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Abstract

According to the conventionalist doctrine of space elab-
orated by the French philosopher-scientist Henri Poincaré in
the 1890s, the geometry of physical space is a matter of defi-
nition, not of fact. Poincaré’s Hertz-inspired view of the role
of hypothesis in science guided his interpretation of the the-
ory of relativity (1905), which he found to be in violation of
the axiom of free mobility of invariable solids. In a quixotic
effort to save the Euclidean geometry that relied on this ax-
iom, Poincaré extended the purview of his doctrine of space
to cover both space and time. The centerpiece of this new
doctrine is what he called the “principle of physical relativity,”
which holds the laws of mechanics to be covariant with respect
to a certain group of transformations. For Poincaré, the invari-
ance group of classical mechanics defined physical space and
time (Galilei spacetime), but he admitted that one could also
define physical space and time in virtue of the invariance group
of relativistic mechanics (Minkowski spacetime). Either way,
physical space and time are the result of a convention.
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Introduction
Perhaps more than any other figure in contemporary science, Henri
Poincaré focused the attention of both philosophers and scientists on
the role played by hypothesis in the pursuit of scientific knowledge.
The history of twentieth-century philosophy of science is marked by
his conventionalist philosophy of geometry, which troubled philoso-
phers from Ernst Cassirer, Moritz Schlick and Hans Reichenbach in
the 1910s and 1920s, Philipp Frank, Ernest Nagel and Adolf Grün-
baum in the 1950s and 1960s, Lawrence Sklar, Hilary Putnam, David
Malament, Michael Friedman and others from the 1970s and 1980s
up to the present.1 Much of this philosophical discussion is concerned
with the conventionality of simultaneity in relativity theory, a prob-
lem distinct, on one hand, from that of the conventionality of simul-
taneity in classical mechanics (first discussed by Poincaré in 1898),
and on the other hand, from that of the Riemann-Helmholtz-Lie prob-
lem of space, which occupied Poincaré and his contemporaries in the
late nineteenth century. At the end of his life, Poincaré fused these
two problem sets, and realized the overriding necessity of a space-
time convention for the foundations of physics. The following ac-
count of Poincaré’s progress toward the latter view proceeds chrono-
logically, beginning with the elaboration of his doctrine of physical
space (1880–1900), followed by a discussion of Poincaré’s under-
standing of the hypothetical basis of the theory of relativity (1900–
1906), and an analysis of the 1912 lecture “L’espace et le temps,” in
which Poincaré affirmed the central role of hypothesis and convention
in the production of scientific knowledge.

1 Poincaré’s doctrine of physical space
Poincaré’s philosophy of geometry first took form following French
debates in the 1870s over the logical coherence and physical mean-
ing of non-Euclidean geometry. While no French mathematician had
been directly involved in the reevaluation of the foundations of ge-
ometry of the 1820s and 1830s, the ideas advanced by Bernhard Rie-
mann, Eugenio Beltrami, and Hermann Helmholtz found both parti-
sans and opponents in late nineteenth-century France.

By 1869 at the latest, the French mathematical establishment had
recognized the existence of non-Euclidean geometries. In that year
the French Academy of Sciences published for the very last time a
note purporting to prove the parallel postulate. Its author, Joseph
Bertrand, held the chair of general and mathematical physics at the
Collège de France and was also Professor of Analysis at the École
polytechnique. Bertrand published a demonstration of the parallel
postulate over the protests of fellow members of the geometry sec-
tion, but the ensuing public scandal eventually led him to admit that
the proof had met with less than universal approval (Pont 1986, 637).

Debate over the status of non-Euclidean geometry continued well
after 1870, particularly among French philosophers. Paul Tannery’s

1For a comprehensive overview, see Ben-Menahem (2006).
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empiricism met with opposition from Neokantians Charles Renou-
vier and Louis Couturat, whose pet claim was that only Euclidean
geometry could be objective, because it was the only geometry sub-
tended by spatial intuition. Euclidean geometry was thereby an ideal
science, and an example of synthetic a priori knowledge in the Kan-
tian scheme.2

It was also in the 1870s that France’s most brilliant mathemati-
cian came of age. Henri Poincaré (1854–1912) was educated at the
École polytechnique, under the tutelage of Charles Hermite, Henri
Résal, and Alfred Cornu, and at the École des mines, where Henry
Le Chatelier taught chemistry. In 1879 he defended a doctoral the-
sis supervised by Gaston Darboux on the geometric theory of partial
differential equations, and after a short stint as a mine inspector in
northeastern France, was engaged to teach mathematics at the Uni-
versity of Caen (Rollet 2001).

Less than a year after arriving in Caen, Poincaré entered the com-
petition for the grand prize in mathematical sciences organized by the
French Academy of Sciences, which required contestants to “perfect
an important element of the theory of linear differential equations
in one independent variable.” His submission did not win the prize,
even though the three supplements to his prize essay established a
new class of automorphic functions, that Poincaré called “Fuchsian”
functions, in honor of the German mathematician Lazarus Fuchs.

The connections between Fuchsian functions and conventionalist
philosophy of geometry are numerous, as Zahar (1997) shows. What
Poincaré’s supplements reveal is that as early as 1880, Poincaré un-
derstood geometry in terms of groups of transformations. Fuchsian
functions, Poincaré discovered, are invariant under a certain class of
linear transformations that form a group. The study of the group in
question reduces to that of the translation group of hyperbolic geom-
etry, prompting the young Poincaré to ask:

Just what is, in fact, a geometry? It is the study of the group of
operations formed by the displacements a figure can go through
without deformation. In Euclidean geometry this group re-
duces to rotations and translations. In Lobachevsky’s pseudo-
geometry it is more complicated. (Poincaré 1997, 35)

Geometry is reduced here to group theory, in the spirit of Felix Klein’s
Erlanger Program, although it appears unlikely that Poincaré had any
knowledge of this program at the time. Other printed sources on non-
Euclidean geometry were available to him, including French transla-
tions of Beltrami and Helmholtz, and during his student days in the
late 1870s, Poincaré may well have picked up from his teachers (Her-
mite, Darboux, Jordan) the idea that the motions of a rigid body form
a group. There is a strong resemblance between Poincaré’s presenta-
tion of his model of hyperbolic geometry and that of Beltrami. Both
are circle models, differential-geometric, and refer to Lobachevsky
alone, and although Poincaré does not mention Beltrami by name,

2On the reception of non-Euclidean geometry among francophone Neokantians,
see Panza (1995).

3



the latter’s work was surely an inspiration to him (Gray & Walter
1997b).

