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This paper contributes to the project of articulating and defending the supra-
Bayesian approach to judgment aggregation. I discuss three cases where a person
is disposed to defer to two different experts, and ask how they should respond
when they learn about the opinion of each. The guiding principles are that this
learning should go by conditionalisation, and that they should aim to update on
the evidence that the expert had updated on. But this doesn’t settle how the up-
date on pairs of experts should go, because we also need to know how the experts
are related. I work through three examples showing how the results change given
different prior beliefs about this relationship.

What should you do if two experts, each of whom you are disposed to defer to, disagree?
The answer depends on what you know about the relationship between the experts’ evi-
dence. I’m going to argue for this dependence claim, and work through three examples
that start the process of illustrating the nature of the dependence. The first example
concerns a case where the evidence the experts have is maximally independent. This
case has been well analysed by Easwaran et al. (2016), and my main contribution is to
offer a new (and perhaps more explanatory) proof of their primary conclusion. The
second case is where you know what proportion of the experts’ evidence is shared. And
the third is where you know that one expert is more informed, but you don’t know
which. In each of the last two cases I’ll show the computed exact values of the posterior
probabilities after conditionalising on the expert credences, and also show some simple
methods for approximating these exact values. The approximations are, I suspect, a lit-
tle more robust when we move from the simple examples I’ll describe to more realistic
ones.

So let’s get more precise about the question we’re asking, and also give names to the
characters in the story. (It feels weird to talk about you when I don’t know who you
are, so I prefer having named characters.) Assume Player regards Ivy and Zack as experts
about p in the following sense.

(1) If Player learns that Ivy’s credence in p is x, and nothing else, he will change his
credence in p to x.

(2) If Player learns that Zack’s credence in p is x, and nothing else, he will change his
credence in p to x.
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Given that, what is the answer to this question.
(3) If Player learns that Ivy’s credence in p is y, and Zack’s credence in p is z, and

nothing else, what should his credence in p become?
Following Baccelli and Stewart (2021), let’s distinguish two kinds of answers to this
question. The supra-Bayesian says that this case, like every other case, calls for condi-
tionalisation. This is going to be the kind of answer I defend. Here’s how we spell this
answer out. First, we rewrite (1) and (2) as (4) and (5).

(4) ∀x: CrP(p | CrI(p) = x) = x
(5) ∀x: CrP(p | CrZ(p) = x) = x

Where CrP, CrI and CrZ are Player, Ivy and Zack’s credence functions respectively.
Then (3) gets rephrased as a request for the value of

(6) CrP(p | CrI(p) = y ∧ CrI(p) = z)
That’s good as far as it goes, but it raises two natural questions. First, what reasonable
credal functions make (4) and (5) true, and what do they tend to say about (6)? Second,
given the massive computational difficulty in calculating values like (6) in real time, are
there heuristics for approximating its value in realistic cases? This paper aims to make
progress on both questions. It offers some examples of reasonable credal functions sat-
isfying (4) and (5), and uses them to suggest some heuristics for approximating (6) in
somewhat realistic cases.

But before we get to those answers, we should look at the other kind of answer Bac-
celli and Stewart (2021) mention: pooling answers. A pooling answer to (3) says that we
should find some function that in some way ‘pools’ y and z to answer (3). One obvious
such function is the arithmetic mean. The answer to (3) is just (y+ z)/2. Unfortunately,
this won’t do for three reasons. One reason, as proven independently by Gallow (2018)
and Bradley (2017) is that it is incompatible with supra-Bayesianism. A second reason,
as stressed by Russell, Hawthorne, and Buchak (2015), is that it is in cases where Player
defers to Ivy and Zack across a range of questions, this answer is incompatible with
Player, Ivy and Zack all updating on external evidence by conditionalisation.1 A third
reason, as stressed by Levinstein (2015) and Easwaran et al. (2016) is that in some cases
the intuitively correct answer to (3) is not between y and z.

The last of these reasons is most pressing. The natural response to the first two rea-
sons is to move to some other kind of pooling. Both Russell, Hawthorne, and Buchak
(2015) and Baccelli and Stewart (2021) suggest that we should use some kind of geo-
metric pooling instead of linear pooling. In this context, to use geometric pooling is to
give an answer to (3) something like2

1Note that supra-Bayesianism is the view that Player should update on expert testimony by conditionalisa-
tion. This objection does not assume supra-Bayesianism, but does assume that conditionalisation is the
right rule for normal, non-testimonial, updating.

