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*Important note: 
 
This User Guide is written following the logic that aims to enable users to acquire 
Bayesian computation skills through examples using real data. Therefore, users are 
advised to perform MCMC computations very early on by repeating the R code 
provided in the file simulation_example.R deposited at: 
https://github.com/sshpa/bayesvl/blob/master/References/simulation_example.R. 
 
The performing of the MCMC computing code given in the file will require users' 
computers to meet technical requirements and to follow the algorithmic logic. Also, 
a critical component apart from installing bayesvl itself is rstan, which can be 
accessed and downloaded from here: https://github.com/stan-
dev/rstan/wiki/RStan-Getting-Started. Users are strongly advised to install relevant 
packages for successfully performing the MCMC problem, as specified in the notes 
contained in our example file. 

Introduction to the BayesVL Project 
 
 “BayesVL” is a long-term project for developing a computer program run on the 
programming language R. This statistics program focuses on building an application 
algorithm for Markov Chain Monte Carlo (MCMC) simulation, which is then wrapped 
up in an “R package” called bayesvl [1].  
 
The project and programs under development, as well as the user guide, including 
reference materials, can be accessed openly at Github 
<https://github.com/sshpa/bayesvl> [2]. 
 
The development of the bayesvl package, following a worldwide trend and growing 
popularity of the R language as a powerful statistical programming environment, 
started in late 2017 [3,4]. At the A.I. for Social Data Lab (AISDL), we also focus on 
improving our research process and aim to solve the problems posed by frequentist 
statistics, such as the plausibility of results, the reproducibility crisis, and the 
controversy related to interpreting the “p-value” [5,6]. Moreover, it comes to our 
attention that the ability of R to generate graphics, coupled with simulated data 
using Markov Chain Monte Carlo (MCMC) method, whether on Stan or JAGS, can 
make a powerful tool in diagnosing and presenting research results [7]. 
 
Mathematical foundation 
Bayes’ Theorem for conditional probability distribution:  
 

 𝑓(𝜃|𝑑𝑎𝑡𝑎) = 𝑓(𝑑𝑎𝑡𝑎|𝜃) × 𝑓(𝜃)𝑓(𝑑𝑎𝑡𝑎)  
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Here, 𝑓(𝜃|𝑑𝑎𝑡𝑎) is the posterior distribution for a parameter 𝜃, 𝑓(𝑑𝑎𝑡𝑎|𝜃) is the 
sampling density of the data, 𝑓(𝜃) is the prior distribution for the parameter 𝜃, 𝑓(𝑑𝑎𝑡𝑎)  is the marginal probability of the data. As the sample density is 
proportional to the likelihood function, we can rewrite the Bayes’ Theorem as 
follow: 
 

 𝑝(𝜃|𝑑𝑎𝑡𝑎)ᇣᇧᇧᇤᇧᇧᇥ ∝ 𝑝(𝑑𝑎𝑡𝑎|𝜃)ᇣᇧᇧᇤᇧᇧᇥ × 𝑝(𝜃)ᇣᇤᇥ 
 

posterior ∝ likelihood × prior 
 
 
The objective of Bayesian statistics is to represent the uncertainty of a model's 
parameters through a prior probability distribution; then with new data, we can 
update this probability distribution and arrive at the posterior distribution, in which 
the uncertainty is reduced.  
 
From a Bayesian perspective, we start with a prior probability of an event, then 
update the credibility of the event to have a posterior probability. Whenever new 
data are gathered, this posterior becomes a new prior for the next computation. In 
fact, this process is very similar to how scientists do science.  
 
In any research study, data are gathered to evaluate a specific scientific hypothesis. 
Rarely do we start this investigation with complete ignorance, instead it is usually 
the case that previous studies have provided a priori information to start this belief-
updating process.  

The current stage of bayesvl v0.8 
 
At the moment bayesvl is marked version 0.8, the program contains approximately 
3000 lines of code. Before version 0.8, a part of the code has been employed for a 
number of our research studies [8-11].  
 
bayesvl v0.8 has included a user guide in both Vietnamese and English, and the 
program, itself, can be deployed for a variety of statistics problems. 
 
Further readings on Bayesian statistics  
 
The readings we used directly for developing bayesvl are listed in the References [12-

17], we have also referred to other materials that have been used indirectly [18-23]. 
 
User guide for bayesvl R Package: An application-driven 
approach 
 
The basic principles of this User Guide for bayesvl R Package are as follows: 
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a. Focusing on the application of bayesvl, rather than repeating the 
mathematical formalism behind the MCMC method, has become the 
standard for Bayesian statistics textbooks.  

b. Using a real problem with a real dataset, and real results to demonstrate 
the logic of problem identification, model construction, execution, 
simulation, and result interpretation. 

c. The codes are put into relevant sections to highlight their function and to 
bridge between theory and practice. 

Problem No.1 
 
Problem No. 1 uses the dataset titled “20180224_Legends_345.csv” [22]. This is a 
dataset that has encoded Vietnamese folktales by attributes related to their content, 
which enables statistical analyses of the tales on a systematic basis. A study using 
Bayesian analysis to uncover behavioral patterns in the tales was published in 
December 2018 [8].  
 
Problem No. 1 will analyze outcome associated with behaviors of lying and violence 
of the main characters in the folktales and evaluate the association of the Three 
Teachings (Buddhism, Confucianism, and Taoism) with said behaviors.  
  
Below is a simple model for the research problem: 
 

 
Out ~ VB + VC + VT + Lie + Viol + (Int1 + Int2) 

 
 

Installing bayesvl R Package 
 

The bayesvl package can be installed directly in R from the following Github address 
<https://github.com/sshpa/bayesvl> using the following basic commands: 
 

 
> install.packages("devtools") 
> devtools::install_github("sshpa/bayesvl") 
 

 
Calling out package BayesVL 
 

 
> library("bayesvl") 
 

 
If users need to also install the rstan package separately, check out rstan Github: 
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started. The rstan package 
appears to perform well with R 3.5.1 or newer. 
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Dataset and estimations 
 
The first step is to enter the dataset into the application program bayesvl. A dataset 
serves two primary functions: 
 

a) Problem identification;  
b) Simulation to find results. 

 
Data and model construction 
First, we need to call out the dataset “Legends345”, which is provided in the package 
bayesvl, using the following R commands: 
 

 
data(Legends345) 
data1 <- Legends345 
head(data1) 
 

 
The variables: 
 

• Lie: whether the main character lies 
• Viol: whether the main character employs violence  
• VB: whether the main characters' behaviors express the value of Buddhism  
• VC: whether the main characters' behaviors reflect the value of Confucianism 
• VT: whether the main characters' behaviors express the value of Taoism 
• Int1: Whether there are interventions from the supernatural world 
• Int2: Whether there are interventions from the human world  
• Out: Whether the outcome of a story is favorable for its main characters 

 
These are the observational data, which were directly collected through reading and 
encoding these elements into a data table.  
 