Poincaré’s prodigious discovery of Fuchsian functions propelled
him into the higher echelons of French mathematics. In 1886 he be-
came a full professor of mathematical physics and probability calcu-
lus at the Sorbonne (replacing Gabriel Lippmann), and was elected
President of the French Mathematical Society. The next year he was
selected to replace Edmond Laguerre in the geometry section of the
Academy of Sciences at the Institut de France.

Once a member of the Institut, Poincaré published his first essay
on the foundations of geometry. Strongly influenced by Sophus Lie’s
writings, the paper concludes with a reflection on the relation between
geometry and the physical space of experience:

[I]n nature there exist remarkable bodies called solids and ex-
perience teaches us that the diverse motions these bodies can
perform are related very closely to the diverse operations of the
[Euclid] group. [. . . ]

Thus the fundamental hypotheses of geometry are not exper-
imental facts, and yet it is the observation of certain physical
phenomena that picks them out from all possible hypotheses.
(Poincaré 1887, 91, original emphasis)

Geometry is then essentially an abstract science, being the study of
groups of transformations. Observation of displaced solids suggests
the transformations of one particular geometry, corresponding to the
Euclid group. Or as Poincaré put it in a subsequent paper, our expe-
rience “played but a single role: it served as an occasion” (Poincaré
1903, 424).

While Poincaré’s stance on the formal nature of geometry is un-
ambiguous in his 1887 essay, he does not reflect on the epistemo-
logical status of the geometry of physical space. The latter topic is
first evoked in Poincaré’s next essay on the foundations of geometry,
which appeared Louis Olivier’s Revue générale des sciences pures et
appliquées, and reached a wide readership both in French and En-
glish, thanks to a translation published in Nature.3

In the essay “Non-Euclidean geometries,” Poincaré presents his
conventionalist view of the foundations of geometry and physics. Re-
iterating his belief in the abstract nature of geometry, Poincaré ex-
plains why geometry can not be an experimental science:

If geometry were an experimental science, it would not be an
exact science, it would be subject to incessant revision. And
that is not all: it would even today be shown to be erroneous,
since we know that rigorously invariable solids do not exist.
(Poincaré 1891, 773)

If we were to adopt the empiricist approach to geometry, Poincaré
tells his readers in the latter passage, we would eliminate Euclidean

3Poincaré (1891, 1892a). On Poincaré’s collaboration with the periodicals
edited by Louis Olivier and Xavier Léon see Rollet (2001).
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geometry straightaway as a candidate geometry for physical space,
since there are no perfectly-rigid solids in this space.

When Poincaré points out this conflict between the motion of
solids and Euclidean geometry, he bruises our confidence in the truth
of the geometric axioms. Worse news is yet to come, however, as
Poincaré goes on to tell us that the axioms have no truth-value at all:

The geometrical axioms are then neither synthetic a priori judg-
ments nor experimental facts. They are conventions; our choice,
out of all possible conventions, is guided by experimental facts;
but it remains free and is limited only by the necessity of avoid-
ing all contradiction. [. . . ] In other words, the axioms of ge-
ometry [. . . ] are but definitions in disguise. This being so,
what should one think of the question: “Is Euclidean geometry
true?” It is meaningless. (Poincaré 1891, 773, original empha-
sis)

In other words, as Nabonnand (2000) observes, inasmuch as Euclid-
ean geometry is an abstract science, the truth of its theorems may not
be ascertained by empirical means.

The same is true for the axioms of non-Euclidean geometry, and
to argue the point, Poincaré asks what would happen if the parallax of
a given star were observed to have a negative value (corresponding to
elliptic space), or if all parallaxes were observed to be greater than
a certain positive value (corresponding to hyperbolic space). The
answer seems obvious to Poincaré: rather than consider space to
be curved, scientists would find it “more advantageous” to suppose
that starlight does not always propagate rectilinearly (Poincaré 1891,
774). Poincaré implicitly assumes an alternative, non-Maxwellian
optics to be feasible; he later extends the latter assumption to all of
physics, by claiming that any experiment at all can be interpreted with
respect to either Euclidean or hyperbolic space.

There are two aspects to Poincaré’s conjecture I want to under-
line. First, scientists are free in Poincaré’s scheme to choose between
the two couples: Euclidean geometry and non-Maxwellian optics, or
non-Euclidean geometry and Maxwellian optics. Either way, the ge-
ometry of space and the laws of optics result from a convention. In
essentials, as Torretti (1984, 169) notes, Poincaré’s view is equiva-
lent to that of Helmholtz, to whom Poincaré refers his readers.4 It
also previews Pierre Duhem’s holistic view of the structure of phys-
ical theory (Duhem 1906), which led Duhem to reject the possibility
of crucial experiments.

Modern commentators like Zahar (2001, 100) understand Poincaré’s
conjecture to imply a “geometry plus physics” argument ranging over
all possible geometries, including those of variable curvature, of the

4Poincaré’s notion of phenomenal space as an inseparable couple formed by
geometry and physics was foreshadowed by Helmholtz’s appeal to Lipschitz’s ar-
gument in favor of a dynamics of hyperbolic space, based on the applicability of
Hamilton’s principle to spaces of nonzero constant curvature (Helmholtz 1995,
238). On Helmholtz’s empiricist philosophy of mathematics and geometry, see
Volkert (1996) and Schiemann (1997). On Poincaré’s reading of Helmholtz, see
Heinzmann (2001).
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type Einstein employed in his general theory of relativity (1915). For
Poincaré and others in the 1890s, however, geometries of constant
curvature (i.e., Euclidean, hyperbolic, and spherical geometries) were
the only plausible candidate geometries for physical space. The mo-
tivation for the latter restriction came from physics, which requires
a theory of measurement. In the classical physics of Helmholtz and
Poincaré, the act of measurement required free mobility of solids. In
turn, free mobility of solids is possible only in Riemannian geome-
tries of constant curvature. As we will see in § 4, the motivation
for relaxing the principle of free mobility of solids also came from
physics: the physics of relativity.

In the second place, while Poincaré recognized the freedom of
scientists to choose a non-Euclidean geometry, he seems convinced
that they would never do so. Poincaré’s overweening confidence in
the convenience of Euclidean geometry for representing natural phe-
nomena, come what may, separates him from most physicists and
mathematicians of the late nineteenth century. It is often considered
the weak link in Poincaré’s philosophy of geometry.5

Poincaré presented a number of arguments in favor of the con-
venience of Euclidean geometry, none of which could be consid-
ered compelling. One putative advantage of Euclidean geometry is
its simplicity, which Poincaré characterized algebraically (Torretti,
1984, 335). In the Euclid group, certain “displacements are inter-
changeable with one another, which is not true of the corresponding
displacements of the Lobachevsky group” (Poincaré 1898b, 43). In
other words, the Euclid group has a proper normal subgroup corre-
sponding to translations, and according to this definition of simplicity,
it is simpler than the hyperbolic group. Alternative criteria for sim-
plicity abound, however, and Poincaré admitted quite freely that we
would switch geometries, if confronted with a “considerably differ-
ent” empirical base (Poincaré 1898b, 42). In sum, Poincaré’s stance
on the convenience of Euclidean geometry was no dogma. Rather, it
reflected his great confidence in the future stability of the established
baseline of experimental results, and in the explicative power of the
principles of physics then in vigor.

