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Abstract
Research in ethical AI has made strides in quantitative expression of ethical values such as fairness, transparency, and privacy. 
Here we contribute to this effort by proposing a new family of metrics called “decisional value scores” (DVS). DVSs are 
scores assigned to a system based on whether the decisions it makes meet or fail to meet a particular standard (either indi-
vidually, in total, or as a ratio or average over decisions made). Advantages of DVS include greater discrimination capacity 
between types of ethically relevant decisions and facilitation of ethical comparisons between decisions and decision-making 
systems, including across different modalities (for instance: human, machine, or coupled human–machine systems). After 
clarifying ambiguities in the concept of “decision” itself, including the question of how to individuate the decisions made by 
a system, we discuss the role and meaning of “decision” in common AI and machine learning approaches such as decision 
trees, neural networks, SVMs, and unsupervised classifiers. We then show how DVSs may be defined for several ethical 
values of interest, with an extended discussion of transparency. Finally, we explore how such metrics can be applied to real 
decision-making systems through two case studies: evaluations of LLMs for transparency; and evaluations of criminal risk 
assessment tools for utility, rights violations, fairness, and transparency.
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1  Introduction

Research in ethical AI has made strides in quantitative 
expression of ethical values such as fairness, transparency, 
and privacy [1–3].1 Here we contribute to this effort by pro-
posing a new family or strategy of metric, which we call 
“decisional value scores” (DVS). Most basically, DVSs are 
scores assigned to a system based on whether its decisions 
meet or fail to meet a given ethical standard, either individu-
ally, in total, or as a ratio or average over decisions made. For 
instance, a DVS for transparency might be “ratio of transpar-
ent decisions to total decisions made,” and, for responsibil-
ity, “ratio of responsible decisions to total decisions made.”2 

DVSs come in four basic flavors that we believe may be 
useful to evaluators: an “individual decisional value score” 
(IDVS) that gives the score for a single decision; a “total 
decisional value score” (TDVS) that is the sum of scores for 
all decisions; a “ratio decisional value score” that is the ratio 
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1  Quantitative ethics metrics exhibit several well-known benefits and 
limitations. The potential benefits include (a) reduction of ambiguity 
in ethical discussions, (b) clear articulation of goals and standards by 
which systems may be evaluated (either as discrete benchmarks to be 
met, or ideals to be approximated to), and (c) support in development 
of ethical evaluation tools that can be integrated with quantitatively 
expressed ML models and systems. At the same time, the limitations 
of such metrics include (d) the perhaps intractable contestability (in 
the sense of [44]) of ethical concepts like those the metrics seek to 
measure, and (e) the inherently approximative or partial status of 
many if not most of these metrics (i.e. their status as mere “proxies” 
for the richer and harder-to-measure values of interest). It should also 
be remembered that (f) insufficient awareness of limitations (c)-(e) 
can easily lead to additional ethical problems (for instance, [45]); and 
(g) the ethical value of any particular metric can legitimately derive 
in part from considerations other than accuracy or completeness as 
a measure of the value in question, such as breadth of applicability, 
ease of use, ease of measurability (that is, of collection of data neces-
sary to run calculations), and public or stakeholder acceptability.
2  Given that the metric was first proposed by Gabriella Waters in 
application to transparency and responsibility, we are tempted to call 
it the “Waters AI Transparency/Responsibility Score,” or WATRS for 
short. For the purposes of discussion here we use DVS.
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of acceptable (or unacceptable) decisions to total decisions 
(RDVS); and an “average decisional value score” (ADVS) 
that gives the average decisional value across all decisions. 
Assignments of ethical value to individual decisions may 
be made discretely (classification of the decision as meet-
ing or failing to meet the standard expressed in the value) 
or continuously (as a variable score assigned to each deci-
sion). RDVS relies on discrete ethical value assignments. 
IDVS, ADVS, and TDVS may rely on discrete or continuous 
assignments. (See Table 1 for a summary.) Intermediate or 
combined metrics between these are also possible, but for 
simplicity we focus on IDVS, TDVS, RDVS, and ADVS 
here.

Why care about decisional value scores in the context of 
AI/ML deployment? In particular, why care about them as 
an option within the currently available menu of metrics for 
ethical values in AI/ML?

A first advantage of DVSs is that they place the phenome-
non of “decision” at the front and center of ethical evaluation 
of a system, and this phenomenon is arguably of paramount 
importance to ethical deliberation and evaluation. As will 
be detailed further below, decisions are selections among 
possible alternatives at a choice point. As such, they are the 
points in a system’s operation that both “make a difference” 
to its operation and impact and are subject to revision or cor-
rection. They are thus the natural point of focus for ethical 
evaluation insofar as such evaluation can guide intervention 
and improvement.

Yet, decisions are of many different types and appear 
at many different points in a system’s operation. The DVS 
framework adds value in a second way by encouraging 
and supporting increased clarity and precision in these 
dimensions.

Third, DVSs provide a common framework within 
which multiple ethical concerns and values – including, 
for instance, fairness, transparency, benefits and harms, 
and respect for rights – can be more informatively related 
and integrated.

Fourthly and relatedly, DVSs are capable of providing 
more nuanced and informative comparisons between sys-
tems of diverse types, including AI systems with very dif-
ferent architectures, human systems, and human-AI hybrid 
(“Centaur”) systems.

To clarify and make tractable the basic idea of a DVS, 
however, we must first address a few questions, includ-
ing: How do we propose to define “decision” in the DVS 
framework? In particular, how can we individuate and count 
decisions made? What is meant by a “decision” in AI and 
machine learning contexts in particular? We address these 
questions in Sects.  2–3. Also, what measures might be 
appropriate metrics for ethical values and standards such as 
transparency or responsibility in application to decisions? 
We address this question in Sect. 4. Finally, how might a 

DVS framework be applied to real cases of decision-making 
systems, to evaluate them for their ethicality by the chosen 
standards? We address this question illustratively through 
two case studies in Sect. 5.

2 � What is a decision?

The paradigmatic case of a “decision-making system” is, of 
course, an individual human being, but human organizations 
or institutions, non-human organisms, and automated tools 
and frameworks such as AI models and computer programs 
are also often described as “making decisions.” However, it 
is rare to find explicit discussion of what a decision in gen-
eral is,3 and there is no standard method for individuating 
and counting the “number of decisions made” by a system. 
Without such a method, the quantification strategy we’re 
pursuing would be impossible. So we must at least propose 
a tractable method for getting precise about how decisions 
can be individuated and counted.4

The idea that decisions involve selection of a specific 
action in circumstances where more than one action is 
possible, is frequently a component of definitions of deci-
sion. Eilon writes that “the definition of decision activity 
… is associated with making a choice between alternative 
courses of action” [4] (cf. also [5]). Simon [6] writes “At 
any moment there are a multitude of alternative (physically) 
possible actions, any one of which a given individual may 
undertake; by some process these numerous alternatives are 
narrowed down to that one which is in fact acted out. The 
words ‘choice’ and ‘decision’ will be used interchangeably 
in this study to refer to this process” [6, p. 4].5

However, the word “decision” as commonly used is 
ambiguous between two senses. In the first sense, it means 
“a situation in which the agent can only follow one of two 
or more available paths.” In the second sense it means “the 
path that an agent follows in a situation where it can only 
follow one of two or more paths,” i.e. the selection made. 
Compare “You have an important decision to make” with 
“She made a good decision.” Let us call decisions in the 
first sense “choice points” and in the second sense simply 

3  This is a common gripe in the decision-theory literature: for 
instance, [4].
4  We accept that the answer to this question may be partly stipulative 
(i.e. is a free choice-point in model building), but there are ways to 
handle the resulting ambiguities in inter-model comparisons, as dis-
cussed further below.
5  Simon goes on to specify: “Since these terms as ordinarily used 
carry connotations of self-conscious, deliberate, rational selection, it 
should be emphasized that as used here they include any process of 
selection, regardless of whether the above elements are present to any 
degree” (4).
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“decisions” or “choices made.”6 When individuating “deci-
sions,” we are really interested in identifying the choice 
points wherein some action was taken, and (sometimes) in 
characterizing those choice points (for instance, in terms of 
the number and type of possible choices available at them). 
But when evaluating an AI or ML system's decisions, we 
are primarily interested in evaluating the specific choices 
– that is, not the choice points but the choices made at those 
points. These “choices made” are what we call “decisions.” 
(Features of the choice point at which the choice was made 
are, of course, often relevant to the evaluation of the choice 
made at that point. We call a specification of these features 
a characterization of the choice point or of the decision-
situation.) In what follows, we will primarily reserve the 
word “decision” for choices made, but will revert to more 
precise terminology when necessary for clarity.

A system’s choice points can often be individuated in 
more than one way. For instance: Are a neural network’s 
choice points defined by the activation at each of its nodes, 
or also by the weights on connections between nodes? Or, 
are they defined simply by each output? It seems likely that 
no one decision-individuation strategy will suffice for every 
perspective or procedure that we might like to use in answer-
ing such questions. We anticipate that decisions will need 
to be individuated or counted in different ways in different 
applications. For this reason we sometimes refer to decision 
models, by which we mean representations of the decision-
making capacity of the system (including both individuation 
and characterization of its choice points). Note that systems 
can often be described as producing their own decision 
models in a sense, on the way to “making” their decisions 
(for instance: decision-tree or random forest algorithms that 
parse the dataset via binary decisions the algorithm itself 
selects); but observers of the system from outside (such as 
human theorists or evaluators) can also produce decision 
models that attempt to describe or characterize the decisions 
of the system, and these can overlap or fail to overlap with 
the system’s own decision model.7 Comparisons between 
systems, regarding their DVSs, are unlikely to be meaningful 
except in cases where at least the systems under compari-
son are approached through a common set of individuating/
counting standard for both.

We may define a system’s aggregate decisional behav-
ior (ADB) as a set of choices made at its choice points. A 
system’s ADB can be defined for a given time window (e.g. 
from 12:00 pm-1:00 pm, Thursday, Aug. 17, 2023 Eastern 
Standard Time) or for an average time window (a system’s 
average ADB per hour) or per operation (a system’s ADB 
when running a specific operation, or average ADB when 
running operations of a specific type), or across all possible 
operations.

When individuating and counting a system’s decisions 
(i.e. when making a decision model of the system), it is 
important to be clear about what parts of the system’s oper-
ation will be included. At least five “stages” of decision-
making with and by AI-ML systems may be delineated [7]. 
A characterization of these stages, and the types of ethical 
analyses that are typically conducted in regard to that stage, 
are given in Table 2.

