
How can a line segment with extension be
composed of extensionless points?

From Aristotle to Borel, and Beyond∗

Brian Reese
University of Central Florida

brian.reese@ucf.edu

Michael Vazquez
University of North Carolina at Chapel Hill

michael.vazquez@unc.edu

Scott Weinstein
University of Pennsylvania
weinstein@cis.upenn.edu

∗We would like to thank Jeremy Avigad, William Ewald, Denis Hirschfeldt, Steven Lin-
dell, Susan Sauvé Meyer, Phil Nelson, Mary-Angela Papalaskari, Brian Skyrms, Stephen
Simpson, Henry Towsner, and two anonymous referees for valuable comments on earlier
drafts of this paper.

1



Abstract

We provide a new interpretation of Zeno’s Paradox of Measure that
begins by giving a substantive account, drawn from Aristotle’s text,
of the fact that points lack magnitude. The main elements of this
account are 1) the Axiom of Archimedes which states that there are
no infinitesimal magnitudes, and 2) the principle that all assignments
of magnitude, or lack thereof, must be grounded in the magnitude of
line segments, the primary objects to which the notion of linear mag-
nitude applies. Armed with this account, we are ineluctably driven to
introduce a highly constructive notion of (outer) measure based ex-
clusively on the total magnitude of potentially infinite collections of
line segments. The Paradox of Measure then consists in the proof that
every finite or potentially infinite collection of points lacks magnitude
with respect to this notion of measure. We observe that the Paradox
of Measure, thus understood, troubled analysts into the 1880’s, de-
spite their knowledge that the linear continuum is uncountable. The
Paradox was ultimately resolved by Borel in his thesis of 1893, as a
corollary to his celebrated result that every countable open cover of
a closed line segment has a finite sub-cover, a result he later called
the “First Fundamental Theorem of Measure Theory.” This achieve-
ment of Borel has not been sufficiently appreciated. We conclude with
a metamathematical analysis of the resolution of the paradox made
possible by recent results in reverse mathematics.
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1 The Paradox Interpreted
The question posed in our title, or rather the quandary it represents, has
been referred to as “Zeno’s Paradox of Measure.”1 Its source is the following
passage from Aristotle’s On Generation and Corruption.

For to suppose that a body (i.e. a magnitude) is divisible through
and through, and that this division is possible, involves a difficulty
[. . . ] What will remain [after the division]? A magnitude? No,
that is impossible, since then there will be something not divided,
whereas ex hypothesi the body was divisible through and through.
But if it be admitted that neither a body nor a magnitude will
remain, and yet division is to take place, the constituents of the
body will either be points (i.e. without magnitude) or absolutely
nothing. If its constituents are nothings, then it might both come-
to-be out of nothings and exist as a composite of nothings [. . . ]
But if it consists of points, a similar absurdity will result: it will
not possess any magnitude.2

In this section we present a new interpretation of Zeno’s Paradox of Mea-
sure. The main novelty of our interpretation derives from the fact that we
provide a substantive gloss on the claim that points lack magnitude, a gloss
that is implicit in Aristotle’s text, and is rooted in the mathematical practice
of the ancient world. On this basis, we are driven ineluctably to an inter-
pretation of the Paradox that reveals a cogent argument, entirely accessible

1See [Skyrms, 1983]. We will adopt this label throughout the paper. It has also been
called “Zeno’s metrical paradox” [Grünbaum, 1952], “Zeno’s metrical paradox of extension”
[Friedman, 2012], and the “Paradox of Infinite Divisibility” [Huggett, 2019].

2Aristotle, On Generation and Corruption, 316a15-30, trans. Joachim in [Barnes, 1984].

῎Εχει γὰρ ἀπορίαν, εἴ τις θήσει σῶμά τι εἶναι καὶ μέγεθος πάντῃ διαιρετόν, καὶ

τοῦτο δυνατόν. [...] Τί οὖν ἔσται λοιπόν; μέγεθος οὐ γὰρ οἷόν τε· ἔσται γάρ

τι οὐ διῃρημένον, ἦν δὲ πάντῃ διαιρετόν. Ἀλλὰ μὴν εἰ μηδὲν ἔσται σῶμα μηδὲ

μέγεθος, διαίρεσις δ΄ ἔσται, ἢ ἐκ στιγμῶν ἔσται, καὶ ἀμεγέθη ἐξ ὧν σύγκειται, ἢ

οὐδὲν παντάπασιν, ὥστε κἂν γίνοιτο ἐκ μηδενὸς κἂν εἴη συγκείμενον [...] ῾Ομοίως

δὲ κἂν ᾖ ἐκ στιγμῶν, οὐκ ἔσται ποσόν. (Greek text from [Rashed, 2005].)

The argument comes in the context of Aristotle’s refutation of Democritus’ theory of
atomic magnitudes. For a detailed treatment of Aristotle’s overall strategy in this chapter,
see [Sedley, 2004]. Although Aristotle does not explicitly attribute this paradox to Zeno,
Simplicius, who had access to Zeno’s work, does attribute it to him in his commentary On
Aristotle’s Physics, 139.20-24 ([Simplicius, 2011]).
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within the framework of ancient mathematics, that every potential infinity
of points lacks magnitude. We will see that this very argument was still
considered paradoxical by mathematicians of the late-nineteenth century –
mathematicians who were well-acquainted with the fact that the linear con-
tinuum is uncountable.

1.1 Points lack magnitude

We begin by addressing a critical element of the paradox: “But if it be
admitted that neither a body nor a magnitude will remain, and yet division
is to take place, the constituents of the body will either be points (i.e. without
magnitude) or absolutely nothing.” We do not pursue the alternative that
“absolutely nothing” remains, though recent work suggests that this horn of
the dilemma may admit of fruitful mathematical treatment.3 Rather, we
focus on the alternative that what remain are points, and in particular, on
the parenthetical observation that points are “without magnitude.” Our first
task is to provide a suitable understanding of the sense in which points are
without magnitude. This will lead us immediately to one of the fundamental
contributions of ancient mathematics to the understanding of the continuum,
and simultaneously take us some way into the nexus of concepts that underlie
our interpretation of the Paradox.

Without loss of generality, we will focus on linear magnitudes, so for us,
the paradigmatic body is a line segment, and its magnitude is its length.4
Why is it that points lack magnitude? The key to answering this question is
implicit in the passage quoted above: “What will remain [after the division]?
A magnitude? No, that is impossible, since then there will be something not
divided, whereas ex hypothesi the body was divisible through and through.”
We understand the significance of this rhetorical interchange as follows. First,
it is apparent that

1 (Covering Principle): the magnitude of a point p is no greater than
the magnitude of any line segment I on which it lies,

and that

3See [Lando and Scott, 2019].
4Thus, we restrict our project to interpreting, and resolving, the paradox understood

as a mathematical antinomy.
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2 every point p lies on some line segment I of unit length.5

Next, we understand the divisibility of a line segment I “through and through,”
to imply that

3 (Iterated Bisection Principle): for every positive integer n, I may be
successively bisected up to n-times.

It follows at once that

4 if a point p lies on a line segment I of unit length, then for every positive
integer n, p lies on a sub-segment J of I of magnitude 1/2n.

It now follows from 1, 2, and 4 that

5 for every point p and every positive integer n, the magnitude of p is at
most 1/2n.

There remains one further crucial step in order to conclude that p lacks
magnitude. Namely, an axiom originally articulated by Eudoxus in the fourth
century B.C.E.6 but dubbed the ‘Axiom of Archimedes’ by Otto Stolz in the
nineteenth century.7

6 (Axiom of Archimedes): If M is a (non-zero) magnitude, then for
some positive integer n, M > 1/n.

5When we say a point p lies on a line segment I, we require that p is not an endpoint
of I, in other words, p is interior to I.

6There is no direct evidence from Eudoxus for this attribution, but there is little dis-
agreement over the inductive evidence in its favor. Archimedes explicitly relies on Eu-
doxus for the ‘method of exhaustion’ in On the Sphere and Cylinder. On which topic,
see Archimedes’ précis to Dositheus: “For, though these properties also were naturally
inherent in the figures all along, yet they were in fact unknown to all the many able ge-
ometers who lived before Eudoxus...” ([Heath, 2002], p. 2). Also, given that the method
of exhaustion is essentially an alternative formulation of Elements V, Definition 4, and a
crucial component of Elements X, Proposition 1, there can be no doubt that Archimedes
is not the originator. Moreover, since Eudoxus spent time at Plato’s Academy, it would
not be implausible to suppose that his ideas reached Aristotle through the teachings of
the Academy. Wilbur Knorr, for example, suggests that Eudoxus was active in Plato’s
Academy at roughly the same time as Aristotle ([Knorr, 1990], p. 318).

