is continuous, peiriodic or almost periodic.

The function F is assumed to be continuous in (£, «t), where u-t e B, a function

space called the phase space. To deal with such delay equation systematically,

Hale and Kato have defined an abstract phase space B. It is a Banach space of

some functions 0 : (-oo.Oj -» E satisfying natural axioms which are deduced

from common properties of several concrete spaces appearing in the theory of

delay equations. The important, property is that ut moves continuously in the

space B with respect to ( and \\ut\\B -* 0 as t -> oo provided |u(i)|£ —5- 0 as

/. -4 oo (the fading memory property). Assuming the fading memory property,

we can deal with the equations with infinite delay as in the case of finite delay.

Among man;- results I will pick up followings ones: (i) the distribution of the

spectrum of the generator of the solution semigroup on B of the linear autonomous

equation and the stability of the solution: (ii) the existence of periodic solutions

of linear periodic equation and the fixed point theorem by Chow and Hale;(iii)

the method of commuting operators associated with the linear equation and the

decomposition theorem: (iv) an introduction to the variation of constants formula

and its application to the exisence of periodic and alomost periodic solutions; (v)

the total stability of the equation and the existence of almost periodic solutions.
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1.5. The operator pencil (A - XB) and asymptotic behavior of the

degenerate equation (Bu)'(t) = Au(t)

Vu Quoc Phong

Ohio University

We report on recent joint work with Sen-Yen Shaw. Of concern is the stability

and almost periodicity of solutions of Eq. (Bu)'(t) = Au(t), where A and B

are closed linear operators from a Banach space X to a Banach space Y. Our

methods are based on the theory of linear operator pencil (.4 — XB) and on

generalized Lyapunov-Sylvester equations AX — BXD — C. In particular, we

obtain results on almost, periodicity of solutions under the countability conditions

of the imaginary spectrum of the pencil.
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1.6. New results on (/-difference equalitions: Back to Birkhoff's pro

gram

J-P. Ramis (France)

(/-difference equation is an old subject. They were studied by famous mathemati

cians: Euler, Gauss, Jacobi. Witten, Ramanujan. Birkhoff,...

As a differential equation is a relation between a function f(x) and its deriva

tives: f'(x)if"(x). ... a (/-difference equation (respectively, a difference equation)

is a relation between / and and its transformed by an automorphism on the vari

able: f{qx),f(q2x). ... (respectively, f(x + l),f{x+2), ...). Birkhoff began (in the

thirties) to mimic for (/-difference equations the work of Riemann and Hilber:

for the differential equations, in particular to classify (/-difference equations by

'"generic objects'1.

After a paper by Birkhoff and his student Guenter (1941) it seems that the

subject was almost completely forgotten until quite recently. There is now a re

newal (in relation in particular with (/-combinatorics, quantum groups, theoretical

physics,...).

I will explain how with my students J. Saulvy and C. Zhang, we completely

archived Birkhoff's program on g-difference equations and deduce some funda

mental results on (/-difference Galois theory. 1 will explain in particular what is

the "(/-monodromy" and how one receives usual monodromy for linear O.D.E.

when g-+l.
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1.7. Convergence rates of representation formulas for A-f-parameter

semigroups

Pei-Shan Huang and Sen-Yen Shaw

Department of Mathematics, National Central University

Chung-Li, Taiwan

Two kinds of m-dimensional versions of some well known approximation opera

tors, such as those of Bernstein, Chung. Kantorovitch. Durrmeyer, and Meyer-

Konig-Zeller. are formulated. Then by applying a vector-valued version of a quan

titative Korovkin approximation theorem of Shisha and Mond to them, we obtain

estimates of convergence rates of some approximation formulas for a continuous

vecter-valued function / of m variables, in terms of its modulus of continuity

u){ftS). This provides an approach to estimate convergence rates of some known

or new representation formulas for a strongly continuous m-parameter semigroup

{T(t) = T(ti,t2,...,tm);0 < ti < co,?' = l,2,...,m} of operators on a Banach

space X.

Denote t := h +t2 + •■■ +tm, I := {t = (tut2,, ...,tm):0 < t{ < 1,7 = l,...,m},

and T := {t = (ti,t2,...,tm);0 <t < 1}. Let At be the infinitesimal generator of

the Co-semigroup {rife') := 7/(0,... ,0.^,0.... ,0);0<^ < oo}; i= 1,2,..., m. We

have:

 

 

fir^W"7)) x-T(t)x <2u(T(-)x,Jt/n) , xe X, teT:

I + J^ti foi(-)-n x-T{t)x\ <2ufe(-)xfyftjn\ , xeX, tef:

i=I

At

n

-l

II'+M'-7 -')) *-r(«)* < 2w (t(-)x, \J2t/n\ , x 6 X, t € T;

f+IXt'-Tf-']] *-rM*
i=l

<2w (r(.)«, ^/n2t/n ,iel,tet;

n{<n+l)xf-'(u(slT)-/)(/+«i(ri(?iT-/))*},-r(*),

s*-irO-.t/^fl..€X.t«Ti
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n(. + iMr,(a(^T)-/)) (/+f>(r<<;TTT>-')) n-Tft) x

SS-|T(-)-.i/^^|,*€X,«€T.
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1.8. Greedy Algorithms in Nonlinear Approximation

V.N. Temlyakov

 

Our main interest in this talk is nonlinear approximation. The basic idea behind

nonlinear approximation is that the elements used in the approximation do not

come from a fixed linear space but are allowed to depend on the function being

approximated. While the scope of the talk is mostly theoretical, we should note

that this form of approximation appears in many numerical applications such as

adaptive PDE solvers, compression of images and signals, statistical classifica

tion, and so on. The standard problem in this regard is the problem of m-term

approximation where one fixes a basis and looks to approximate a target function

by a linear combination of m terms of the basis. When the basis is a wavelet ba

sis or a basis of other waveforms, then this type of approximation is the starting

point for compression algorithms. We will discuss the quantitative aspects of this

type of approximation. We will also discuss stable algorithms for finding good or

near best approximations using m terms. These algorithms are representatives

of a family of greedy algorithms. More recently, there has emerged another more

complicated form of nonlinear approximation which we call highly nonlinear ap

proximation. It takes many forms but has the basic ingredient that a basis is

replaced by a larger system of functions that is usually redundant. Some types of

approximation that fall into this general category are mathematical frames, adap

tive pursuit (or greedy algorithms) and adaptive basis selection. Redundancy on

the one hand offers much promise for greater efficiency in terms of approximation

rate, but on the other hand gives rise to highly nontrivial theoretical and practical

problems. We will discuss some of these theoretical problems in the talk.
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1.9. Optimal recovery and extremum theory

V. Tikhomirov, Moscow

The lecture is devoted to the problem of optimal recovery of linear functionals on

classes of smooth, analytic functions and spaces of polynomials and harmonics.