A complete description of the dataset “Legends345” can be viewed using R’s 
command for help:   
 

 
help(Legends345) 
 

 
A data help page will be shown with explanations and usage of the dataset and data 
variables. 
 
Model 
 
The purpose of the model is to evaluate the influence of the Three Teachings (“VB”, 
“VC”, “VT”) on lying (“Lie”) and violent behavior (“Viol”) of the main characters in 
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the folktales. This influence is evaluated based on whether the outcome of the 
stories is good or bad for the main character.  
 
Specifically, we are interested in finding out whether the main character lied or 
committed violent acts and at the same time, and their behaviors express certain 
core values of the Three Teachings; for example, the main character lies but still 
succeeds. 
 
The preliminary model, designed based on these expectations, is visually presented 
in Figure 1. 
 

Hình 1 
 
Figure 1 is a logic map of the causal relationship between different levels of variables 
and the outcome ("Out"). 
 
Model interpretation: 
The model is a multi-level varying intercept model. The following is the most basic 
form of a multi-level varying intercept linear regression model. 

 Lie

 Out

  VB  VC   VT  Viol

  B&Lie   C&Lie  T&Lie
 B&Viol   C&Viol   T&Viol

Observations 

Transformed data 

Outcome 
Transform 
Regression 

  Int1   Int2 

  Int1 | Int2
a0 ~ normal(0,5) 

({0} > 0 ? 1 : 0) 
Test = c(0, 1) 



7 
 

 
 𝑦 = 𝛼ሾሿ + 𝛽𝑥 + 𝜖  

 
Using bayesvl, we can create the model and load the observation data: 

 
 
# Design the model 
model <- bayesvl() 
model <- bvl_addNode(model, "O", "binom") 
model <- bvl_addNode(model, "Lie", "binom") 
model <- bvl_addNode(model, "Viol", "binom") 
model <- bvl_addNode(model, "VB", "binom") 
model <- bvl_addNode(model, "VC", "binom") 
model <- bvl_addNode(model, "VT", "binom") 
model <- bvl_addNode(model, "Int1", "binom") 
model <- bvl_addNode(model, "Int2", "binom") 
 

 
The function bvl_addNode(model, "O", "binom") and other similar ones are new 
functions that are written just for bayesvl. The function bvl_addNode can be used to 
add new nodes to a model. This function includes the following arguments:  
 

• dag: or model in the example above. This argument is the target for adding 
nodes. Dag is called out from the first line of code when we start a model: 
model <- bayesvl(). 

• name: or "O" in the example above; this argument gives a name for a node in 
a model.  

• dist: in the example above, dist defines the distribution for each node, 
including two types of statistical distribution: normal (or standard 
distribution) and binomial. These two types of distribution are coded into 
"norm" or "binom". When we combine two variables, we have a new 
distribution called "trans" or transform. 

 
In general, with the function above bvl_addNode(model, "O", "binom"), a new 
node is added to the model, this node is named “O”, and is binomially distributed.  
 
The mathematical formula to compute the probability distribution of the binomially 
distributed variable 𝑥: 
 
 𝑝𝑟(𝑥|𝑛, 𝑝) = ቀ𝑛𝑥ቁ 𝑝௫ (1 − 𝑝)ି௫ 
  
 
In which, 𝑛 is the total number of trials, 𝑝 is the probability of 𝑥 successes 
throughout the trials.  
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A complete guide of creating a network model in bayesvl can be found in R using the 
commonly used command help: 
 

 
help("bayesvl graphs") 
 

 
In the model in Figure 1, the variables “O”, “Lie”, “Viol”,… are all binomially 
distributed. In Figure 1, they are presented by blue nodes .  
 
To evaluate the influence of the Three Teachings (“VB”, “VC”, “VT”) and lying (“Lie”) 
on the outcome of the stories, we join the Three Teachings variables with the lying 
variable to create transformed data (in Figure 1, the transformed data are 
represented as green nodes ): 
 

• B_and_Lie: the main character behaves following the core values of 
Buddhism, yet there are details/contents in the story showing this character 
lies.  

• C_and_Lie: the main character behaves following the core values of 
Confucianism, yet there are details/contents in the story showing this 
character lies. 

• T_and_Lie: the main character behaves following the core values of 
Buddhism, yet there are details/contents in the story showing this character 
lies.   
 

To evaluate the influence of the Three Teachings (“VB”, “VC”, “VT”) and violent 
behavior (“Lie”) on the outcome of the stories, we join the Three Teachings variables 
with the violent variable to create transformed data: 
 

• B_and_Viol: the main character behaves following the core values of 
Buddhism yet commits violent acts.   

• C_and_Viol: the main character behaves following the core values of 
Confucianism yet commits violent acts. 

• T_and_Viol: the main character behaves following the core values of 
Confucianism yet commits violent acts.  
 

In terms of mathematical formalism, we can express these relations using the 
mathematical operator (*) between the two variables:  
 

 
B_and_Lie = B * Lie 
C_and_Lie = C * Lie 
T_and_Lie = T * Lie 
 
B_and_Viol = B * Viol 
C_and_Viol = C * Viol 
T_and_Viol = T * Viol 
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The relation for transformed data is represented in Figure 1 using the dash-line 
arrow ( ).  
 
We can generate the transformed data nodes using bayesvl in R:  

 
 
model <- bvl_addNode(model, "B_and_Viol", "trans") 
model <- bvl_addNode(model, "C_and_Viol", "trans") 
model <- bvl_addNode(model, "T_and_Viol", "trans") 
 

 
To define the transformed data such as "B_and_Viol" from the observation data 
such as "VB" and "Viol", using the mathematical operator (*): 

 
 
model <- bvl_addArc(model, "VB",   "B_and_Viol", "*") 
model <- bvl_addArc(model, "Viol", "B_and_Viol", "*") 
 
model <- bvl_addArc(model, "VC",   "C_and_Viol", "*") 
model <- bvl_addArc(model, "Viol", "C_and_Viol", "*") 
 
model <- bvl_addArc(model, "VT",   "T_and_Viol", "*") 
model <- bvl_addArc(model, "Viol", "T_and_Viol", "*") 
 

 
Similar to bvl_addNode, bvl_addArc  is a function written for bayesvl to add new 
arcs between two nodes in a model. For example, bvl_addArc(model, "VB",   
"B_and_Viol", "*")has the following arguments:  
 

• dag: or model in the example above. This is a target to add nodes. Dag is 
called out from the first line of code when we start a model: model <- 
bayesvl(). 