7See [Stolz, 1883]. Although his title for this axiom is something of a misnomer, we
retain it.
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This axiom is among the great treasures bequeathed to us by the math-
ematicians of ancient Greece. It is a fundamental property of the linear
continuum: there are no infinitesimal magnitudes! We may now conclude
that a point has no (positive) magnitude as follows. It is evident that

7 for every positive integer n, 1/2n is less than 1/n.

Hence, by 5, 6, and 7,

8 for every point p, p has no (positive) magnitude, or, as we will say hence-
forth, p lacks magnitude.

It is important to observe that at this point we have already made a
crucial departure from many contemporary commentators on the Paradox of
Measure:8 we insist on construing the assertion that points lack magnitude in
terms of assertions about the magnitude of those geometric objects, namely
line segments, to which the notion of magnitude first and foremost applies.
Surely, the ancients recognized that a point can have no greater magnitude
than a line segment upon which it lies, and this recognition, together with
the Iterated Bisection Principle and the Axiom of Archimedes, implies that
a point has no positive magnitude.9 Throughout our analysis and resolu-

8Indeed, all commentators of whom we are aware.
9See, for example, Physics 215b12-20, trans. Hardie and Gaye in [Barnes, 1984]. Hence-

forth, and unless otherwise noted, translations of Aristotle’s Physics are from Hardie and
Gaye, occasionally modified for terminological consistency: “Now there is no ratio in which
the void is exceeded by body, as there is no ratio of 0 to a number. For if 4 exceeds 3
by 1, and 2 by more than 1, and 1 by still more than it exceeds 2, still there is no ratio
by which it exceeds 0; for that which exceeds must be divisible into the excess and that
which is exceeded, so that 4 will be what it exceeds 0 by and 0. For this reason, too, a
line does not exceed a point—unless it is composed of points.”

τὸ δὲ κενὸν οὐδένα ἔχει λόγον ᾧ ὑπερέχεται ὑπὸ τοῦ σώματος, ὥσπερ οὐδὲ

τὸ μηδὲν πρὸς ἀριθμόν. εἰ γὰρ τὰ τέτταρα τῶν τριῶν ὑπερέχει ἑνί, πλείονι δὲ

τοῖν δυοῖν, καὶ ἔτι πλείονι τοῦ ἑvνὸς ἢ τοῖν δυοῖν, τοῦ δὲ μηδενὸς οὐκέτι ἔχει

λόγον ᾧ ὑπερέχει· ἀνάγκη γὰρ τὸ ὑπερέχον διαιρεῖσθαι εἴς τε τὴν ὑπεροχὴν

καὶ τὸ ὑπερεχόμενον, ὥστε ἔσται τὰ τέτταρα ὅσῳ τε ὑπερέχει καὶ οὐδέν. διὸ

οὐδὲ γραμμὴ στιγμῆς ὑπερέχει, εἰ μὴ σύγκειται ἐκ στιγμῶν. (Greek text from
[Ross, 1936].)

Aristotle’s reason for claiming that there is no ratio between any whole number (ἀριθμός)
and 0 (μηδέν), and by analogy that there is no ratio between a line (γραμμή) and a
point (στιγμή), is a decisive invocation of the Archimedean proscription of infinitesimal
elements. There is no n-th multiple of μηδέν such that μηδέν exhausts any ἀριθμόςm. This
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tion of the Paradox, we insist on what we call the Primacy of Segment-
Magnitude as we introduce concepts that extend the applicability of the
notion of magnitude to geometric objects other than line segments: these
concepts are defined directly in terms of the lengths of (non-degenerate) line
segments, and the conclusions we draw that various geometric objects lack
positive magnitude relative to these concepts are derived by using the Iter-
ated Bisection Principle and the Axiom of Archimedes in just the way we’ve
applied these to conclude that points lack positive magnitude. In particular,
at no point do we argue that a geometric object lacks positive magnitude di-
rectly on account of the fact that it is an agglomeration of geometric objects
that lack magnitude - we never engage in the exercise of summing zeroes.10 In
the foregoing argument, the Covering Principle embodies our commitment
to the Primacy of Segment-Magnitude. This approach allows us to retain
close contact with the mathematical framework of the ancient world almost
to the very resolution of the Paradox, indeed, as close to the resolution as
the analysts of the late nineteenth century were able to approach, until Borel
actually resolved it in 1893.11

1.2 What the Paradox Demands

The Paradox demands that we conclude that collections of points lack magni-
tude, based on the fact that points lack magnitude. Since (non-degenerate)
line segments possess (positive) magnitude, this will allow us to conclude
that line segments are not (composed of) collections of points. Just as we
were able to give a cogent argument that points lack magnitude, based on
the Iterated Bisection Principle and the Axiom of Archimedes, and under

arithmetical application of the method of exhaustion pointedly recalls the iterated διαίρεσις
on which the Paradox of Measure turns. Heath rightly connects Aristotle’s reasoning in
this passage to Definition IV in Book V of Euclid’s Elements (cf. footnote 8 above), which is
the Axiom of Archimedes in another guise ([Heath, 1970], pp. 116-117). Cf. [Heath, 1981],
pp. 384-5 and Elements Book X, Proposition I. For additional evidence, see footnote 16
below.

10That is, we refrain from appealing to additivity properties of measures, or the failure
thereof, in our interpretation of the Paradox or its resolution.

11Borel’s resolution of the Paradox does not flow from his development of measure
theory, but from his Finiteness Theorem, that predated this development and served as a
prolegomenon thereto, as we discuss at length in Section 3.4. The Finiteness Theorem first
appeared in his doctoral thesis, Sur quelques points de la théorie des fonctions, submitted
in 1893, defended in 1894, and published a year later as [Borel, 1895].
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the requirement that the notion of magnitude itself apply directly only to
non-degenerate line segments, we will next extend that argument first to fi-
nite collections, and then to potential infinities, of points. In order to do so,
we will generalize the Covering Principle which was the basis for our argu-
ment that individual points lack magnitude. To this end, it will be useful to
introduce some terminology.

We say a collection of line segments Ξ covers a collection of points X
just in case for every point p in X there is a line segment S in Ξ on which
p lies. The total magnitude of a collection of line segments Ξ is the sum of
the lengths of the line segments contained in Ξ. Our generalization of the
Covering Principle may now be stated as follows.12

9 (Covering Principle): The magnitude of a collection of points X is no
greater than the total magnitude of any collection of line segments Ξ that
covers X.

1.2.1 Finite collections of points lack magnitude

The next proposition provides an important, if simple, application of the
Covering Principle. We present the proof, because the summation of “finite
geometric series” it involves is a useful prelude to our argument for Theorem
1.

Proposition 1 If X is a finite collection of points, then X lacks magnitude.

Proof : Let X = {p1, . . . , pk} be a finite collection of points. As discussed
above, it follows from the Iterated Bisection Principle that for each 1 ≤ j ≤ k,
and each positive integer n, there is a line segment Sj such that pj lies on Sj

and the length of Sj is less than 1/2n+j.13 Let Ξ be the finite collection of
line segments {S1, . . . , Sk}. It is apparent by construction that Ξ covers X.
Moreover, for each positive integer n, the total length of Ξ is the sum

1/2n+1 + . . .+ 1/2n+k.

But,
12We retain the name “Covering Principle” for this generalization of the earlier Principle

from points to point-sets.
13Indeed, given pj , we could construct Sj with midpoint pj and length 1/2n+j .
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10
1/2n+1 + . . .+ 1/2n+k = 1/2n − 1/2n+k < 1/2n < 1/n,

a fact well-known to the ancients. Therefore, the Covering Principle together
with the Axiom of Archimedes and 10 allow us to conclude that X lacks
magnitude.