Recovery is one of the fundamental notions of the numerical analysis. It is possible

to describe it as follows: to recover a mathematical object means to obtain a

necessary data (maybe approximate), which is based on some information about

the object (which as a rule is inexact).

Our considerations are based on some general principles of extremum. The

main result of relationship of optimal recovery and Lagrange's multipliers of a

certain convex extremal problem is applied to some concrete recovery problems.

It leads to the generalization of many results in classical analysis, which date back

to Tchebyshev. Zolotarev. A. and V. Markovs. Bernstein. Kolmogorov. Landau.

Hardy-Littlwood-Polya. Favard and others.

In the lecture the following questions will be discussed:

1. Approximation of individual elements and problems of recovery.

2. Approximation by polynomials of individual functions and recovery based

on values of certain moments.

3. Inequalities for derivatives of polynomials (algebraic, trigonometrical, spher

ical) and recovery of a value of a polynomial (or its derivative) in fixed points

basing on inexact information.

4. Inequalities for derivatives of smooth functions and recovery of a value of a

function (or its derivative) in a fixed point basing on inexact information.

5. Approximation and recovery of smooth and analitic functions from func

tional classes.
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1.10. Analytic continuation in some classes of separately analytic

functions of real variables

Nguyen Thanh Van

Uriversite de Paul Sabatier, Toulouse, France

 

 

For ; = '-.-■■■ . T3 . \et Dj be a domain in RN> , Ej = closure of a relatively

conpac, opT^. sibse: of Dj with smooth boundary

Qj = i JicmofsaeDus polynomial of Nj variables such that Q: (x) = 0 =* x = 0

A = I - <E2 x • • ■ x Em) U ■ ■ ■ U {E, x ■ ■ • x Em_! x Dm)

-'; = r; ■ - ■ - x £j_! x £/j+] x ■ ■ ■ Em

We :onzdei f : .1 — C such that for every fixed y g V, the function rr f-j- /'{y, x)

is r^:-^;-;: - L. a^d verifies Qj(D)f(y, •) = 0, with D = (Xr...,^-\

i

Izztes :a> —rpr:ve :he existence of an open set fi inRM. (M = ArH i-A"m)

iadeoaU-j£s: of ;'. G 3 A*, such that / has a real-analytic continuation on fl.
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2.1. On the asymptotics of solutions of the Cauchy problem in Banach

spaces

Pham Ngoc Boi

Department of Mathematics

University of Vinh

Let B be a Banach space, and let A and R(e),e € [0,£o] be functions taking

values in [B\. the space of bounded linear operators acting on B, integrable on

\0.T}.T < +co . In B we consider the following Cauchy problem

dx(t)

dt

dx(t)

dt

= A(t)x(t), ar(0)=xo5 (2.1)

= [A{t) + R(t,£)]w{t): x(G)=xD. (2.2)

The problem of finding conditions for the convergence of of solutions of (2.1) to

those of (2.2) in the case of Banach spaces has been investigated by many math

ematicians, for instance. Kurzweil. Vorel. Antonsiewicz. Opial, Levin. Strauss,

Yorke. Nguyen The Hoan, Zabreiko, Kostadinov. Nguyen Hong Thai In this

talk, we will present several results in this direction.
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2.2. Gevrey Formal Reduction of Vector Fields' Singularities

Mireille Canalis-Durand

{joint work with Reinhard Schafke)

We consider a Pfaffian form:

w = f{x>y)dx-g(x,y)dy = 0

which satisfies /(0,0) = g(0,0) = 0.

Here, we study nilpotent analytical form w which are analytically equivalent to

*>! = d(y2 - x3) + A(x,y){2xdy - Zydx)

where A{x,y) is a convergent series. A(0, 0) = 0.

Such a differential form w3 can be formally transformed into a final reduced form

(P3):

Q = d{y2 - x3) 4- (Ao(fc) + xA^h^xdy - Zydx)

where h = y2 - x3. A0. Ai € C\[h]]. The form i is unique if Aj(/i) = 1, when

A(x,y) = x + ....

We want to study the convergence/divergence of the series Ao and the nature of

the change of variables U(x,y) which transforms ^ into £j.

In ([1]), we conjectured that the series Ao(ft-) is divergent and has an optimal

Gevrey order equal to 6. We presented a "pattern recognition" algorithm for the

growth rate of the coefficients of A0. Even the formal reduction of d(y2 — x2) +

A{x,y){2xdy - 2ydx) was treated in order to show that Gevrey results agreed

with the theory of J. Martinet and J.-P. Ramis ([3]).

In this talk, we show that U and A0 are divergent in the generic case (A(x,y) =

x + ...). These series are Gevrey of order 1 in the homogeneous degree, i.e. if

V{x,y) = J2bki xkyl and A0 = £Bm hm,: then 3 K,A > 0 / V k,l,m

\bkl\<KA2k+Zi(2k-l3l)\

I Bm \< KAGm{Qm)\

Moreover, these series are summable.

REFERENCES

[1] M. Canalis-Durand ; F. Michel, M. Teisseyre. Algorithms for Formal Reduc

tion of Vector Fields Singularities, Journal on Dynamical and Control Systems,

vol. 7, No. 1, (2001), 101-125.
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[2] F. Loray, Réduction formelle des singularitéscuspidales de champs de vecteurs

analytiques, Differential Equations 158 1, (1999), 152-173.