One might try to formally define and rigorously meas-
ure the number of “decisions” of a system in a variety of 
ways, such as Shannon information or bits [8],8 or Pearl’s 
“do” operator in causal analysis of a system’s behavior [9]. 
Table 3 provides a sketch of a possible information-theoretic 
measure of the number of decisions for outputs of different 
kinds.

For machine learning models, one might even posit an 
identity between the amount of discrete (Shannon) infor-
mation contained in the model – for, instance, the bits of 
information contained in its training data, as estimated by 
such features as the number of parameters in that data – and 
the total number of “decisions” made by the model. (The 
system’s decisions, so defined, may be identical to what has 
elsewhere been called the “self-information” of the system 
[10].) But we expect that needs for individuation will some-
times deviate from such formal schemes; hence, we allow a 
variety of decision-models to be generated for any system.

3 � Decisions in AI and machine learning9

Decisions in AI and machine learning systems might be indi-
viduated in a variety of ways. In Table 4, we provide a sum-
mary of how the decision-making behavior of some familiar 
types of AI models might be characterized. This characteri-
zation includes two major components: (1) a description of 
how choice-points may be individuated and characterized 
for the AI models; and (2) a description of how the AI-ML 

7  For reflection on the relation between system-produced and 
observer-of-system-produced models of system behavior, see Luh-
mann [47] and the tradition of second-order cybernetics more gener-
ally.

8  Bateson intuitively articulates Shannon information as “differences 
that make a difference” [48, 49].
9  The features of AI/ML systems discussed in this section are 
more‑or‑less common knowledge among AI researchers, as expressed 
in textbooks such as Russell & Norvig’s [50].

6  We might further distinguish the “choice made” from actions taken 
on the basis of that choice (a distinction often relevant in ethical con-
texts, as emphasized by [46]). Specification of what is meant by the 
“choice points” in a description of a decision-making system resolves 
this ambiguity and makes further distinction along these lines unnec-
essary.
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model uses inputs and its internal features to make the deci-
sions that it does.

In decision trees, each node in the tree represents a choice 
point, and the paths from that point diverge based on pres-
ence or absence of a single feature value [11]. The formation 
of the choice point, and the decision made at that point, are 
derived from the training data by determining which splits 
(decisions) most effectively segregate the classes. In deci-
sion tree algorithms, choice-point formation and decision-
making occur in tandem, with both based on the attribute 
that provides the highest information gain. “Information 
gain” in this context expresses how much uncertainty is 
reduced with each decision. In rule-based systems (which 
may be extracted from decision trees), choice points can be 
explicitly stated as “if–then” rules.

In neural networks, on the other hand, decisions are 
made through a series of weighted inputs and activation 
functions. In a trained network’s response to input of a 

single record, the activation or non-activation of each 
node can be treated as a single decision. (Alternatively, 
the weights of nodes inside the network might also be 
treated as intermediate decisions, made in the process of 
the network’s training, though technically these “deci-
sions” are made at the earlier “model construction & train-
ing” stage.) The final decision, especially in classification 
tasks, often involves a normalized exponential (also known 
as a softmax) function to derive a probability distribution 
over possible classes. Here the classification, as expressed 
in the probability distribution, can itself be treated as the 
system’s final decision.

For models that segment the input space into different 
regions (e.g., support vector machines and unsupervised 
classifiers), the placement and orientation of these bounda-
ries signify decisions, as well as the resulting classification 
of records on either side of the boundary or within each 
cluster.

Table 2   Major stages of decision-making in and with AI-ML systems

*The “ethical analyses often recommended” are based solely on our impressions of current AI-ML ethics literature. We claim no objectivity for 
these lists as representations of that literature; nor do we claim these are the analyses that ought to be performed; nor make any claim about how 
often they currently are performed

Stages (in time) Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Stage label Model and data selec-
tion

Model construction 
and/or training

Internal processing Output Output application

Decisions at that stage Selecting the model 
type and datasets

Building and/or train-
ing the model

Decisions made 
“within” the model 
when given an input 
or task

Decisions presented 
as “output” of the 
model when given 
an input or task

Decisions made in 
application of (and/
or in conjunction 
with) the model’s 
outputs

Decisions made by Humans Humans & AI-ML AI-ML AI-ML Humans & AI-ML
Ethical analyses often 

recommended*
For model selection:
Stakeholder feedback
For dataset selection:
Fairness, Accuracy

Fairness, Bias in 
datasets

Transparency Transparency, Fair-
ness, Costs/Benefits, 
Accuracy

Stakeholder feedback, 
Accountability, 
Accuracy, Fairness

Table 3   A classification of 
common AI and ML system 
outputs (“decisions”) in terms 
of information content in the 
“decision” represented by the 
output

P Number of possible choices; D Diversity of possible choices

Type of decision Measure of information content

Binary classification 1 bit =
P

2
{P = 2

N > 2 Classification
P∗D

2

⎧⎪⎨⎪⎩

N > 2

P = N classes

D = Diversity of classes

Continuous Classification (i.e. Regression)
P∗D

2

⎧⎪⎨⎪⎩

N > 2

P = N possible output values

D = Diversity of possible output values

Qualitative (“generative AI”) response (for instance: 
production of novel sentences or images) P∗D

2

⎧⎪⎨⎪⎩

N > 2

P = N possible output features

D = Diversity of possible output features



	 AI and Ethics

Ta
bl

e 
4  

D
ec

is
io

n 
in

di
vi

du
at

io
n 

an
d 

se
le

ct
io

n 
fo

r c
om

m
on

 A
I-

M
L 

m
od

el
-ty

pe
s a

t i
nt

er
na

l p
ro

ce
ss

in
g 

st
ag

e 
(S

ta
ge

 3
) a

nd
 o

ut
pu

t s
ta

ge
 (S

ta
ge

 4
)

H
ow

 a
re

 in
te

rn
al

 c
ho

ic
e 

po
in

ts
 in

di
-

vi
du

at
ed

?
H

ow
 d

oe
s t

he
 sy

ste
m

 m
ak

e 
de

ci
si

on
s a

t 
in

te
rn

al
 c

ho
ic

e 
po

in
ts

?
H

ow
 a

re
 o

ut
pu

t d
ec

is
io

ns
 in

di
vi

du
at

ed
?

H
ow

 d
oe

s t
he

 sy
ste

m
 m

ak
e 

de
ci

si
on

s 
ab

ou
t o

ut
pu

ts
?

St
ag

e 
(f

ro
m

 T
ab

le
 2

)
St

ag
e 

3:
 In

te
rn

al
 p

ro
ce

ss
in

g
St

ag
e 

3:
 In

te
rn

al
 p

ro
ce

ss
in

g
St

ag
e 

4:
 O

ut
pu

t
St

ag
e 

4:
 O

ut
pu

t
D

ec
is

io
n 

Tr
ee

s
Th

e 
m

od
el

 re
cu

rs
iv

el
y 

sp
lit

s t
he

 d
at

as
et

 
ba

se
d 

on
 fe

at
ur

e 
va

lu
es

 th
at

 re
su

lt 
in

 th
e 

be
st 

se
pa

ra
tio

n 
of

 th
e 

ta
rg

et
 

va
ria

bl
e.

 T
he

 tr
ee

 is
 b

ui
lt 

fro
m

 th
e 

to
p-

do
w

n.
 C

ho
ic

e 
po

in
ts

 a
re

 fo
rm

ed
 

ba
se

d 
on

 c
al

cu
la

te
d 

va
lu

e 
of

 a
 sp

e-
ci

fic
 fe

at
ur

e 
as

 a
 “

de
ci

de
r.”

 E
ac

h 
is

 
fo

rm
ed

 b
as

ed
 o

n 
a 

pa
rti

cu
la

r f
ea

tu
re

 
an

d 
a 

th
re

sh
ol

d

Ea
ch

 sa
m

pl
e 

is
 c

la
ss

ifi
ed

 a
t e

ac
h 

ch
oi

ce
 

po
in

t b
y 

w
hi

ch
 o

f t
he

 av
ai

la
bl

e 
br

an
ch

es
 b

es
t m

at
ch

es
 it

s f
ea

tu
re

s

Ea
ch

 le
af

 n
od

e 
of

 th
e 

de
ci

si
on

 tr
ee

 
re

pr
es

en
ts

 a
n 

in
di

vi
du

at
ed

 o
ut

pu
t 

de
ci

si
on

, d
et

er
m

in
ed

 b
y 

th
e 

pa
th

 
ta

ke
n 

th
ro

ug
h 

th
e 

tre
e

Th
e 

ou
tp

ut
 d

ec
is

io
n 

is
 th

e 
cl

as
si

fic
at

io
n 

or
 v

al
ue

 a
t t

he
 le

af
 n

od
e,

 d
et

er
m

in
ed

 
by

 th
e 

cu
m

ul
at

iv
e 

de
ci

si
on

s m
ad

e 
al

on
g 

th
e 

pa
th

 fr
om

 th
e 

ro
ot

 to
 th

at
 le

af

N
eu

ra
l N

et
w

or
ks

 (w
he

n 
su

pe
rv

is
ed

 c
la

ss
ifi

er
s)

O
pt

io
n 

#1
: E

ac
h 

no
de

 is
 a

 c
ho

ic
e 

po
in

t. 
Fo

r e
ac

h 
ac

tiv
at

io
n 

ev
en

t (
i.e

. e
ac

h 
ac

tiv
at

io
n 

at
 th

e 
in

pu
t l

ay
er

 le
ad

in
g 

to
 a

n 
ou

tp
ut

 a
t t

he
 o

ut
pu

t l
ay

er
), 

th
e 

ex
te

nt
 to

 w
hi

ch
 a

 n
od

e 
is

 a
ct

iv
at

ed
 

re
pr

es
en

ts
 th

e 
ch

oi
ce

 m
ad

e 
at

 th
at

 
no

de
O

pt
io

n 
#2

: E
ac

h 
po

te
nt

ia
l fi

rin
g 

of
 a

 
no

de
, e

ac
h 

ac
tiv

at
io

n 
fu

nc
tio

n,
 a

nd
 

ea
ch

 w
ei

gh
te

d 
co

nn
ec

tio
n 

is
 a

 c
ho

ic
e 

po
in

t. 
Fo

r e
ac

h 
ac

tiv
at

io
n 

ev
en

t, 
th

e 
ch

oi
ce

 p
oi

nt
s a

re
 (a

) t
he

 e
xt

en
t o

f 
fir

in
g 

at
 e

ac
h 

no
de

, (
b)

 th
e 

ac
tiv

a-
tio

n 
fu

nc
tio

n 
at

 th
at

 n
od

e,
 a

nd
 (c

) t
he

 
w

ei
gh

t o
f t

he
 c

on
ne

ct
io

ns
 b

et
w

ee
n 

an
y 

tw
o 

no
de

s
O

pt
io

n 
#3

: …

In
pu

t d
at

a 
is

 tr
an

sf
or

m
ed

 th
ro

ug
h 

la
y-

er
s, 

ea
ch

 c
om

pr
is

in
g 

m
ul

tip
le

 n
od

es
. 

