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1 Introduction

Mathematically, gauge theories are extraordinarily rich — so rich, in fact, that
it can become all too easy to lose track of the connections between results, and
become lost in a mass of beautiful theorems and properties: indeterminism,
constraints, Noether identities, local and global symmetries, and so on.

One purpose of this short article is to provide some sort of a guide through
the mathematics, to the conceptual core of what is actually going on. Its focus
is on the Lagrangian, variational-problem description of classical mechanics,
from which the link between gauge symmetry and the apparent violation of
determinism is easy to understand; only towards the end will the Hamiltonian
description be considered.

The other purpose is to warn against adopting too unified a perspective
on gauge theories. It will be argued that the meaning of the gauge freedom
in a theory like general relativity is (at least from the Lagrangian viewpoint)
significantly different from its meaning in theories like electromagnetism. The
Hamiltonian framework blurs this distinction, and orthodox methods of quan-
tization obliterate it; this may, in fact, be genuine progress, but it is dangerous
to be guided by mathematics into conflating two conceptually distinct notions
without appreciating the physical consequences.

The price paid by this article for abandoning the mathematics of gauge the-
ory as far as possible is an inevitable loss of rigour. Virtually nothing will be
‘proved’ below; at most, the shape of proofs will be gestured at and strong
plausibility-arguments advanced. For a more detailed understanding of the
mathematics, the natural place to start is Earman’s contribution to this vol-
ume (to which my own article can be seen as a commentary). Further details
can be found in many standard texts on general relativity or quantum field
theory (Peskin and Schroeder (1995) is particularly clear; for a really in-depth
mathematical analysis, consult Henneaux and Teitelboim (1992)).

A note on terminology: the word ‘gauge’, used extensively in this introduc-
tion, will not often appear again. Its meaning is now thoroughly ambiguous (as
Earman notes) and I felt it simpler to resort to the marginally more cumber-
some, but clearly definable, notion of a ‘theory with a local symmetry group’.
As will become clear below, there are genuine dynamical differences between
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general relativity and more ‘conventional’ gauge theories such as electromag-
netism, but these differences are best appreciated on their own merits rather
than being annexed to the essentially sterile debate as to whether or not general
relativity is ‘really’ a gauge theory. As Humpty Dumpty has taught us, words
mean just what we choose them to mean — neither more nor less.

2 Symmetries of the action

The basic setup of Lagrangian mechanics is the following. We are given some
system, whose configuration is specified by a point in some configuration space,
Q. (The simplest example to keep in mind is ordinary N -particle mechanics,
in which the configuration space is the space of all possible sets of positions for
the N particles. However, the description is just as applicable to field theories
provided we are prepared to abandon the demand for a manifestly covariant
description: for a field theory, a point in Q is a specification of the field values
at all spatial points for a given time.)1

A path through Q then specifies a possible history of the system: points on
the path are labelled by time, so that the point labelled t gives the configuration
of the system at time t. The only ontologically primary entities in this picture
are the configurations and the paths through them: momentum, for instance,
is only a derivative property of a path, and (unlike in Hamiltonian mechanics)
cannot be regarded as on a par with configuration.

The task of Lagrangian mechanics is then to tell us which of the possible
histories are allowed by the dynamics: that is, which histories are physically
rather than merely logically possible. This is accomplished by means of the
action, which is a rule assigning to each path γ a number S[γ]; the functional
form of the action encodes everything there is to know about the dynamics of
the system. The rule for specifying dynamically possible trajectories is then as
follows:

1. Pick any two points (say, q1 and q2), and two times t1 and t2.

2. Consider an arbitrary path (i. e. , history) γ between q1 and q2 such that
q1 (q2) is the state of the system at t1 (t2).

3. Evaluate the action S[γ] for the path, as well as the actions S[γ + δγ] for
all small modifications δγ of the path γ that keep the end-points q1 and q2

fixed.

4. γ is a dynamically possible history only if the action is extremal under
variations of the form above; that is, if it is extremal in the space of
histories connecting (q1; t1) with (q2; t2).