[3] J. Martinet, J.-P. Ramis, Classification analytique des équations différentielles

non linéaires résonnantes du premier ordre, Ann. Sci. Ec. Norm. Sup. 16 (1983),

571-621.
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2.3. Lyapunov spectrum of nonautonomous linear stochastic differen

tial equations

Nguyen Dinh Cong

Hanoi Institute of Mathematics

P. 0. Box 631 Bo Ho, 10000 Hanoi, Vietnam.

Email address: ndcong@hanimath.ac.vn

 

We introduce a concept of Lyapunov exponents and Lyapunov spectrum for

nonautonomous linear stochastic differential equations. The Lyapunov exponents

are defined samplewise via the two-parameter flow generated by the equation. We

prove that Lyapunov exponents are finite and nonrandom. Lyapunov exponents

are used for investigation of Lyapunov regularity and stability of nonautonomous

stochastic differential, equations. The results show that the concept of Lyapunov

exponents is still very fruitful for stochastic objects and gives us a useful tool for

investigating sample stability as well as qualitative behavior of nonautonomous

linear and nonlinear stochastic differential equations.

Key words: Lyapunov exponents. Lyapunov spectrum, nonautonomous stochas

tic differential equation, two-parameter stochastic flow. Lyapunov regularity, sta

bility.

MSC2000: Primary 60H10: 37H10, 34D0S: secondary 60G17. 34F05; 93E15.
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2.4. Total Stability and the Existence of Almost Periodic Integrals

for Almost Periodic General Processes

Y. Hino (Chiba, Japan)

 

The notion of processes introduced in [2-3] and [5-8] is a useful tool in the study

of mathematical analysis for some phenomena whose dynamics is described by

the equations which contains the derivative with respect time variable. Indeed,

Dafermos [2], Hale [5] and the authors [6-7 ] derived some stability properties for

processes and applied those to get stability results and the existence of almost-

periodic solutions for some kinds of equations, including functional differential

equations, partial differential equations and evolut ion equations.

To ensure the existence of almost periodic solutions of almost periodic systems,

the concept of total stability (for this definit ion. see [11]) of a bounded solution

plays an important rule.

For general processes (equal to the concept of '"general dynamical systems "

in [1]), Bondi and Moauro [1] gave a definition of total stability of subset M of

a metric space X and proved uniform asymptotic stability of M implies total

stability of A/. For example, this definition implies the usual definition of total

stability of the constant solution for systems, when the unperturbed is generated

by an ordinary differential equation in Rn with the right hand side satisfies a

Lipschitz condition. For details, s ee [1]. In this means, the concepts of the total

stability of differential e quations and of general processes are slightly different.

In this talk, at first, we extend the concept of total stability of a subset M

of a metric space X given by Bondi and Moauro to the concept of the total

stability of a bounded integral u(t) of a general process w(t.s,x) on a metric

space X and show that the total stability of an integral n(t) of an almost periodic

general process w(t,s.x) implies the existence of an almost periodic integral of

the general process w(t, $.x). Secondly, we show that uniform asymptotic stability

of an integral u(t) of a (not general) process w(t.s,x) implies total stability of

an integral fi{t). By Kato and Sibuya:s example [9], it is known that the above

result does not hold even for almost periodic general prosesses. Finally, for a

linear process, we show that total stability of the equilibrium point zero implies

uniform asymptotic stability of the equilibrium point zero, which corresponds to

Massera's theorem [10] for ordinary differential equations.

REFERENCES

[1] P. Bondi and V. Moauro, Total stability for general dynamical systems,

Ricerche di Matematica 25 (1976). 163-175.

[2] C. M. Dafermos, An invariance principle for compact, processes,
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U <H

2.5. Asymptotically Periodic Solutions of Volterra Difference Equa

tions

Tetsuo Furumochi

Department of Mathematics, Shimane University, Matsue 690-8504, JAPAX

In this talk, we consider the Volterra difference equations

n

xn+i = a(n) - Y^D(n,fc, lit), n e Z+

and
n

xn+i=p(n)- Y2 ^{ni*t**)i neZt

k——oa

where Z+ and Z denote the sets of nonnegative integers and integers respectively,

p is /V-periodic. P(n+ N,k + N.x) — P(n^%x), D(n,k,x) and P(ntk,x) are at

least continuous in x. and where a(n) converges to p(n) and D(n, k. x) converges

to P(n.k.x) in some sense. We discuss periodicity and asymptotic periodicity

by using Schauders first theorem and a growth condition on P, and relations

between solutions of the two equations.
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2.6. Almost periodic solutions of higher order delay differential equa

tions

Ha Binh Minh

Department of Applied Mathematics

Hanoi University of Technology

Dai Co Viet Street. Hanoi, Vietnam

We consider the following equation:

» m -fc

A0u(t) + Y,Au&(t) + £ / dBfa)*^ + ij) = f{t). <*)

t=l j=0 Ja

Here Aq is a linear closed operator on the complex space X; A{ € L(X), V? =

l...n; Bj € BV([a,b],L(X))yj = Q...m. After introducing the definition of

spectrum of Eq. (*) we investigate the almost periodicity of mild solutions of (*)

based on the countability of the imaginary spectrum of Eq. (*) with / almost

periodic. The obtained results extend some previous ones to the above mentioned

class of equations and can be further extended to various spaces of functions,

which are called A-classes.
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2.7. Center Manifolds of Partial Functional Differential Equations Re

visited

Nguyen Van Minh

Department of Mathematics,

Hanoi Unversity of Science,

Khoa Toan, DH Khoa Hoc Tu Nhien,

334 Nguyen Trai, Hanoi, Vietnam.

 

We consider partial functional differential equations in the abstract form

x{t) =Ax + Fxt + g(xt) (2.3)

where A is the generator of a Co-semigroup of linear operators on a Banach space

X, F £ L(C;X) and g € Cl(C,X) satisfies 5(0) = 0,Do(0) = 0, \\g(<p) - g(ijJ)\\ <

L\\(p — tp\\. V^.t'-; € C := C(\—r.0JrX). As is well known, if A generates a compact

semigroup, then the linear equation

x{t) = Ax(t) + Fxt (2.4)

generates an eventually compact semigroup, so this semigroup has an exponential

trichotomy (see the definition in Section 2 below). That for " sufficiently small'*

g Eq. (2.3) has invariant manifolds has been considered in various papers. The

existence of center manifolds for Eq. (2.3) plays an important role in the theory

of bifurcations, however, the proof of the existence of center manifolds for Eq.