Ea
ch

 n
od

e 
“m

ak
es

 a
 d

ec
is

io
n”

 a
bo

ut
 

its
 o

ut
pu

t b
as

ed
 o

n 
its

 in
pu

t, 
ac

tiv
a-

tio
n 

fu
nc

tio
n,

 a
nd

 w
ei

gh
ts

 o
f o

ut
go

-
in

g 
co

nn
ec

tio
ns

. T
he

 fi
na

l d
ec

is
io

n 
is

 th
e 

ag
gr

eg
at

e 
ou

tc
om

e 
of

 th
es

e 
m

yr
ia

d 
m

ic
ro

-d
ec

is
io

ns

Th
e 

ou
tp

ut
 la

ye
r o

f t
he

 n
eu

ra
l n

et
w

or
k 

re
pr

es
en

ts
 th

e 
fin

al
 o

ut
pu

t d
ec

is
io

n
Th

e 
m

od
el

 se
le

ct
s t

he
 o

ut
pu

t v
al

ue
s 

or
 c

la
ss

 la
be

ls
 c

or
re

sp
on

di
ng

 to
 th

e 
ac

tiv
at

io
ns

 in
 th

e 
ou

tp
ut

 la
ye

r, 
w

hi
ch

 
ar

e 
th

e 
re

su
lt 

of
 th

e 
co

lle
ct

iv
e 

de
ci

si
on

s 
m

ad
e 

th
ro

ug
ho

ut
 th

e 
ne

tw
or

k

Ru
le

-b
as

ed
 S

ys
te

m
s

Ea
ch

 ru
le

 in
 a

 ru
le

-b
as

ed
 sy

ste
m

 is
 a

 
ch

oi
ce

 p
oi

nt
. W

he
n 

a 
ru

le
 is

 tr
ig

-
ge

re
d,

 a
 c

ho
ic

e 
is

 m
ad

e

D
ec

is
io

ns
 a

re
 m

ad
e 

ba
se

d 
on

 p
re

de
-

fin
ed

 ru
le

s. 
W

he
n 

in
pu

t d
at

a 
m

at
ch

es
 

a 
ru

le
's 

co
nd

iti
on

s, 
th

e 
co

rr
es

po
nd

in
g 

ac
tio

n 
(i.

e.
 d

ec
is

io
n)

 is
 ta

ke
n

A
ny

 b
eh

av
io

r o
f t

he
 sy

ste
m

 th
at

 is
 p

re
-

se
nt

ed
 o

r i
nt

er
pr

et
ed

 a
s a

n 
“o

ut
pu

t”
 is

 
an

 “
ou

tp
ut

 d
ec

is
io

n”

O
ut

pu
t d

ec
is

io
ns

 a
re

 p
ro

du
ce

d 
by

 th
e 

co
m

bi
na

tio
n 

of
 tr

ig
ge

re
d 

ru
le

s

Re
in

fo
rc

em
en

t L
ea

rn
in

g
Po

in
ts

 a
t w

hi
ch

 a
n 

ac
tio

n 
is

 ta
ke

n.
 T

he
 

ag
en

t d
ec

id
es

 w
hi

ch
 a

ct
io

n 
to

 ta
ke

 
ba

se
d 

on
 it

s c
ur

re
nt

 st
at

e 
an

d 
le

ar
ne

d 
po

lic
y

So
m

e 
R

L 
sy

ste
m

s a
ls

o 
co

ns
tru

ct
 a

nd
 

co
ns

ul
t s

im
ul

at
io

ns
 o

f a
ct

io
n,

 a
nd

 
m

ak
e 

ca
lc

ul
at

io
ns

 a
nd

 th
en

 d
ec

is
io

ns
 

on
 th

ei
r b

as
is

; i
n 

th
es

e 
sy

ste
m

s t
he

re
 

ar
e 

ad
di

tio
na

l c
ho

ic
e 

po
in

ts
 re

ga
rd

in
g 

co
ns

tr
uc

tio
n,

 c
al

cu
la

tio
n,

 a
nd

 w
ha

t 
pa

rt
s o

f t
he

 si
m

ul
at

io
n 

in
fo

rm
 se

le
c-

tio
n 

of
 a

ct
io

ns

D
ec

is
io

ns
 (a

ct
io

ns
) a

re
 c

ho
se

n 
to

 m
ax

i-
m

iz
e 

ex
pe

ct
ed

 fu
tu

re
 re

w
ar

ds
. T

he
 

de
ci

si
on

-m
ak

in
g 

po
lic

y 
is

 u
pd

at
ed

 
ba

se
d 

on
 fe

ed
ba

ck
 (r

ew
ar

d)
 fr

om
 th

e 
en

vi
ro

nm
en

t

W
ith

 th
es

e 
sy

ste
m

s, 
in

te
rn

al
 c

ho
ic

e 
po

in
ts

 a
nd

 o
ut

pu
t c

ho
ic

e 
po

in
ts

 
ar

e 
us

ua
lly

 id
en

tic
al

. (
Th

e 
sy

ste
m

s 
le

ar
n 

as
 th

ey
 b

eh
av

e;
 a

pa
rt 

fro
m

 
si

m
ul

at
io

ns
, t

he
y 

ha
ve

 n
o 

“i
nt

er
na

l”
 

de
ci

si
on

-m
ak

in
g 

be
ha

vi
or

 d
ist

in
ct

 
fro

m
 th

ei
r o

bs
er

va
bl

e 
de

ci
si

on
-m

ak
-

in
g 

be
ha

vi
or

.)

Sa
m

e 
as

 fo
r i

nt
er

na
l p

ro
ce

ss
in

g:
 D

ec
i-

si
on

s (
ac

tio
ns

) a
re

 c
ho

se
n 

to
 m

ax
im

iz
e 

ex
pe

ct
ed

 fu
tu

re
 re

w
ar

ds
. T

he
 d

ec
is

io
n-

m
ak

in
g 

po
lic

y 
is

 u
pd

at
ed

 b
as

ed
 o

n 
fe

ed
ba

ck
 (r

ew
ar

d)
 fr

om
 th

e 
en

vi
ro

n-
m

en
t



AI and Ethics	

Ta
bl

e 
4  

(c
on

tin
ue

d)

H
ow

 a
re

 in
te

rn
al

 c
ho

ic
e 

po
in

ts
 in

di
-

vi
du

at
ed

?
H

ow
 d

oe
s t

he
 sy

ste
m

 m
ak

e 
de

ci
si

on
s a

t 
in

te
rn

al
 c

ho
ic

e 
po

in
ts

?
H

ow
 a

re
 o

ut
pu

t d
ec

is
io

ns
 in

di
vi

du
at

ed
?

H
ow

 d
oe

s t
he

 sy
ste

m
 m

ak
e 

de
ci

si
on

s 
ab

ou
t o

ut
pu

ts
?

Su
pp

or
t V

ec
to

r M
ac

hi
ne

s
Th

er
e 

ar
e 

tw
o 

le
ve

ls
 o

f c
ho

ic
e 

po
in

ts
 

in
 S

V
M

s’
 in

te
rn

al
 p

ro
ce

ss
in

g:
 (1

) 
fo

rm
at

io
n 

of
 h

yp
er

pl
an

es
 (o

r p
ar

ts
 o

f 
th

e 
hy

pe
rp

la
ne

) s
ep

ar
at

in
g 

cl
as

se
s;

(2
) c

la
ss

ifi
ca

tio
n 

of
 in

pu
t p

oi
nt

s o
n 

ei
th

er
 si

de
 o

f t
he

 h
yp

er
pl

an
e

(U
ns

up
er

vi
se

d 
le

ar
ni

ng
 m

od
el

s l
ik

e 
k-

m
ea

ns
 c

an
 b

e 
de

sc
rib

ed
 b

y 
a 

si
m

ila
r 

tw
o-

le
ve

l d
ec

is
io

n 
pr

oc
es

s.)

(1
) S

V
M

s s
el

ec
t t

he
 h

yp
er

pl
an

e 
th

at
 

ha
s t

he
 m

ax
im

um
 m

ar
gi

n 
be

tw
ee

n 
tw

o 
cl

as
se

s
(2

) S
V

M
s c

la
ss

ify
 in

pu
t d

at
a 

po
in

ts
 

ba
se

d 
on

 th
ei

r r
el

at
io

n 
to

 th
is

 b
ou

nd
-

ar
y

O
ut

pu
t d

ec
is

io
ns

 si
m

ila
rly

 c
om

e 
in

 tw
o 

pa
rts

: (
1)

 a
 c

on
str

uc
te

d 
hy

pe
rp

la
ne

; 
an

d 
(2

) a
 c

la
ss

ifi
ca

tio
n 

of
 e

ac
h 

da
ta

 
po

in
t

If
 h

el
pf

ul
 fo

r a
na

ly
si

s, 
ea

ch
 c

la
ss

ifi
ca

-
tio

n 
of

 a
 d

at
ap

oi
nt

 c
an

 b
e 

tre
at

ed
 

as
 a

 d
ist

in
ct

 o
ut

pu
t d

ec
is

io
n;

 a
nd

 
po

rti
on

s o
f t

he
 h

yp
er

pl
an

e 
co

ul
d 

be
 

di
sti

ng
ui

sh
ed

 a
s i

nd
iv

id
ua

l d
ec

is
io

ns
 

(th
ou

gh
 th

e 
hy

pe
rp

la
ne

 c
ou

ld
 o

f 
co

ur
se

 b
e 

pa
rti

tio
ne

d 
in

 m
or

e 
th

an
 

on
e 

w
ay

, s
ug

ge
sti

ng
 th

at
 d

ec
is

io
n 

m
od

el
s o

f t
hi

s t
yp

e 
ar

e 
su

bj
ec

t t
o 

w
id

e-
ra

ng
in

g 
in

te
rp

re
tiv

e 
fle

xi
bi

lit
y)

(1
) S

V
M

s s
el

ec
t t

he
 h

yp
er

pl
an

e 
th

at
 h

as
 

th
e 

m
ax

im
um

 m
ar

gi
n 

be
tw

ee
n 

tw
o 

cl
as

se
s. 