Just what sort of experimental results might have led Poincaré
to forgo Euclidean geometry at the close of the nineteenth century?
Observations of stellar parallaxe could not have forced such a change,
as we have seen. Poincaré did not elaborate; instead, he argued for
the possibility of doing physics in hyperbolic space, which was an
area of research little explored by nineteenth-century mathematicians
(Walter 1999b, 92).6

Poincaré’s view on the question of the equivalence of Euclidean
and hyperbolic geometry is subject to debate. According to Ben-
Menahem (2006, 41), Poincaré held all theorems of Euclidean ge-

5Poincaré’s failure to convince scientists and philosophers to adopt his doctrine
is noted by Torretti (1984, 256); his failure to convince mathematicians and physi-
cists is shown by Walter (1997). For the characterization of the doctrine as a weak
link, see Vuillemin (1972, 179) and Sklar (1974, 93).

6Exceptions include Eugenio Beltrami, Wilhelm Killing, and Rudolf Lipschitz,
all of whom contributed to the mechanics of non-Euclidean space.
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ometry to have counterparts in hyperbolic geometry (and vice-versa).
This equivalence in theorems would provide a template of sorts for
the elaboration of a physics of hyperbolic space. Yet Poincaré never
actually proposed such an equivalence (Torretti, 1984, 336). Instead,
in an attempt to characterize quadratic geometries, Poincaré wrote
that in hyperbolic geometry we have a set of theorems “analogous”
to those of Euclidean geometry (Poincaré 1887, 205).

What Poincaré offered in favor of his doctrine of space was a
clever thought experiment, that builds on a suggestion made by Helm-
holtz. By wearing glasses fitted with convex lenses, Helmholtz (1995,
242) wrote, we can experience the optical effects of a world in which
the natural geometry of space is non-Euclidean. Poincaré (1892b)
deftly modified Helmholtz’s example by imagining an apparently non-
Euclidean world, that of a heated sphere. In this way, Poincaré refo-
cused his reader’s attention away from intuition—a subject dear to
Helmholtz—and toward a subject of his own predilection, the con-
ventionality of laws of physics.

The heated sphere model of hyperbolic space fascinated Poincaré’s
contemporaries. Imagine a hollow sphere of radius R, heated in such
a way that the absolute temperature at a point located a distance r
from the sphere’s center is proportional to R2−r2.7 All bodies inside
the sphere have the same coefficient of thermal dilation, and reach
thermal equilibrium instantaneously. The atmosphere is such that the
index of refraction is everywhere proportional to the reciprocal of
temperature, and the trajectory of a light ray is described by an arc
orthogonal to the enclosing sphere. The same arcs are materialized
by the shortest distance between two points, as measured by a ruler,
and the axis of rotation of a solid body. Poincaré suggests that the
natives of such a world would adopt hyperbolic geometry for their
measurements.

Highly contrived from a physical standpoint, Poincaré’s model
conveys quite well the idea that the adoption of Euclidean geometry
is conditioned by certain features of our environment (such as the
motion of solids). What is more, Poincaré (1895, 646) claimed that
if physicists from planet Earth were transported to the heated world,
they would continue to use Euclidean geometry, on the grounds that
this would be the most convenient option available to them.8

The latter thesis is contested by Howard Stein (1987) on the basis
of the extreme complexity of doing physics with Euclidean geometry
in such a world. A terrestrial, pre-relativist physicist in the heated
sphere would be led at first to posit a universal deforming force, only
to find that the other laws she contrives conflict with those elaborated
by physicists located in other regions of the world. Implicitly, Stein
introduces a meta-theoretical commitment to a unified physics, and
while Poincaré valued unified, interpenetrating explanations of phys-
ical phenomena, he recognized that such values are not imposed on
us by the same phenomena. His doctrine of physical space affirms

7For a rigorous discussion of the heated sphere’s two-dimensional counterpart,
the heated disk, see Barankin (1942).

8At first, Poincaré (1892b) maintained only that the sphere’s natives would
adopt non-Euclidean geometry.
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only that Earth-educated physicists can use Euclidean geometry in-
side the heated sphere, not that they must do so, or even that it is in
their best interest to do so. As mentioned above, Poincaré readily
admitted that physicists would forgo Euclidean geometry if the cir-
cumstances called for it. At the turn of the century, he was also quite
sure that such circumstances would never arise.

2 Poincaré’s typology of hypotheses
Poincaré’s mature philosophy of science assigns a leading role to hy-
potheses. In the previous section, we recalled his belief that the ax-
ioms of geometry are conventions (or definitions in disguise), and
not hypotheses about the behavior of light rays or solid bodies. In
this context, the question naturally arises of the relation between hy-
pothesis and convention.

Hypotheses, according to Poincaré, are not all created equal. Some
are more influential than others in determining the course of science,
and Poincaré found it useful to categorize the types of hypothesis he
encountered according to their truth domain. An important impetus
to this theorization of scientific hypotheses was provided by Hein-
rich Hertz’s Principles of Mechanics (Lenard, 1894), which made a
singular impression on him, in virtue of its epistemic structure, and
innovative use of hypothesis:

While the principles of dynamics have been exposed in many
ways, the distinction between definition, experimental truth,
and mathematical theorem has never been sufficient. This dis-
tinction is still not perfectly clear in the Hertzian system, and
what is more, it introduces a fourth element: hypothesis. (Poincaré
1897, 743)

This fourth element corresponds to Hertz’s assumption of hidden
masses, which allowed him to forgo the concept of force. What
strikes Poincaré above all is that Hertz’s assumption is neither def-
inition, nor experimental fact, nor theorem. It is what Poincaré would
later call an “indifferent” hypothesis, in that an alternative hypothesis,
or set of hypotheses, leads to the same result.

While Hertz’s hypothesis of hidden masses was far too bold for
Poincaré’s taste, it inspired a new understanding of the role of hypoth-
esis in physics, first unveiled at the international congress of physics
held in Paris at the turn of the century. This was the first of two dif-
ferent typologies, which are now addressed in turn.

Poincaré (1900, 1166) identifies three sorts of hypotheses: gener-
alizations, indifferent hypotheses, and natural hypotheses. The first
sort is distinguished by the property of susceptibility to experimental
corroboration. Once corroborated by experiment, these hypotheses
become “fertile truths,” without which there can be no increase in
knowledge.