1See Goldstein (1980) or any classical mechanics textbook for a discussion of Lagrangian
mechanics; Goldstein (1980) also gives an introduction to infinite-dimensional systems such
as fields. For more mathematically rigorous treatments of finite-dimensional Lagrangian me-
chanics, consult Arnold (1989) or Abraham and Marsden (1978). Introductory treatments of
the mathematically rigorous theory of infinite-dimensional systems are somewhat scarce, but
chapter 3 of Marsden and Ratiu (1994) is one place to start.
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One naive way of defining determinism might be as follows:

A) A system is naively deterministic iff through any two time-
labelled configurations (q1; t1) and (q2; t2) there exists only one dy-
namically possible history.

A moment’s thought shows that this is too strong a restriction: consider, for in-
stance, the dynamics of Earth’s rotation around the sun, where q1 is the location
of Earth on January 1, 2000AD. Then through the time-labelled configurations
(q1; 1/1/2000AD) and (q1; 1/1/2001AD) there exist (at least) two dynamically
possible histories: the actual history, and one in which Earth orbited the sun in
the opposite direction.

Problems like this stem from a more general difficulty in the use of the least-
action principle to describe dynamics: it treats dynamics as a boundary-value
problem, where histories are specified by their initial and final configurations,
rather than as an initial-value problem where sufficient information about the
system at only one end of the history is enough to specify the rest of the history.
This suggests, however, a natural improvement to our definition of determinism:

B) A system is manifestly deterministic iff an arbitrarily short seg-
ment of a dynamically possible history is sufficient to fix uniquely
the rest of the history.

In the rest of this article we will investigate the link between symmetry and
the violation of these two forms of determinism.

3 The definition of a symmetry

For our purposes, a (variational) symmetry can be defined as a transformation
T on the space of possible histories, such that

1. the transformation takes each history to another history with the same
action: S[T (γ)] = S[γ].

2. The initial and final times (t1, t2) of a history are left unchanged.

3. The transformation is locally defined, in the sense that the transformation
T for any path may be found by breaking that path into arbitrarily small
components and applying T separately to each component.

Obviously, the first of these is the conceptually central requirement, with the
second and third being merely technical. The third condition does, however,
play a crucial role in making the notion of a variational symmetry non-trivial;
without it, a perfectly arbitrary permutation among all paths of a given action
would count as a symmetry. (It has nothing to do with the distinction between
“global” and “local” symmetries.)

In many cases the third rule can be implemented by requiring the symme-
try to be defined in terms of some map f on the configuration space, so that
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T (γ)(t) ≡ f · γ(t); most familiar symmetries (such as rotation or translation, or
the electromagnetic gauge symmetry) can be specified in this way. However, not
all can: the diffeomorphism symmetry of general relativity cannot, for instance,
and in general nor can any symmetry which corresponds to some form of time
translation.

For a consideration of determinism, the most important property of a sym-
metry is this: since it is action-preserving, in particular it preserves the ex-
tremality of a path. In other words, if γ is a path whose action is extremised
under endpoint-preserving variations, so is T (γ). But since extremality is the
necessary and sufficient condition for a path to count as a dynamically possible
history, it follows that T (γ) is a dynamically possible history iff γ is. That is,
symmetries map the space of dynamically possible histories onto itself.

4 Global and local symmetries

For our purposes, a global symmetry group is a group (in the technical sense)
of symmetry transformations which can be specified in a time-independent way:
that is, the form of the transformation on a given path does not depend on the
initial and final times on that path. Rotation and translation are examples of
global symmetries; so is time translation in non-relativistic particle mechanics,
where each particle’s position is transformed to the position it would occupy ∆t
seconds later.

A local symmetry group, on the other hand, is a group of symmetry trans-
formations whose action is time-dependent: that is, a group of transformations
which can act independently on different segments of a path. The crucial differ-
ence between global and local symmetries is that if a global symmetry changes
any segment of a history then (generically) it will change all of that history,
whereas local symmetries may act non-trivially on only one segment of a his-
tory.

Our specification of a local symmetry as a time-dependent symmetry (i. e. ,
one which is local in time) differs from the usual definition, in which the sym-
metry is taken as being dependent on both time and space. Bringing out the
importance of time dependence is a major reason why this article uses the ordi-
nary Lagrangian formalism, rather than the covariant Lagrangian formulation
one more normally used in field theory.2 As we will see in the next section,
it is time-dependence and not spacetime dependence which is crucial to the
breakdown of determinism in the presence of a local symmetry.