(2.3) has been based on the so-called "variation-of-constants formula" in the

phase space C of Memory. As is noted in our previous papers, the validity of this

formula in general is stil open. The reason for this is due to the lack of Riesz

representation of a continuous functional in infinite dimensional Banach spaces.

In the present paper we will make an attempt to fill this gap by giving a proof

of the existence of center manifolds for Eq. (2.3) without using the variation-of-

constants formula in the phase space C. Instead of using the variation-of-constants

formula in the phase space, which is known as the Lyapunov-Perron method, we

will employ the method of graph transforms. By this method we can include into

our consideration a large class of equations which may generate non strongly

continuous evolutional*}' processes. We now outline the contents of this paper. In

the next section we will collect some well known results on the solution semigroups

associated with Eq. (2.3) for the reader's convenience. In the section which follows,

we present a method to prove the existence of center manifolds for evolutionary

processes which are not necessarily strongly continuous. The main results of this

paper will be based on the ones for evolutionary processes. Finally, we present

several examples to illustrate the obtained results.

This is a join work with J. Wu (York University, Canada).
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2.9.GlobalExponentialStabilityinDiscrete-TimeAnaloguesofDe

layedCellularNeutralNetworks

SannayMohamad

DepartmentofMathematics,FacultyofScience,UniversitiBruneiDarussalam,

GadongBE1410,BruneiDarussalam

Anovelmethodcalledsemi-discretizationisemployedintheformulation

ofdiscrete-timeanaloguesofnonlineardelayeddifferentialequationsmodelling

celullarneutralnetworks.Thedynamicalcharacteristicsofthediscrete-timeana

loguesarestudied.Whenthenetworkparameterssatisfycertainsufficientcon

ditionswhichareindependentofthedelays,thediscrete-timeanaloguesforany

choiceonthediscretizationstep-sizeareshowntobegloballyexponentiallysta

ble.Thesufficientconditionsareobtainedbyemployinganappropriateformof

Lyapunovsequencesandtheseconditionscorrespondtothosewhichhavebeen

obtainedintheliteraturefortheglobalexponentialstabilityofcontinuous-time

delayedcellularneutralnetworks.Severalexamplesandcomputersimulationsare

giventosupportourresultsandtodemonstratesomeoftheadvantagesofthe

discrete-timeanaloguesinnumericallysimulatingtheircontinuous-timecounter

parts.
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2.9. Global Exponential Stability in Discrete-Time Analogues of De

layed Cellular Neutral Networks

Sannay Mohamad

Department of Mathematics. Faculty of Science, Universiti Brunei Darussalam,

Gadong BE 1410. Brunei Darussalam

 

A novel method called semi-discretization is employed in the formulation

of discrete-time analogues of nonlinear delayed differential equations modelling

celullar neutral networks. The dynamical characteristics of the discrete-time ana

logues are studied. When the network parameters satisfy certain sufficient con

ditions which are independent of the delays, the discrete-time analogues for any

choice on the discretization step-size are shown to be globally exponentially sta

ble. The sufficient conditions are obtained by employing an appropriate form of

Lyapunov sequences and these conditions correspond to those which have been

obtained in the literature for the global exponential stability of continuous-time

delayed cellular neutral networks. Several examples and computer simulations are

given to support our results and to demonstrate some of the advantages of the

discrete-time analogues in numerically simulating their continuous-time counter

parts.
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2.10. Some Invariant Manifolds for Abstract Functional Differential

Equations and Linearized Stabilities

 

Satoru Murakami

Department of Applied Mathematics,

Okayama University of Science.

1-1 Ridaicho. Okayama 700-0005, Japan

Email: murakami@youhei.xmath.ous.ac.jp

 

In this talk, we will be concerned with the abstract functional differential

equation

u(t) = Au(t) + L(ut) + f{ut), (2.5)

where A is the infinitesimal generator of a strongly continuous compact semigroup

on a Banach space X, tit is an element of B defined by Ut{8) = u(t 4- 8) for

8 € (-oo.O], L : B i-4 X is a bounded linear operator and / e Cl(B:X) with

/(0) = f'(Q) = 0; here B = B((-oo,0];X) is the phase space for Eq. (1) which

satisfies some fundamental axioms.

The main purpose of this talk is to prove the existence of some invariant

manifolds for Eq. (1) such as stable manifold and unstable manifold, by using the

variation-of-constants formula in the phase space for Eq. (1) which has recently

been established by Hino, Murakami, Naito and Nguyen V. Minh in the paper

[A variation-of-constants formula for abstract functional differential

equations in the phase space, J. Differential Equations (in press)].

As a corollary of our main result, one can get a stability result on the zero

solution of Eq. (1) which is often called as the principle of linearized stability in the

theory of ODEs; indeed, the zero solution of Eq. (1) is uniformly asymptotically

stable if the zero solution of the linearized equation

ii(t) = Au{t) + L(ut) (2.6)

is uniformly asymptotically stable.

Furthermore, establishing the existence of the center-unstable manifold for

Eq. (1), an instability result on the zero solution of Eq. (1) is derived under the

situation that the characterisitic operator for Eq. (2) possesses a characteristic

rool with positive real part.
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2.11. On the Complex WKB Analysis for a Second Order Linear

O.D.E. of Schrodinger Type

Minorii Nakano

Department of Mathematics, KEIO University,

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan, 223-8522.

Tel: +81 45 566 1666. Fax: +81 45 566 1642. E-mail: nakano@math.keio.ac.jp

We study the following second order linear ordinary differential equation of

Schrodinger type containing a small parameter e, which sometimes represents

the Planck constant:

d2y

(X) '=2>' d^-<x-^y = ° (fceN; s>fl€C: 0<\x\<x0: 0 < e < r0);

h'

(2) a{x,e):= g^a^e* (ao^O; a^eC; m0 > 0),

where x0, e0 are small constants and m/s are integers. A zero x = 0 of a(x.O) {=

0oxm°) is called a turning point of (1).

Our aim is to get asymptotic property of solutions of (1) near x = 0 when

e, -+ 0 by using the concept of the characteristic polygon for (1) introduced in

Iwano-Sibuya [3] and by applying the so-called stretching-matching method and

the complex WKB method (Nakano [4], [5], Nishimoto [6], Wasow [10]).