The second type of hypothesis, or “indifferent” hypothesis, serves
to “fix our thought,” but constitutes a non-unique premise in a deduc-
tive chain. Examples of indifferent hypotheses include the hidden
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masses of Hertz’s mechanics, and the physical interpretation of the
axial and polar vectors in classical optics. It can happen that a the-
orist prefers one hypothesis to another, to simplify a calculation, for
instance, but experimental corroboration of the theory can have no
bearing on the truth of the chosen hypothesis.

The third type of hypothesis is the “wholly natural” hypothesis.
This vaguely-defined category concerns what might be described as
experimental rules of thumb, without which measurement is nigh im-
possible. Natural hypotheses are accordingly the “last we ought to
abandon.” They include the law of continuity of cause and effect, and
the vanishing force of very remote bodies. The latter hypothesis al-
lows for multiple independent dynamical systems, as we shall see in
§ 4.

Poincaré’s second typology of hypotheses appeared two years af-
ter the first, in the introduction to a collection of philosophical essays,
La Science et l’hypothèse (Poincaré 1902). This revised typology fea-
tures three categories, including the generalizations and indifferent
hypotheses of the first typology, and excluding natural hypotheses.
Poincaré may have folded natural hypotheses implicitly into the cate-
gory of generalizations, since the former are, like the latter, accessible
in principle to experiment. It is also possible, however, that neither
typology was intended to be exhaustive, as suggested by Poincaré’s
decision to reprint his first typology in the ninth chapter of La Science
et l’hypothèse.

A new type of hypothesis appears in Poincaré’s 1902 typology:
the “apparent” hypothesis. In fact, his third type of hypothesis is not
a hypothesis at all, but a definition, or a “convention in disguise.”
Conventions, or apparent hypotheses, are essential to the activity of
theorization in Poincaré’s model of science.

For what follows, one final point needs to be underlined concern-
ing the relation of Type I hypotheses (or hypotheses susceptible to
experimental confirmation) to Type III hypotheses (or conventions).
A physical law, if corroborated by experiment, can become a conven-
tion. Such a statutory evolution occurs when the law in question is
deemed sufficiently fruitful to warrant protection from new experi-
mental tests. Conventions are of great utility to the pursuit of scien-
tific knowledge, but they are only definitions, and as such, may not
be refuted by experiment. As an example, take the law of inertia,
which Poincaré considers to be a convention. Any particular obser-
vation tending to disconfirm the law of inertia, Poincaré holds, would
be dealt with by invoking the effect of invisible bodies, rather than by
discarding the law of inertia (Poincaré 1902, 117).

3 Relativity theory and the foundations of
geometry

On 5 June 1905, Poincaré presented a note to the French Academy of
Sciences that put forth the foundations of the theory of relativity. It
is in this short paper that Poincaré expressed the Lorentz transforma-
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tions in their modern form for the first time, along with the current
density transformations (correcting Lorentz). In the 47-page memoir
“On the dynamics of the electron” announced by this note, and that
appeared in January 1906, Poincaré wrote the velocity transforma-
tions, characterized the Lie-algebra of the Lorentz group, and intro-
duced a four-dimensional space in which three coordinate axes are
real, and one is imaginary, inaugurating the era of four-dimensional
physics. Building on Poincaré’s ideas as well as those of Hertz,
Lorentz, Einstein and Planck, the Göttingen mathematician Hermann
Minkowski elaborated the theory of spacetime, which profoundly
marked the philosophy of space and time, and was instrumental to
Einstein’s discovery of the general theory of relativity (Walter 2007a).

Poincaré’s contributions to the theory of relativity are well known
to historians, but it is not entirely clear how Poincaré understood the
theory of relativity to impinge upon his doctrine of space. In part, at
least, this is Poincaré’s doing, as he did not express himself clearly
on this topic. As a result, commentators have offered a wide variety
of interpretations of the relation between Poincaré’s conventionalist
philosophy and his discovery and interpretation of the theory of rela-
tivity.9

Although Poincaré does not comment in his 1906 memoir on the
eventual influence of the principle of relativity on our conceptions of
space and time, he points out an important consequence for the theory
of measurement:

How do we go about measuring? The first response will be: we
transport objects considered to be invariable solids, one on top
of the other. But that is no longer true in the current theory if we
admit the Lorentzian contraction. In this theory, two lengths are
equal, by definition, if they are spanned by light in equal times.
(Poincaré 1906, 132)

Poincaré spies a conflict between the traditional notion of rigidity and
the principle of relativity, in that Lorentz-FitzGerald contraction ap-
pears to preclude the transport of rigid rulers upon which length mea-
surement depends. Length congruence in Lorentz’s theory depends
not on the free mobility of invariable solids, but on the light standard.

Does this standard conflict necessarily with Poincaré’s doctrine
of space? Poincaré will provide an answer to the latter question, but
only in the wake of spacetime theory, as discussed in the next section.

4 The principle of physical relativity
From 1905 to the end of his life (on 17 July 1912), Poincaré com-
mented often on the theory of relativity, but only twice on the four-
dimensional interpretation he had inaugurated. At first, he compared
a possible four-dimensional language for physics to Hertz’s mechan-
ics, and observed that working out the corresponding formalism would

9For references, and an insightful comparison of Poincaré’s and Einstein’s
philosophical approaches to relativity theory, see Paty (1993).
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entail “much pain for little profit” (Poincaré 1907). Poincaré’s first
and last words on the philosophical significance of spacetime were
delivered on 4 May 1912, as the second in a series of four lectures at
the University of London. His remarks were published posthumously
as “L’espace et le temps,” a title recalling that of Minkowski’s cel-
ebrated 1908 lecture in Cologne, “Raum und Zeit” (Poincaré 1912;
1963, 97–109).

Although Poincaré might have derived satisfaction from the fact
that Minkowski had based his spacetime theory on essentially the
same four-dimensional geometry introduced in Poincaré’s 1906 mem-
oir, the Göttingen mathematician had noisily promoted an anti-conven-
tionalist view of physical space and time, which was surely anathema
to him (Walter 2010). Like Poincaré, Minkowski recognized that the
new mechanics admitted no rigid bodies; unlike Poincaré, Minkow-
ski presented the new intuitions (Anschauungen) of space and time
not as conventions, but as the result of circumstances both empiri-
cal and formal that “forced themselves” upon scientists (Minkowski
1909, 79).