2By a ‘covariant Lagrangian formulation’ of a dynamical theory I mean one where the
action S is expressed, not as an integral over time of some Lagrangian function L(t), but as
an integral over spacetime of some Lagrangian density L(x, t). Thus the Lagrangian density
of the Klein-Gordon field is L(x, t) = 1

2
(∂µφ(x, t)∂µφ(x, t)− φ(x, t)2), whilst the Lagrangian

function L(t) is the integral of L(x, t) over all x.
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5 Symmetries and the breakdown of determin-
ism

Either local or global symmetries can lead to a breakdown of naive determinism.
Suppose that γ is some path from q1 to q2, and suppose that T is a symmetry
which keeps the end-points of this particular γ unchanged: that is, T (γ)(t1) =
γ(t1) = q1, and similarly for t2. Then, since T (γ) is dynamically possible iff γ
is, and since both have the end-points, naive determinism is violated.

This phenomenon occurs only for certain global symmetries, and then only
for certain initial and final points: it does not occur at all for translational
symmetry, for instance, and occurs for rotational symmetry only when the initial
and final points are invariant under the rotation group or one of its subgroups.
(The failure of naive determinism in the case of Earth’s orbit, given above,
occurs because the initial and final states are both invariant under rotation
about the line between Earth and the Sun.)

It is, however, ubiquitous for local symmetries: given any two end-points,
we can always find elements of the local symmetry group which leave those
end-points fixed but change other parts of the paths between them.

Can a similar argument show the breakdown of manifest determinism? For
global symmetries, no: the time-independence of a global symmetry means that
if it is trivial on the initial part of arbitrary paths through q1, it must be trivial
on the whole path. (See figure 1). But this is not the case for local symmetries,
which can perfectly well leave one segment of a path fixed and change another.
(See figure 2). We can conclude, then, that whenever a theory has a local
symmetry, that theory violates manifest determinism.

This is our reason for defining a local symmetry as one which is local in
time rather than spacetime: local symmetries are interesting because of the
breakdown of manifest determinism which they lead to, and nothing analogous
occurs in spatially local symmetries. The interrelation between space and time
which we have been accustomed to since Einstein and Minkowski should not
blind us to the different dynamical roles which the two play.

(The purely spatial locality of a symmetry has no particularly interesting
dynamical consequences: a symmetry which is spatially local but temporally
global does not in any way threaten manifest determinism.3 Inevitably, in a
relatively covariant theory temporal locality probably implies spatial locality
and vice versa, but as long as we are interested in the dynamics the distinction
between space and time remains conceptually crucial.)

3I offer two concrete examples. In electromagnetism, the group of time-independent gauge
transformations is a perfectly well-behaved global symmetry, leading to an infinite set of
conserved quantities ∇·E(x), one for each x, but not constraining these quantities to vanish or
reducing the degrees of freedom of the theory. Similarly, in general relativity the group of time-
independent spatial diffeomorphisms leads to the conservation of the momentum constraints
but not their vanishing.
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Figure 1: A global symmetry transformation
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Figure 2: A local symmetry transformation
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6 Two ways to repair determinism

Earman, in his contribution to this volume, regards it as an open question as to
whether or not a given theory is deterministic; we will employ a complementary
strategy, imposing determinism by fiat and determining the consequences for a
theory with a local symmetry group.

Our strategy will be as follows: let T1 be any element of the local symmetry
group which leaves the initial and final parts of paths fixed and changes other
parts of them. The failure of manifest determinism occurs because any dynam-
ically possible history will be taken T1 to another such history with the same
initial segment.

Our strategy for restoring determinism, then, is in essence simple:

Whenever two histories are thus related by T1, they are in reality
the same history.

This implies, of course, that there is not a one-to-one correspondence be-
tween the mathematics and the physics, a characteristic property of gauge the-
ories which is discussed in Redhead’s contribution to this volume.

One way of implementing this strategy — call it Option A — is to insist on
the following:

Option A:Whenever two configurations are related by the action
of T1 on paths through those configurations, they are in reality the
same configuration.