• from and to: or "VB" and  "B_and_Viol" in the model. This represents which 
pair of nodes we want to generate an arc for and its direction.  

• Mathematical operator "*" defines the transforming data relationship 
between the two nodes. In other cases, such as regression relationship, the 
relationship between two nodes can have forms such as "varint" or 
"slope". 

 
To evaluate whether the outcome of a story is changed because of intervention 
either from the supernatural or human force, we combine the two observation 
variables "Int1" and "Int2" into one new transformed variable:  
 

• Int1_or_Int2: there exists an intervention in a story of either the 
supernatural or the humans in the stories.  
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Specifically, the intervention of the supernatural (“Int1”) can come from characters 
such as the Bodhisattva or the Buddha, or the fairy. The intervention of human 
(“Int2”) comes from the people such as the King, the mandarine, or the landlords. 
 
In terms of mathematical formalism, we have: 
 

 
Int1_or_Int2 = (Int1 + Int2 > 0 ? 1 : 0) 

 

 
As such, when the new variable is the sum of two observation data “Int1” and “Int2,” 
if this sum is greater than 0, it means at least 1 in two observation data takes the 
value of one (there is intervention). In this case, the value of the transformed data 
will be 1. If the sum is equal to 0, the transformed data take on value 0. 
 
As such, we have one variable to represent the intervention of either supernatural 
force (fairy, Buddha, etc.) or human force (king, mandarin, etc.).  
 
The code for constructing the new variables using bayesvl: 

 
 

model <- bvl_addNode(model, "Int1_or_Int2", "trans", fun = "({0} 
> 0 ? 1 : 0)", out_type = "int", lower = 0, test = c(0, 1)) 

 

 
Because the transformed data "Int1_or_Int2" we are aiming to create is more 
complicated compared to other variables, the function bvl_addNode, in this case, 
has a more complicated line of codes as more arguments are included. Besides the 
similar arguments such as model, model, "Int1_or_Int2" and "trans", we have:  
 

• fun: is the procedure to change node. The condition of fun is based on the 
mathematical foundation of "Int1_or_Int2" we have presented above.  

• out_type: represents the format of output int (integer) or real (real 
numbers). 

 
Defining the new variable “Int1_or_Int2” from the observation data  (“Int1” và 
“Int2”) through the mathematical operator (+): 

 
 
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+") 
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+") 
 

 
To find out the correlations of the outcome of the stories (“O”), we run a regression 
of the variables defined above with the observation data “O”. We need to define the 
regression relationship among the nodes; therefore, in the function bvl_addArc, 
the nodes have a varying slope relation ("slope"). 
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We construct the regression relationship between the transformed data that have 
the lying element and the outcome variable (“O”): 

 
 
model <- bvl_addArc(model, "B_and_Lie",  "O", "slope") 
model <- bvl_addArc(model, "C_and_Lie",  "O", "slope") 
model <- bvl_addArc(model, "T_and_Lie",  "O", "slope") 
 
model <- bvl_addArc(model, "Lie",   "O", "slope") 
 

 
We construct the regression relationship between the transformed data that have 
the violent element and the outcome variable (“O”): 
 

 
 
model <- bvl_addArc(model, "B_and_Viol",  "O", "slope") 
model <- bvl_addArc(model, "C_and_Viol",  "O", "slope") 
model <- bvl_addArc(model, "T_and_Viol",  "O", "slope") 
 
model <- bvl_addArc(model, "Viol",   "O", "slope") 
 

 
This is a varying slope regression, in which the intercepts determine the position of 
the linear regression line according to the y-axis of the outcome variable, the slope 
coefficient defines the angle of the line.  As such, when the intercepts vary, we have 
the linear model with the following forms:  
 

 
 
We construct the varying intercepts regression for the variable "Int1_or_Int2". 
As a result, we can evaluate the outcome of the story in two cases: (1) with 
intervention, and (2) without intervention.  

 
 
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint", priors = 
c("a0_ ~ normal(0,5)",  "sigma_ ~ normal(0,5)")) 
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Overall, to generate all the mathematical model for the network of nodes in Figure 1 
using bayesvl in R:  

 
 
# Design the model 
model <- bayesvl() 
model <- bvl_addNode(model, "O", "binom") 
model <- bvl_addNode(model, "Lie", "binom") 
model <- bvl_addNode(model, "Viol", "binom") 
model <- bvl_addNode(model, "VB", "binom") 
model <- bvl_addNode(model, "VC", "binom") 
model <- bvl_addNode(model, "VT", "binom") 
model <- bvl_addNode(model, "Int1", "binom") 
model <- bvl_addNode(model, "Int2", "binom") 
 
model <- bvl_addNode(model, "B_and_Viol", "trans") 
model <- bvl_addNode(model, "C_and_Viol", "trans") 
model <- bvl_addNode(model, "T_and_Viol", "trans") 
model <- bvl_addArc(model, "VB",     "B_and_Viol", "*") 
model <- bvl_addArc(model, "Viol",   "B_and_Viol", "*") 
model <- bvl_addArc(model, "VC",     "C_and_Viol", "*") 
model <- bvl_addArc(model, "Viol",   "C_and_Viol", "*") 
model <- bvl_addArc(model, "VT",     "T_and_Viol", "*") 
model <- bvl_addArc(model, "Viol",   "T_and_Viol", "*") 
model <- bvl_addArc(model, "B_and_Viol",  "O", "slope") 
model <- bvl_addArc(model, "C_and_Viol",  "O", "slope") 
model <- bvl_addArc(model, "T_and_Viol",  "O", "slope") 
 
model <- bvl_addArc(model, "Viol",   "O", "slope") 
 
model <- bvl_addNode(model, "B_and_Lie", "trans") 
model <- bvl_addNode(model, "C_and_Lie", "trans") 
model <- bvl_addNode(model, "T_and_Lie", "trans") 
model <- bvl_addArc(model, "VB",     "B_and_Lie", "*") 
model <- bvl_addArc(model, "Lie",    "B_and_Lie", "*") 
model <- bvl_addArc(model, "VC",     "C_and_Lie", "*") 
model <- bvl_addArc(model, "Lie",    "C_and_Lie", "*") 
model <- bvl_addArc(model, "VT",     "T_and_Lie", "*") 
model <- bvl_addArc(model, "Lie",    "T_and_Lie", "*") 
model <- bvl_addArc(model, "B_and_Lie",  "O", "slope") 
model <- bvl_addArc(model, "C_and_Lie",  "O", "slope") 
model <- bvl_addArc(model, "T_and_Lie",  "O", "slope") 
 
model <- bvl_addArc(model, "Lie",   "O", "slope") 
 
model <- bvl_addNode(model, "Int1_or_Int2", "trans",     fun = "({0} > 
0 ? 1 : 0)", out_type = "int", lower = 0, test = c(0, 1)) 
 
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+") 
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+") 
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model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint", priors = 
c("a0_ ~ normal(0,5)", "sigma_ ~ normal(0,5)")) 
 

 
To plot the network again using R to double-check the logic of the model, we can use 
the following command from the bayesvl R package: 
 

 
bvl_bnPlot(model) 

 

 
The command produces the network graph that follows (Fig. 2): 

Figure 2 
 
The Bayesian network approach of the bayesvl program originates from the use of 
logic map in a study on the “cultural additivity” phenomenon, which has been 
published on Palgrave Communications (www.nature.com/palcomms) [8], and after 
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that, a study on the architecture of Hanoi’s old houses, with many many random 
network dag [9]. 
 