(2
) S

V
M

s c
la

ss
ify

 in
pu

t d
at

a 
po

in
ts

 b
as

ed
 o

n 
th

ei
r r

el
at

io
n 

to
 th

is
 

bo
un

da
ry

B
ay

es
ia

n 
N

et
w

or
ks

C
ho

ic
e 

po
in

ts
 a

re
 in

di
vi

du
at

ed
 d

ur
in

g 
th

e 
str

uc
tu

rin
g 

of
 th

e 
ne

tw
or

k,
 w

he
re

 
no

de
s a

nd
 e

dg
es

 a
re

 d
efi

ne
d 

ba
se

d 
on

 d
ep

en
de

nc
ie

s a
m

on
g 

va
ria

bl
es

. 
Th

e 
str

uc
tu

re
 is

 d
et

er
m

in
ed

 b
as

ed
 o

n 
th

e 
pr

ob
ab

ili
sti

c 
re

la
tio

ns
hi

ps
, a

nd
 

pa
ra

m
et

er
s a

re
 le

ar
ne

d 
fro

m
 d

at
a.

 
Ea

ch
 n

od
e 

in
 a

 B
ay

es
ia

n 
ne

tw
or

k 
th

en
 

re
pr

es
en

ts
 a

 p
ro

ba
bi

lis
tic

 d
ec

is
io

n 
ba

se
d 

on
 th

e 
st

at
es

 o
f i

ts
 p

ar
en

t n
od

es

D
ec

is
io

ns
 a

re
 m

ad
e 

by
 c

om
pu

tin
g 

co
nd

iti
on

al
 p

ro
ba

bi
lit

ie
s a

cr
os

s t
he

 
ne

tw
or

k 
of

 in
te

rc
on

ne
ct

ed
 v

ar
ia

bl
es

Th
e 

ou
tp

ut
 d

ec
is

io
n 

is
 th

e 
fin

al
 

pr
ob

ab
ili

sti
c 

in
fe

re
nc

e 
m

ad
e 

by
 th

e 
ne

tw
or

k

D
ec

is
io

ns
 a

re
 c

om
pu

te
d 

us
in

g 
al

go
-

rit
hm

s l
ik

e 
va

ria
bl

e 
el

im
in

at
io

n 
or

 
m

es
sa

ge
 p

as
si

ng
, w

hi
ch

 in
fe

r t
he

 
pr

ob
ab

ili
tie

s o
f o

ut
co

m
es

 b
as

ed
 o

n 
th

e 
ev

id
en

ce



	 AI and Ethics

In reinforcement learning, a decision is basically equiva-
lent to an action. Actions are chosen based on a policy that is 
estimated to maximize expected rewards. This policy can be 
derived from prior exploration of the environment and learn-
ing from received rewards. The policy function maps states 
to actions, representing decisions based on state evaluations.

Decision individuation is likely to be more challenging 
for more complex or opaque models. A deep learning model 
with millions of parameters, for instance, is hard to represent 
or understand in its full interconnected complexity; further, 
it may be parsed within a decision model in many different 
ways. The typical decision-tree or rule-based system, on the 
other hand, is both easier to represent and understand, and 
leaves fewer degrees of freedom in individuation of its deci-
sions. Providing a reasonable and useful decision model of 
a complex system may require use of techniques that shed 
light on the system’s inner workings, such as attention 
mechanisms, feature importance metrics, or saliency maps 
[12–14]. However, the results of these techniques are often 
more accurately understood as interpretable reconstructions 
or “stories” about a system’s decision-making process than 
as accurate descriptions of the actually operative mecha-
nisms in that process.

In general, the greater complexity of a model correlates 
to a greater number and variety of types of decisions. For 
instance, deep neural networks can be treated as making a 
vast number of “micro-decisions” through their many layers 
and nodes [15, 16]. Simpler models like linear regression 
make “macro-decisions” based on coefficients of features. 
Yet the significance of each internal decision of a complex 
model – either for overall system behavior or for outputs and 
impacts – may ultimately be much less than a single internal 
decision of a less complex model. Quantifying decisions in 
a way that allows intercomparison between varyingly com-
plex models might require aggregative measures or sampling 
methods with the more complex models, in order to obtain 
normalized estimates of “how many” choice points one sys-
tem exhibits in comparison with others [17]. A simple form 
of normalization along these lines is to focus decision indi-
viduation only at the level of outputs. For most evaluations 
of most ethical concerns (utility or fairness, for instance), 
output-only decision individuation is likely sufficient. For 
evaluations of transparency, however, the number and extent 
of transparency of each internal decision can be especially 
salient.

4 � DVS definitions for seven ethical values 
of interest

If our work to this point has succeeded, we’ve established a 
general framework for comparison of AI-ML models regard-
ing features of their decisions, with some options given for 

individuating decisions at a few major stages of AI-ML use 
cycles. It remains now to fill this abstract description of DVS 
frameworks with content by defining DVSs for ethical values 
of interest. However, it should be borne in mind that the 
precise specification or measure of ethical values is often 
controversial. DVS is consistent with a wide range of choices 
here, and users of a DVS approach are free to develop their 
own, alternative operationalization of the ethical values of 
concern, and/or to develop or use other operationalizations 
of other values.10

4.1 � (a) Substantive versus procedural ethical values

There are at least two types of ethical consideration about 
any decision-making system. One type of consideration is 
whether the decisions made by the system satisfy substan-
tive standards of correctness or preferability; the other is 
whether the decisions made by a system satisfy procedural 
standards of correctness or preferability.11 Substantively 
unethical decisions are wrong because of the content of the 
decisions themselves, regardless of how they were settled 
upon. Procedurally unethical decisions are wrong even if the 
content of the decision is right, because the procedures by 
which the decision was arrived at are ethically problematic 
or unacceptable. Examples of substantive ethical standards 
include classical utility (benefits and freedom from harm), 
respect for rights, and attention to justice (in which fairness 
is usually included). These constitute positive desiderata by 
which a decision in a decision-making process can be eval-
uated, regardless of the procedures by which that specific 
decision was decided upon. The epistemic value of accu-
racy, likewise, is a substantive standard in this sense. The 
values of transparency, explainability, and democracy, on 
the other hand, are procedural standards. They have to do 
with the ethicality of the procedure by which decisions are 

10  Ethical terms such as “transparency,” “responsibility,” and “fair-
ness” are both ambiguous and contestable. They are ambiguous in 
the sense that they have multiple possible meanings. Responsibility, 
for instance, may be a synonym for “ethicality” in general, or may 
mean having an obligation to respond. The obligation to respond that 
is meant, in turn, may be legal obligation or moral obligation (for 
more on such distinctions regarding “responsibility,” see [51]). And 
they are contestable in the sense that they are characterized by long-
standing and perhaps intractable disagreements about what should be 
taken to be the full or central meaning of the word or concept [44]. 
Contestability doesn’t imply worthlessness of discussion and debate: 
continued debate about the meaning of contestable concepts such as 
democracy, truth, art, science, and ethical values like justice, trans-
parency, and responsibility, can reveal things about the world and our 
values, enable negotiation of commitments by a community, and pro-
vide guidance for behavior of individuals or organizations, that is vir-
tually impossible to acquire in any other way.
11  This distinction is sometimes recognized in the literature (for 
instance: [19, 20, 52–54]), but seems to be undertheorized.
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selected rather than with the ethicality or ethical preferabil-
ity of the content of the decisions themselves (on which they 
are neutral). The epistemic value of rationality is, plausibly, 
a procedural standard analogous to these others.

The relation between substantive and procedural ethi-
cal metrics is complex and a detailed treatment is beyond 
the scope of this paper. But two relationships are particu-
larly salient. First, a set of decisions can meet all proce-
dural ethical requirements, including decision-making by 
democratically acceptable decisions and accommodation of 
stakeholder feedback, and still be substantively unethical. 
This could occur, for instance, in circumstances in which a 
democratic majority favors some decision that is substan-
tively wrong (devastation of the natural environment, for 
instance, or scapegoating of a few individuals to benefit the 
many). Conversely, a set of decisions may be substantively 
ethical but chosen by means that violate procedural ethical 
standards, such as those of transparency, legal responsibility, 
or responsiveness to stakeholder feedback. In these cases 
the system has chosen the right course of action, but the 
way it made the decision was itself unethical. Procedurally 
ethical decision-making systems may sometimes serve as a 
bulwark against substantively unethical decisions, but they 
won’t always do so; hence the need for continued ethical 
argument and advocacy even within the frame of a procedur-
ally just order (e.g. democracy).

In the next two sections, we offer some definitions of 
DVS metrics for ethical values in these two categories. This 
definition is conducted at three interrelated levels, with the 
lower levels determined by features that can be measured 
more-or-less directly and uncontroversially, and higher lev-
els derived from information at the lower levels. This strat-
egy makes use of the added clarity that ethics metrics can 
provide to ethical deliberations, while allowing for alterna-
tive low-level metrics or mid- and high-level combinations 
of metrics. While we hope the reader finds our articulation 
of these metrics plausible, we stress, again, that the spe-
cific definitions of the metrics in these tables are merely 
exemplary: our main purpose in this paper is to explore the 
capacities of DVSs in general.

4.2 � (b) DVSs for substantive ethical values: 
an overview

Substantive ethical values discussed in the contemporary 
ethics literature typically include classical utility (total 
benefits minus total harms), individual rights (including 
Kantian approaches), virtues (including Aristotelian and 
perhaps also care ethics approaches), and justice. The 
influential “principlism” approach to medical ethics, for 
instance, showcases the proposed “four principles” of 
benefits, harms, autonomy (a type of right), and justice 
[18]. Sometimes additional values, such as environmental 

values, aesthetic values, and preservation of cultural arti-
facts, are added to this set. A set of low-level DVS metrics 
for these values might be defined as in Table 5.