This is just the sort of anti-conventionalist view that Poincaré tar-
gets in the opening of his London lecture on space and time:

Is not the principle of relativity, as Lorentz conceives it, going
to impose an entirely new conception of space and time, and
force us thereby to abandon conclusions that may have seemed
established? (Poincaré 1963, 99)

Poincaré sees in Lorentz’s principle of relativity a menace to his doc-
trine of physical space. But what does Poincaré take to be Lorentz’s
principle of relativity? He defines the latter in terms of group invari-
ance:

The old form of the principle of relativity had to be abandoned;
it is replaced by Lorentz’s principle of relativity. The transfor-
mations of the “Lorentz group” are those that leave unaltered
the differential equations of dynamics. (Poincaré 1963, 108)

According to Poincaré, Lorentz’s principle of relativity is just Lorentz
covariance, or what was then understood to be a succinct statement
of the content of Einstein’s special theory of relativity. Poincaré is
poised to reconsider his brief observation of 1905 on the theory of
measurement in Lorentz’s theory, mentioned above (§ 3), and to show
how his doctrine of physical space stands with respect to the theory
of relativity.

Poincaré’s views on how relativity theory interferes with classical
concepts of space and time have significant historical interest, due to
his foundational contributions to this theory. His London lecture on
space and time represents his final word on this topic, and sets forth
a fundamental change in his doctrine of physical space, by extending
this doctrine to physical time. This extension is not well known, and
is the focus of the following reconstruction of Poincaré’s argument.

According to Poincaré, there is a principle of relativity, which he
calls the “principle of physical relativity” (PPR), that exists in two
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forms. One of these is the Lorentz form, which Poincaré refers to as
Lorentz’s principle of relativity. The other form is what I will refer to
as the Galilei form, because it is defined by Galilei group invariance.
The PPR holds that the differential equations by which we express
physical laws

are altered neither by a change of fixed rectangular coordinate
axes, nor by a change of temporal origin, nor by a substitution
of mobile rectangular axes, the motion of which is a uniform,
rectilinear translation. (Poincaré 1963, 102)

In modern terms, the PPR is equivalent to covariance with respect to a
certain group of transformations. Poincaré distinguishes two groups
in this context, corresponding to what were later known as the in-
homogeneous Galilei transformations of the Galilei group, and the
inhomogeneous Lorentz transformations of the Poincaré group.

The PPR has two main features, one of which is its testability. It is
what Poincaré describes as an “experimental truth,” i.e., a proposition
susceptible to experimental disconfirmation. Recalling Poincaré’s ty-
pology of hypotheses (see above, § 2), the PPR is a Type I hypoth-
esis. He expresses its empirical meaning in terms of two corollaries
(Poincaré 1963, 106):

1. The reciprocal action of two bodies (or mechanical systems)
tends to zero as spatial separation increases indefinitely.

2. Two remote worlds behave as if independent.

Let us examine these corollaries one at a time. The first has a prece-
dent in the 1900 lecture mentioned above, in which Poincaré first
sought to characterize the sorts of hypotheses encountered in sci-
ence. To hold that the “influence of very distant bodies is negligible,”
Poincaré wrote, was a “natural” hypothesis (Poincaré 1900, 1166).
This natural hypothesis was announced some five years before the
discovery of relativity theory, and twelve years before Poincaré up-
dated his formula, ostensibly to accommodate the new physics of in-
ertial frames.

The motivation for (1) remained the same over this twelve-year
span. This particular natural hypothesis was designed to legislate
away the effects of all long-range forces that fall off with increas-
ing separation (such as gravitational and electromagnetic forces), and
to create thereby the possibility of separate mechanical systems. As
a consequence of what Poincaré calls the “principle of psychological
relativity,” recognizing the conventional nature of measurements of
distance and duration, the existence of distant stars renders inertial
frames of reference “purely conventional,” obliging us, when we em-
ploy the concept of a frame of reference, to forgo “absolute rigor”
(Poincaré 1963, 103).

The second corollary of the PPR has, like the first, a clear prece-
dent in Poincaré’s philosophy. In La Science et l’hypothèse, Poincaré
analyzed the possibility of generalizing the Galilean principle of rel-
ative motion to include rotating frames of reference. If we want
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to solve a two-body problem based on Newton’s Law, Poincaré re-
marked, we need to know the positions and velocities of the two grav-
itating bodies, as well as the corresponding initial values, along with
“something else.” It is this final missing bit of information that wor-
ried Poincaré, as Earman (1989, 86) observes. This solution element
could be either the initial values of acceleration, or the area constant,
or the absolute orientation of the universe, or the rate of change of
orientation, or the position or velocity of Carl Neumann’s Body Al-
pha. “We have,” Poincaré wistfully concluded his earlier analysis,
“but a choice of hypotheses” (Poincaré 1902, 137).

Poincaré’s position advanced in this case, as well as for (1). His
London lecture proposes a new argument in favor of (2), observing
in essence, as Kerszberg (1989, 139) notes, that the missing solution
element could be objectively determined, if only we disposed of not
one universe, but of several universes. Poincaré imagines the situa-
tion as follows:

Instead of considering the entire universe, let’s imagine small,
separate worlds, visible to one another but free from outside
mechanical action. If one of these worlds spins, we will see
it spin, and recognize that the value to be assigned to the con-
stant just mentioned depends on the spin velocity, and in this
way, the convention habitually adopted by dynamicists will be
justified. (Poincaré 1963, 105)

The PPR, Poincaré realizes here, provides a way out of his earlier
dilemma, as it implies the existence of multiple independent mechan-
ical systems in the universe, as expressed by (2).

Along with testability, a second salient feature of the PPR is its
capacity to define space and time. The PPR “can serve to define
space,” by virtue of the fact that we perform measurements (or al-
ternatively, in Poincaré’s terminology, “construct space”) by displac-
ing solids and defining length congruence as coincidence of figures.
The PPR admits the invariance under displacement of the form and
dimensions of solids and other sufficiently-isolated mechanical sys-
tems, and thereby provides a foundation for length measurement. In
Poincaré’s words, the PPR provides us with a “new instrument of
measurement” (Poincaré 1963, 106). Each possible displacement of
a solid corresponds to a certain transformation, which leaves the form
and dimensions of a given figure invariant. Such transformations,
when taken together, form a group: the group of motions of invari-
able solids. While the principle of free mobility of solids selects any
of three motion groups (Euclid, hyperbolic, spherical), the Galilei
form of the PPR selects only one of these: the Euclid group. One
imagines that Poincaré was uncomfortable with this particular con-
sequence of the PPR, which he did not mention, but could not have
ignored. Instead, he stressed the fact that, like the principle of free
mobility of solids, the PPR provides a foundation for geometry.10