We plot the following points on the (Xy)-plane according to the indexes of

e and x of a(x.e\;

(3) P-=(iy) 0- = 0;1,2,...;/0, R:=(h,-1).

The characteristic polygon for (1) is defined to be a polygon convex downward

connecting the points P/s and R, then it consists of several segments. The more

segments, the more complicated to analyze (1).

The simplest is the Airy equation

(4) 52y"-xy = 0,

whose characteristic potygon consists of one segment. The second simplest, is

(5) e2y"~(xm+sxn)y = 0

with a two-segment characteristic polygon (Nakano [4], Roos [8]). Roos also ana

lyzes the equation with a three-segment characteristic polygon (Roos [9]}. which

 

 

is

(6) ^g-(*»+i>+w»-«

In this talk, we consider (1) with an arbitrarily many-segment characteristic

polygon.
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2.12. Algebraic Solutions of Lotka-Volterra Equations

Kenzi Odani

Department of Mathematics, Aichi University of Education

Igaya-cho, Kariya-shi 448-8542, Japan

  

In the paper, we consider the condition of the Lotka-Volterra equation

x = x{ bix- (a2 + t>2)y + a2 ), y = y{ {ai + bi)x - a,2y — h )• (LV)

to have an invariant algebraic curve. We say that an algebaic curve is invariant under

(LV) if it consists of some solutions of (LV) . Both the lines x = 0 and y = 0 are anytime

invariant under (LV). So we call them the trivial invariant lines of (LV).

If a^a^ = b^b^ = 0, then we can integrate the equation (LV) by the separation

of variables. If a\a2<is ^ 0 and 616263 — 0, then we exchange {a*} and {bi} by changing

the variables (x, y, f) -4 (y.x.—t). So the assumption 616363 ^ 0 does not spoil the

generality of the coefficients. From now on, we use such the notations as k := ai/b\,

t := 02/62, m := 03/63- The author obtains the following results:

Theorem 1. When 616263 7^ 0, the equation (LV) has an invariant algebraic curves of

degree ^ 2 other than trivial ones if and only if it satisfies one of the following:

(1) k£m=l. (2.1) k = -l. (2.2) I = -1. (2.3) m=-l.

(3) kim=-l, k+l/m = l. (4.1) fc = -2} m + l/£=l.

(4.2) £=-2: k + l/m=l. (4.3) m = -2. £ + 1/& = 1.

(5.1) k = -1/2, m+ 1/1=1. (5.2) £=-1/2, Jt + l/m=l.

(5.3) m = -l/2, £ + l/fe= 1.

7/"i/ie equation (LV) satisfies one of(l). (2.1), (2.2), (2.3), t/ien it has an invariant line

other than trivial ones.

Theorem 2. When b^bs =£ 0 and when all k,£.m are not negative rationals, if the

equation (LV) has an invariant algebraic curves other than trivial ones, then it satisfies

the condition (1) or (3) of Theorem 1.

Actually, Theorem 1 is not new. In fact, Cairo, Feix and Llibre [l] already gave

an essentially same result, however, not sophisticated. Our notation makes their result

more clear. From Theorem 2. the author predicts that there are only a few number of

irreducible invariant algebraic curves of degree £ 3.
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2.13. Symmetries, control and invariant tracking

Pierre Rouchon

Ecole des Mines de Paris

E-mail: rouchon@cas.ensmp.fr

The talk is relative to output tracking y = h(x) of a control system x = /(x.u).

Tracking a reference trajectory t >->■ yr(t) via classical decoupling and input/ouput lin

earization techniques provides a linear and stable closed-loop dynamics for the tracking

error e = 'y-yr. For many physical systems, the intrinsic character of y-yT is not guar

anty. It is well known that when y <= 50(3) is the orientation of a satellite, the "good"

tracking error is y{yT)~l- When y is the outlet concentration of a chemical reactor, the

case is less classical, y belongs to the simplex of molar fractions (each component lies

in [0. 1] and the sum is 1). The difference y - yr has no physical meaning. One has to

measure the tracking error in a different way in order to be invariant with respect to

units changes: the tracking controller must remain unchanged if instead of using mole

fractions we use mass fractions. Such natural invariance properties can be ensured if we

can have an invariant way to measure the tracking error. For a general system admitting

a symmetry group (up to static feedback), it is possible to derive (under some regularity

assumptions relative to the group action) a collection of independent invariants, func-

tions of y and yr, ... y).v) for some derivation order v measuring the tracking error. The

construction of such invariants is based on the Darboux-Cartan moving frame method.

Several examples of invariant errors will be given (chemical reactor and units changes,

non holonomic systems with SB(2) invariance, mechanical system with Galilean in

variance, ... ). Application of input/ouput linearization techniques with these invariant

errors as outputs automatically yields to invariant tracking controllers.
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2.14. Bounded Solutions and Periodic Solutions to Linear Differential

Equations

Toshiki Naito

The Univesity of Electo-Communications

Chofu, Tokyo 182-8585, Japan

naito'Se-one. uec.ac.jp

Jong Son Shin

Korea University

Kodaira, Tokyo 187-8560, Japan

shinjs@tech.korea-u.ac.jp

In this talk, we will give criteria on the existence of bounded solutions and periodic

solutions to the equation of the form

-u(t) = Au(t) + f(t), - (2.7)

where A is the infinitesimal generator of a Co-semigroup U(t) on a Banach space X,

and f(t) is a r-periodic continuous function.

Roughly speaking, the existence of periodic solutions to Equation (2.7) is derived

from the existence of bounded solutions on [0, oo). It is called the Massera type theorem.

The existence of bounded solutions is. in the abstract form, represented as follows :

there is an xq such that {V^xq}^ is bounded for an affme linear map Vx = Tx + b.

where T is a bounded linear operator on X and b& 0) € X is fixed.

Our manner is based on the following fact : if

n-1

limsupjt V 7*611 <oo, (2.8)

"^°° fc=o

then {V"6}~0 is bounded, because Vnb = ELo^^- n € N. The relation (2.8) in

Equation (2.7) becomes the following one :

71-1 .r

Urn sup j| V U(kr) / u(r - s)f(s)ds\\ < oo. (2.9)

Hence, to obtain criteria on the existence of bounded solutions to Equation (2.7). we

will employ the above relation (2.9).