1.2.2 Potential infinities of points lack magnitude

In order to extend Proposition 1 to potential infinities of points, we will need
to explicate the notion of potential infinity. We may think of a potential
infinity as a process of construction, any stage in the execution of which may
be succeeded by another stage. For example, the collection of even positive
integers can be understood as a potential infinity insofar as it may be gener-
ated by the process which begins with 2 and at each succeeding stage, adds
2 to the number realized at the stage preceding it. This description reduces
the notion of potential infinity to two primitives: first the notion of a process
of construction, and second the notion of its stage-wise execution.14 The
central point is the following: a potentially infinite collection is not thought
of as a “completed infinite totality,” indeed, it is hardly to be thought of as a
collection at all; it is rather given by a process, a finitely describable effective
mode of generation, that can be applied at an ever finite, but inexhaustible,
or limitless sequence of stages, to generate new instances. Of course, this
description of a potentially infinite collection lacks the precision required of
a modern mathematical definition. This is hardly surprising, since its intent
is to characterize an intuitive notion current in ancient times. Certainly, the
wealth of ancient mathematical practice accords very well with this charac-
terization. Whenever one comes across an infinite sequence of points in the
context of an ancient geometrical argument, it is given by an explicit con-
struction; moreover, the intent of the construction is to generate finite initial
segments of any given length – the construction is limitless (ἄπειρον).15 We

14From a contemporary perspective, it is virtually irresistible to identify a process with
an algorithm, and its stage-wise execution with computations via this algorithm on numer-
als representing successive positive integers, thereby identifying the notion of potentially
infinite set with the notion of computably enumerable set. For our purposes, we need not
make any such identification.

15We offer one explication of the notion of potential infinity that we regard as particularly
fruitful in understanding the Paradox of Measure. We are of course aware that this notion
has received extensive treatment in the literature. See, for example, Lear’s authoritative
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now discuss in detail a paradigmatic geometric example of potential infinity
invoked earlier, the points and line segments generated by iterated bisection
of a line segment of unit length. This example will serve both to illustrate
the concept of potential infinity, and to provide the basis for substantive
developments in later sections.

The Binary Ruler Recall the Iterated Bisection Principle: given a line
segment I, for every positive integer n, I may be successively bisected up
to n-times. The process of iterating bisection is the paradigm of potential
infinity in the realm of geometry. Let I be a line segment of unit length, with
endpoints labelled 0 and 1. The process of iterated bisection may be applied
to it without limit. After a finite number of applications, say n, it yields
what we call the n-th Binary Ruler, Bn, a partition of the segment I into 2n

subsegments, each of length 1/2n, with endpoints labeled k/2n, (k+1)/2n, for
0 ≤ k ≤ 2n. Since the process is without limit, the partition it generates may
at any stage be further refined to one consisting of twice as many subsegments
of I.

If we like, we may think of the process of iterated bisection as a means of
generating either a sequence of points or a sequence of intervals. In the case of
points, we begin by listing 0 and 1, the endpoints of I, at the first and second
positions of our sequence, and then continue with the points labeled 1/2,
1/4, and 3/4. At each stage in the execution of this process, we enumerate
from left to right16 those members of Bn that have yet to be enumerated at
earlier stages. We call this process of listing points the bisection point process
and write bn for the point listed at the n-th position in the execution of this
process. Thus, b1, b2, b3, b4 and b5 are the points on I labeled 0, 1, 1/2, 1/4 and
3/4. The bisection point process is itself a potential infinity of points - it is a
process for constructing a limitless sequence of distinct points, that is, each
stage in the execution of the process yields a finite sequence of points, all of
which are labeled on a single binary ruler Bn, but every such stage may be
succeeded by further stages that label points yet to be labeled on Bn. A deeper
understanding of our treatment of potential infinities will emerge from our
argument that the bisection point process lacks magnitude.

account in [Lear, 1980].
16We imagine 0 to the left of 1 along the unit segment I.
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The bisection point process lacks magnitude In light of the Cover-
ing Priniciple, in order to establish that the bisection point process lacks
magnitude, we must show that

11 for every n there is a collection of intervals Ξn such that Ξn covers the
bisection point process, and the total length of Ξn is less than 1/n.

Of course, we must understand the requisite collection of intervals Ξn as
potentially infinite in exactly the sense in which we regard the bisection
point process as potentially infinite. For a fixed number n, we must describe
a process Ξn so as to meet the requisite condition 11. Moreover, we will need
to explicate the meaning of the phrase “the total length of Ξn is less than
1/n” in application to a potential infinity of line segments Ξn.

The process Ξn operates as follows. At the j-th stage of its execution,
the process Ξn generates a line segment of length 1/2n+j with midpoint bj,
the point labeled at the j-th stage in the execution of the bisection point
process. It is apparent that the potential infinity of line segments Ξn covers
the binary point process. Moreover, by 10,

12 for every stage k, the total length of the line segments generated by the
process Ξn through stage k is equal to 1/2n− 1/2n+k, and is thus strictly less
than 1/2n, which is strictly less than 1/n for every n.

Now 12 is exactly what is required to conclude that the total length of the
potential infinity Ξn is less than 1/n. Why? Because our understanding of
potential infinities is based on facts about the finite stages of their execution.
Thus, in order to assert that the total length of a potential infinity Ξ of line
segments is strictly less than some value a, it is both necessary and sufficient
to establish that for some value b strictly less than a, and for every stage k,
the sum of the lengths of the line segments generated by the execution of Ξ
through stage k is less than b. Thus, it follows at once from 12 that for each
n, the total length of Ξn is strictly less than 1/n. In other words, for every
n, there is a potential infinity of line segments that covers the bisection point
process and has total length less than 1/n. As before, we may conclude by
the Axiom of Archimedes that the bisection point process lacks magnitude.17

17The argument here is implicit in Aristotle’s observation that the sum of a geometric
series is finite which can be found in Physics, 206b4-12: “In a way the infinite by addition
is the same thing as the infinite by division. In a finite magnitude, the infinite by addition
comes about in a way inverse to that of the other. For just as we see division going on
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It is evident that our argument can be applied to any potential infinity
of points - there is nothing special about the bisection point process in this
regard. Given any process for generating successive points, we may construct
line segments Ξn in the same way as above that cover these points and have
total length less than 1/2n. We may thus conclude

Theorem 1 Every potential infinity of points lacks magnitude.

1.3 The Paradox

Our interpretation places Theorem 1 at the heart of the Paradox of Measure.
Its proof, which is entirely intelligible within the framework of ancient math-
ematics, shows that if a line segment is composed of points, then it is not
potentially infinite, since every line segment possesses magnitude,18 while
every potential infinity of points lacks magnitude. Insofar as the ancients
would have found it difficult to conceive of a collection of points as neither
finite nor potentially infinite, so far would they have rejected the claim that
a line segment is constituted out of points.

Even apart from scruples about actual completed infinities of points, The-
orem 1 might create considerable puzzlement via another route, again one
easily traversed by mathematicians of the ancient world. In this instance,

ad infinitum, so we see addition being made in the same proportion to what is already
marked off. For if we take a determinate part of a finite magnitude and add another
part determined by the same ratio (not taking in the same amount of the original whole),
we shall not traverse the given magnitude. But if we increase the ratio of the part, so
as always to take in the same amount, we shall traverse the magnitude; for every finite
magnitude is exhausted by means of any determinate quantity however small.”

τὸ δὲ κατὰ πρόσθεσιν τὸ αὐτό ἐστί πως καὶ τὸ κατὰ διαίρεσιν· ἐν γὰρ τῷ

πεπερασμένῳ κατὰ πρόσθεσιν γίγνεται ἀντεστραμμένως· ᾗ γὰρ διαιρούμενον

ὁρᾶται εἰς ἄπειρον, ταύτῃ προστιθέμενον φανεῖται πρὸς τὸ ὡρισμένον. ἐν γὰρ

τῷ πεπερασμένῳ μεγέθει ἂν λαβών τις ὡρισμένον προσλαμβάνῃ τῷ αὐτῳ λόγῳ,

μὴ τὸ αὐτό τι τοῦ ὅλου μέγεθος περιλαμβάνων, οὐ διέξεισι τὸ πεπερασμένον· ἐὰν

δ΄ οὕτως αὔξῃ τὸν λόγον ὥστε ἀεί τι τὸ αὐτὸ περιλαμβάνειν μέγεθος, διέξεισι,

διὰ τὸ πᾶν πεπερασμένον ἀναιρεῖσθαι ὁτῳοῦν ὡρισμένῳ.