We have recreated the entire model in Figure 1 into a regression model in bayesVl 
(Figure 2). All Stan mathematical models and regressions will be created 
automatically accordingly.  
 
We can examine each node of the network. For example, the mathematical formula 
to create node “B_and_lie” can be examined using the following commands from 
bayesvl:  
 

 
bvl_formula(model, "B_and_Lie") 
B_and_Lie ~ VB*Lie 

 

 
Or Int1_or_Int2: 
 

 
bvl_formula(model, "Int1_or_Int2") 
Int1_or_Int2 ~ (Int1+Int2 > 0 ? 1 : 0) 

 

 
Moreover, the user can also check the entirety of the mode, including all nodes, 
transformed nodes, and logic of each connection between two variables using the 
summary command: 
 
 
summary(model) 
 
Model Info: 
  nodes:     15 
  arcs:      23 
  scores:    NA 
  formula:   O ~ b_B_and_Viol_O * VB*Viol + b_C_and_Viol_O * VC*Viol + 
b_T_and_Viol_O * VT*Viol + b_Viol_O * Viol + b_B_and_Lie_O * VB*Lie + 
b_C_and_Lie_O * VC*Lie + b_T_and_Lie_O * VT*Lie + b_Lie_O * Lie + 
a_Int1_or_Int2[(Int1+Int2 > 0 ? 1 : 0)] 
 
Estimates: 
  model is not estimated! 
 

 
In the formula, the general form of the model is: 
 
 

O ~ b_B_and_Viol_O * VB*Viol + b_C_and_Viol_O * VC*Viol + 
b_T_and_Viol_O * VT*Viol + b_Viol_O * Viol + b_B_and_Lie_O * VB*Lie + 
b_C_and_Lie_O * VC*Lie + b_T_and_Lie_O * VT*Lie + b_Lie_O * Lie + 
a_Int1_or_Int2[(Int1+Int2 > 0 ? 1 : 0)] 



15 
 

 
 

Mathematical foundation:  
 
 

Oi ~ alpha[xvarint] + betaj * xji 
 
 
In which, Oi “outcome”, is the dependent response variable (commonly known as 
response variable); xvarint is a varying intercept variable, xj is a jth independent 
variable.  
 
O is a binomial variable, therefore, if we express this variable using statistical 
distribution formula, we have:  
 
 

O ~ binomial(ilogit(theta)) 
 
 
In which the inverse logit function is: 
 
 

 ilogit(theta) = logitିଵ(𝛼ሾሿ + 𝛽𝑥) 
 
 
The users can find out more details about the functions in R using a quick search in 
https://rseek.org. For instance, for the inverse logit function above: 
 

 
 

The Stan Code 
 
Stan is a common statistical language, often used to build statistical models. Stan 
language is specialized for Bayesian statistical models. Using the Stan language in R is 
often a complex task. Therefore, bayesvl supports users with automatic generation 
of Stan code, using the following commands,  
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model_string <- bvl_model2Stan(model)
cat(model_string) 

 

 
All the Stan codes are presented below:  
 
 
functions{ 
     int numLevels(int[] m) { 
        int sorted[num_elements(m)]; 
        int count = 1; 
        sorted = sort_asc(m); 
        for (i in 2:num_elements(sorted)) { 
          if (sorted[i] != sorted[i-1]) 
             count = count + 1; 
        } 
        return(count); 
     } 
} 
data{ 
     // Define variables in data 
     int<lower=1> Nobs;   // Number of observations (an integer) 
     int<lower=0,upper=1> O[Nobs];   // outcome variable 
     int<lower=0,upper=1> Lie[Nobs]; 
     int<lower=0,upper=1> Viol[Nobs]; 
     int<lower=0,upper=1> VB[Nobs]; 
     int<lower=0,upper=1> VC[Nobs]; 
     int<lower=0,upper=1> VT[Nobs]; 
     int<lower=0,upper=1> Int1[Nobs]; 
     int<lower=0,upper=1> Int2[Nobs]; 
} 
transformed data{ 
     // Define transformed data 
     vector[Nobs] B_and_Viol; 
     vector[Nobs] C_and_Viol; 
     vector[Nobs] T_and_Viol; 
     vector[Nobs] B_and_Lie; 
     vector[Nobs] C_and_Lie; 
     vector[Nobs] T_and_Lie; 
     int Int1_or_Int2[Nobs]; 
     int NInt1_or_Int2; 
     for (i in 1:Nobs) { 
        Int1_or_Int2[i] = (Int1[i]+Int2[i] > 0 ? 1 : 0); 
     } 
     NInt1_or_Int2 = numLevels(Int1_or_Int2); 
 
     for (i in 1:Nobs) { 
        T_and_Lie[i] = VT[i]*Lie[i]; 
     } 
 
     for (i in 1:Nobs) { 
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        C_and_Lie[i] = VC[i]*Lie[i];
     } 
 
     for (i in 1:Nobs) { 
        B_and_Lie[i] = VB[i]*Lie[i]; 
     } 
 
     for (i in 1:Nobs) { 
        T_and_Viol[i] = VT[i]*Viol[i]; 
     } 
 
     for (i in 1:Nobs) { 
        C_and_Viol[i] = VC[i]*Viol[i]; 
     } 
 
     for (i in 1:Nobs) { 
        B_and_Viol[i] = VB[i]*Viol[i]; 
     } 
 
} 
parameters{ 
     // Define parameters to estimate 
     real b_B_and_Viol_O; 
     real b_C_and_Viol_O; 
     real b_T_and_Viol_O; 
     real b_Viol_O; 
     real b_B_and_Lie_O; 
     real b_C_and_Lie_O; 
     real b_T_and_Lie_O; 
     real b_Lie_O; 
     real a0_Int1_or_Int2; 
     real<lower=0> sigma_Int1_or_Int2; 
     vector[NInt1_or_Int2] u_Int1_or_Int2; 
} 
transformed parameters{ 
     // Transform parameters 
     real theta_O[Nobs]; 
     vector[NInt1_or_Int2] a_Int1_or_Int2; 
     // Varying intercepts definition 
     for(k in 1:NInt1_or_Int2) { 
        a_Int1_or_Int2[k] = a0_Int1_or_Int2 + u_Int1_or_Int2[k]; 
     } 
 