This manner can be applied to evolutionary systems and functional differential equa

tions.
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2.15. About the applicability of the Ramis-Morales criteria for testing iri-

tegrability of Hamiltoniari systems

Jacques-Arthur Weil

This is joint work with Delphine BOUCHER (Univ. Rennes 1, France)

A Hamiltonian system with n degrees of freedom is said to be completely integrable

if it admits n first integrals in involution. Building on beautiful work of Ziglin, Ramis

and Morales gave a powerful criterion for testing the (non)-complete integrability of- a

Hamiltonian system : given some solution curve T (with mild conditions) . the Haniil

tonian system admits n first integrals which are meromorphic in a neighborhood of T

and in involution only if the differential Galois Group of the variational equation(s)

along T has an abelian Lie algebra.

However, this property is still abstract and requires some skill (and or heavy com

putations) to be detected. Li this work, we present several practical caractcrizations

for this property, based on the local study of linear differential equations, their factor

ization, and the smart use of a computer. Our method are specifically adapted to the

case of families of equations depending on parameters.
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3.1. From differential-algebraic equations to implicit difference equations

By Pham Ky Ann, Nguyen Huu Du and Le Cong Loi

Vietnam National University, Hanoi

This report summarizes our recent results on implicit difference equations (IDEs):

AnXn+i + BnXn = qn (3.1)

where Av. Br, £ Rm*n. qr, e Rm and the matrices An are all singular.

1. A notioi. of index-1 linear IDEs based on singular value decompositions (SVDs)

of An has been introduced. It is proved that the index of linear IDEs does not depend

on the chosen SVDs of ATl . The unique solvability of some initial value problems (IVPs)

for incex-I linear ha? been established,

2. Under certain additional conditions, the solvability of the mentioned above IVPs

for linear IDE;, where ker An+i C ker^ or rankA„+i > rankA„ for all n. has been

invest: sated.

3. The multipoint boundary-value problems (MPBVPs)

 

A„a-n+1 + Br,xn = qn (n = 0, N - 1) (3.2)

AT

Y,°nZn=l (3.3)

where .V becomes large, represents a large-scale system of linear equations. If the linear

IDE (3.2) of irdex-1, a regular condition for MPBVPs (3.2), (3.3) has been introduced.

It has been shewn that the regularity of an MPBVP is a necessary and sufficient condi

tion for a unique solvability of (3.2), (3.3). Another necessary and sufficient condition

for the solvability of (3.2). (3.3) when the regularity condition does not hold has been

established. Thus combining the results in both regular and irregular cases, we arrive

at a Fredhoim alternative for a special large scale system of linear equations (3.2), (3.3)

4. A connection between linear transferable DAEs and linear index-1 IDEs has been

revealed. It is proved that the explicit Euler method applied to linear transferable DAEs

leads to linear index-1 DDEs. Moreover, the solution of an IVP for linear index-1 IDEs.

obtained by the explicit Euler method converges to the solution of the corresponding

IVP for linear transferable DAEs
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3.2. Spectral conditions for bounded and almost periodic solutions of dif

ference equations

Phi Thi Van Anh

Hanoi University of Science

We investigate spectral conditions for the following equation

Axn+i '— Bxn +/„, n e Z, (3.4}

to have bounded, almost periodic solutions. Here {xn}, {fn} are sequences in a Banach

space X, A is a bounded linear operator acting on it. Using the notion of spectra of

bounded sequences the following results are obtained.

Theorem 3.1 Let A be a closed subset of the unit circle and let A(X) be the space of all

sequences with spectrra contained in A. Furthermore, assume that A. B are commutative

.operators such that

cr(J4).Ana(B) = 0.

Then for every f £ A(X) there exists a unique Xf € A(X) as a solution (3.4).

Corollary 3.1 In Eq. (34) if

o-(A).<j{f)no{B)=^

then there exists a unique solution xj to Eq. (3-4) such ihat o~(xf) C <r(/).

In the above theorem and corollary, if / is almost periodic, then so is the unique solution

xj. Below we will use the following notation oa{B) := {A € C : fl (XA - B)~l € L(X)}.

With this notation we have

Theorem 3.2 If for every f € A(X) Eq. (3.4) has a unique solution xj such that

cr(xf) C A. then AH aA(B) = 0.

Theorem 3.3 Let Xf be a bounded solution to Eq. (3.4J- Moreover, assume, that

or,A{B)\&{f) is closed, and that o(f) is countable, andX does not contain cq. Then,

there exists an almost periodic solution w to Eq. (3-4) such that o-(w) C <?(/).
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3-3. Some classical inequalities for derivatives in Banach spaces generated

by convex and concave functions

Ha Huy Bang

Hanoi Institute of Mathematics

In this paper we prove some classical inequalities for derivatives such as inequalities

of Landau-Kolmogorov. Bohr, Bernstein for Banach spaces generated by convex and

concave functions
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3.4. Knowledge Discovery and Data Mining Approach to Computational

Biology

Ho Tu Bao

School of Knowledge Science

Japan Advanced Institute of Science and Technology

Knowledge Discovery and Data Mining (KDD) has been merged as a rapidly growing

interdisciplinary field which merges together databases, statistics, machine learning and

related areas in order to extract useful knowledge from large volumes of data. KDD

has shown to be a promising approach to computational biology.

This lecture consists of four parts: (1) The main concepts and methods of KDD:

(2) the KDD approach to computational biology and challenges; (3) Some results of

our research group on KDD; (4) A real-world application of KDD in computational

biology: knowledge discovery from stomach cancer data.
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3.5. On the Stabilizability of Control Systems with Multiple Continuous

Delays

Nguyen Sinh Bay

nsbay2001@yahoo . com

This report presents a result on the stabilizability of a class of control systems,

which are described by functional differential equations with time-varying linear per

turbations.

The control laws at moment t are constructed, by using the retarded information of

the systems on some time-intervals : [t — hfA): hi > 0, i = 1. • • ■ . r

In the report a new sufficient condition of stabilization of the systems is derived.

This condition is given by the inequalities on the parameters of the systems and design

parameter of the control law.