The connection between this passage and the Axiom of Archimedes has been noted by
commentators. See [Heath, 1921], pp. 342-3; [Ross, 1936], p. 556; [Hussey, 1983], p. 84.
Indeed, this passage lends considerable support to our approach, insofar as it emphasizes
the role of the Axiom of Archimedes in explicating the fact that points lack magnitude.

18One may view this principle as yet another manifestation of the Axiom of Archimedes.
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the focus is an important property of the bisection point process itself, which
appears to conflict with the fact that it lacks magnitude.

Theorem 2 Let I be a line segment of unit length, and let J be a line segment
whose endpoints lie on I. Then, for some n, some point marked on the Binary
Ruler Bn lies on the line segment J.

Proof : Let J be a line segment whose endpoints a and b lie on the unit
segment I, with a to the left of b. By the Axiom of Archimedes, we may
choose n such that the length of J is greater than 1/n. Let j be the greatest
number such that the point on the Binary Ruler Bn marked j/2n is to the
left of a, or coincides with a; such a j exists by the Axiom of Archimedes.
Since 1/2n < 1/n, it follows at once that the point on the Binary Ruler Bn

marked (j + 1)/2n lies on the line segment J.
Theorem 2 implies that the bisection point process is dense in the unit

line segment ; that is, for any two points on the unit line segment, there is a
point generated by the bisection point process that lies between them. The
ancients certainly understood that this was the case. Imagine how puzzling
it must have seemed that, nonetheless, this potential infinity of points lacks
magnitude - puzzling to the point of paradoxical. How could a line segment
with magnitude be composed of points, if it can be shown that a potential
infinity of points dense in such a segment lacks magnitude!? Even those with
little concern for potential versus completed infinities might well find such a
result troubling.19

2 The Paradox Reformulated
To this point we have provided a novel interpretation of the Paradox of
Measure. It consists in a cogent mathematical proof, using concepts and
techniques readily intelligible to students of mathematics in Plato’s Academy,
that every potential infinity of points, including such that are dense in a line
segment of unit length, lack magnitude. Our argument involves no mysterious
summation of infinities of zeroes. Quite the contrary, it provides a finitary
understanding of the claim that points lack magnitude, an understanding
that forces itself upon us as we reflect on Aristotle’s text in the context of
the mathematics of his day, in particular, the Axiom of Archimedes. We

19As did analysts of the 1880’s. See Section 3.3.
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then generalize this understanding to collections of points in a way that
exploits only finitary properties of potential infinities of non-degenerate line
segments. The Covering Principle is the crucial ingredient: “the magnitude
of a collection of points X is no greater than the total magnitude of any
collection of line segments Ξ that cover X.” Insofar as the intuitive notion of
magnitude, in the one dimensional case, applies exclusively to non-degenerate
line segments, it is the Covering Principle that allows us to attach significance
to claims concerning the lack of magnitude of collections of points from which
line segments may, or may not, be composed. As we proceed toward the
resolution of the Paradox, it will be useful to recast this role of the Covering
Principle via the definition of an alternative notion of magnitude that applies
to collections of points.

2.1 Ancient-Measure

As we have emphasized, the intuitive notion of magnitude, in the case of
one dimension, applies primarily, if not exclusively, to line segments. This
is why we have insisted on presenting an explicit gloss on the assertion that
points lack magnitude which is couched entirely in terms of the application
of the notion of magnitude to (non-degenerate) line segments. The Covering
Principle permits us to extend this gloss to collections of points, and indeed
allows us to infer that every potential infinity of points lacks magnitude.
But if we wish to allow for the possibility that line segments are composed of
points, with a view toward resolving the Paradox, we need to provide a gloss
on the assertion that a collection of points has (strictly positive) magnitude.

In this section, we introduce a notion of ancient-measure that allows us
to attach a magnitude to arbitrary collections of points.20 It is an ancient
variant21 of a notion first considered by Axel Harnack.22 The definition of
this notion will again be couched entirely in terms that apply the notion of
magnitude to (non-degenerate) line segments. If Ξ is a potential infinity of
line segments, and c is the length (that is, magnitude) of some line segment,

20Of course, we are only interested in its application to finite and potentially infinite
collections of points, and to line segments, insofar as they might legitimately be regarded
as collections of points. The notion of an arbitrary collection of points only developed
through the work of nineteenth-century mathematicians, and is thus not germane to our
interpretation of the Paradox of Measure, nor even to its resolution.

21It is “ancient” for deploying potentially infinite, rather than countably infinite, covers.
22See [Harnack, 1885]. We introduce Harnack’s notion below in Definition 5.
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we say that the total length of Ξ exceeds c if and only if for some n the sum
of the lengths of the line segments generated by Ξ through stage n exceeds
c.23

Definition 1 Let X be a collection of points, and let c be a magnitude. We
say X has ancient-measure c if and only if

1. for every potential infinity of line segments Ξ, if Ξ covers X, then the
total length of Ξ exceeds c, and

2. for every n > 0 there is a potential infinity of line segments Ξ such that
Ξ covers X and the total length of Ξ is less than c+ 1/n.

First, note that, by Definition 1, a collection of points X has ancient-
measure 0 if and only if X lacks magnitude in the sense heretofore explicated
through the use of the Covering Principle as elaborated in the application
given by 11. That is,

13 X lacks magnitude if and only for every n > 0, there is a potential
infinity of line segments Ξ such that Ξ covers X and the total length of Ξ is
less than 1/n.

For convenience of future reference, we restate Theorem 1 in terms of the
notion of measure as follows.

Theorem 3 The ancient-measure of every potential infinity of points is zero.

2.2 The Paradox Formulated in Terms of Ancient-Measure

We may now reformulate our interpretation of the Paradox as the following
argument that a line segment is not composed of a collection of points.

1. The magnitude of a collection of points is its ancient-measure.

2. Every collection of points is either finite or potentially infinite.

3. The ancient-measure of every finite or potentially infinite collection of
points is zero.

4. The magnitude of a line segment is its length, and is thus non-zero.
23Note that we admit the case that c = 0, the magnitude of a “degenerate” line segment.
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5. A line segment is not composed of a collection of points.

Claim 1 is the central thesis of our interpretation. We review the main ele-
ments in our argument for this claim. First, when we extend the notion of
magnitude from line segments, which are intuitively its only object, to col-
lections of points, we must define this extension in terms of the magnitude
of line segments. How else? Moreover, our definition must assign magnitude
zero to collections consisting of a single point, since it is clear from our text
that this is required for a correct interpretation of the Paradox. Moreover,
the extended notion should assign magnitude 0 to those collections of points
familiar to mathematicians of the ancient world, such as the bisection point
process, else it is obscure why the argument would be a source of puzzle-
ment at all. Finally, the mathematical and logical resources deployed in the
definition should be accessible within the framework of ancient mathemat-
ics.24 All these desiderata are satisfied by the highly constructive notion
of ancient-measure we have defined.25 We take claim 2 as an expression of
the fundamentally constructive approach of the mathematicians and philoso-
phers of the ancient world to the notion of infinity. Claim 3 is Theorem 3, a
result whose highly constructive proof is easily accessible within the frame-
work of ancient mathematics. Claim 4 is the fundamental principle that the
magnitude of a line segment is its length; the fact that this length is strictly
greater that 1/n for some n, and is thus non-zero, is a corollary to the Axiom
of Archimedes. The conflict between the intuitive notion of magnitude ap-
plied to line segments and the constructed notion of magnitude of collections
of points expressed in Claim 5 is the essence of the Paradox as we interpret

24We would like to thank Jeremy Avigad for pointing out that there is a significant
gap between the mathematical resources necessary to articulate the definition of ancient-
measure in the case that c = 0 and c > 0. In particular, the requirement expressed in
Definition (1.1) is trivial to verify in the case that c = 0. Thus, in our argument for
Claim 3, we only needed to provide a substantive verification of the requirement expressed
in Definition (1.2). On the other hand, it is obscure that the requirement expressed in
Definition (1.1), in the case c > 0, could have been grasped by the ancients, insofar as its
verification in a particular case would involve refuting the existence of a potentially infinite
cover of total length less than some strictly positive c. It is exactly such verification, in
application to potentially infinite covers of a non-degenerate line segment, that would be
required to resolve the Paradox as we understand it. Thus, from our point of view, this
represents a fundamental conceptual obstacle to the resolution of the Paradox in antiquity.