These four desiderata of ethical decisions involve 
well-known tensions and tradeoffs with one another, as 
expressed in thought experiments such as the Trolley 
Problem [22]. Despite these tensions, promising avenues 
for linking and integrating the substantive ethics metrics 
within a single high-level metric have been proposed, 
including within quantitative frameworks applicable to AI 
and ML systems. One strategy is to define a highest-level 
substantive ethics metric (an “overall substantive ethics 
score,” or OSES) through a formula such as the following 
(compare [23]):

where U = utility, V = aspirational values, R = a rights filter, 
F = a fairness function, and � f, � u, and � v are weights 
that define the relative importance of fairness, utility, and 
aspirational values, respectively. This formula states that the 
relative substantive ethicality of a decision (in competition 
with other possible decisions) is a function of (a) the total 
expected benefits minus the total expected harms (that is, 
classical utility, or, in modern terms, the recommendation 
of a cost–benefit analysis), plus (b) the total expected aspi-
rational benefits – with (a) and (b) weighted according to 
one’s judgment of the relative importance of each – and (c) 
whether the decision passes filters for “respect for rights” 
[23, 24] multiplied by (d) a fairness function (detailed fur-
ther below). In short, the formula recommends maximiz-
ing preference satisfaction, aspirational ideals, and fair and 
equitable distribution of benefits and harms, while requiring 
that basic standards of respect for rights and a minimum 
threshold of fair treatment are met.

Techniques for working with formulae such as these, 
in application to specific decision situations, are already 
well-developed. They form the core of cost–benefit analy-
sis and risk analysis, which are widely employed in, for 
instance, environmental impact assessments (EA), envi-
ronmental economics, city planning, and public policy 
research more generally [25, 26]. Good metrics for low-
level ethical values, in these contexts, depend greatly on 
the specifics of the situation modeled and the modelers’ 
purposes in generating a model. As step-wise functions, 
rights play a cut-off role in some legal and policy deci-
sions. Standards for fairness and aspirational values are 
often controversial and contestable, but arguments on the 
basis of such values form an important and influential 
part of public discourse, and these values have been given 
some degree of legal codification and enforceability (for 
instance: the Civil Rights Act of 1964, which raises some 
fairness standards to the level of legal rights; and animal 

OSES = F�f

(
R
(
U�u + V�v

))
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welfare protection laws and endangered species protection 
laws regarding aspirational environmental values).

Rights filters can be of two basic kinds: input filters 
and output filters [23, 24]. The former specify that certain 
kinds of preference satisfaction or dissatisfaction should 
be ignored (for instance, the enjoyment of an aggressor at 
the pain of a victim). The latter specify that certain possi-
ble “solutions” to the choice problem (i.e. certain possible 
choice paths) ought to be striken from consideration – for 
instance, those that violate individual rights. Options to 
be stricken from consideration can be rated ϕ. Note that 
these filters can be made more or less flexible in several 
useful ways. One might, for instance, set a threshold of ben-
efit maximization (or, more likely, of harm avoidance) that 
allows choices that violate some subset of individual rights 
(rights to property, for instance), to “pass through” the fil-
ters and be considered as selectable options, so long as the 
benefits accrued or harms avoided are large enough to meet 
the threshold (as might, for instance, Ross [27]).12

How fairness considerations should be related to other 
substantive ethical values is controversial. One approach 
would be to set a threshold of acceptable performance devia-
tion between groups. Differences over that threshold would 
work like rights violations and set the value of the combined 
formula to ∅; differences under that threshold would work 
like negative utility, bringing the overall value of the for-
mula slightly lower than it would otherwise be. The point 
at which such a threshold value were set would be more or 
less stipulative but could be decided upon by, say, public 
or expert deliberation, or context-specific arguments. As a 
general rule, the “four-fifths” standard for disparate impact, 
as often employed in American legal contexts, could suffice. 
Following this rule in application to our formulae above, the 
fairness threshold would be 0.8 (i.e. any difference greater 
than 20% would trigger a y = ∅ collapse; any difference less 
than 20% would be subtracted from overall utility, adjusted 
by the selected weighting of the fairness value [ � f]).

4.3 � (c) DVSs for procedural ethical values: the case 
of transparency

We now turn to a detailed consideration of an area where 
DVS scores can add value to existing ethics metrics: namely, 
the evaluation of a system’s transparency.

Though distinctions between “transparency,” “interpret-
ability” and “explainability” are appropriate on the basis of 
natural language semantics, machine learning researchers 
often either (a) do not distinguish these terms, or (b) distin-
guish them in ways that are incongruent between research-
ers. Despite this unclarity, a number of distinct types of 

transparency have been identified, and a variety of methods 
or techniques have been developed for enhancing the trans-
parency of a system such as SHAP and LIME [12–14]. Less 
progress has been made on creating quantitative metrics for 
transparency, particularly metrics that might be valid for 
comparing systems of different models and/or application 
contexts.13 This is a dimension to which DVS scoring can 
contribute.

Doshi-Velez and Kim [28] usefully distinguish three dis-
tinct criteria by which the transparency of a model might 
be evaluated. Application-grounded evaluation tests the 
extent to which the system in its current or some modi-
fied form can assist in accomplishment of a specific kind 
of task or application. Variations in the transparency of the 
model (for instance, in what kinds of explanations of the 
system are available) can be studied in regard to whether 
they improve “success” in uses of the model for that kind 
of task or application. Human-grounded evaluation focuses 
on human subject preferences for one kind of explanation 
over another, that is, subjective estimates of explanatori-
ness.14 Finally, functionally-grounded evaluations rely on 
some quantitative metric, usually considered as a proxy for 
explanatoriness in one of the first two senses.

Lipton [29] notes at least three features by which the 
transparency of a model can be estimated, which he calls 
simulatability (could the model be reconstructed  by a 
human?), decomposability (can the relevant parts of the 
model such as “inputs,” “parameters,” and “calculation” (p. 
14) be delineated, and can the role each plays in the model’s 
decisions be understood?), and algorithmic transparency 
(can the learning algorithm itself be understood?). Lipton 
notes that some models fare better on these three standards 
than others (for instance, a few-layered neural network in 
comparison with a many-layered one), but warns against 
classifying models as more or less successful on any of these 
metrics due solely to their model-type alone. (We should not 
assume, for instance, that every linear model is necessarily 
more transparent than any neural network).

Despite this warning, many theorists allow that model 
types can be roughly categorized into (1) those that tend 
to perform relatively well on simulatability, decomposabil-
ity, and algorithmic transparency, simply because of their 

14  Doshi-Velez and Kim [28] define this kind of metric slightly dif-
ferently, emphasizing small-scaleness of use contexts and layperson 
test base as defining features of “human-grounded” approaches in 
contrast to “application-grounded” ones. But these differences seem 
to us differences of degree rather than kind; the most significant dif-
ference is in whether successful performance of the task, or subjec-
tive estimate of explanatoriness or interpretability, is the standard by 
which the system’s transparency is judged.12  These and other capacities of such filters are explored in [23].

13  [3] is an exception, though one without evident application to sys-
tems of many types (i.e. not “model-agnostic”). [3] appeared after we 
had completed and submitted this paper.
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typical model architecture, and (2) those that tend to per-
form relatively worse on these, and thus, to be made explain-
able, require application of posthoc methods to improve 
their transparency [12]. The former are sometimes called 
white-box models or just “transparent models” and usually 
include linear regression, decision trees, k-nearest neigh-
bors, rule-based learners, and Bayesian models (p. 5). The 
latter are called black-box or opaque models and include 
random forest, support vector machines, and multi-layered 
neural networks. In working with black-box models, post 
hoc methods become the central focus of efforts to improve 
transparency. These methods are sometimes distinguished 
into model-specific and model-agnostic methods (depending 
on whether they are tailored to a particular model type such 
as neural networks, or rather are applicable to any model 
type). Model-agnostic approaches usually involve construct-
ing a limited or partial model, or other representation, of the 
system’s behavior around a particular kind of decision. Some 
well-known model-agnostic approaches include LIME and 
SHAP [13, 14].

Perhaps the simplest application of DVS, in conjunction 
with current commonly adopted frameworks, is to estimate 
the transparency of each output decision by whether or not 
a LIME- or SHAP-type explanation has been provided (or 
is readily accessible) for that decision. This might be for-
malized as the rule that, for each output decision, if such an 
explanation is available or readily providable, set TRAN = 1; 
if not, set TRAN = 0. (These scores are IDVSs for each out-
put decision.) The overall transparency of a system’s deci-
sions can then be estimated by the RDVS (ratio of transpar-
ent to total decisions) or Negative TDVS (total number of 
non-transparent decisions) of the system. While this pro-
cedure is exciting as a means for readily quantifying extent 
and degrees of transparency, it does have several drawbacks, 
mostly due to limitations of the LIME and SHAP procedures 
themselves, such as incomplete capture of intuitive stand-
ards of “transparency,” “explainability,” and/or “interpret-
ability” by the existence or availability of LIME and SHAP 
interpretations of a system’s decisions. For instance, most 
applications of SHAP assume independence of the features 
that SHAP estimates the relative significance of, an assump-
tion that is often highly questionable. And the local explana-
tions produced by LIME are plausible but potentially highly 
misleading if taken as correspondent to a model’s internal 
behavior, and don’t necessarily shed light on more global 
features of the model’s structure and operation.

Another, higher-caliber standard of transparency that 
might be used would be first estimate the total number of 
internal decisions, and then estimate the proportion of those 
for which explanations of a certain threshold of informa-
tiveness and accuracy are available. (The standard of infor-
mativeness could be calibrated to typical SHAP or LIME 
explanations.) This could lead to a much lower transparency 

score for opaque and/or complex models such as deep neu-
ral networks or closed transformer models if training data, 
model architecture, or weights are inaccessible to the public 
and no public or publicly-available posthoc explainability 
methods comparable to SHAP or LIME are provided.

A possible specification of low-level metrics for “trans-
parency” and related procedural values is provided in 
Table 6.15 These include (a) the extent to which features 
of the model such as data, model architecture, and train-
ing process can be observed by outsiders at all (what we’ve 
called “accessibility”), (b) the extent to which humans are 
provided with explanations of the model’s decisions that 
are both understandable and faithful (that is, accurate to the 
decision-making system’s actual decision-making proce-
dures),16 and (c) the extent to which humans can themselves 
explore the model by interacting with it. The related values 
of responsiveness to stakeholder feedback and accountabil-
ity for errors and harms are also included because these 
are necessary conditions of the ethical salience of transpar-
ency itself: transparency without these further features does 
not contribute much to the overall ethicality of a decision-
making system.