10I differ here from Friedman (2008, 214), for whom “Poincaré’s conception
of space and geometry is entirely based [..] on the principle of free mobility first
formulated by Helmholtz and then brought to precise mathematical fruition in the
Helmholtz-Lie theorem.”
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Poincaré justified his replacement of the principle of free mobil-
ity of solids by the principle of form-invariance of the differential
equations of mechanics in the following way. The motion group of
invariable solids on one hand, and the symmetry group of mechanics
on the other, give rise to conceptions of space that are not “essen-
tially different” in Poincaré’s view, because both groups define space
in such a way that solids are unaltered in form when displaced. The
role played by solid bodies in the old conception of the foundations
of geometry goes over to the more general notion of a mechanical
system. In fact, by defining space in terms of the motion group of
solids, we affirm that the equations of equilibrium of solids do not
vary upon displacement. In other words, we define space in such a
way that the equilibrium equations of solids are unaltered by a change
of axes. These equations of equilibrium are but a special case of the
general equations of dynamics, Poincaré explains, and “according to
the principle of physical relativity, they must not be modified by this
change of axes.” There is, consequently, no essential difference for
Poincaré between the old way of defining space (postulating free mo-
bility of solids), and the new one (postulating the symmetry group of
mechanics), as far as solids are concerned.

Leaving solids behind, there are two significant differences be-
tween these two groups. The symmetry group of mechanics offers
greater coverage than the motion group of solids, ranging over both
solids and mechanical systems. This juxtaposition of the Euclid group
and the symmetry group of mechanics was probably inspired by Min-
kowski’s presentation of the theory of spacetime, which contrasted
the Euclid and Galilei groups, although Poincaré neglected to men-
tion Minkowski by name.11

The conception of space based on the symmetry group of me-
chanics differs from the one based on the Euclid group in a second
respect, in that it

“defines not only space, it defines time. It tells us the meaning
of two simultaneous instants, of two equal times, or of a time
twice as great as another.” (Poincaré 1963, 107)

Both space and time are defined by the new view based on the sym-
metry group of mechanics, and this is significant for students of Poincaré’s
philosophy, as Paty (1996, 129) underlines, because he had never
before admitted that the choice of an invariance group could define
space and time. By preferring the symmetry group of mechanics to
the motion group of solids, Poincaré considers the laws of mechanics
to be more fundamental to our understanding of the world than the
axioms of geometry. Put another way, Poincaré finds spacetime to be
more fundamental than ordinary Euclidean space.

It may appear at this point that Poincaré has decided to renounce
his doctrine of physical space in favor of the PPR. This is not so. The
PPR, he explains, is an “experimental fact,” and as such, it is “sus-
ceptible to incessant revision.” The type of revision Poincaré has in

11Minkowski likewise neglected to mention Poincaré in his Cologne lecture, but
acknowledged his contributions to relativity, along with those of Lorentz, Einstein,
and Planck, in earlier papers (Walter 1999a).
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mind implies a modification of the geometry of physical space. He
was probably thinking of Einstein’s program, announced in 1907, to
generalize the principle of relativity to uniformly-accelerated frames
of reference, and which led him to predict that rays of starlight must
bend around the sun. What worries Poincaré is not so much a mod-
ification of the PPR as the consequential revision of the geometry
of space. For the geometry of space to become immune to revision,
the PPR must itself become immune to revision. In Poincaré’s philo-
sophical scheme, the only way to render an empirical law immune to
revision is to promote it to conventional status. Naturally, this is what
Poincaré decides to do, when he writes:

[Geometry] must become a convention again, [and] the princi-
ple of relativity must be considered as a convention. (Poincaré
1963, 107)

To drive this point home, Poincaré imagines a long-range force that
diminishes at first with distance, then increases, producing motion
inconsistent with the PPR’s first empirical corollary (1). The PPR
would then “appear to us as a convention” (le principe se présente
à nous comme une convention, Poincaré 1963, 107), rather than as
a Type I hypothesis, ostensibly because we would take measures to
save the PPR from any experimental threat, by introducing a hidden
mechanism, for example.

What Poincaré asks us to do, in other words, is to reconsider the
epistemic status of the PPR, understood as an experimental, Type I
hypothesis, and to promote it to a Type III, or apparent hypothesis
(i.e., a convention). This promotion means that henceforth, the PPR
is immune to empirical disconfirmation. It also means that the geom-
etry of physical space can not be determined empirically, in complete
compliance with Poincaré’s doctrine of physical space.

Having explained how the doctrine of space may be salvaged by
elevating the PPR to conventional status, Poincaré finally entertains
a discussion of the Lorentz form of the PPR. The “recent progress
in physics” has brought about a “revolution”: Lorentz’s principle has
replaced the old one. To paraphrase in modern terms, Lorentz covari-
ance has replaced Galilei covariance.

In the same way as the PPR with Galilei covariance can define
space and time, the PPR with Lorentz covariance can define space
and time:

It is as if time were a fourth dimension of space; and as if the
four-dimensional space resulting from the combination of or-
dinary space and time could rotate not only about an ordinary
space axis, in such a way that time is unaltered, but about any
axis at all. To get a mathematically exact comparison we would
have to assign purely imaginary values to this fourth space co-
ordinate; the four coordinates of a point of our new space would
not be x, y, z, and t, but x, y, z, and t

√
−1. (Poincaré 1963,

108)

A four-dimensional vector space corresponding to the above descrip-
tion was introduced by Poincaré in the final section of his 1906 mem-
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Figure 1: Lightcones in Minkowski spacetime (Minkowski 1909).

oir on the dynamics of the electron, as a means of identifying Lorentz-
invariant quantities to be used in a relativistic law of gravitational at-
traction. The new space he refers to in his London lecture, however,
is not his own, but that of Minkowski, as Paty (1996, 132) observes.
This much may be inferred from Poincaré’s remark that in the new
mechanics, and contrary to his earlier (pre-relativistic) analysis of si-
multaneity relations (Poincaré 1898a), there are events which can be
neither the cause nor the effect of other given events. It was Minkow-
ski who first identified such events, situated in a region of spacetime
unique to what he called “spacelike” (raumartigen) vectors (Fig. 1).
This insight was essentially tied to Minkowski’s spacetime theory,
providing apodictic proof of its fertility.12

Poincaré says no more about Minkowski spacetime, which in
1912 was not yet well-known in Great Britain, but had already cap-
tured the attention of relativists in Germany and France, including
Poincaré’s former students Paul Langevin, a physicist at the Collège
de France, and Émile Borel, a mathematician at the Sorbonne. He
closes his lecture with the following words:

What will our stance be with respect to these new conceptions?
Are we going to be forced to modify our conclusions? Of
course not: we adopted a convention because it seemed con-
venient, and we said that nothing could oblige us to abandon it.
Nowadays certain physicists want to adopt a new convention.
It’s not that they are obliged to do so, it’s just that they judge
the new convention to be more convenient. Those who feel dif-
ferently may legitimately retain the old convention, so as not to
disturb their habits. Between us, I believe this is what they will
do for a good while longer. (Poincaré 1963, 109)

In the wake of relativity theory, there is, as ever, no fact to the mat-
ter of the geometry of physical space, just a principle of (physical)
relativity with a choice of invariance group. Poincaré insists that his
earlier conclusions need not be modified, and this is true, but in fact
he has replaced a convention on space with a convention on space-
time.