25The forthcoming resolution of the Paradox will provide further, indeed compelling,
justification for identifying the magnitude of a collection of points with its ancient-measure.
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it.26

3 The Paradox Resolved
Borel resolved the Paradox of Measure in his doctoral dissertation, submit-
ted in 1893, defended in 1894, and published in 1895.27 Borel’s significant
contribution to the history of ideas in this respect has so far gone unnoticed.
In order to appreciate the depth and novelty of his fundamental contribu-
tion, we need to consider some developments in mathematical analysis in the
1880’s that provide the immediate context for his work. We begin with the
notion of content.

3.1 Content

The concept of content was first defined by Otto Stolz in 1884 and was
discovered independently by other analysts shortly thereafter, among them
Cantor.28 We will adopt the canonical definition given by Axel Harnack in
1885.29

Definition 2 Let X be a collection of points, and let c be a magnitude. We
say X has content c if and only if

1. for every finite collection of line segments Ξ, if Ξ covers X, then the
total length of Ξ exceeds c, and

2. for every n > 0 there is a finite collection of line segments Ξ such that
Ξ covers X and the total length of Ξ is less than c+ 1/n.

26The astute reader will have noticed that the potential infinity of intervals Ξ2 deployed
in our proof that the bisection point process lacks magnitude, already witnesses that the
ancient-measure of the bisection point process, and by extension, any potential infinity of
points, has ancient-measure at most 1/2, which is already paradoxical on our interpreta-
tion. We would like to thank Henry Towsner for this observation.

27[Borel, 1895]
28See [Stolz, 1884], [Cantor, 1884], and [Hawkins, 2001], pp. 61-66.
29Harnack uses the term “Inhalt” for the notion defined here (see [Harnack, 1885]).

It is now generally referred to as outer-content in texts on analysis (see, for example,
[Bressoud, 2008]) to distinguish it from related notions that were introduced during the
development of the theory of measure and integration. Since we will make no use of these
other notions, we retain the simplicity of Harnack’s terminology.
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The definition of content, so far as we are aware, represents the first
attempt to introduce a concept that extends the notion of magnitude to col-
lections of points more general than line segments. Of course, the concept
of ancient-measure introduced above does just this; but this notion (though
within the conceptual ambit of mathematicians of the ancient world, as ar-
gued above) was not actually articulated before 1884. Content is a simpler
notion than ancient-measure, insofar as it is defined in terms of finite, rather
than potentially infinite, covers. Readers may confirm their grasp of Defini-
tion 2 by establishing the following proposition.30

Proposition 2 If X is a finite collection of points, then the content of X is
0.

Throughout the 1870’s and 1880’s analysts struggled to determine the
extent to which topological notions could explain phenomena in the theory of
integration.31 Part of this effort was devoted to determining the relationship
between such topological notions and the notion of content, the progenitor
of “measure-theoretic” concepts. The following result of Cantor32 confirmed
the intuition that collections of points that are “large” in a topological sense,
should also be “large” in a measure-theoretic sense.

Definition 3 A collection of points X is dense in a line segment I if and
only for every sub-segment J of I, there is a point in X that lies on J.

Proposition 3 Let X be a collection of points that lie on the line segment
I. If X is dense in I, then the content of X is equal the length of I.

The reader can verify that the elementary poof of this proposition, given
in Appendix A, would present no challenge to a student of mathematics in
Plato’s Academy.

Analysts of this period also sought to show that collections of points
that are “negligible” in a topological sense are also “negligible” in terms of
magnitude. An important concept of topological negligibility they studied
was nowhere-denseness.

Definition 4 A collection of points X is nowhere-dense in a line segment
I if and only if for every sub-segment J of I, there is a sub-segment K of J,
such that no point in X lies on K.

30The proof of Proposition 2 is essentially the same as that of Proposition 1.
31Chapter 4 of [Hawkins, 2001] presents a riveting account of this struggle.
32See [Cantor, 1883].
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A result of Cantor lent some credence to the idea that nowhere-density might
guarantee negligible magnitude. He constructed an example of a collection of
points, C ⊂ [0, 1], now known as the Cantor discontinuum, that is nowhere-
dense in [0, 1]; moreover, the content of C is 0, despite the fact that its
cardinality is the same as that of the continuum.33 This appeared to confirm
the idea, popular at the time, that magnitude should be intimately connected
to topological notions, and should have naught to do with cardinality. After
all, the countable set of binary rational numbers is dense in [0, 1], and there-
fore, by Proposition 3 has content 1, while the uncountable nowhere-dense
set C has content 0.34

3.2 Modern-Measure

In the same paper in which he defined the notion of content, Harnack toyed
with an alternative definition of a notion of magnitude for a collection of
points X; in place of finite covers of X, he proposed to consider countably
infinite covers of X. We formulate this notion as follows.

Definition 5 Let X be a collection of points, and let c be a magnitude. We
say X has modern-measure c if and only if

1. for every countable infinity of line segments Ξ, if Ξ covers X, then the
total length of Ξ exceeds c, and

2. for every n > 0 there is a countable infinity of line segments Ξ such
that Ξ covers X and the total length of Ξ is less than c+ 1/n.

The notion defined here is generally referred to as outer-measure.35 Since
we will have no occasion to refer to other notions of measure, we prefer
the term modern-measure, to outer-measure, for the contrast with ancient-

33Cantor attached considerable significance to this result. See, for example, his letter
to Mittag-Leffler of November 26, 1883, [Meschkowski and Nilson, 1991], p. 151.

34Indeed, Hankel purported to prove that every nowhere-dense collection of points has
content 0 (see [Hawkins, 2001], p. 167). Hankel’s “result” had been anticipated by Dirichlet
in 1829. Alas, this simple connection between topological notions and magnitude proved
to be illusory. Smith, and then Volterra, constructed nowhere-dense sets with content
greater than 0 ([Hawkins, 2001], p. 169).

35See [Oxtoby, 1996], p. 10.
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measure.36 To the best of our knowledge, Harnack37 was the first to entertain
the concept of modern-measure. Note that the definition of modern-measure
is virtually identical to the definition of ancient-measure, except for the cru-
cial detail that it enlists countably infinite collections of line segments rather
than “potentially infinite collections of line segments.” A countably infi-
nite collection is one that can be enumerated by an arbitrary function with
domain the positive integers. That is, the enumeration is regarded as an
actually infinite extension and there is no requirement that it be given by a
process of construction of any kind, or even that it be definable in any terms
whatsoever. This notion of arbitrary enumeration was introduced into math-
ematics only in the nineteenth century and emerged slowly through work of
Dirichlet, Riemann, Cantor, and Dedekind, among others.38 As is clear from
our explication of the notion of a potentially infinite collection, every such
collection is countably infinite. The following proposition, which we record
here for later use, is a corollary to this observation.

Proposition 4 Let X be a collection of points. The modern-measure of X
is no greater than the ancient-measure of X, and the ancient-measure of X
is no greater than the content of X.

3.3 The Persistence of the Paradox of Measure

As it happens, Harnack introduced the notion of modern-measure only to re-
ject it immediately on the grounds that it was not a mathematically fruitful
extension of the notion of magnitude to collections of points. Why? Because
he recognized that the notion would yield paradoxical consequences, if thus
deployed. Hawkins describes Harnack’s assessment as follows: “. . . Harnack
observed that if in the definition of outer content the restriction to a finite

36It is worth remarking that the modern-measure of X is identical to the Lebesgue
measure of X, for every set X that is Lebesgue measurable. (A collection of points X is
Lebesgue measurable if and only if for every n > 0 there is a closed set C and an open set
O such that C ⊆ X ⊆ O and the difference between the modern-measure of O and the
modern-measure of C is less than 1/n.) It is also worth remarking that every collection of
points that is relevant to our discussion of the Paradox of Measure, that is, line segments
and potentially infinite collections, is Lebesgue measurable. From our point of view, the
existence of non-Lebesgue-measurable sets is a twentieth-century curiosity that has no
direct relevance to Zeno’s Paradox of Measure or its resolution.

37See [Harnack, 1885].
38See [Ferreirós, 1999], Section V.1.
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number of covering intervals is dropped, there is a remarkable, paradoxi-
cal consequence: every countable set . . . would have zero ‘outer content’.”39

Hawkins elaborates on Harnack’s understanding of this “paradoxical conse-
quence” and further suggests that Cantor was of like mind.