     for (i in 1:Nobs) { 
        theta_O[i] = b_B_and_Viol_O * B_and_Viol[i] + b_C_and_Viol_O * 
C_and_Viol[i] + b_T_and_Viol_O * T_and_Viol[i] + b_Viol_O * Viol[i] + 
b_B_and_Lie_O * B_and_Lie[i] + b_C_and_Lie_O * C_and_Lie[i] + b_T_and_Lie_O 
* T_and_Lie[i] + b_Lie_O * Lie[i] + a_Int1_or_Int2[Int1_or_Int2[i]+1]; 
     } 
} 
model{ 
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     // Priors 
     b_B_and_Viol_O ~ normal( 0, 10 ); 
     b_C_and_Viol_O ~ normal( 0, 10 ); 
     b_T_and_Viol_O ~ normal( 0, 10 ); 
     b_Viol_O ~ normal( 0, 10 ); 
     b_B_and_Lie_O ~ normal( 0, 10 ); 
     b_C_and_Lie_O ~ normal( 0, 10 ); 
     b_T_and_Lie_O ~ normal( 0, 10 ); 
     b_Lie_O ~ normal( 0, 10 ); 
     a0_Int1_or_Int2 ~  normal(0,5); 
     sigma_Int1_or_Int2 ~  normal(0,5); 
     u_Int1_or_Int2 ~ normal(0, sigma_Int1_or_Int2); 
 
     // Likelihoods 
     O ~ binomial_logit(1, theta_O); 
} 
generated quantities { 
     // simulate data from the posterior 
     int<lower=0,upper=1> yrep_O[Nobs]; 
     // log-likelihood posterior 
     vector[Nobs] log_lik_O; 
     int<lower=0,upper=1> yrep_Int1_or_Int2_1[Nobs]; 
     int<lower=0,upper=1> yrep_Int1_or_Int2_2[Nobs]; 
     for (i in 1:num_elements(yrep_O)) { 
       yrep_O[i] = binomial_rng(O[i], inv_logit(theta_O[i])); 
     } 
     for (i in 1:Nobs) { 
       log_lik_O[i] = binomial_logit_lpmf(O[i] | 1, theta_O[i]); 
     } 
     for (i in 1:Nobs) { 
        yrep_Int1_or_Int2_1[i] = binomial_rng(O[i], inv_logit(b_B_and_Viol_O * 
B_and_Viol[i] + b_C_and_Viol_O * C_and_Viol[i] + b_T_and_Viol_O * T_and_Viol[i] 
+ b_Viol_O * Viol[i] + b_B_and_Lie_O * B_and_Lie[i] + b_C_and_Lie_O * 
C_and_Lie[i] + b_T_and_Lie_O * T_and_Lie[i] + b_Lie_O * Lie[i] + 
a_Int1_or_Int2[1])); 
     } 
     for (i in 1:Nobs) { 
        yrep_Int1_or_Int2_2[i] = binomial_rng(O[i], inv_logit(b_B_and_Viol_O * 
B_and_Viol[i] + b_C_and_Viol_O * C_and_Viol[i] + b_T_and_Viol_O * T_and_Viol[i] 
+ b_Viol_O * Viol[i] + b_B_and_Lie_O * B_and_Lie[i] + b_C_and_Lie_O * 
C_and_Lie[i] + b_T_and_Lie_O * T_and_Lie[i] + b_Lie_O * Lie[i] + 
a_Int1_or_Int2[2])); 
     } 
} 
 

 

Checking conditional posteriors: 
 
bayesvl allows users to predict the outcome value of the model after regression. To 
execute the prediction, we need to add the test paramenters when creating the 
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nodes for the model. As can be seen, when creating node Int1_or_Int2, the 
bayesvl code has the following form:  
 
 
model <- bvl_addNode(model, "Int1_or_Int2", "trans", fun = "({0} > 0 ? 1 : 0)", 
out_type = "int", lower = 0, test = c(0, 1)) 
 

 
The paramter test = c(0, 1) allows bayesvl to add new codes to estimate “fixed 
predicted outcome” when Int1_or_Int2 = 0 and  Int1_or_Int2=1. 
 
This command will simulate the model, and the software will compute a set of 
outcome values yrep_Int1_or_Int2_1 and yrep_Int1_or_Int2_2 after each 
regression iteration. Consequently, we will have n new value sets for the outcome. 
  
This execuation is equivalent to adding Stan code into the “quantities” commands of 
Stan to assess the model:  
 

 
stan_code = " 
int<lower=0,upper=1> yrep_Int1_or_Int2_1[Nobs]; 
int<lower=0,upper=1> yrep_Int1_or_Int2_2[Nobs]; 
 
for (i in 1:Nobs) { 
        yrep_Int1_or_Int2_1[i] = binomial_rng(O[i], inv_logit(b_B_and_Viol_O * 
B_and_Viol[i] + b_C_and_Viol_O * C_and_Viol[i] + b_T_and_Viol_O * T_and_Viol[i] 
+ b_Viol_O * Viol[i] + b_B_and_Lie_O * B_and_Lie[i] + b_C_and_Lie_O * 
C_and_Lie[i] + b_T_and_Lie_O * T_and_Lie[i] + b_Lie_O * Lie[i] + 
a_Int1_or_Int2[1])); 
     } 
     for (i in 1:Nobs) { 
        yrep_Int1_or_Int2_2[i] = binomial_rng(O[i], inv_logit(b_B_and_Viol_O * 
B_and_Viol[i] + b_C_and_Viol_O * C_and_Viol[i] + b_T_and_Viol_O * T_and_Viol[i] 
+ b_Viol_O * Viol[i] + b_B_and_Lie_O * B_and_Lie[i] + b_C_and_Lie_O * 
C_and_Lie[i] + b_T_and_Lie_O * T_and_Lie[i] + b_Lie_O * Lie[i] + 
a_Int1_or_Int2[2])); 
     } 
" 
 
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, 
cores = 4, ppc = stan_code) 

 

 
We will analyze the values of this variable in the end.  
 