2I say ‘something like’ because you might want to allow some extra parameters in the answer if, for example,
you want to give different weights to the two experts. That kind of detail won’t matter to the argument
here; we’re just going to focus on cases where the experts are treated symmetrically.
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√𝑦𝑧
√𝑦𝑧 + √(1 − 𝑦)(1 − 𝑧)

And that pooling function can be shown to avoid the first two reasons for not using
linear pooling. But it can’t avoid the third, and that’s what I’m going to focus on here.

There are three somewhat distinct reasons you might use pooling to answer (3).
First, you might use it as a replacement for supra-Bayesianism. I’m going to argue

that if you do this, you also have to give up on Bayesianism across the board. Some-
times the recipient of expert opinion can reliably infer the evidence behind the opinion
reliably. In those cases, regular Bayesianism implies that the recipient should update on
just that evidence. And that regular, not supra, Bayesian principle is enough to dispose
of pooling answers.

There are two more plausible uses for a pooling answer. Second, you might use it as
a constraint on supra-Bayesianism. You could argue that if the values that (6) takes for
various y, zdo not look like some kind of pooling function, that’s evidence the priorCrP
was irrational to start with. And third, you might use it as an approximation for supra-
Bayesianism. It’s a lot easier to calculate linear or geometric means than to work out
precisely the value of (6). Both of the last two uses are intuitively very plausible. One of
the arguments of this paper is that they are, unfortunately, ultimately untenable. There
just isn’t much use around here for pooling.

Pooling answers to (3) look a lot like conciliationist approaches to peer disagreement.
Indeed, the form of pooling that uses linear averaging is sometimes thought to be a
application of the Equal Weight View (Elga 2007). Supra-Bayesian answers look like
evidentialist approaches to peer disagreement. In particular, they look a lot like the
Total Evidence View (Lackey 2010). I’m going to use an even older motivation for
them: the evidentialist approach to testimony defended by Frank Jackson (1987). On
Jackson’s view, testimony that p is evidence that the speaker has evidence for p. The
way to rationally update on it depends on what kind of evidence you think the speaker
is likely to have, given they’ve concluded p, and what you would (rationally) do with
that evidence. Typically, the answer is Conclude p. Jackson argues that while this is
typical, it isn’t always the right answer. And it fails to be the right answer in just the
cases you shouldn’t accept the speaker’s testimony.

So to simplify here, I’m going to look at some cases where Player can simply deduce,
given one of the experts’ credences, what their evidence must have been. And then
Player will update on that evidence. As we’ll see, different assumptions about how the
evidence of the experts interacts leads to different answers to (3).

Two quick notes. First, I’m only going to look at cases where the experts are treated
symmetrically. That’s a restriction, but it’s a useful one for letting us see the range of
cases. Second, I’m going to be agreeing with Easwaran et al. (2016) a lot, especially in
the first half of the paper. I’m ultimately going to consider some different kinds of cases
to what they consider - but that’s a difference in focus, not a difference in conclusions.
(They look at a bunch of kinds of cases that I won’t consider as well; it’s not like I’m
going strictly beyond their work.) This paper is intended as a complement to theirs, not



4 BrianWeatherson

at all a substitute. But I think it’s a valuable complement, because I’ll show how some
very realistic cases require a generalisation of their model, and make some suggestions
for what that generalisation should look like.

1 Case One: Conditionally Independent Evidence

In our first case, the experts’ evidence is as independent as possible. Here’s a story to
think about how that could be. Carmen has an urn with 50 marbles, 25 black and 25
white. She draws one at random and marks it with invisible ink. She has a scanner
that can detect which marble is marked, but no one else can tell it apart from the other
marbles. Let p be the proposition that the marked marble is white - that’s what we’ll
focus on from now on.

After selecting one marble to be marked, she puts together a jar containing the
marked marble and 9 other marbles drawn at random from the urn. (I’ll use ‘urn’ for
where Carmen keeps all the unused marbles, and ‘jar’ for what she constructs to show
the experts.) She shows that to one of the experts, let’s say Ivy. She gets to inspect the
jar, i.e., count how many marbles in it are white and black. She then reports to Player,
but crucially not to Zack, her credence in p.