To Harnack the implication of these observations was clear. They
revealed the crucial importance of the restriction to a finite num-
ber of covering intervals in the definition of outer content. The
idea that countable sets should have zero content appeared para-
doxical to him because countable sets could be dense. For ex-
ample, the set E of rational numbers in [0, 1] is countable and
dense. Because it is dense [its content is] 1, not 0. This seemed
the appropriate measure of E by virtue of its ubiquitousness.
It appeared absurd to regard a dense set as extensionless, as of
negligible measure. Cantor, who had introduced the notion of a
countable set, certainly shared Harnack’s viewpoint.40

Both Harnack and Cantor rejected the concept of modern-measure as an
explication of the notion of magnitude of a collection of points owing to the
air of paradox surrounding it - how can a set dense in the linear continuum
have content 0?! This is exactly the heart of Zeno’s Paradox of Measure as
we interpret it.

But there is more. Harnack finds yet another troubling difficulty with
the concept of modern-measure - he purports to prove that with respect to
this notion, the magnitude of the unit interval on the real line is strictly less
than 1.41 This is the coup de grâce. The modified notion of content could
not possibly be a useful notion of magnitude, if it assigns a line segment a
magnitude other than its length! Of course, this last conclusion is again at
the heart of our interpretation of the Paradox of Measure. As we will see in
Section 3.5, Harnack’s “proof” that the modern-measure of the unit interval
is less than 1 is fallacious. At this point, we wish to emphasize that the air
of paradox surrounding the Paradox of Measure, as we interpret it, persisted
into the 1880’s; in the same way it had baffled thinkers of the ancient world,

39[Hawkins, 2001], p. 172. Harnack’s argument for this conclusion is essentially the same
as that given in the proof of Theorem 1, except that he had no need for the care we have
taken to observe that the ever shrinking collections of covering segments for a potentially
infinite collection of points can themselves be constructed to be potentially infinite.

40[Hawkins, 2001], p. 172.
41See [Bressoud, 2008], p. 63.
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it befuddled mathematicians who were entirely familiar with Cantor’s proof
that the linear continuum is uncountable.42

3.4 Enter Borel

The resolution of the Paradox of Measure hinges on a single fundamental
result concerning the structure of the linear continuum established by Émile
Borel in his doctoral dissertation of 1893. Though Borel is famous as a
pioneer in establishing measure theory, his dissertation preceded that de-
velopment, and focussed on the solution to a problem in complex analysis
concerning the analytic continuation of a class of functions of a complex vari-
able that had preoccupied Henri Poincaré and several other mathematicians
for more than a decade.43

42The following quotation from Cantor’s letter to Paul Tannery dated October 5, 1888,
[Meschkowski and Nilson, 1991], pp. 323–5, trans. A. Newstead, [Newstead, 2001], sug-
gests the intriguing possibility that Cantor may have anticipated the Finiteness Theorem
of Borel discussed below.

You are right to point out that, I so to speak, renew the Pythagorean view,
insofar as I teach that the geometrical continuum is a real compound of
separate points, geometrical individuals, just as a forest is composed out of
trees, but because the Pythagoreans understood the continuum as a sum of
points, [a view] which is powerless against the demonstrations of Zeno of
Elea, I take the continuum to be a point set (ensemble of points) of a more
definite, precisely specified nature. My grasp of the geometrical (and tem-
poral) continuum is one which harmoniously combines the advantages of the
Aristotelian view with what is true in the Pythagorean way of understand-
ing, so that there will be no Zeno waiting for me who will demonstrate any
kind of contradiction whatsoever in my most well-considered concept of the
continuum.

As mentioned earlier, Cantor’s construction of a set of content zero equipollent to the
linear continuum made it clear that the resolution of the Paradox of Measure did not lie
in the cardinality of an interval. But his result, Proposition 3 above, tells us immediately
that if one could establish that the measure of a line segment is equal to its content, then
the Paradox would be overcome. We have no direct evidence that Cantor actually recog-
nized this finiteness result, though he made implicit use of the compactness of Euclidean
n-space in arguments advanced in [Cantor, 1884]; see [Hawkins, 2001], p. 62. Nonetheless,
it is exactly this deep property of the linear continuum that allows for a harmonious com-
bination of “the advantages of the Aristotelian view with what is true in the Pythagorean
way of understanding.”

43See [Hawkins, 2001], pp. 97-106 for a detailed description of the problem and Borel’s
contribution to its resolution. It is worthy of note that Poincaré himself was one of the
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Borel’s pivotal result made its appearance modestly, in a footnote to one
of the main arguments in the thesis. In the course of this argument, Borel
needed to show that a certain set of points X lying on a line segment I had a
non-empty complement in I, that is, the collection of points Y = I−X 6= ∅.
In order to do so, he first established that the collection of points X could
be covered by countably many intervals of total length strictly less than the
length of I. Borel drew this conclusion

based on a theorem interesting by itself . . . : If one has an infinity
of subintervals on a line such that every point of the line is interior
to at least one of them, a finite number of intervals chosen from
among the given intervals can be effectively determined having
the same property.44

3.4.1 Borel’s Finiteness Theorem: “The First Fundamental
Theorem of Measure Theory”

We formulate Borel’s Finiteness Theorem as follows.45

Theorem 4 (Borel, 1898) Suppose the countable infinity of line segments
I1, I2, . . . covers the line segment I, that is, every point of I, including its
endpoints, lies on the interior of at least one of these segments. Then there
is a positive integer k, such that the finite collection of line segments I1, . . . , Ik
covers I.

Borel’s Finiteness Theorem is the key to the resolution of the Paradox of
Measure. Two decades later, Borel referred to this result as the “First Fun-
damental Theorem of Measure Theory,”46 because it has the immediate corol-
lary that the modern-measure of a line segment is its length.47 Though in the

rapporteurs for Borel’s thesis.
44[Borel, 1895], p. 51 cited in [Hawkins, 2001], pp. 101, fn. 9.
45The result, and its generalizations, are often referred to as the Heine-Borel Theorem,

though it is widely recognized that this is a misnomer, since Heine neither stated nor
proved any such result.

46The appellation “Le premiere théorème fondamental” first appears in the second edi-
tion (1914) of Leçons sur la Théorie des Fonctions in a lengthy note to the first edition
(1898) and is reprinted in [Borel, 1950], p. 223. In this note, Borel explains the signifi-
cance of the result in establishing that his approach to assigning a measure to (what we
now call) the Borel sets is well-defined.

47See Section 3.5, Corollary 1.
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foregoing quotation from [Borel, 1895], Borel states his theorem for infinite
covers, in point of fact, he only proved it for countably infinite covers, and in
the first edition of his Leçons sur la Théorie des Fonctions, published only
three years later, he states the result with this restriction.48 The enormous
significance of Borel’s Finiteness Theorem was recognized by the mathemati-
cians of his day, as is obvious from their efforts to produce novel proofs.49

We include a proof of Borel’s Finiteness Theorem, to highlight the mathe-
matical resources upon which it draws. This will also prepare the way for
the meta-mathematical reflections in Section 4.

3.4.2 A Proof of Borel’s Finiteness Theorem

It is well-known that mathematicians of the nineteenth century achieved an
understanding of the linear continuum that enabled a new level of rigor in
arguments in analysis. In 1872 Cantor and Dedekind each presented con-
structions of the continuum of real numbers – Cantor’s in terms of Cauchy
sequences of rational numbers, and Dedekind’s in terms of ‘cuts’ in the order-
ing of the rational numbers.50 These constructions allowed mathematicians
to present entirely rigorous treatments of the operations with limits that lay
at the heart of the differential calculus. Many would credit these develop-
ments with depriving Zeno’s paradoxes of motion of their force.51

48See [Borel, 1898], p. 42. We adopt the formulation for countably infinite covers, since
this is all that is required for the resolution of the Paradox of Measure. Borel’s error in
claiming the stronger result created some confusion, even among mathematicians of the
stature of Lebesgue, who studied [Borel, 1895], and applied the Theorem in his 1901 thesis
in an argument that required the result for uncountable covers. When Lebesgue realized
that Borel had only established the result for countable covers, he gave a proof, published
in 1904, for the case of arbitrary open covers. As it happens, Pierre Cousin had proved a
version of the two-dimensional case of Borel’s Finiteness Theorem for arbitrary open covers
in 1895! Additional proofs of the Theorem were given by Schoenflies in 1900 and Young in
1902. It is Schoenflies who first, mistakenly, attributed the result to Heine, based on the
similarity of methods of his own proof with Heine’s proof of the significant result that a
continuous function on a closed interval is uniformly continuous (a proof Heine apparently
pirated from Dirichlet without attribution). Cf. [Lebesgue, 1904] and [Andre et al., 2013].