The priors of the model: 
 
Have a look again at the priors of the model:  
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bvl_stanPriors(model) 
     b_B_and_Viol_O ~ normal( 0, 10 ) 
     b_C_and_Viol_O ~ normal( 0, 10 ) 
     b_T_and_Viol_O ~ normal( 0, 10 ) 
     b_Viol_O ~ normal( 0, 10 ) 
     b_B_and_Lie_O ~ normal( 0, 10 ) 
     b_C_and_Lie_O ~ normal( 0, 10 ) 
     b_T_and_Lie_O ~ normal( 0, 10 ) 
     b_Lie_O ~ normal( 0, 10 ) 
     a0_Int1_or_Int2 ~  normal(0,5) 
     sigma_Int1_or_Int2 ~  normal(0,5) 
     u_Int1_or_Int2 ~ normal(0, sigma_Int1_or_Int2) 
 

 
It is important to notice that most of the values of the priors used in the model (and 
in real-life application) are default. To change the priors, we can set the priors when 
writing the function to create new arcs in bayesvl, for example:  
 
 
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint", priors = c("a0_ ~ 
normal(0,5)", "sigma_ ~ normal(0,5)")) 
 

 
Besides creating R/Stan statistical models based on a given logic map or checking the 
priors, bayesvl also allows the rechecking of the parameters using in a model 
through the function bvl_stanParams(model) or synthesize and simulate the data 
sample with the function bvl_modelFit(model). More details on these functions 
can be found in R using the following command:  
 

 
help("bayesvl stan") 
 

 
To assess the model using bnlearn: 
 
The R program bnlearn is often used to estimate the relationship among the 
variables in a network model through the interaction probability of each arc. When 
the assessment is complete, the strength value will be presented. This value is the p-
value in the conventional frequentist approach. 
 

 
> bvl_bnScore(model, data1) 
[1] -3158.136 
 
> bvl_bnStrength(model, data1) 
           from           to     strength 
1           Lie    B_and_Lie 1.282892e-19 
2           Lie    C_and_Lie 6.639677e-36 
3           Lie    T_and_Lie 1.713908e-15 
4           Lie            O 1.000000e+00 
5          Viol   B_and_Viol 1.282892e-19 
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6          Viol   C_and_Viol 6.639677e-36
7          Viol   T_and_Viol 1.713908e-15 
8          Viol            O 1.000000e+00 
9            VB   B_and_Viol 7.681205e-15 
10           VB    B_and_Lie 8.533048e-17 
11           VC   C_and_Viol 7.681205e-15 
12           VC    C_and_Lie 8.533048e-17 
13           VT   T_and_Viol 7.681205e-15 
14           VT    T_and_Lie 8.533048e-17 
15         Int1 Int1_or_Int2 2.315429e-54 
16         Int2 Int1_or_Int2 1.520310e-46 
17   B_and_Viol            O 1.000000e+00 
18   C_and_Viol            O 1.000000e+00 
19   T_and_Viol            O 1.000000e+00 
20    B_and_Lie            O 1.000000e+00 
21    C_and_Lie            O 1.000000e+00 
22    T_and_Lie            O 1.000000e+00 
23 Int1_or_Int2            O 1.000000e+00 
 

 
As can be seen, the current model has 23 arcs. However, all the p-values of the arcs 
connected to the outcome variables show no statistical significance (due to 
bnlearn’s inherent assumption is to perform an “independence test”).  
 
Therefore, we cannot use bnlearn to find the results in this case. 
 

MCMC simulation 
 
Markov Chain Monte Carlo (MCMC) is commonly used to simulate the probability 
distribution for the posteriors. The following command from bayesvl is to run the 
MCMC simulation in R:  
 
 
model <- bvl_modelFit(model, data1, warmup = 2000, iter = 5000, chains = 4, 
cores = 4) 
 

 
This command has four Markov chains to run a simulation for the data sample. Each 
chain has 5000 iterations, in which, there are 2000 warm-up iterations, which means 
they cannot be counted into the effective sample size (n_eff), the warm-up 
iterations are only for the stability of the chains. 
 
The results from MCMC simulation 
 

 
summary(model) 
Model Info: 
  nodes:     15 
  arcs:      23 
  scores:    NA 
  formula:   O ~ b_B_and_Viol_O * VB*Viol + b_C_and_Viol_O * VC*Viol + b_T_and_Viol_O * 
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VT*Viol + b_Viol_O * Viol + b_B_and_Lie_O * VB*Lie + b_C_and_Lie_O * VC*Lie + 
b_T_and_Lie_O * VT*Lie + b_Lie_O * Lie + a_Int1_or_Int2[(Int1+Int2 > 0 ? 1 : 0)] 
 
Estimates: 
Inference for Stan model: d4bbc50738c6da1b2c8e7cfedb604d80. 
4 chains, each with iter=5000; warmup=2000; thin=1;  
post-warmup draws per chain=3000, total post-warmup draws=12000. 
 
                    mean se_mean   sd  2.5%   25%   50%   75% 97.5% n_eff Rhat 
b_B_and_Viol_O      2.55    0.05 1.46  0.13  1.50  2.41  3.42  5.73   915 1.01 
b_C_and_Viol_O     -0.28    0.01 0.61 -1.46 -0.68 -0.31  0.13  0.93  6689 1.00 
b_T_and_Viol_O     -0.96    0.01 1.09 -3.21 -1.65 -0.91 -0.26  1.14  6820 1.00 
b_Viol_O           -0.62    0.01 0.42 -1.43 -0.90 -0.62 -0.35  0.23  5892 1.00 
b_B_and_Lie_O       0.70    0.02 1.44 -1.78 -0.28  0.56  1.52  4.03  6546 1.00 
b_C_and_Lie_O       1.47    0.02 0.68  0.21  0.97  1.45  1.94  2.86  1676 1.01 
b_T_and_Lie_O       2.23    0.02 1.59 -0.41  1.10  2.06  3.16  5.85  4523 1.00 
b_Lie_O            -1.05    0.01 0.37 -1.77 -1.30 -1.05 -0.81 -0.32  3984 1.00 
a_Int1_or_Int2[1]   1.20    0.00 0.21  0.78  1.05  1.20  1.33  1.62  7767 1.00 
a_Int1_or_Int2[2]   1.35    0.00 0.19  0.99  1.23  1.35  1.48  1.73  3512 1.00 
a0_Int1_or_Int2     1.18    0.04 1.34 -1.91  0.87  1.25  1.57  3.83  1353 1.00 
sigma_Int1_or_Int2  1.49    0.04 1.82  0.04  0.28  0.78  1.98  6.67  1759 1.00 
 

 
As a result, the model shows a good convergence, which is represented by two 
standard diagnostics of MCMC, n_eff (effective sample size) and Rhat. The values of 
n_eff show how many iterations of the Markov chain are needed for effective 
independent samples [12]. While the values of Rhat represents a more complicated 
simulation of the Markov chains converging toward a target distribution.   
 