In this example, the next thing that happens is that Carmen takes the jar back, re-
moves the 9 unmarked marbles, puts them back in the urn, and draws a new set of 9
marbles. (That set may overlap with the first set of course.) She puts these 9 in the jar,
along with the marked marble, and shows the jar to Zack. He examines the jar, and
reports to Player his credence in p.

Now in this case we can work out precisely how Player should update on these two
pieces of information. When one expert reports a credence of x in p, Player can infer
that they saw 10xwhite marbles. After all, what the expert knows is just that the marked
marble is equally likely to be any of the marbles in the jar they see. So given CrI(p) = y
and CrZ(p) = z, Player can infer how many white marbles were in each jar. And he can
work out the probability of each of those jars turning up given p and given ¬p. And
that’s enough to plug into Bayes’s Theorem to work out a posterior probability for p.
When you do that, you get the following result.

(7) CrP(p | CrI(p) = y ∧ CrZ(p) = z) = yz/(yz + (1-y)(1-z))
I’m not going to work through the derivation of this, because it’s a straightforward con-
sequence of something I will derive below. If you do want to check it for yourself, the
key input is that the probability of drawing xwhite balls in t draws without replacement
from an urn with w white balls and b black balls is

(𝑤𝑥)( 𝑏𝑡−𝑥)
(𝑤+𝑏𝑡 )

More importantly, (7) looks just like a special case of the central formula (Upco)
that Easwaran et al. (2016) use. And that’s not surprising, since this case uses the
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same conditional independence assumption that they make through much of their pa-
per. To say that A and B are conditionally independent given C is just to say that
Pr(A ∧ B | C) = Pr(A | C)Pr(B | C). In this case, any pair of claims about how many
white balls are in the jars shown to Ivy and to Zack are conditionally independent, both
conditional on p and on ¬p.

The right hand side of (7) also looks a lot like the geometric means described above.
The big difference is that the square root signs have disappeared. And that makes a
difference, because it means the result violates what Baccelli and Stewart (2021) call
Unanimity. This principle requires that CrP(p | CrI(p) = y ∧ CrI(p) = y) = y. If (7) is
true then Unanimity is violated in every case except where y equals 0, 0.5 or 1. But this
is bad news for Unanimity, because the case for (7) in this case seems very strong. Player
really knows how many white marbles were in each jar, and it’s just a bit of algebra to get
from there to (7) via conditionalisation. And it’s very plausible that conditionalisation
is the right way to update on evidence about how many marbles are in a jar. So any
principle incompatible with (7) is false.

It turns out that varying how many marbles are in the urn Carmen starts with does
not change (7). But changing the ratio of white marbles to black marbles in the urn
does change the formula. If the proportion of the initial urn that is white is r, then the
general result is:

(8) CrP(p | CrI(p) = y ∧ CrI(p) = z) = (yz(1-r))/(yz(1-r) + (1-y)(1-z)r)
Again, this isn’t a new result; Easwaran et al. (2016, 27) derive an even more general
formula from which this falls out as a special case. But my way of deriving it is just
different enough to be worth including.

Let Ix be the disjunction of all possible evidence propositions that would lead Ivy
to have credence x in p. In this case Ix is a simple proposition that there are 10x white
marbles in the jar, but we don’t need to assume that Ix will be anything like that sim-
ple. Everything that follows about Ix also holds for Zx, the disjunction of all possible
evidence propositions that would lead Ivy to have credence x in p, but I won’t repeat
the derivations. Since Player defers to Ivy, i.e., (4) is true, we have the following proof.
(All credences are Player’s, so I’ll drop the subscripts.)

𝐶𝑟(𝑝|𝛪𝑥) = 𝑥 ∴
𝐶𝑟(𝑝 ∧ 𝛪𝑥) = 𝑥 ⋅ 𝐶𝑟(𝛪𝑥)

= 𝑥(𝐶𝑟(𝑝 ∧ 𝛪𝑥) + 𝐶𝑟(¬𝑝 ∧ 𝛪𝑥)) ∴
(1 − 𝑥)𝐶𝑟(𝑝 ∧ 𝛪𝑥) = 𝑥 ⋅ 𝐶𝑟(¬𝑝 ∧ 𝛪𝑥) ∴

𝐶𝑟(¬𝑝 ∧ 𝛪𝑥) =
1 − 𝑥
𝑥 𝐶𝑟(𝑝 ∧ 𝛪𝑥) ∴

𝐶𝑟(𝛪𝑥|¬𝑝) =
(1 − 𝑥)𝐶𝑟(∗𝑝∗)
𝑥 ⋅ 𝐶𝑟(¬𝑝) 𝐶𝑟(𝛪𝑥|𝑝)

So we know the ratio of Cr(Ix | p) to Cr(Ix | ¬p). That will become useful in what
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follows. Assuming evidentialism, what matters for (6) is working out the value of
Cr(p | Iy ∧ Zz). But we now know enough to do that.