For instance, accessibility measures how observable the 
system and its operations are to the general public. The over-
all accessibility ( �) of a decision can be estimated by:

where Ad is a value between 0 and 1 indicating the extent 
to which the data used for training the model is accessible; 
Ad = 0 if training data is inaccessible, closed, or proprietary; 
and Ad = 1 if it is publicly accessible. Likewise, Am is a 
value between 0 and 1 indicating the extent to which the 
model is publicly accessible, and At is a value between 0 and 
1 indicating the extent to which the training procedures are 
publicly accessible.17

Transparency itself might be defined as in Table 7.

A = Ad ∗ Am ∗ At

Ad → [0..1]

Am → [0..1]

At → [0..1]

17  Alternatively, each low-level value might be expressed continu-
ously, as a value between 0 and 1, rather than discretely as 0 or 1. 
The mid-level metric might be defined as the multiplicative product 
of the values at the lower-level (as in this table) or as the average of 
added values of the lower-level metrics (so that 0 scores for lowest 
level metrics don’t force the mid-level metrics to the value of 0).

15  Compare [3], which only appeared after the present article was 
drafted.
16  We thank Kofi Nyarko for suggesting “faithfulness” as a value of 
importance here.
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5 � Case studies

How can DVSs be applied to real decision-making sys-
tems? What kinds of novel insights can be expected from 
their application? In this section we explore these ques-
tions through two case studies. Different components of 
the previously described framework were drawn upon in 
each case study. The first focuses on DVSs for transpar-
ency in large language models (LLMs). This application 
exhibits the value of DVSs for comparative estimates of 
model transparency by submetrics. The second applica-
tion focuses on DVSs for a selection of substantive and 
procedural ethical concerns, as applied to criminal risk 
assessment tools such as COMPAS [31, 32]. The sec-
ond case study shows DVSs' capabilities for comparative 
evaluation across system types (human, AI, or hybrid) 
and decision-types (in this case: recidivism prediction, 
release-or-detention decisions at initial intake [“bail”], and 
release-or-detention decisions at parole hearings).

5.1 � (a) Case study #1: transparency in LLMs

Despite the widely voiced desirability of transparency 
in AI-ML systems, there are few metrics by which such 
transparency could be evaluated. The closest thing to a 
comprehensive quantitative evaluation framework for 
transparency is the “Foundation Model Transparency 
Index” (hereafter FMTI) introduced in November 2023 
[3]. This 100-parameter checklist enables the “grading” 
of LLMs on features intuitively relevant to transparency 
such as the accessibility and explorability of the models 
[3]. However, the grading system of the FMTI, at least as 
carried out in the study introducing the instrument [3], 
relies solely on statements from system producers about 
which of these attributes apply to their systems. Further, 
FMTI is designed for transparency evaluation of founda-
tion models, with no discussion of how the transparency 
of such models might be compared with models of differ-
ent types. In sum, while FMTI is well-suited to estimat-
ing dimensions of transparency in LLMs, DVSs have a 
broader applicability than FMTI. This is true for the vari-
ety of ethical values they can track, the variety of decision-
making systems they are designed for evaluating, and the 
variety of means of estimating sub-metric values that they 
allow. DVSs are also more specific about what decision 
components of a system’s operation they are applied to: 
individual decisions, aggregates of decisions, or averages 
of decisions.

To demonstrate the capabilities of DVS on this issue, 
we selected three LLMs for evaluation: (a) Anthropic AI’s 
Claude 3, (b) Cohere4AI’s Command-R, and (c) Meta 
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LlaMa 2. All three are in wide use and widely studied by 
public and private researchers. We evaluated each model 
for transparency and stakeholder feedback in compari-
son with the others using the continuous scoring method 
(values between 0 and 1). The results are summarized in 
Table 8.

We now discuss how numerical values were assigned to 
each system.

Claude 3 is a closed-source, closed-model, closed-data, 
and closed-weighted model released by Anthropic AI, a 
company dedicated to research and commercialization of 
LLMs. Claude 3 is a component of Amazon Web Services’ 
Bedrock LLMs. It is accessible via a RESTful API hosted 
by Anthropic, Amazon Web Services, or Google Cloud Ser-
vices. Anthropic doesn’t provide model weights, training 
procedures, or documentation about the model’s structure 
or internals; and doesn’t supply a model card in the tradi-
tional sense that details the number of parameters, hyper 
parameters, and other values. (Anthropic’s “model card” 
[33] is rather a marketing document that gives a benchmark 
comparison against products from OpenAI, Google, and 
others.) One step of the training process, the Constitutional 
AI training approach, uses reinforcement learning as a self-
improvement mechanism to remove harm. This component 
is described in a publicly available research paper [34], 
which slightly increases scores for accessibility and explain-
ability. But this step constitutes perhaps 20% or less of its 
total training procedure; thus, the increase is very slight. All 
in all, we rated Ad, Am, and At at 0.1.

Anthropic indicates that Claude 3 is trained on freely 
available web content and internally generated content. 
But the company doesn’t specify the online web sources 
nor the scope and tenor of internally used sources. There-
fore, no direct explanations of how content sources are 

used in its training materials are available, and no LIME or 
SHAP-type explanations are provided automatically. We set 
Ep = 0.15, Eu = 0.5, and Ef = 0.5.

Other than querying through the API, the model is rela-
tively non-explorable. API-querying alone may be conceived 
as exploration of just two stages of a model’s performance: 
the input stage and output stage, including how these are 
correlated. Given that an LLM’s internal processing between 
these two stages is almost certain to constitute 80% or more 
of its total set of decisions, these limitations leave the explor-
ability of the model rather low. We thus set Pp and Pr at 0.2.

Command-R is a mixed-source, closed-model, closed-
data, and open-weighted model released by Cohere AI, a 
company dedicated to building enterprise and business-lan-
guage-focused LLMs. Command-R is designed to accept 
and execute instructions through a conversational interface. 
Command-R is specifically tuned for business applications 
and doesn’t perform well generally. Cohere makes Com-
mand-R accessible via a RESTful API hosted by Cohere 
and HuggingFace. The system has a thorough model card 
outlining parameters, hyperparameters, and training modules 
accessible via HuggingFace [35]. The card reports on train-
ing methodology for Command-R at some level of detail 
(At = 0.5), but its training corpus is unavailable for inspec-
tion (Ad = 0.1). Command-R model weights and biases can 
be downloaded in their entirety from HuggingFace as a 
logged-in, HuggingFace user (Am = 0.9).

The relative openness of Command-R’s training proce-
dures and model weights means that moderately informa-
tive and accurate explanations can be produced for many 
of its decisions (Ep = 0.75, Ef = 0.75). Yet explanations are 
not provided automatically, and producing such explana-
tions may be a technical and interpretive challenge for users 
(Eu = 0.5).

Table 7   Definitions of high-level metrics for procedural ethical values

The labels “ �
x
 ,” in the third column stand for weights representing the relative importance of each metric. These can be set according to user 

needs and preferences, but should be kept constant through comparative analyses

Name of metric (high-level) Informal definition Formula for average decisional value score (ADVS)

Transparency (TRAN) How well can the decisions of a system be understood 
by stakeholders and the public?

TRAN = A�a ∗ E�e ∗ P�p

Weighted product of accessibility, explainability, and 
explorability

for all decisions, divided by number of decisions
Democracy (DEM) How well do the decisions of a system respect basic 

principles of democracy?
DEM = A�a ∗ E�e ∗ P�p ∗ S�s

Weighted product of accessibility, explainability, 
explorability, and stakeholder feedback capacity for 
all decisions, divided by number of decisions

Legal Responsibility (L-RESP) To what extent are the decisions of a system ones that 
some person or organization can be assigned legal 
responsibility for?

Legal Responsibility: L-RESP ~ �
Legal Responsibility is roughly equivalent to 

accountability (though mechanisms of account-
ability may sometimes be slightly wider than legal 
mechanisms – for instance, market mechanisms 
such as consumer behavior)
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Users can explore Command-R not just through input-
level querying and output-level observation, but also by 
adjusting weights and biases in the model’s processing 
stages. However, the full architecture of the model is not 
available for observation or manipulation. This sets the 
explorability of the model higher than Claude-3, but still 
below 1. We rated Pp and Pr at two-thirds (0.67).

LlaMa 2 is an mixed-source, open-model, closed-data, 
and open-weighted model released by Meta. LlaMa 2 is 
a research specific LLM with a commercial license and 
is freely available via GitHub. The model’s training code 
can be forked directly from GitHub.com as well. The 
model weights and biases are available for download after 
registration with Meta, statement of intended purpose, 
and Meta’s approval. We were able to obtain access to 
the model very easily: we received customized URLs to 
provide to download scripts for Llama 2, Llama 3, and 
Llama Code immediately upon initiating a request. LlaMa 
2’s model card is presented in an open-access research 
paper [36] downloadable from ai.meta.com. This paper 
details Llama 2’s construction and training procedures, 
data sources, and architecture, and explains how Meta 
incorporates corpus data, annotates the data, and cites 
3 major data sources used in the training process. More 
sources than these were used to train LlaMa 2, but the data 
reporting in this case is exceptionally transparent by com-
parison with the others considered (Ad = 0.75, Am = 0.9, 
At = 075).

The efforts taken to improve accessibility and understand-
ability of model architecture, training procedures, and major 
data sources, certainly makes LlaMa 2 more explainable 
than it would be otherwise. However, explanations of par-
ticular decisions are not automatic but must be reconstructed 
through such procedures as investigation of model weights, 
exploration of the effects of setting weights differently or 
retraining, or post-hoc explainability methods like SHAP or 
LIME. Thus, the explainability of the model doesn’t reach 
a maximum value; this is in part due to the complexity and 
opacity of any LLM architecture. Nonetheless, Llama 2’s 
more specific data reporting than Command-R convinced us 
to rank it slightly higher than Command-R on the explain-
ability sub-metrics (+ 0.1 for each sub-metric: Ee = 0.85, 
Eu = 0.6, Ef = 0.85).

LlaMa 2 is exceptionally explorable. The model code is 
publicly available on GitHub. Potential users can free down-
load, fork, and use the code by installing Python and LlaMa 
2 code requirements. Meta makes explorability especially 
feasible by supplying the requirements.txt file which can 
be used to automatically download Python dependencies 
required for training (Pp = 0.9, Pr = 0.9).

Overall summary: Perhaps unsurprisingly, the “openness” 
of a system was a strong predictor of its transparency score 
in the DVS evaluation. Our DVS rating of Llama as more Ta
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transparent than Anthropopic also matches the assessment 
of the FMTI [3].