To establish the main result we use the later generalized Lyapunov operator equation

- Q'(t) + AT(t)Q(t) + Q(t)A(t) = -P(t),

for the nonautonomous homogeneous system X'(t) = A(t)X(t). We also use the par

ticular form of the Lyapunov functional V(t.Xt) on R+ x C[—h,Q], which was found

by us for the aforementioned svstems.
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3.6. Generalized Collocation RKN Methods

Nguyen Huu Cong

Faculty of Mathematics, Mechanics and Informatics

HanoiUniversity of Science

334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

 

We propose and investigate a very general family of RKN methods for the numerical

solution of initial-value problems (IVPs) for systems of special second-orderdifferential

equations y"(t) = f[t, y(t)]. We give not only a generalization of the classical (polyno

mial) collocation and other recently developed functional-fitting RKN methods but also

provide a general stronger result on the order of accuracy for the resulting Generalized

Collocation RKN (GRKN) methods (see e.g.. Houwen, Sommeijer and Cong, BIT 31

(1991) 469-481: Paternoster, Appl. Numer. Math. 28 (1998) 401-412; Ozawa, Japan J.

Indust. Appl. Math. 16 (1999) 25-46; Coleman and Duxbury, J. Comput. Appl. Math.

126 (2000) 47-75). We have theoretically proved that a GRKN method has the same

order of accuracy as the classical (polynomial) collocation RKN method.



46 CHAPTER 3. SECTION 2

3.7. On the recursive sequence xn+i = (Ax„ + B)/(xn -f axn_i + b)

Dang Vu Giang

Hanoi Institute of Mathematics

P.O. Box 631, Bo Ho, 10000 Hanoi, Vietnam

E-mail: dvgiang@hanimath.ac.vn

 

 

G. Ladas has conjectured that the above positive sequence is convergent for all pos

itive parameters a, b, A,B. We prove that this conjecture is true with small restriction

on these parameters.

AMS Subject Classification (2000): 39A10

Key words and pharases: rational recursive sequences, global asymptotic stability.

-\
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3.8, Regularization of a nonlinear integral equation of gravirnetry

Nguyen Vu Huy1, Vo Thi Thanh Nhieu2, Chu Van Tho3, Dang Dinh Ang4

Consider the problem

jC(.-/+"(^g(fl).<-/w. m

where / is a given function. We make the following assumption on the solution cr{£)

0 < <r(£) < a < H, where H and a are positive constants.

The problem arises in gravirnetry. A two dimensional analogue of Eq. (1) is~also con

sidered. In this paper, we approximate (1) by a linear equation and give an estimate

of the error between the exact solution of (l) and that of a regularized linear equation.

The two-dimensional case is treated in a similar way.
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3.9. Newmark's method and discrete energy applied to resistive MHD

equation

Takashi Kako, and Fumihiro Chiba,

The University of Electro-Communications, Chofu, Japan

For the second order time evolution equation with a general dissipation term, we

introduce a recurrence relation of Newmark's method. Deriving an energy inequality

from this relation, we obtain the stability and the convergence theories of Newmark's

method. Next we take up resistive MHD equation as an application of Newmark's

method. We introduce a discrete energy of the solution derived from the above energy

inequality. We investigate this quantity using numerical experiments.
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3.10. Surface temperature determination from Borehole measurement:

Formulation as a moment problem

Trail Thi Le

Vietnam National University, Ho Chi Minh City

 

We consider the problem of determining the temperature on surface of a half-plane

from temperature measured at a sequence of points on a horizontal line below the sur

face. The problem, formulated as a moment problem, is regularized with error estimates

given.
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3.11. The improved sweep method for solving nonself-adjoint boundary

value problems

Vu Hoang Linh

Faculty of Mathematics. Mechanics, and Informatics

University of Science, Hanoi National University

e-mail: vhlinh@hn.vnn.vn

Abstract. Consider the homogeneous boundary value problem for a second order linear

differential equation

y"{x) + q{x, A, a)y{x) = 0, x} < x < x2;

aw'(x1)-b1y(xi) = Q;

totf/fa) ~ hy{x2) = 0.

Here a is a given parameter and A is a required spectral parameter; a*, 6f (i = 1, 2) are

given complex numbers (ja*}2 + 1^|2 > 0; * = 1, 2); Function q(x: A; a) is supposed to be

continuous. We are concerned in the computation of eigenvalues (EV-s) and eigenfunc-

tions (EF-s) of a discrete spectrum, which also depends on the parameter. The sweep

method that has been proposed previously by Abramov A.A., Konyukhova N.B. et.al.

will be improved with special respect to differential equations possessing singularities

and large parameters. Based on the Liouville-Green (JWKB) approximation of EF-s,

we suggest modifications in the definition of sweep functions and in the construction of

sweeping equations. Our aim is the efficient computation of highly oscillatory and(or)

rapidly changing functions. When applying the method to singular problems, the stabil

ity of numerical integration is provided in the neighbourhood of singular points. Issues

on the implementation are also discussed in this contribution. The efficiency of our

method is demonstrated by some numerical experiments.

Keywords: Nonself-adjoint boundary value problems, Singular differential equa

tions, Sweep method, Liouville-Green (JWKB) approximation
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3.12. Some extensions arid applications of Gronwall-Bcllmarrs Lemma

Nguyen Dinh Phu, Hoang Thanh Long

Department of Mathematics and Informatics

Vietnam National University. Ho Chi Minh City

 

The Gronwall-Bellman's Lemma plays a very important role in the study of the

Qualitative Theory of Ordinary Differential Equations (ODE's).

Beside Gronwall-Belman's Lemma, many authors, for example Brezis. Bihari

have expansions.