𝐶𝑟(𝑝 | 𝛪𝑦  ∧  𝛧𝑧)  =  
𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)
𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧)

Using the general fact that X is equivalent to (p ∧ X ) ∨ (¬p ∧ X ), and that Player’s
credences are probabilistic, so his credence in an exclusive disjunction equals the sum
of the credence in the disjuncts, we know this equals.

𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)
𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧) + 𝐶𝑟(¬𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)

Since Cr(p ∧ X ) = Cr(X | p)Cr(p), we can rewrite this as:
𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗)

𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗) + 𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | ¬𝑝)𝐶𝑟(¬𝑝)

And since Iy and Zz are independent given both p and ¬p, this becomes:
𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗)

𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗) + 𝐶𝑟(𝛪𝑦|¬𝑝)𝐶𝑟(𝛧𝑧 | ¬𝑝)𝐶𝑟(¬𝑝)

If we assume the initial value of Cr(p) = r, and use the earlier derived fact that
Cr(Ix | ¬p) = ((1-x)r)/(x(1-r)Cr(p)) this becomes:

𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝑟
𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝑟 +

(1−𝑦)𝑟
𝑦(1−𝑟)𝐶𝑟(𝛪𝑦|𝑝)

(1−𝑧)𝑟
𝑧(1−𝑟)𝐶𝑟(𝛧𝑧 | 𝑝)(1 − 𝑟)

Now we can finally eliminate Cr(Iy | p)Cr(Zz | p)r from the top and bottom, so this
becomes:

1
1 + (1−𝑦)(1−𝑧)𝑟

𝑦𝑧(1−𝑟)

Or in other words:
𝑦𝑧(1 − 𝑟)

𝑦𝑧(1 − 𝑟) + (1 − 𝑦)(1 − 𝑧)𝑟

And that’s the completely general result when the evidence the experts has is condi-
tionally independent of both p and ¬p, and Player starts with credence r in p.

But this case is surely rare. Experts typically have some training in common that isn’t
shared by non-experts. So their reasons for having a credence in p that differs from our
prior will not be completely independent. Easwaran et al. (2016) note that sometimes
we can adjust for the common evidence by conditionalising on the common evidence
to come up with a new ‘prior’, or perhaps I should say ‘intermediate’ credence, r, then
applying this formula. This is slightly more general, but still not a lot. Part of what
makes us non-experts be non-experts is that we don’t have this common training, so we
can’t identify what’s common between the experts. Let’s see if we can come up with a
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slightly more general case.

2 Case Two: Common Marbles

In our second case, Carmen once again has an urn with 50 marbles, 25 black and 25
white. She draws one at random and marks it with invisible ink. She can tell which one
this is, but no one else can. And p is still the proposition that the marked marble is white
- that’s what we’ll focus on from now on. After selecting the marble to be marked, she
puts together a jar containing the marked marble and 9 other marbles drawn at random
from the urn. She shows that to one of the experts, let’s say Ivy. She gets to inspect the
jar, i.e., count how many marbles in it are white and black. She then reports to Player,
but crucially not to Zack, her credence in p.

So far, it’s just like the last case. But what happens next is (possibly) different. In
this case, Carmen removes m unmarked marbles from the jar, puts them back in the
urn, and draws a new set of m marbles to put in the jar. It’s all random, so this could
include some of the marbles she just removed. She shows the jar to Zack, he inspects it,
and reports his credence in p to Player. And, crucially, player knows m, the number of
marbles that are in common between the jars. So m is a measure of the independence
of the experts’ opinions.