Typically, when Rhat is approximately 1, it means all chains have the same 
distribution; when Rhat greater than 1.1, it means the model has not converged; 
therefore, the samples are not credible. Meanwhile, it is a good signal for Bayesian 
inference when n_eff is above 1000 samples. In the current model, the results are 
good because most of the Rhat values are 1 and n_eff is more than 2000. 
  
Visualization and results check 
 
bayesvl supports the users to produce a graphic representation of the MCMC 
simulation results through the function bvl_plotX. Accordingly, X represents the 
results for which we need to create visualizations, for example, the “Gelman shrink 
factors” (Gelman), the parameters (Params), or the pair parameters (Pairs). To find 
out more about this function, use the help function in R: 
 

 
help("bayesvl plots") 
 

 
Markov chains visual diagnostics:  
 
The users can use bvl_plotTrace(model) to generate the graphic representation of 
the MCMC chains:  
 

 
> bvl_plotTrace(model) 

 

 
The chains are presented in Figure 3: 
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Figure 3 
 
Each chain in Figure 3 has four component chains, each of which has 5000 iterations. 
Overall, there are no divergent chains, giving a strong signal for the autocorrelation 
phenomenon (reflecting the Markov property of the distribution). If we were to 
imagine that each chain has its images, all of those images would resemble each 
other.  
 
Gelman shrink factors: 
 
The Gelman shrink factor or the potential scale reduction factor is often used in 
convergence diagnostics. This convergence diagnostic is necessary to come to any 
conclusion based on the posterior distribution or to describe the simulated 
parameters and other uncertain factors accurately. 
 
This convergence diagnostic is the values of Rhat presented in the model’s summary 
section. This diagnostic method is developed by Gelman & Rubin [25] and then Brooks 
& Gelman [26]. 
 

Mathematical foundation: 
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 𝑅 = ඨVar (𝜃)𝑊  

 
 
Here, 𝑅 or Rhat is the potential scale reduction factor, Var (𝜃) is the estimated 
variance, and 𝑊 is the within chain variance [27]. 
 
The bayesvl program will check the “Gelman shrink factor” in R using the following 
code: 
 
 

bvl_plotGelmans(model, NULL, 4, 3) 
 

 
The following is the resulting image:  
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Figure 3a 
 
We find that the mean value of the potential scale reduction factor is 97.5%. 
Moreover, we also have the multivariate potential scale reduction, which Gelman 
and Brooks suggested. Figure 3a shows that the shrink factor converges to 1.0 quite 
rapidly, which satisfy the standards of MCMC simulation.  
 
Autocorrelation of each coefficient: 
 
The MCMC algorithm produces the autocorrelated samples, not the independent 
samples. Therefore, the slow mixing due to too high acceptance rate or too low 
might lead to the process not ensure the Markov property. This check is to ensure 
after certain finite steps; autocorrelation will be eliminated (to 0). 
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The code of bayesvl to generate the graphic representation of the autocorrelation 
function is as follows: 
 
 

bvl_plotAcfs(model, NULL, 4, 3) 
 

 
Figure 3b provides an image of ACF: 

Figure 3b 
 
Figure 3b shows that the effective sample size (ESS) for all coefficients are above 
1000, most quickly converge before lag 3, which supports computing efficiency and 
the Markov property of the chains.  
 
The autocorrelation parameter for lag = 𝐿 is computed using the following formula: 
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 𝐴𝐶𝐹 = ൬ 𝑇𝑇 − 𝐿൰ ∑ (𝑥௧ − �̅�)(𝑥௧ା − �̅�)்ି௧ୀଵ ∑ (𝑥௧ − �̅�)ଶ௧்ୀଵ  

 
 
Accordingly, 𝑥௧ is the sampled value of 𝑥  at iteration 𝑡, 𝑇 is the total number of 
sampled values, �̅� is the mean value of the total number of sampled values, và 𝐿 is 
the lag.  
 
Assess the regression coefficients: 
 
We can evaluate the model fit with the data through predictive posterior 
distributions. The probability distribution of the posterior of the parameters can be 
calculated as the product of the prior distribution and the likelihood function: 
 
 p(𝜃|Data) ∝ p(Data|𝜃)p(𝜃) 

 
 
In R, we have the following command of bayesvl: 
 

bvl_plotIntervals(model) 
 

 
To compare the regression coefficients through the graphics:  
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Hình 4 
 
Distribution of the coefficients:  
 

 
bvl_plotParams(model, 4, 3) 
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Hình 5 
 
The distribution of all coefficients satisfies the technical requirements with HPDI 
(Highest Posterior Distribution Intervals) at 89%.  
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To change the credibility range of the distribution, we can use the full code of 
bayesvl but change the parameter credMass to, for example, 95%: 
 

 
bvl_plotParams (model, row = 2, col = 2, credMass = 0.95, 
params = NULL) 
 

 
NULL means the change is applied to all coefficients. Or we can use a short command 
below, with its specific order: 
 

 
bvl_plotParams(model, 3, 3, .95) 

 
 
If the users want to change certain parameters, we can use the following command:  
 

 
bvl_plotParams(model, 4, 3, 0.95, 
c("b_Lie_O","b_Viol_O")) 

 

 
We will compare and evaluate more carefully the coefficients of the parameters 
according to the lying, violence, and intervention coefficients.   
 
Assessing only the coefficients of the variables involving lying:  
 
R code takes the following form: 
 
 

bvl_plotIntervals(model, c("b_B_and_Lie_O", "b_C_and_Lie_O", 
"b_T_and_Lie_O", "b_Lie_O")) 

 

 
Here are the images from analyzing the coefficients involved “Lie”: 
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Hình 6 
 
We can plot the density of posteriors after simulation:  
 
 

bvl_plotDensity(model, c("b_B_and_Lie_O", "b_C_and_Lie_O", 
"b_T_and_Lie_O", "b_Lie_O")) 

 

 
Results for selected nodes are shown in Figure 7. 
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Figure 7 - Density 
 
The results in figure 6 and 7 show that lying does not bring about good outcomes for 
the main character. The coefficient of b_Lie_O is negative, which indicates lying is 
associated with adverse outcome for the folktale characters. This distribution is 
narrow, with a good credibility range. 
 
However, as for the transformed data that involve the main character lying and 
expressing the core values of the Three Teachings, their coefficients are all positive. 
When there is the influence of Taoism, it seems likely that the main character enjoys 
a good outcome, though he or she might lie.  
 
Among the three religions, Buddhism is the least encouraging of lying, with 
b_B_and_Lie_O much smaller than the rest of the coefficients.  
 