49See [Andre et al., 2013] and [Hildebrandt, 1926] for detailed discussions of the history
and mathematics of Borel’s Finiteness Theorem.

50See [Cantor, 1872] and [Dedekind, 1996].
51For example, [Salmon, 1980], p. 35:

We should begin by noting that, although the calculus was developed in
the seventeenth century, its foundations were beset with very serious logical
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A central feature of Dedekind’s approach was to provide an explicit un-
derstanding of the sense in which a line is continuous, and a construction
of the linear continuum that would enable a perspicuous proof of its conti-
nuity in this sense. The ancients’ understanding of continuity, though less
explicit, appears quite close to Dedekind’s. Aristotle captures the essence of
the notion of continuity that characterizes the linear continuum as follows.

I call something ‘continuous’ whenever the limit of both things
at which they touch becomes one and the same.52

In comparison, the following property characterizes the “essence of continu-
ity,” according to Dedekind.

Dedekind Cut Property: “If all points of the straight line fall into two
classes such that every point of the first class lies to the left of every point
of the second class, then there exists one and only one point which produces
this division of all points into two classes, this severing of the straight line
into two portions.”53

The following property, also with ancient pedigree, is a consequence of the
Dedekind Cut Property; it will prove useful in the proof of Borel’s Finiteness
Theorem.

difficulties until the nineteenth century – when Cauchy clarified such fun-
damental concepts as functions, limits, convergence of sequences and series,
the derivative, and the integral; and when his successors Dedekind, Weier-
strass, et al., provided a satisfactory analysis of the real number system
and its connections with the calculus. I am firmly convinced that Zeno’s
various paradoxes constituted insuperable difficulties for the calculus in its
pre-nineteenth-century form, but that the nineteenth-century achievements
regarding the foundations of the calculus provide means which go far toward
the resolution of Zeno’s paradoxes [of motion].

52Aristotle, Physics, 227a11-12.

λέγω δ΄ εἶναι συνεχὲς ὅταν ταὐτὸ γένηται καὶ ἓν τὸ ἑκατέρου πέρας οἷς ἅπτονται.

Commentators recognize this passage as central to understanding Aristotle‘s conception
of the linear continuum. See, for example, [White, 1988].

53See [Dedekind, 1996], Section 3. [Stein, 1990] emphasizes the similarity between Aris-
totle’s and Dedekind’s formulations.
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Nested Interval Completeness: Suppose that {I1, I2, . . .} is a countably
infinite collection of nested line segments, that is,

(N1) each succeeding segment is a subsegment of its predecessor, and

(N2) for every positive integer n, the length of In is at most 1/n.

Then there is a unique point that lies on each of the segments In.54 We are
now ready to prove the Borel Finiteness Theorem.

Proof of Theorem 4:55 Suppose the countably infinite collection of line
segments {I1, I2, . . .} covers the segment I, and suppose for reductio ad ab-
surdum that for no positive integer n, {I1, . . . , In} covers I. We construct
a collection of line segments {J1, J2, . . .}, with J1 = I to satisfy conditions
(N1-N2) of the Nested Interval Completeness Property, together with the
condition that
(*) for every positive integer k, there is no positive integer n such that
{I1, . . . , In} covers Jk.

We begin our construction by setting J1 = I; note that J1 then satisfies
(*) by hypothesis. Suppose for k > 1 we have constructed {J1, J2, . . . , Jk−1, }
satisfying conditions (N1-N2) and (*), for all positive integers j ≤ k− 1. We
construct Jk as follows. Let L and R be the left and right closed subintervals
obtained by bisecting the closed interval Jk−1. Since Jk−1 satisfies (*), it fol-
lows that at least one of L and R must satisfy (*). For otherwise, there would
be positive integers nl and nr with {I1, . . . , Inl

} covering L and {I1, . . . , Inr}
covering R, and hence {I1, . . . , In} covering Jk−1, where n is the larger of nl

54See [Propp, 2013] for a taxonomy of the logical relations among several continuity
properties of the linear continuum, among them the Dedekind Cut Property, Nested In-
terval Completeness, and Order Completeness, also known as the Least Upper-Bound
Principle. See [Sinkevich, 2015] for a history of the use of the Nested Interval Complete-
ness Property from antiquity to the late nineteenth century. Note that our convention
that, unless stated otherwise, line segments are understood to include their endpoints,
remains in force in our statement of this property.

55The proof we present is essentially the same as that given by Borel in [Borel, 1898],
pp. 42-43. The reader may observe a similarity between this proof and that of the König
Infinity Lemma: the statement that a binary tree with infinitely many levels has an
infinite path. Both involve an iterated application of the infinite pigeonhole principle -
the statement that if you sort infinitely many objects into two pigeonholes, at least one of
the holes will contain infinitely many objects - followed by inference of the existence of a
sequence that witnesses the choice of an infinite hole at each stage. See [Stillwell, 2013],
p. 75 for discussion of this point, and Section 4 below for an examination of the deeper
connection between these results.
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and nr, contradicting the supposition that Jk−1 satisfies (*). Let Jk = L, if
L satisfies (*), and let Jk = R, otherwise. It is immediately clear from the
choice of Jk that it satisfies condition (*). Moreover, since Jk is a subinterval
of Jk−1 of half its length, it is clear that the sequence {J1, J2, . . . , Jk} satisfies
conditions (N1-N2), for all positive integers j ≤ k.

This concludes our construction of the collection {J1, J2, . . .}.56 By the
Nested Interval Completeness Property, there is a point p such that for every
positive integer k, p lies on Jk. Since, by hypothesis, the collection of line
segments {I1, I2, . . .} covers I, there is a positive integer m such that p lies
on Im. It follows at once from the Axiom of Archimedes, and the fact that
{J1, J2, . . .} satisfies condition (N2), that for some positive integer n, for
every point q ∈ Jn, q is a member of Im. But this contradicts the fact that
Jn satisfies (*).

3.5 The Vindication of the Notion of Measure (Ancient
and Modern)

The following corollary to Borel’s Finiteness Theorem, drawn by Borel him-
self,57 constitutes the resolution of the Paradox of Measure. It establishes
that both ancient- and modern-measure assign the intuitively correct mag-
nitude to a line segment, that is, its length.

Corollary 1 Let I be a line segment. Both the modern-measure of I and the
ancient-measure of I are equal to the length of I.

Proof : It follows immediately from Borel’s Finiteness Theorem that the
modern-measure of a line segment I is equal to the content of I. And it is an
immediate consequence of Proposition 3 that the content of a line segment is
equal to its length. Hence, the modern-measure of a line segment is equal to
its length, from which it follows, by Proposition 4, that the ancient-measure
of a line segment is equal to its length.

56Insofar our interpretation of the the Paradox involves a sound mathematical argument
that makes use only of notions entirely intelligible to mathematicians of the ancient world,
the reader may legitimately wonder whether the resolution we propose is similarly accessi-
ble to such thinkers. It is reasonably clear to us that the sequence {J1, J2, . . .} constructed
in the proof of Borel’s Finiteness Theorem is not potentially infinite. Indeed, this may be
the only point in the argument that lies beyond the grasp of ancient mathematicians. We
reflect on this point briefly in Section 4.