Once again, we can work out precisely what Player’s credence should be givenm, and
the two credences. Unfortunately, it’s just a long formula that doesn’t seem to reduce
nicely. But if you’ve got a machine that’s good at calculating hypergeometric distribu-
tions, and you dear reader are probably reading this paper on a machine that’s good at
calculating hypergeometric distributions, it’s not that hard to calculate the values by
brute force. I won’t list all the values, there are several hundred of them, but I’ll present
them graphically in Figure 1. (Note I’ll leave off the case where one or other expert an-
nounces a credence of 0 or 1; in that case Player knows whether p is true, so the question
of how to merge the credences is easy.)

Here is how to read the graph in Figure 1. Each row corresponds to a particular cre-
dence announced by Ivy; the credence is shown on the right. Each column corresponds
to a particular credence announced by Zack; that credence is shown on the top. The
x-axis of the individual graphs shows the value for m, the number of marbles removed.
And the y-axis shows Player’s final credence in p. There are more dots on some graphs
than others because some combinations of Ivy credence, Zack credence and m are im-
possible. The announced credences can’t, by the rules of the game, differ by more than
0.1m.

One notable feature of that graph is that as m gets larger, the final credence tends
to move away from 0.5; it tends to get more opinionated. Another notable feature,
though probably not one you can see in this resolution, is that this move towards greater
opinionation happens in a surprisingly linear fashion. To a first approximation, Player’s
credence moves away from 0.5 roughly the same amount for each addition tom, at least
holding y and z fixed.

It’s not perfectly linear, but it’s much closer than I would have guessed looking at
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Figure 1: The result of merging two somewhat connected opinions.

how really quite non-linear the inputs are. Figure 2 shows the result of zooming in on
a part of the graph to see this more vividly.

The curve in the bottom right panel of Figure 2 is not really linear; it definitely curves
downwards. But as you move your eye upwards and leftwards in the table, the curves
look much much straighter. The panel where they both announce 0.7 is really remark-
ably straight. If we focus on the middle of Figure 1, this is even more striking. (I’ve left
off the cases where Zack announces a credence under 0.5 because those graphs are just
mirror images of graphs already shown.)

Why does this matter? Because pooling functions are easy to use, and the supra-
Bayesian needs something to match that ease of use. It’s a cliche that for every problem
there is a solution that is simple, intuitive, and wrong. And the version of the pooling
approach that uses linear averages is very simple, very intuitive, and very wrong. The
version that uses geometric averages strikes most people as less simple and intuitive (or
maybe I’m just bad at explaining it), but it is less wrong. But still, sometimes simple,
intuitive and wrong is exactly what you need! Computation is hard, life is short, preci-
sion is overrated. Why not just average if you are just looking to get something roughly
right?

The supra-Bayesian can exploit the more-or-less linearity of the graphs above graphs
to come up with an approximation to these ideal Bayesian credence. And the approx-
imation isn’t that much harder to calculate than the geometric average. Intuitively, it
works like this. If the experts have exactly the same evidence, we take the geometric av-
erage of their opinions.3 If the experts’ evidence is conditionally independent, we use

3We are working with cases so far where there is a unique rational credence for each evidence, so if they have
the same evidence they have the same credence, and which kind of averaging we use is redundant. What
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Figure 2: The bottom right corner of Figure 1
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Figure 3: A detail of the middle of Figure 1
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the formula from Easwaran et al. (2016) that I rederived in the last section. In between,
we just need a guess k about what proportion of the evidence they share, and what is
independent. And we use that guess to come up with an average of those two things,
the geometric average and the formula for conditionally independent evidence. So our
estimation of the new credence is this, where y and z are the announced credences, and
k is the measure of independence of the evidence.

(1 − 𝑘) √𝑦𝑧
√𝑦𝑧 + √(1 − 𝑦)(1 − 𝑧)

+ 𝑘 𝑦𝑧
𝑦𝑧 + (1 − 𝑦)(1 − 𝑧)

Let’s check visually how this does against the exact calculations. In the graphs that
follow, starting with Figure 4, I’ll use circles for the ideally calculated posterior cre-
dences, and triangles for the estimates made using this formula.
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Figure 4: A detail from Figure 1 with estimated probabilities shown.

That looks pretty good. There is a tiny bit of separation in the bottom right panel
of Figure 4, but otherwise the estimate tracks the calculated credences pretty closely.
Figure 5 shows the middle of the graph.

And all through Figure 5 the dots are overlapping. That’s close enough. So at least in
this special case, the supra-Bayesian can produce an estimate that is very close to the ide-
ally calculated credence. So we don’t need to resort to pooling even as an approximation
device.