The above-cited conclusion of Poincaré’s London lecture on space
and time raises a number of questions. First of all, does Poincaré’s
adoption of the PPR with Galilei covariance signal his disavowal of

12Minkowski (1908, § 6; 1909, § III). Poincaré did not employ the Minkowskian
term “spacetime” or any of its linguistic variants.
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Lorentz covariance? Not at all: Poincaré distinguishes, as shown
above, between the PPR as a Type I hypothesis, on one hand, and as
a definition of spacetime, on the other. Undoubtedly, the same dis-
tinction applies if one associates the PPR with the Galilei group or
the Lorentz group. By 1912, after some public hesitation, Poincaré
had convinced himself of the experimental soundness of the new me-
chanics based on Lorentz covariance (Poincaré 1963, 110–111). The
PPR with Lorentz covariance was then a viable candidate for eleva-
tion to conventional status. But instead of defining space and time in
virtue of Lorentz covariance, he prefers to define space and time in
virtue of Galilei covariance.

Was such a position coherent at the time? Galilei and Lorentz
conventions apply to the same inertial frames, and the quantities mea-
sured therein are either real or apparent, depending on the conven-
tion. Poincaré’s interpretation of such quantities remained what we
might call “apparentistic,” in that the only true quantities were those
of the ether frame. In principle, as Carl Neumann admitted in 1869,
any inertial frame at all may be designated as the absolute (or ether)
frame (Barbour 1989, 653), although Poincaré does not spell this out.
Instead, he maintains that deformation of measuring devices due to
motion with respect to absolute space can occur in such a way that
this motion can never be detected (Poincaré 1963, 99).13 The latter
proposition is itself a corollary of the PPR, although Poincaré does
not present it as such.

From a superficial point of view, Poincaré’s position may appear
inconsistent, in that he postulates the PPR with Galilei covariance
(or Galilei spacetime) while affirming the experimental validity of
Lorentz covariance. If we recall his typology of hypotheses, however,
the consistency of Poincaré’s view is readily apparent. Considered as
a Type I hypothesis, Lorentz covariance is an open question for exper-
imenters. Consistency requires only that Lorentz-transformed space
and time coordinates be interpreted with respect to the Galilei version
of the PPR, the latter principle being understood as a Type III hy-
pothesis. Poincaré satisfies this minimal requirement by referring to
quantities measured in inertial frames as “apparent” quantities, with
the “true” quantities belonging to the ether frame.

If we grant that Poincaré’s defense of Galilei spacetime is both
relativist and consistent, it may still appear convoluted, in that one
could forgo the indirection of apparentism by adopting the Lorentz
version of the PPR (or Minkowski spacetime). By doing so, quanti-
ties measured in inertial frames are “true,” and the concept of ether
is rendered wholly superfluous. I suspect, however, that in 1912
Poincaré’s position appeared less convoluted to most physicists than
the latter one, due to the conceptual inertia of three centuries of un-
critical acceptance of absolute space and time.

The PPR with Lorentz covariance, attributed by Poincaré to “cer-

13For a reevaluation of Poincaré’s dynamic approach to relativity, see Brown
(2005). Although Brown claims Poincaré never recognized time dilation (Brown
2005, 147), this effect appears to have been no less real for him than that of length
contraction. See, for example, Poincaré’s remarks on “The new mechanics,” deliv-
ered in Lille on 2 August 1909 (Poincaré 1909, 173).
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tain physicists,” defines space and time in terms of a four-dimensional
Minkowski spacetime geometry. The leading proponents of Min-
kowski’s spacetime theory in 1912 included Poincaré’s correspondent
Arnold Sommerfeld, Minkowski’s former students Max Born, Max
von Laue, Gunnar Nordström, and Theodor Kaluza, Minkowski’s for-
mer colleagues Max Abraham and Gustav Herglotz, the Greifswald
physicist Gustav Mie, and the mathematical physicist Philipp Frank
in Vienna. One has to wonder about Poincaré’s characterization of
the spacetime theorists’ understanding of spacetime. Did these theo-
rists consider Minkowski spacetime to be a convention in Poincaré’s
sense? If this were so, Lorentz covariance could no longer have been
a subject of experiment for them. In fact, well before Poincaré’s
speech, and well after, several physicists and astronomers were en-
gaged in verifying consequences of the theory of relativity. Conse-
quently, Poincaré’s attribution of a conventional view of space and
time to spacetime theorists is probably best understood as wishful
thinking.

Einstein, like most physicists at the time, understood Lorentz co-
variance as a hypothesis subject to experimental corroboration. In a
letter to his friend Friedrich Adler, a Machian anti-relativist impris-
oned for the cold-blooded assassination of the Prime Minister of the
Austro-Hungarian Empire, Einstein denied that Lorentz covariance
was conventional. Referring to the Lorentz transformations in the
form

x′ = ℓβ(x− ut), y′ = ℓy, z′ = ℓz, t′ = ℓβ
(
t− u

c2
x
)

where β = 1/
√

1− u2/c2, Einstein focused his argument on the na-
ture of the constant ℓ:

It is clear in any event that the choice of ℓ implies no mere for-
mal convention, but a hypothesis characterizing reality. [. . . ]
Thus Bucherer, for example, backed a theory for a while, which
comes out of a different choice of ℓ. Nowadays there is no fur-
ther question of a different choice of ℓ, since the electron’s laws
of motion have been verified with increased precision. (Ein-
stein to F. Adler, 29.09.1918, Schulmann et al. 1998, Doc. 628)

Einstein does not refer to Poincaré in his letter to Adler, but contem-
porary correspondence shows that he was familiar with the French-
man’s philosophy of science. The cited passage expresses concern
over the epistemological status of Lorentz covariance, which Ein-
stein considers to be a well-verified physical hypothesis, and not a
mere definition or convention.14

14A few days before writing to Adler, Einstein agreed with the German mathe-
matician Eduard Study’s criticism of Poincaré’s doctrine of space; see Einstein to
E. Study, 25.09.1918 (Schulmann et al. 1998, Doc. 624). But a few months later,
Einstein remarked to the philosopher Hans Vaihinger that Poincaré’s view of the
role of Euclidean geometry in science was “wesentlich tiefer” than that of Study
(Einstein to Vaihinger, 03.05.1919, in Saß 1979, 319). On Vaihinger and Poincaré,
see the contribution by Christophe Bouriau in the present volume (Bouriau 2009).
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5 Why Galilei spacetime?
The two principal approaches to special relativity in 1912, associated,
on one hand, with Lorentz and Poincaré, and on the other hand, with
Einstein and Minkowski, may be distinguished by their respective
ontologies, but also by their performance. We’ve seen that Poincaré
considered two forms of the principle of physical relativity: a Galilean
form, defining Galilei spacetime, and a Lorentzian form, defining
Minkowski spacetime. We’ve also seen that Poincaré preferred one
form to the other. Since his reasons for preferring Galilei spacetime
to Minkowski spacetime are not readily discernible in his London lec-
ture on space and time, we are prompted to look elsewhere in order
to understand his view.