To assess only the variables involving violent actions:  
 

 
bvl_plotIntervals(model, c("b_B_and_Viol_O", 
"b_C_and_Viol_O", "b_T_and_Viol_O", "b_Viol_O")) 
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Figure 8 
 
The R command to produce the image for the density bvl_plotDensity: 
 

 
bvl_plotDensity(model, c("b_B_and_Viol_O", "b_C_and_Viol_O", 
"b_T_and_Viol_O", "b_Viol_O"))  
 

 
The corresponding image: 
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Figure 9 - Density (Viol) 
 
Overall, the results indicate that violence is not encouraged in the stories, as 
violence often bring bad outcomes for the main characters. The coefficient 
b_Viol_O  is negative, which suggests violence tends to go against the good 
outcome for the main characters. This distribution is narrow, and with a good 
credibility range.   
 
When considering violence together with the Three Teachings variable, we can see 
that the coefficients for Confucianism and Taoism are still negative. However, the 
coefficient for Buddhism and violence is positive, that means although the main 
character can commit a violent act, his or her outcome can still be favorable (positive 
coefficient). 
 
Comparing violence and lying:  
 

 
bvl_plotDensity2d(model, "b_Lie_O","b_Viol_O") 

 

 
We can have the pair parameter images as follow:  
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Hình 10 
 
Both coefficients are negative, which indicates characters who have lied and 
committed violence tend not to have a good outcome.   
   
If we compare the correlation between this pair of parameters, the coefficient for 
violence is much weaker than that of violence.  
 
To compare the coefficients of Three Teachings elements with violence with each 
other:  
 

 
bvl_plotDensity2d(model, "b_B_and_Viol_O", "b_C_and_Viol_O", 
color_scheme = "orange") 
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Figure 11 
 
The results indicate different trends for Buddhism and Confucianism.  It seems the 
outcome tends to be positive for characters that express the core values of 
Buddhism yet commit violence. Nonetheless, the influence of Buddhism is much 
stronger.  
 

 
bvl_plotDensity2d(model, "b_B_and_Viol_O", "b_T_and_Viol_O", 
color_scheme = "orange") 
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Figure 12 

Similarly, there are different trends for Buddhism and Taoism. It seems Buddhism is 
more tolerant toward violent behaviors, while it is the opposite for Confucianism. 
Nonetheless, the influence of Buddhism is much stronger.  
 
Next are the cofficients of Confucianism and Taoism: 
 

 
bvl_plotDensity2d(model, "b_C_and_Viol_O", "b_T_and_Viol_O", 
color_scheme = "blue") 
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Figure 13 

 
In Figure 13, Confucianism and Taoism’s coefficients are quite similar, and they are 
both small negatives, centered around the same range of value. One can infer 
Confucianism and Taoism don’t tolerate violence.  
 
The results, as shown in Figure 11 and 12, indicate a propensity to tolerate violence 
from a character whose values are Buddhism. The propensity contradicts with 
Buddhism's values, which encourage humanity and compassion. In terms of 
Confucianism and Taoism, we can reluctantly interpret the results based on the 
values that Confucianism and Taoism characters hold. Confucianism characters are 
usually scholars, while Taoism characters value the ethics of "non-contrivance" or 
"effortless action". Thus, the characters will tend to avoid using violence to reach 
their goals. 
 
Compare the correlations between the Three Teachings and lying behavior: 
 
First is the pair of Buddhism and Confucianism: 
 

 
bvl_plotDensity2d(model, "b_B_and_Lie_O", "b_C_and_Lie_O", 
color_scheme = "orange") 
 

 
We have the result as in Figure 14: 
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Figure 14 

 
Buddhism and Confucianism assume the same tendency in terms of correlation with 
lying behaviors and are distributed around the mean value. However, the coefficient 
of Buddhism is small, and the distribution lies between negative and positive. Thus, 
the results show Buddhism is not tolerant toward lying. On the contrary, 
Confucianism elements have a strong positive coefficient, the entire 95% CI being 
positive. 
 
Next, we consider Buddhism and Taoism in their relationship with lying behaviors: 
 

 
bvl_plotDensity2d(model, "b_B_and_Lie_O", "b_T_and_Lie_O", 
color_scheme = "orange") 
 

 
We may examine the correlation visually, in Figure 15 below: 
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Figure 15 

 
Similar to Confucianism, Taoism also predicts lying behaviors much stronger than 
Buddhism does. 
 
The last pair to be compared is Confucianism and Taoism: 
 

 
bvl_plotDensity2d(model, "b_C_and_Lie_O", "b_T_and_Lie_O", 
color_scheme = "blue") 
 

 
A graphic representation of the result can be found in Figure 16: 



41 
 

 
Figure 16 

 
In their relations to the lying behavior of the main characters, Taoism and 
Confucianism are quite similar and both center in the positive. 
 
One important characteristic of Confucianism should be kept in mind when 
interpreting these results: Confucianism boasts teachings related to ambitions of 
becoming feudal officials, the latter often being an end that justifies all means – 
including behaviors such as lying. 
 
Comparing situations with and without intervention: 
 
The code for tests on variable Outcome (“O”) when there are and are not external 
elements intervening in the story yield two distribution graphs y_rep as follows.  
 

 
bvl_plotTest(model, "O", "Int1_or_Int2_1") 
bvl_plotTest(model, "O", "Int1_or_Int2_2") 

 

 
The following pair of graphs in Figure 17 corresponds to the values of Int1_or_Int2 
in the above commands. 
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Figure 17a 

 
Figure 17a plots the graphic representation of the relationship when 
Int1_or_Int2=1; Figure 17b whenInt1_or_Int2=2: 
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Figure 17b 
 
The two graphs appear somewhat similar, meaning that the ending of a story does 
not depend significantly on the factor of external intervention. Besides, the 
respective distributions of coefficients a_Int1_or_Int2[1] and 
a_Int1_or_Int2[2] have the same curve pattern, suggesting that when there are 
external interventions, improvements in main character behaviors compared to 
when there are no interventions are still negligible. 

 

Figure 18 
 
The relationship between changes of coefficients a_Int1_or_Int2[1] and 
a_Int1_or_Int2[2] is presented in Figure 19.  
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Figure 19 
 
Figure 19 also shows that convergent values have rather even distributions, all 
positive, and are mostly distributed around a determined interval of values. 

Update 
 
The bayesvl R Package was officially published by CRAN on May 24, 2019, and can 
now be accessible from the CRAN web site:  

https://cran.r-project.org/package=bayesvl  [28]. 

Development Team 
 
Members of the research team AISDL and SDAG have contributed to the 
development of bayesvl at different stages of the project (data collection, program 
testing, result examination, manuscript writing). As of bayesvl v0.8.5, contributors to 
the development process include:  
 

• Manh-Tung Ho 
• Hong-Kong To Nguyen 
• Manh-Toan Ho 
• Hung-Hiep Pham 
• Minh-Hoang Nguyen, and 
• Thu-Trang Vuong 
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