This strategy is especially palatable when the symmetry itself is defined in
terms of a map on the configuration space, instead of being given directly as
a map on the space of paths. It is applied, for instance, in Earman’s example
of Maxwellian spacetime, where two configurations related by a translation are
taken to be the same configuration. (It is also applicable to electromagnetism:
two four-potentials related by a gauge transformation are in general taken to be
the same physical state.)

It is not, however, the only strategy: consider, instead,

Option B: Two histories related by T1 furnish descriptions of the
same history in terms of two different sequences of configurations,
without any claim that two different points in Q are the same con-
figuration.

General relativity provides the example par excellence of Option B: the con-
figurations of general relativity are 3-geometries4 and no two mathematically
distinct 3-geometries are treated as physically the same, yet our freedom to
foliate a manifold in many different ways lets us describe one and the same
spacetime in terms of very different sequences of three-geometries. For a more

4I ignore, for simplicity, the purely spatial diffeomorphisms; if these are included then
the configuration space becomes a space not of 3-geometries but of 3-metrics, and Option A
applies to 3-metrics related by a purely spatial diffeomorphism.
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mundane example, consider Barbour’s relational mechanics, in which time is
defined only intrinsically to a path.5 The time labels on paths in Barbour’s
configuration space, then, are arbitrary, and there exists a group of local sym-
metries which in effect change the time labels while keeping the points on the
path fixed; thus, ‘the configuration of the system at time t’ will have changed,
but this change is due only to a redescription of the history.

There is a very substantial conceptual difference between these two ways of
reinterpreting a system in the light of a local symmetry. Option A essentially
means supposing that configuration space is a redundantly large description of
the actual set of configurations, suggesting that the ‘real’ theory lives on some
sort of quotient of configuration space in which symmetry-connected configura-
tions are identified; such a reformulation of the theory would no longer admit
either indeterminism or local symmetry. No such reformulation is available for
option B: in general relativity, for example, each 3-geometry is a perfectly legiti-
mate configuration and if some of them are purged from the configuration space
of general relativity then it will not be possible to formulate the dynamics. all
are needed to formulate the dynamics.

As will be seen in the next section, this conceptual difference is essentially
obliterated when we move from Lagrangian to Hamiltonian mechanics, and from
classical to quantum theory.

7 Local symmetries from the Hamiltonian per-
spective

The transformation from the Lagrangian to the Hamiltonian viewpoint is re-
viewed in Earman’s contribution to this volume, so I will not go into the details
here. The important point about the transformation, for our purposes, is that
a history of the system is now taken to be a path not in configuration space,
but in phase space: that is, in the space not just of configurations but of the
momenta conjugate to those configurations. As was mentioned above, this ele-
vates momenta to the same ontological status as configuration; it is essentially
equivalent to regarding the state of a system at a given time as being given not
by its configuration at that time alone, but by the configuration and velocity
jointly.

The local symmetry again leads to a breakdown of manifest determinism,
and again we can recover determinism by insisting that mathematically different
histories with the same initial and final conditions are in reality the same history.
There are natural analogues of options A and B to implement this requirement:

Option A′: Whenever two states are related by a local symmetry
transformation, they are in reality the same state. (This suggests
that we should pass to the quotient space of phase space, dividing
out by the action of the local symmetry.)

5For discussions of Barbour’s approach, see Barbour (1994), Pooley and Brown (2002),
and references therein.
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Option B′: Whenever two histories are related by a local symmetry
transformation which keeps the initial and final conditions of the
history unchanged, those two histories are in reality descriptions of
the same history in terms of two different sequences of states.

However, option A′ is far more natural than option B′, for the following
reason: specifying a history in terms of its initial and final conditions is not a
natural strategy in Hamiltonian mechanics. This is because a single state, en-
coding as it does both position and velocity information, is in general (i. e. , when
manifest determinism holds) already enough information to specify a unique dy-
namical trajectory. To give two such states, one as the initial and one as the
final state, is then to over-determine the problem. If we wish to specify a his-
tory in this way we must give only the initial and final configurations, which
breaks the symmetry between position and momentum which is so natural in
Hamiltonian mechanics.

Furthermore, option A′ is less disastrous than option A for theories such as
general relativity. Recall that applying option A to GR trivialises it, reducing
its configuration space to a single point; however, if we are to identify only states
and not configurations, related by the action of the symmetry, then the theory
remains contentful.