But the simplifications here are dire. Here are six ways we might want to generalise
the model.

1. Have the prior probabilities of p and ¬p vary.
matters about the geometric average is how it enters into mixtures, as we’re about to see.
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Figure 5: The middle of Figure 1 with estimated probabilities shown.

2. Have more colors for the marbles, and have each expert announce credences over
all the colors.

3. Have the person doing the merger be uncertain about k.
4. Have the experts sample the jars they are given, not inspect them fully.
5. Have more than two experts.
6. Allow that some experts are more informed than others.

The first two points are not that hard. I could produce a string of graphs for different
priors over the colors, or for more colors, and the typical story is not that different to
what we’ve seen so far. It just gets messy because we have more degrees of freedom than
is consistent with a concise graphical display.

The next two points are harder. It’s not that they are harder to come up with the
ideal value. For any prior over k, or sampling technique that’s available to the expert, it’s
pretty easy to write code to come up with the optimal calculated credences. It’s rather
that the number of degrees of freedom are so great that it gets a little harder to eyeball
how good any given approximation is. The big point is that the posterior distribution of
kwill usually be different to the prior. In extreme cases, the announced expert credences
might rule out some hypotheses about k. So it won’t just be a matter of calculating the
values of the above formula for each value of k, and averaging them out using the prior
probabilities of k. There is a lot of possible future research here.

Having more than two experts raises both computational questions, like what we’ve
just discussed, and conceptual questions. The number of variables we need to specify
to say how connected the experts are roughly doubles every time one ads an expert. But
the point is not just that the computations of the ideal supra-Bayesian credence require
an exponentially increasing number of inputs as the number of experts rises. It’s that
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even thinking about how to approximate this ideal calculation, we need a good way to
conceptualise this space whose dimensionality rises exponentially with the number of
experts in a way that lets us even think about what a good approximation would look
like. I don’t have an answer to this; it feels like a question for future research.

What I will try to make some headway on instead is the last question, what happens
if we do not assume the experts are just as well informed as each other.

3 Case Three: Differentially Informed Experts

In our last case, one expert is better informed than the other. Carmen first fills the jar
with the marked marble and 19 randomly chosen unmarked marbles. She flips a coin to
decide which expert to show this jar to. They inspect the jar, and record their credence
in p to the nearest 0.1. (We’ll come back very soon to why this is rounded.) Carmen
then removes 10 unmarked marbles from the jar, chosen at random, and then shows it
to the other expert. They inspect it, and come up with a new credence in p. Then both
these recorded numbers are reported to Player, without any indication about who saw
the larger jar and who saw the smaller one.

There is a weird thing in this setup in that one of the experts reports something other
than their precise credence. The reason I set up the example this way is to make it im-
possible for the recipient of the expert opinion to infer who saw the smaller jar. If they
both reported their actual credence, it would be possible for the recipient to be told one
of them has credence 0.75 in p and the other has credence 0.6. And then it would be
obvious that the hearer should have credence 0.6 in p, since that’s the credence of the
more informed person. So I made the first person round to the nearest 0.1 to make it
harder to make such inferences.

Given all that setup we can work out what Player’s credence in p should be given
the two announcements, and I’ve shown the values in Table 1. (I’m rounding to three
decimal places to save space.I’m leaving off the cases where one or other party announces
an extremal credence - the hearer agrees with those credences, at least to three decimal
places. And the ‘NA’ values are where it is impossible given the setup for those to be the
announced values.)
Table 1: The posterior probability after hearing two differentially informed experts.

Ivy/Zack 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.100 0.103 0.100 0.100 0.100 0.100 NA NA NA
0.2 0.103 0.200 0.208 0.203 0.202 0.200 NA NA NA
0.3 0.100 0.208 0.300 0.320 0.325 0.348 0.500 NA NA
0.4 0.100 0.203 0.320 0.400 0.439 0.500 0.652 0.800 0.900
0.5 0.100 0.202 0.325 0.439 0.500 0.561 0.675 0.798 0.900
0.6 0.100 0.200 0.348 0.500 0.561 0.600 0.680 0.797 0.900
0.7 NA NA 0.500 0.652 0.675 0.680 0.700 0.792 0.900
0.8 NA NA NA 0.800 0.798 0.797 0.792 0.800 0.897
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Table 1: The posterior probability after hearing two differentially informed experts.