This report has investigated two problem: Expensions and applications of this im

portant lemma. The special new results are given by Lemmas 6, 8, 9 and stability

conditions of systems which likes control system.
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3.13. Krylov W-methods for large stiff ODE systems

H. Podhaisky, R. Weiner, University of Halle, Germany,

{podhaisky,weiner}<Smathematik .uni-halle.de

B.A. Schmitt, University of Marburg, Germany,

schmitt@mathematik . uni-marburg.de

We consider linearly implicit one- and two-step W-methods for the MOL solution

of reaction-diffusion problems in 2D, where we use Krylov methods to solve the linear

algebraic systems in the stages. One-step W-( or ROW-)methods are frequently used

for stiff systems. They are characterized by an easy implementation (also for variable

stepsizes) and good linear stability properties (A-, L-stable). Using a special multiple

Arnoldi algorithm we have constructed Krylov-W-methods, which guarantee the order

of the underlying method with relatively low Krylov dimensions independent of the

problem size. Parallel two step-W-methods allow the parallel computation of the s

stages. The;r are especially designed for parallel machines with few processors. The

construction of methods with stage order s is possible. There are A- and L-stable

methods (for constant stepsizes). Due to their high stage order there is (in contrast to

one-step W-methods) in general no order reduction for very stiff problems. However,

stability investigations for variable stepsizes are difficult and the methods show often

a sensitive dependence of stability and error constants on stepsize changes. The main

work of the computation of the stage values can be done in parallel if Krylov methods

are used for the solution of the linear systems. The speedup is close to s for expensive

right hand sides. The parallelization is done automatically in the code, a user needs to

provide only the right-hand side (as usual for sequential methods). The performance

of the two types of W-methods on MOL-problems is discussed and compared with the

efficient sequential code VODPK.
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3.14. Black-Schoies PDE: A Finance Application

Vuong Hoang Quan

Ecole de Commerce Solvay (Bruxelles)

The field of financial economics has developed significantly since the first half of

the century. Its fast growth inherited greatly from the development in theories. Today,

the financial markets deal with thousands of financial products, worth hundreds of

billions of dollars. Such markets demand the fairness in transaction through computing

accuracy. Naturally, the financial economics has emerged as a hybrid field of social

science and computing methods, or econophysics as put by Mantegna et al (1999). This

communication aims to articulate a hallmark development in finance since the 1970s,

the Black-Scholes partial differential equation (B-S PDE). The B-S PDE represents

a spectacular application of a seemingly unrelated scientific field, physics, in today:s

financial world.
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3.15. Analysis of a Chemostat Model for Bacteria and Bacteriophage

Edoardo Beretta *, Hirotatsu Sakakibara**

and Yasuhiro Takeuchi**

'ISTITUTO DI BlOMATEMATICA, UNIVERSITA DI URBINO, 1-61029 URBINO, ITALY

"Department of Systems Engineering, Faculty of Engineering, Shizuoka

University, Hamamatsu 432-8561, Japan

The dynamical properties of the time delayed chemostat model described by

f = p(C ~ r) - oini - <p2n2

hi — n^i/ei) - pni-^nip

h2 = n2(02/e2) ~ pn2 (3.6)

are considered. Here r(t), ni(t), n2(t).And p(t) are a concentration of the resource,

the densities of two bacteria and bacteriophage, respectively. Further, p is the rate of

flow through the chemostat. C is the input concentration of the resource, 7l is the

attack constant of phage to the first bacteria, 4 is the bacteria's consumption rate of

the resource, t} is the latent period (the time delay between the attack by a phage

on the first bacteria and the resulting reproduction of new phages) and by > 1 is the

reproduction rate of the phage from the infected first bacteria. The fa is the bacteria's

taking up rate of the resource and satisfies &(0) = 0 and increasing in r > 0.

Note that the first bacteria is assumed to be sensitive to predation of the phage but

the second is immune to predation. Some experimental data show that two ba°cteria

(the first is resident and the second is a mutant) and phage can coexist. First, we

consider the boundedness of the solutions of (1). Second, using the geometric stability

switch criterion in the delay differential system with delay dependent parameters, we

present the local asymptotic stability of nonnegative equilibria. We further show that

the coexistence is possible for short latent period and for large reproduction rate of the

phage.
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3.17. Permanence of host.parasitoid systems

Ryusuke Kon and Yasuhiro Takeuchi

Department op Systems Engineering, Faculty op Engineering, Shizuoka

University, Hamamatsu 432-8561, Japan

The interactions of a host and a parasitoid are modeled by difference equations

because of their non-overlapping generations (see Hassell, 1978). Even one dimensional

difference equations have very complicated solutions (see May & Oster, 1976). It is:

difficult to predict an asymptotic behavior of such solutions, so that we examine the

condition for permanence, which requires that ah solutions eventually enter and remain

in a region with a non-zero distance from the boundary.

Permanence of difference equations of Lotka-Volttera type was investigated by Hof-

bauer et al. (1987). By using the technique in Hofbauer et al. (1987) and the theory of

an average Liapunov function (Hutson, 1984). we examine the condition for permanence

of the following 2-host 1 -parasitoid system:

«l(i + l) - r1u1{t)exp[-(u1{t)+u2{t))-v(t)}

v(t + l) = ciUl(t)(l - exv{-v(t)})

+c2U2{t){l - exp\-av(t)}) { '

u2(t + 1) = r2u2(t) exp[-0(ui(t) + u2(t)) - av(t)].

A local stability analysis of a positive equilibrium of system (l) was carried out by

Comins and Hassell (1976). The sufficient condition for permanence of system (1) in

the absence of tti or v2 was obtained by Kon and Takeuchi (preprint).
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3.18. Nonlinear Functional Integral Equation and Its Application

i

Akira Yanagiya

Waseda University

3-31-1 Kamishakuzii, Nerima-ku, Tokyo 162-0804, Japan

Tel: 81-3-5991-1151 FAX81-3-3928-41 10

E-mail: yanagiyaCi)mn.waseda.ac.jp

In this talk we consider the next functional integral equation.

ft roo

x(t) = / k(t-8,t;x)y(s)d8+ / L(t,s;x)<p(s)ds,

Jo Jo

y{t) = [ {3(t~ a, x(t))k(i - «,*; x)y(«)ds

Jo

4- / 0(t + s,x(t))L(t,.v,x)<p(s)ds (3,8)

We usually treat this type integral equation when we investigate the following nonlinear

population model,

dn dn

dH+~dt "7**°' NWn(a> ') = °> a > 0, 0 < < < T

n(0,t) - J m(a,N(t))n(a,t,)da, [)< i. < T, (3.9)

n(a, 0) — if(a), a>0.

Ill this conference, we may propose the several existence theorems of solutions for the

integral equation and Kneser type theorem under the following hypotheses.

0 g C(R+ X R)

k(t,s;x) : cont.on [0,T] x.[0,7'] x E

L(t,s;m) : cont.on [0,T] x R+ x E

|L(t,s;a;)-l| —» OoaT —+ 0,

on 0 < (, s < 7', x g E
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