However, applying option A′ to general relativity (or to Barbourian mechan-
ics) remains conceptually unnatural. There is a perfectly natural interpretation
of the local symmetry’s action on states in GR: it represents time-evolution of
those states to future states of the same history, and the freedom to choose
which element of the symmetry group to apply corresponds to our freedom to
define time in general relativity in many ways (i. e. , to foliate spacetime in many
ways). This is very different from the interpretation of the symmetry in, say,
Maxwellian spacetime or electromagnetism, where it is interpreted as telling us
simply that some apparently different states are really different descriptions of
the very same state.

This would seem to suggest that in spite of its mathematical naturalness, we
should avoid applying option A′ to theories such as general relativity. However,
when we try to quantize a theory in the standard way, option A′ moves from
being mathematically natural to mathematically compulsory: the Dirac quan-
tization algorithm6 requires the quantum state to be invariant under the action
of the local symmetry. This forces the symmetry to be interpreted as a mere
redescription of the physics, rather than as a physically meaningful transforma-
tion.

We can see, then, that the standard (“canonical”) approach to the quantiza-
tion of general relativity7 is led by the mathematics of the quantization process
to interpret the diffeomorphism symmetries in a way which is conceptually quite
unnatural. It is resistance to this strategy which is a prime motivation in Bar-
bour’s alternative approach to quantum gravity.

6A thorough treatment of Dirac quantization may be found in Henneaux and Teitelboim
(1992); see Matschull (1996) for a very clear account of the ideas involved.

7See Wallace (2000) for an elementary introduction to canonical quantum gravity.

10



8 Conclusion

The conceptually important difference between local and global symmetries is
that the former, but not the latter, seem to imply a failure of determinism;
this failure can in turn be traced to the fact that local symmetries allow us to
transform only the mid-part of a system’s history, keeping its initial and final
states fixed. For this reason, it is conceptually helpful to define a local symmetry
as one with this property — that is, as a temporally local symmetry. The spatial
locality of the symmetry can be understood as conceptually uninteresting (at
least from the dynamical point of view), a mere consequence of covariance.

Restoring determinism to a theory with a local symmetry requires us to drop
the assumption that mathematics and physics are in one-to-one correspondence,
treating mathematically distinct histories as physically the same. However,
there are two very distinct ways of implementing this: for theories such as
electromagnetism where the symmetry acts only on the configuration space,
we regard the symmetry as telling us that certain configurations are really the
same configuration, whilst for theories such as general relativity where time is
not an external parameter, we regard it as telling us that the same history can
be described by many different sequences of configurations.

This conceptual distinction is apparently lost when we apply standard meth-
ods of quantization to theories with local symmetries. We must await a working
theory of quantum gravity before we can learn whether the loss of the distinc-
tion is an important conceptual insight into gravity and time, or simply a case
of following the mathematics one step too far.

References

Abraham, R. and J. Marsden (1978). Foundations of Mechanics (Second ed.).
Reading, Mass.: Benjamin/Cummings.

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics (Second
ed.). New York: Springer. Translated by K. Vogtmann and A. Weinstein.

Barbour, J. B. (1994). The timelessness of quantum gravity: I. The evidence
from the classical theory. Classical and Quantum Gravity 11, 2853–2873.

Goldstein, H. (1980). Classical Mechanics (Second ed.). Reading, Mass.:
Addison-Wesley.

Henneaux, M. and C. Teitelboim (1992). Quantization of Gauge Systems.
Princeton, NJ: Princeton University Press.

Marsden, J. E. and T. S. Ratiu (1994). Introduction to Mechanics and Sym-
metry. New York: Springer-Verlag.

Matschull, H.-J. (1996). Dirac’s canonical quantization program. Available
online from http://www.arXiv.org/abs/quant-ph/9606031.

Peskin, M. E. and D. V. Schroeder (1995). An Introduction to Quantum Field
Theory. Reading, Massachusetts: Addison-Wesley.

11



Pooley, O. and H. R. Brown (2002). Relationism rehabilitated? I: Classical
mechanics. British Journal for the Philosophy of Science 53, 183–204.

Wallace, D. (2000). The quantization of gravity: an introduction. Available
online from http://www.arXiv.org/abs/gr-qc/00040005.

12