The first historian to hazard an explanation for Poincaré’s choice
was Gerald Holton, who sought to explain Poincaré’s attachment to
the concept of ether as a consequence of his conservative outlook on
science, and described the French mathematician as the “most bril-
liant conservator of his day” (Holton 1973, 189). Holton seems not
to have known that Poincaré was in his day one of the best-known
critics of the foundations of physics, alongside Ernst Mach and Hein-
rich Hertz. Poincaré’s fellow scientists considered him to be the most
lucid of theoretical physicists, on the leading edge of the latest discov-
eries (Walter 2007b). In Émile Borel’s opinion, for example, Poincaré
“contributed more than anyone to the creation of what may be called
the spirit of twentieth-century theories of physics, as opposed to those
of the nineteenth century” (Borel 1924). In light of such views, it
seems impossible to explain Poincaré’s attachment to the ether – or
Galilei spacetime – as the result of a conservative tendency.

Recent studies of Poincaré’s scientific activity suggest a quite dif-
ferent way of understanding his preference for Galilei spacetime. A
top graduate of Paris’s elite, state-run engineering schools, Poincaré
was more skilled than most in the practical arts of civil and mechan-
ical engineering. From the 1890s on, he contributed to engineering
journals, taught electrical engineering, and urged fellow scientists to
“increase the output of the scientific machine,” as Galison (2003, 201)
aptly notes. In almost identical terms, Poincaré described the scien-
tific role of theoretical physics, whose duty it was to “guide gener-
alization in such a way as to increase the output [. . . ] of science”
(Poincaré 1900, 1164).

Polytechnicians like Poincaré were trained to identify the options
most likely to enhance productivity, and while Poincaré certainly
had several evaluative criteria at hand when comparing Galilei and
Minkowski spacetime, that of scientific productivity was likely to
have been a leading candidate. From any reasonable standpoint, look-
ing back in time from 1912, the Galilei convention had as much to
recommend it as the Lorentz convention, since both approaches could
claim relativistic theories of the electron, mechanics, electrodynam-
ics of moving media, and gravitation.

Certain facts of life, however, would have argued against the Galilei
convention. For instance, the publishing trend in theoretical relativ-
ity favored Minkowski spacetime (Walter 1999b), and the brightest
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young German and French theorists were either convinced Minkow-
skians, or were, like Einstein, soon to adopt a Minkowskian space-
time ontology. Poincaré was undoubtedly aware of these facts, and
his lecture in London can be read as an effort to stem the tide of Min-
kowskian relativity. It turned out to be his final effort, as his life ended
ten weeks later. He was a skilled and perceptive critic on scientific
matters, and one can’t help but speculate upon how he would have
reacted to two signal developments that took place the year after his
death. Of the two events I have in mind, one would appear to under-
line the cogency of Poincaré’s preference for Galilei spacetime, and
the other, its drawbacks.

The limitations of the Galilei form of the PPR are most obvious
when Einstein’s general theory of relativity is taken into account, the
first elaborate expression of which was Einstein and Großmann’s En-
twurf theory (Einstein & Großmann 1913). Like almost all of his
contemporaries, Poincaré was unprepared for a theory of spacetime
as a four-dimensional, pseudo-Riemannian manifold with curvature
determined by the distribution of matter and energy. In a sense, the
ultimate success of Einstein’s theory was also that of the Lorentz form
of the PPR, in that Einstein expected Lorentz covariance to hold in the
limiting case of weak gravitational fields. At the time of Poincaré’s
London lecture, however, the secular advance of Mercury’s perihe-
lion was an anomaly under both the Galilei and Lorentz forms of the
PPR, as Poincaré was the first to point out (Walter 2007a, 208).

The second development is that of Niels Bohr’s first model of the
atom, which discarded a central tenet of classical physics by confin-
ing the electron in a hydrogen atom to one of a discrete set of circular
orbits, in ordinary space and time. Arnold Sommerfeld altered the
model in 1915–1916 to allow for elliptical orbits precessing relativis-
tically, and found an explanation for the fine structure of the spectral
lines of hydrogen. In effect, Sommerfeld extended the reach of rel-
ativistic dynamics to the inner regions of the hydrogen atom. As
a bonus of sorts, the sophisticated analytical methods developed by
Poincaré for celestial mechanics in the 1890s soon found application
in a modified version of the Bohr atom (Darrigol 1992, chap. 6).

There is ample reason to believe that Poincaré was prepared for a
theory such as Bohr’s. In the fall of 1911, he participated in discus-
sions of the theory of quanta as a member of the First Solvay Coun-
cil, along with Einstein, Planck, Sommerfeld, Nernst and others. As
Staley (2005) observes, Poincaré was struck by the fact that these
physicists already referred to relativistic mechanics as the “old me-
chanics,” the new mechanics being that of energy quanta. Shortly
after the Solvay Council, Poincaré showed (as did Paul Ehrenfest)
the quantum hypothesis to be necessary and sufficient for the estab-
lishment of Planck’s law (Prentis 1995). Once Poincaré recognized
the mechanics of quanta to be incompatible with both ordinary and
relativistic mechanics (Poincaré 1963, 111, 125), he had all the more
reason to emphasize the conventional nature of both Galilei and Min-
kowski spacetime.

The principle of physical relativity, which encodes a spacetime
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view of physical phenomena, was largely ignored in Poincaré’s time,
while his basic insight later informed a great number of investiga-
tions in theoretical and mathematical physics. Poincaré’s early study
of the role of hypothesis in the physical sciences, inspired in part by
his reading of Hertz’s mechanics (as shown in § 2), served as an es-
sential resource for his elaboration of the principle of physical relativ-
ity, and exemplifies the close intertwining of philosophical reflection
and physical understanding at the forefront of research in the natural
sciences.
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