Ivy/Zack 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9 NA NA NA 0.900 0.900 0.900 0.900 0.897 0.900

And a striking thing about Table 1 is how close it comes to verifying a strong form of
what Levinstein (2015) calls Thrasymachus’ Principle. The hearer defers to the expert
with the strongest view, i.e., the view that’s furthest from the prior. In contemporary
terms, the hearer listens to the expert with the hottest take. It isn’t an unvarnished form
of that. When one says 0.5 and the other says 0.6 you end up with 0.561, not 0.6. But
that’s in large part because there’s a good chance that the person who said 0.6 was merely
rounding up as the result of a coin flip. In general, the rule in this case is find the expert
credence that is furthest from the prior, and adopt it.

There is a reason that a case like this should follow Thrasymachus’ Principle. If the
experts are rational, hotter takes should correspond to stronger evidence. And while it
isn’t impossible for the person with more evidence to have in a sense weaker evidence,
the extra evidence may be full of defeaters for the first obtained evidence, it is pretty
unlikely. In general, if someone is worthy of deference, and they have a strong view,
they have strong evidence. If someone else has a weaker view, i.e., a view closer to the
prior, the best explanation is that they simply don’t have the evidence that the person
with stronger view does.

So again, we shouldn’t pool the opinions in any interesting sense. The table shows
the optimal response by supra-Bayesian lights. And the simple approximation is,
“When one expert has clearly stronger views, listen to them. Otherwise take the
geometric mean.”

4 Summary

Let’s take stock of what’s been covered so far.
• I’ve argued against all three uses of pooling answers to the question of how to

merge expert opinions. Sometimes the pooling answer is clearly wrong, often it
won’t be a good constraint on priors, and there are better ways to approximate
the correct supra-Bayesian answer.

• I’ve connected supra-Bayesianism to some familiar positions in epistemology, the
view on testimony in Jackson (1987) and the view on disagreement in Lackey
(2010).

• I’ve shown that if you take that approach, that conditionalising on someone else’s
credence is just conditionalising on the fact that they have evidence that ratio-
nalises such a credence by their lights, then the principle Easwaran et al. (2016)
recommend for updating on the credences of others follows directly from the
assumptions that each expert is independently worthy of deference, and the evi-
dence the experts have is conditionally independent.
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• I’ve developed a toy example that lets us think about cases where the hearer
doesn’t know which parts of the evidence are in common, but does know how
much is in common.

• And I’ve shown that in that case, the correct supra-Bayesian answer is nicely ap-
proximated by a linear average of two familiar formulas.

• I developed a toy example that lets us think about the case where one expert is
known to be more informed, but we aren’t sure which it is.

• And in that case I showed that what Levinstein (2015) calls Thrasymachus’ Prin-
ciple is approximately right; we should defer to the ‘stronger’, i.e., more opinion-
ated, expert.

At the end of section 2 I mentioned six ways in which we might make the model even
more general. This is very much not meant to be the last word. But I suspect these
kinds of examples can be used to provide useful approximations, or guides, to real life
situations where we know something about the relationship between the experts. The
general lesson is that by looking at toy cases, we can provide practical advice for how
to emulate, or at least approximate, the supra-Bayesian approach for merging expert
opinion. And this advice will be better than the advice that anyone who ignores the
relationship between the experts can offer.

But there is one last kind of relationship between experts that I haven’t made any
progress on modelling, and it is a big one. What should we say about cases where the
experts know each others credences? This is an old and, to my mind, open question. For
reasons that trace back to Aumann (1976), in anything like the kind of model I’ve used
here, if the experts know each other’s credences, they have to agree. And someone who
knows both credences should agree with them. But the real world obviously contains
experts who do agree to disagree. What to say about those cases is the biggest open
questions around here, and I’m not sure whether this approach can help. Gallow (2018)
ends his paper by raising doubts about whether it is rational to be disposed to defer to
two different experts. I’m not worried about that in general; I’ve described three very
different kinds of cases where it is rational. But I suspect one could not be rationally
disposed to defer to two experts who one knows are themselves disposed to agree to
disagree. That, however, is a story for another paper. This paper has described a number
of cases where the hearer knows something the experts doesn’t know: namely what
other experts think. And it has described both precise and approximate answers for
what to do in those interesting cases.
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