5.2 � (b) Case study #2: Criminal risk assessment 
systems

Criminal risk assessment (CRA) tools such as COMPAS 
[31] typically take as inputs some set of information about 
individual persons – for instance: persons who have been 
placed under arrest and are awaiting bail hearing; or who 
have been convicted of a crime, have been serving a prison 
sentence, and are now up for parole). The information may 
include prior conviction counts, age, sex, charge type, 
and answers to questionnaires. On the basis of this infor-
mation and their internal processing, the assessment tool 
outputs a risk score (typically from 1 to 10, or in categories 
such as “low,” “medium,” and “high”).

As Stevenson [37] notes, the increase in attraction and 
deployment of such tools may be understood as part of a 
longer-running trend towards “evidence-based” practices 
in the criminal justice sector, which have themselves been 
growing since at least the 1970s. However, the term “evi-
dence-based” is ambiguous between at least two meanings: 
based on large data-sets, or empirically tested for efficacy. 
Arguably these systems have so far been evidence-based in 
the former but not in the latter sense. As Stevenson [37: 
375] puts it,

Risk assessment tools wear the clothes of an evidence-
based practice – they are developed with the use of 
large data sets and sophistical techniques and endorsed 
by social scientists running policy simulations – but 
risk assessments should not be considered evidence-
based until they have shown [sic] to be effective.18

Other studies of CRA systems echo this sentiment 
[38, 39]. Too little evidence of the needed kinds has been 
reported or collected on these systems, making a responsible 
analysis of their performance close to impossible: “[B]ased 
on the current published evidence, the highest priority [for 
researchers in this area] is … to work towards addressing the 
key methodological limitations identified in previous work” 
[39: 8].

Notwithstanding the limits of previous studies and (often) 
the absence or inaccessibility of the data needed for over-
coming these limits, CRA tools are a domain in which DVSs 
can lend ethical insight, primarily through identifying, dis-
tinguishing, and providing quantitative assessment tools 

for ethical standards of different types (e.g. fairness, public 
utility, transparency, respect for human rights), in applica-
tion to decisions of different types (particularly algorithmic, 
human, and hybrid, in regard to such matters as bail-setting, 
sentencing, and parole). This case study focuses on use of 
the DVS framework, in combination with results of previous 
evaluations of CRA tools, to estimate the overall ethicality 
of CRAs across a range of their current use cases.

The types of DVS that are most relevant to this case are 
output IDVS (an estimate of the ethicality of each output 
decision of the decision-making system), output ADVS (an 
estimate of the average ethicality of each decision made by 
the system, answering the questions ‘Is it, on average, more 
beneficial or harmful, and by how much?’ and ‘Is it for any 
reason suspected to be ethically unacceptable?’); and output 
TDVS (that is, an estimate of the system’s total ethical per-
formance in practice, answering the question ‘Has it, overall, 
done more good or harm, and how much?’ and ‘Is it, overall, 
ethically acceptance or unacceptable for making decisions 
of a particular type?’). To simplify the problem, we’ll focus 
on estimating the output IDVS and output ADVS here.19

CRA tools rarely if ever make any impactful decisions on 
their own. Most directly, such a tool’s output “decisions” are 
simply the risk scores that the tool assigns to individuals. 
If we identify selection of a particular risk threshold with 
a further decision (such as “release” or “do not release”), 
we can treat such tools as “making decisions” about things 
like bail and parole. But this construal is a simplification: in 
actual practice, decisions to release or not release an indi-
vidual are almost never (if ever) made by these tools alone, 
but rather by human beings with or without the tools’ risk 
scores in hand. There are thus at least four different types of 
decision-making system to be distinguished here:

(a) CRA tools deciding about risk.
(b) CRA tools deciding about release (e.g. bail or parole) 
according to the simplification described above.
(c) Humans without CRA tools deciding about release.
(d) Humans with CRA tools in hand deciding about 
release.

The ethical dimensions of import for evaluating the deci-
sions of these systems include:

Rights: Are individuals’ rights respected through the deci-
sion-making process? In particular, are they given ‘due 
process,’ not subject to arbitrary treatment, and so on?

18  And: “A practice should not be considered evidence-based because 
it references big data sets and sophisticated techniques – it should be 
considered evidence-based because its impacts have been carefully 
researched and understood” [37: 311].

19  However, ADVS and TDVS can each in principle be estimated by 
the other: TDVS ≈ number of decisions, multiplied by ADVS; ADVS 
≈ TDVS, divided by number of decisions.
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Fairness: Are individuals treated comparably across 
demographic groups such as white/non-white, male/
female, and abled/disabled? Are some groups dispropor-
tionately subject to errors or harms of the system?
Public Utility: Do such systems have overall good or 
overall bad effects from the standpoint of common meas-
ures of public utility (such as social cost measured in 
dollars, or preference satisfaction measured in surveys)? 
In particular, what are the average benefits of early release 
and what are the average costs? And what are the accruals 
to public utility of increased precision in predicting and 
avoiding repeat offenses? How should these be offset by 
any costs of the avoidance-generating procedures (such 
as longer detention or costs of applying the CRAs them-
selves)?
Transparency: To what extent are these systems acces-
sible, understandable, and explainable?
Democracy: To what extent can the application of these 
systems (in general or in specifics) be contested, cri-
tiqued, or reshaped by the public?
Legal Responsibility: Are there individual or corporate 
entities who can be held responsible if the system makes 
an error?

As represented in the DVS metrics suggested in previous 
sections, transparency is itself a component (and thus in a 
sense a prerequisite) of democracy. It’s also worth noting 
that fairness, transparency, and democracy become espe-
cially salient when their violation constitutes a rights viola-
tion. Some cases where fairness, transparency, or democracy 
are violated can count as rights violations, but not all. Yet 
failures of fairness, transparency, or democracy that don’t 
constitute rights violations can still be ethically salient and 
warrant criticism.

Unfortunately, the existing literature on these systems 
only supports evidence-based evaluations for a small subset 
of these system-types and value-types. One contribution that 
the DVS framework can make to the evaluation of these sys-
tems is a delineation of ethically relevant considerations and 
the kinds of measurements that would be relevant to evaluat-
ing them, thus raising the bar for adequate evaluations going 
forward. For now, a combination of prior empirical work 
and reasoned estimation can be used to at least sketch an 
estimated ADVS for each. This sketch is given in Table 9.

A value of ∅ means that the decision is not just a nega-
tive in terms of net utility (which would normally, but not 
always, make it non-recommendable), but ethically unac-
ceptable (because it violates rights or minimal standards of 
fairness).

Rights: We take it that mere estimation of a risk of 
recidivism doesn’t violate anyone’s rights. Likewise, we 
assume that parole decisions as such (that is, selection of 
a decision to release on parole or not-release) don’t violate 

anyone’s rights. However, decisions about bail as well as 
CRA-informed decisions about bail or parole raise some 
rights issues.

First, the entire practice of setting bail has come under 
criticism, particularly as it involves longer detention for indi-
viduals who don’t have the ability to pay, which may violate 
their rights to due process. Likewise, paid bail allows early 
release for individuals who may be high risk but have ability 
to pay, thereby treating them differently than similarly high 
risk individuals without ability to pay, violating standards of 
fairness. Since bail reform is already a common trend, and 
reforms tend towards $0 bail with decision to release or not-
release based solely on risk rather than ability to pay, here 
we simplify the ethics of bail decisions by construing them 
simply as the decision to release or not release an individual 
after initial intake. From this standpoint, bail decisions as 
such do not violate rights, but may do so in some circum-
stances (e.g. arbitrary and/or undue detention).

CRA-informed decisions about bail or parole may violate 
rights insofar as it is unclear whether and to what extent 
automated risk assessments can legitimately inform deci-
sion-making processes that affect individuals (for some argu-
ments that they usually cannot, see [40]). If some of the data 
on which such systems are trained is illegitimate grounds for 
making such decisions (for instance: race, religion, or sexual 
orientation; or even more apparently benign considerations 
such as “how much criminal activity occurs in the vicinity 
of the individual’s primary residence”), then use of these 
systems to inform decisions may violate individuals’ rights 
on that account alone. However, an ethical problem doesn’t 
necessarily arise for all CRA-assisted decision-making 
about bail or parole; this rather depends on precisely how the 
decisions are made (i.e. on the basis of what data points and 
what processing procedures). Analogous ethical problems 
can arise with human-only decision-making about bail or 
parole (for instance: use of race or class to inform decisions).

Fairness: The performance of CRAs on fairness is debat-
able. Some researchers are comfortable with predictive 
accuracy parity (PAP) alone as a measure of fairness (see 
[37] for supporting arguments), whereas others argue that 
metrics such as false positive rate parity and false nega-
tive rate parity should also be satisfied [31, 41]. We tried to 
take an intermediate approach in our evaluation by averag-
ing between (TPP + FNP)/2, on the one hand, and PAP on 
the other.

Given the limited evidence in support of fairness of 
these systems by standards other than PAP [38], and some 
evidence of violation of these other standards [31, 32], we 
rate such systems a 0.75 for fairness, with a ± 0.25 win-
dow of potential variation, hopefully to be closed by future 
evaluations (or, closed in practice by more precise studies 
of particular CRA tools or systems). However, it is diffi-
cult on the basis of current data to say confidently whether 
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non-CRA-based decision-making systems are more or less 
fair than CRA-based ones (for comments on this, see [37, 
39]). We thus opted to rate all systems in our list (human, 
non-human, and hybrid) of equivalent performance for fair-
ness, at least in this exploratory sketch.

Public Utility: Public utility is a measure of total ben-
efits minus total harms, where “benefit” and “harm” have 
classically been understood in terms of pleasures and pains, 

but today are usually gauged by preferences satisfied, for 
which one uses survey instruments or market behavior to 
make estimates [26]. Public utility is more-or-less identical 
to the core quantitative part of what is sometimes called 
a “cost–benefit” analysis or a “risk analysis.” Since rights 
and fairness are included elsewhere in our framework, these 
values shouldn’t be treated as having any utility intrinsically, 
though their “knock-on” effects could be so treated.

Table 9   A table of IDVS for the output decisions of criminal risk assessment tools and related decision-making systems

(Decision-
Maker) →Deci-
sion Type

Rights (R) Fairness (F)
If F < 0.8, 
then F = ∅

Public Utility 
(U) 
If decision 
is accurate, 
value is + 
If decision is 
inaccurate, 
value is -

Overall Substan-
tive Ethical Score 
(OSES) 
If F < 0.8 OR 
R = ∅ , then 
OSES = ∅ 
Else
OSES =  ± U ± F

Trans-
parency 
(T)

Democ-
racy 
(D)

L-Respon-
sibility (L)

Overall Proce-
dural Ethical Score 
(OPES) = [(T + D + L) 
/ 3]

(a) (Human) → Risk 1 0.75 ± 0.25  ± 1 If F < 0.8, then 
OSES = ∅

Else
OSES =  ± 1 ± 0.5

0.5 0.5 0.5 0.5

(b) (CRA) → Risk 1 0.75 ± 0.25  ± 1 If F < 0.8, then 
OSES = ∅

Else
OSES =  ± 1 ± 0.5

0.1 0.1 0.1 0.1

(c) (Human + CRA) 
→ Risk

1 0.75 ± 0.25  ± 1 If F < 0.8, then 
OSES = ∅

Else
OSES =  ± 1 ± 0.5

0.2 0.2 0.2 0.2

(d) (Human) → Bail 1 0.75 ± 0.25  ± 5 If F < 0.8, then 
OSES = ∅

Else
OSES =  ± 5 ± 2.5

0.5 0.5 0.5 0.5

(e) (CRA) → Bail ?{∅,1} 0.75 ± 0.25  ± 5 If F < 0.8 OR 
R = ∅ , then 
OSES = ∅

Else
OSES =  ± 5 ± 2.5

0.1 0.1 0.1 0.1

(f) (Human + CRA) 
→ Bail

?{∅,1} 0.75 ± 0.25  ± 5 If F < 0.8 OR 
R = ∅ , then 
OSES = ∅

Else
OSES =  ± 5 ± 2.5

0.2 0.2 0.2 0.2

(g) (Human) → 
Parole

1 0.75 ± 0.25  ± 10 If F < 0.8 OR 
R = ∅ , then 
OSES = ∅

Else
OSES =  ± 10 ± 5

0.5 0.5 0.5 0.5

(h) (CRA) → Parole ?{∅,1} 0.75 ± 0.25  ± 10 If F < 0.8 OR 
R = ∅ , then 
OSES = ∅

Else
OSES =  ± 10 ± 5

0.1 0.1 0.1 0.1

(i) (Human + CRA) 
→ Parole

?{∅,1} 0.75 ± 0.25  ± 10 If F < 0.8 OR 
R = ∅ , then 
OSES = ∅

Else
OSES =  ± 10 ± 5

0.2 0.2 0.2 0.2
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The overall utility of risk scoring alone is relatively 
small, dependent as it is on the further use of such scores to 
guide behavior. Nonetheless it is not 0. Whether it is a net 
positive or negative remains to be determined. We set the 
magnitude of its value at ± 1 while remaining agnostic about 
directionality (U =  ± 1). The magnitude of utility for deci-
sions about bail and parole are likely to be somewhat larger; 
we set these at U =  ± 5 and U =  ± 10, respectively. The main 
components of the utility of these decisions are probably (a) 
the total cost of early release (primarily via costs due to (i) 
increased rates of criminal activity and (ii) increased rates of 
rearrest), and (b) the total benefit of early release (primarily 
via benefits due to (i) increased preference-satisfaction for 
suspects, their families, and their communal partnerships 
and (ii) lowered costs on the criminal justice systems). (Con-
versely, one can estimate the same values in terms of overall 
costs and benefits of longer detention.)

Though the evidence is disappointingly scarce on this 
question, it does appear that CRA-assisted decision-making 
about bail and parole has modest effects in a few directions 
of relevance here. In particular, it appears that such sys-
tems lead to slightly higher rates of release overall; slightly 
greater precision deciding who to release or not release (thus 
generating slight decreases in the cost of further crime due 
to early release); and (in the case of bail decisions) slightly 
higher rates of “failures to appear,” which should be counted 
a cost of the changed decision-making regime [37, 38]. 
Thus, overall, CRA-assisted systems show evidence of a 
slight increase in public utility by comparison with human-
only systems. Somewhat surprisingly, it appears that the 
net benefit would be even higher if human decision-makers 
always followed the recommendations of the CRAs (i.e. 
rows (e) and (h) outperform rows (f) and (i), respectively). 
However, human decisions not to follow the CRAs appear 
in some cases to be effective parts of strategies aimed at 
not violating individuals’ rights or other ethical desiderata 
[38] (though in others they appear to be simply reversions to 
older “habits” of decision-making practices [37]). Any sug-
gestion that hybrid human-and-CRA systems should bring 
their decisions more into line with CRA recommendations 
should keep these dimensions in mind.

Transparency, democracy, and legal responsibility: The 
traditional, human-led systems by which bail and parole 
decisions were made prior to the introduction of CRAs 
were certainly imperfect as far as transparency, democracy, 
and legal responsibility for errors are concerned. Nonethe-
less, they undeniably had mechanisms for ensuring some 
degree of each of these ethical values – public records and 
the appeal process, for instance. Given that many CRAs are 
themselves relatively “black boxed” systems, trained on 
unshared data and employing unshared training procedures, 
the introduction of almost any current CRA into bail and 
parole decision-making processes will lower the overall 

transparency of those processes. Without transparency, 
democracy likewise is compromised. And, given the lack 
of official channels by which the scores of CRAs, or deci-
sions made partly on their basis, could be challenged, the 
legal responsibility of CRA-assisted decision-making can in 
general be expected to be lower than human-only decision-
making. Though precise numerical estimates are hard to jus-
tify without more extensive research on these questions, we 
set estimates for these three values to 0.5 for the human-only 
systems, to 0.1 for the CRA-only systems, and to 0.2 for the 
CRA-human hybrid systems.

It should be noted that these values are ones on which 
different CRA systems (for instance: COMPAS; the Arnold 
Foundation’s Public Safety Assessment (PSA); or various 
checklist style risk assessment tools that preceded ML-
trained CRAs) appear to vary significantly. Some relevant 
questions here include: To what extent do the developers of 
such systems make their training data, developed models, 
or training processes available to public scrutiny? To what 
extent do the systems provide explicit SHAP- or LIME-like 
explanations of individual decisions, and to what extent can 
we expect explanations so-provided to be accurate descrip-
tions of these systems? To what extent are producers of the 
systems answerable to the public, either directly or through 
representatives? To what extent can be they be held legally 
responsible when something goes wrong?

Likewise, different hybrid human + CRA systems exhibit 
different levels of transparency, democratic accountability, 
and legal responsibility by the metrics described above. A 
comparative study of how such hybrid systems in different 
states or jurisdictions fare on these measures would be a 
welcome contribution to the testing and evaluation of such 
systems.

6 � Conclusion

Decisions and decision-making are of central importance 
to the ethical performance of human and AI systems. Deci-
sional Value Scores (DVSs) provide a promising new tool 
to study, compare, and improve the ethicality of such sys-
tems on a per-decision, aggregate-of-decisions, or average-
decisions basis.

A key advantage of the DVS framework is that it places 
the fundamental unit of decision-making at the center of 
ethical evaluation. Prior approaches have tended to focus on 
high-level ethical principles without a clear way to connect 
these principles to the decisions made by an AI/ML sys-
tem. In contrast, DVS’s decision-centric framework starts by 
clarifying what will be counted as a decision in a particular 
evaluation, and focuses evaluations on comparisons across 
decisions of the same or different types.
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The ability to evaluate decisions individually, rather than 
relying on aggregate system-level metrics, is another key 
strength of the DVS approach. It may eventually allow for 
much more granular ethical assessment and improvement of 
AI-ML systems insofar as designers could identify specific 
decisions or decisions of a certain type or stage that fail to 
meet ethical standards and work to improve them instead 
of just optimizing for an overall fairness or accuracy score. 
Even estimates of fairness, which have traditionally been 
made through statistical analyses (that is, via “statistical fair-
ness” concepts [2]), could eventually be improved by a DVS 
approach: as methods for estimating fairness of individual 
decisions improve (for instance, counterfactual methods 
[42]), individual fairness scores for each system decision 
could be aggregated, giving a finer and more reliable meas-
ure of a system’s fairness as a whole.

A third advantage of the DVS approach is that it supports 
tractable and clear comparative metrics for transparency. For 
example, researchers often aim to improve transparency 
through application of post-hoc interpretability techniques 
like LIME or SHAP. But these methods only provide local 
explanations for individual predictions, not a cross-model 
measure for transparency. The DVS framework allows for 
the transparency of each decision to be evaluated according 
to multiple relevant factors (e.g. accessibility of the underly-
ing data and model, the clarity and faithfulness of explana-
tion provided, and the ability of stakeholders to explore and 
interact with the system). The overall transparency of the 
system can be estimated by averaging across decisions.

Fourth, DVS provides a common language and set of 
metrics for comparing the ethical performance of AI/ML 
systems, even those with very different architectures. This 
allows for more meaningful benchmarking and accountabil-
ity, as diverse systems can be evaluated against a standard-
ized set of ethical criteria. By focusing on the fundamental 
unit of the decision, the DVS framework provides a way to 
assess and compare ethical performance across diverse AI/
ML models.

Fifth and finally, the DVS framework has the potential 
to integrate ethical analyses across ethical principles and 
values, including both substantive and procedural ethical 
considerations. (“Decisions” are at least one meeting point 
between substantive and procedural ethicality!) This paper 
demonstrates how DVSs can be defined for specific values 
like transparency or responsibility, but the framework is flex-
ible enough to accommodate an even wider range of ethical 
considerations. Integration is valuable because real-world AI 
systems often need to balance and trade off between compet-
ing ethical priorities. A DVS-based approach allows these 
tradeoffs to be made explicit and quantified instead of rely-
ing on more subjective or implicit assessments.

The granular, decision-centric nature of DVSs makes 
them well-suited to support iterative refinement and 

optimization of AI systems from an ethical standpoint. 
Designers can use DVSs to pinpoint specific areas for 
improvement, test the impact of design changes, and gradu-
ally work towards systems that better uphold the desired 
ethical standards. This iterative capability is necessary as 
ethical AI is an ongoing challenge that requires continu-
ous evaluation and adjustment as systems are developed and 
deployed in the real world.

The DVS framework is designed to be adaptable and 
extensible. The specific metrics defined in this paper are 
meant to be illustrative rather than exhaustive. Researchers 
and practitioners can define new metrics to capture emerging 
ethical values or context-specific concerns. This flexibility is 
crucial as the ethical landscape for AI/ML systems is rapidly 
evolving. The DVS framework provides a stable foundation 
for ethical evaluation that can evolve alongside the technol-
ogy and societal expectations.
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