57[Borel, 1895].
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3.6 A Reprise of the Paradox of Measure and its Reso-
lution

Let us take stock of what we’ve accomplished to this point. We have pro-
vided a notion of magnitude, ancient-measure, which assigns magnitude 0
to all potential infinities of points (Theorem 3). As emphasized in Section
2.2, the understanding that every potential infinity of points has measure
0 was well within the grasp of ancient mathematicians. Insofar as the an-
cients would have found it difficult to conceive of a collection of points as
neither finite nor potentially infinite, so far would they have rejected the
claim that a line segment is constituted out of points. On the other hand, we
have shown that the notion of ancient-measure assigns to every line segment,
conceived as constituted out of a collection points, its intuitively correct mag-
nitude, namely its length (Corollary 1). Borel called Theorem 4 the “First
Fundamental Theorem of Measure Theory.” It implies that the notions of
ancient-measure and modern-measure accord with intuition when applied to
the paradigmatic cases of magnitudes, that is, line segments. This resolves
the Paradox in the sense that we can explain why the ancients were drawn to
the conclusion that every collection of points lacks magnitude, while we can
maintain, today, that every line segment, even if constituted out of points,
has magnitude. Of course, Corollary 1 together with Theorem 3 imply that if
a line segment is constituted out of a collection of points, then that collection
is neither finite nor potentially infinite. Thus, it may be argued that from the
perspective of the ancients, what we are calling a “resolution” of the Paradox,
might well be regarded as an embrace of incoherence. As Quine aptly put
the matter, “One man’s antinomy is another man’s falsidical paradox, give
or take a couple of thousand years.”58

58[Quine, 1976], p. 9. The well-known ancient dictum is that philosophy begins in won-
der (Plato, Theaetetus 155d; Aristotle, Metaphysics 982b)—which is to say it begins with
a feeling of puzzlement (ἀπορία) from which we recoil and flee (φεύγειν) in search of un-
derstanding (ἐπιστήμη). We believe that the history of thought about the Paradox of
Measure is a testament to this philosophical trajectory, but we also acknowledge that,
from the ancient point of view, what we call ‘understanding’ might yet constitute another
encounter with ἀπορία. It is interesting to note that our advance in understanding about
the Paradox has, over the centuries, proceeded at times accidentally, owing much of its
progress to tangential inquiries in the footnotes and to the practically oriented applications
of mathematical thinking to real-world problems (what Aristotle would call θεωρία and
πρᾶξις respectively).
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4 Beyond Borel
In this section we will reflect on the Paradox and its resolution from a meta-
mathematical point of view. These reflections are made possible by advances
in proof theory late in the last century. The astute reader will have noticed
that we have made no mention, up to this point, of Cantor’s result that the
linear continuum is uncountable, except to say that mathematicians of the
late-nineteenth century who were entirely familiar with this result remained
flummoxed by the Paradox. In particular, there is no explicit use made in
the proof of Borel’s Finiteness Theorem of the fact that the linear continuum
is uncountable, nor in the proofs of any of the other results, upon which
Corollary 1 depends. Moreover, we have made no mention of the additivity
properties of measure, ancient or modern, in our analysis of the Paradox
or its resolution. Both these “lacunae” in our discussion may surprise read-
ers who are familiar with what might justly be called the “Received Modern
View” of the Paradox of Measure, as advanced by Adolf Grünbaum and elab-
orated by Brian Skyrms, which emphasizes the importance of both Cantor’s
result that the linear continuum is uncountable and the additivity proper-
ties of (Lebesgue) measure in the analysis and resolution of the Paradox of
Measure.59 This and the following section will cast light on these matters.

Before proceeding, it is worth noting that the resolution of the Paradox
as we understand it yields as an immediate corollary the uncountability of
the linear continuum.

Corollary 2 (Cantor, 1873) The collection of points constituting a line
segment is uncountable.

Proof : By Corollary 1, the modern-measure of a line segment is its length,
while, by Theorem 3 and Proposition 4, the measure of a countable collection
of points is 0.

It is worthy of note that Borel’s discovery of his Finiteness Theorem was
motivated precisely by the need to argue for the uncountability of a point
set in just this way.60

59See [Grünbaum, 1952], [Grünbaum, 1967], [Skyrms, 1983], [Holden, 2004],
[Friedman, 2012], and [Huggett, 2019] for some recent endorsements of this view.

60See [Borel, 1895]. This alternative proof of the uncountability of the linear continuum
is well-known to students of analysis. Cf. [Oxtoby, 1996], pp. 1-4. Oxtoby presents this al-
ternative “measure-theoretic” proof and contrasts it with a formulation of Cantor’s original
“topological” proof ([Cantor, 1996]) that makes use of only the Nested Interval Complete-
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As we have seen in the sections above, the Borel Finiteness Theorem
implies that the modern-measure of a line segment is its length, which, to-
gether with the fact that the modern-measure of a countable point set is 0,
implies that a line segment (conceived as a point set) is uncountable (Can-
tor’s Uncountability Theorem, [Cantor, 1996]). Insofar as all of these results
are theorems of real analysis, what sense does it make to claim that one im-
plies another – aren’t they all obviously equivalent to one another from the
point of view of real analysis?

In order to assess such claims, we need a framework with respect to which
we can compare the strength of various theorems of real analysis. Reverse
Mathematics, an area of proof theory that emerged in the 1970’s, provides
just such a framework.61 Following in the grand tradition of Hilbert and
Bernays’ monumental work, Grundlagen der Mathematik, Reverse Mathe-
matics provides formalizations of real analysis, and other areas of contempo-
rary mathematics, in second-order arithmetic. The great discovery of con-
temporary research in this area, which gives the area its name, is that “in
many particular cases, if a mathematical theorem is proved from appropri-
ately weak set-existence axioms, then the axioms will be logically equivalent
to the theorem.”62 It is exactly this aspect of Reverse Mathematics that will
allow us to calibrate the strength of the various results at play in the reso-
lution of the Paradox of Measure. The approach of Reverse Mathematics is
to introduce a weak base theory, a fragment of second-order arithmetic, with
respect to which the equivalence of theorems of analysis can be meaning-
fully assessed. This theory, RCA0, consists of a weak fragment of first-order
arithmetic together with the recursive comprehension schema that asserts the
existence of recursive sets of natural numbers.63 It is noteworthy from our
point of view that though RCA0 appears to be quite weak, it suffices to prove
the nested interval completeness property, and Cantor’s Uncountability The-
orem, as well as the fact that the modern-measure of a countable point set is

ness Property. We compare these two arguments from a meta-mathematical point of view
in the following subsection.

61[Hirschfeldt, 2014], pp. 3-5 emphasizes the interest of Reverse Mathematics in this
connection.

62[Simpson, 2009], pp. xxiii-xiv. This work remains the standard reference for Reverse
Mathematics, though the field has developed rapidly in the little more than a decade since
its publication.

63See [Simpson, 2009], Chapter II, for details. Some sense of the strength of RCA0 can
be gleaned from the fact that its minimum ω-model consists of the recursive sets of natural
numbers.
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0.64 On the other hand, RCA0 suffices to prove neither the Borel Finiteness
Theorem, nor its corollary that the modern measure of a line segment is its
length, as we now explain.

The technique deployed by Borel in his 1898 proof of the Borel Finiteness
Theorem (BFT) is similar to that used in standard proofs of the König Infin-
ity Lemma.65 The next result provides a deep explanation for this similarity.
Here WKL is a formalization of the König Infinity Lemma in second-order
arithmetic.66

Theorem 5 (Friedman) RCA0 `WKL ⇐⇒ BFT.

The next result, together with Theorem 5, provides a striking metamath-
ematical analog to the historical progression we have traced toward the res-
olution of the Paradox of Measure.67

Theorem 6 RCA0 6`WKL.

Remarkably, Theorems 5 and 6 precisely identify a sense in which Borel’s
Finiteness Theorem is strictly stronger than those principles of analysis, as
formalized by RCA0, that suffice to establish many other fundamental prop-
erties of the linear continuum, including nested interval completeness and
uncountability. Of course, we do not suggest that the relative strength of
the Borel Finiteness Theorem from a metamathematical point of view ex-
plains the historical progression - some results established even earlier in the
nineteenth century, such as the Bolzano-Weierstrass Theorem, require even
stronger set existence principles to derive. But it does highlight the new
depth of understanding of a fundamental feature of the linear continuum
that the Borel Finiteness Theorem represents. It also complements the his-
torical evidence that knowledge of the uncountability of the linear continuum
was insufficient to dispel the mystery surrounding the Paradox of Measure.
Moreover, it indicates the extent to which resolution of the Paradox of Mea-
sure outruns the mathematical resources sufficient to unravel the paradoxes
of motion.68

64See [Simpson, 2009], pp. 76-77.
65See especially footnote 55.
66See [Simpson, 2009], pp. 127-130 for discussion and a proof of Theorem 5 which was

announced in [Friedman, 1974].
67See [Simpson, 2009], p. 31, for a proof of Theorem 6.
68See footnote 51. It is worth remarking that though WKL0(= RCA0 + WKL) is far
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The reader may legitimately complain that we have gotten a bit ahead of
ourselves, insofar as it is the fact that the modern-measure of a line segment
is its length (MML) that actually represents the resolution of the Paradox
of Measure, and not the Borel Finiteness Theorem itself. As it turns out,
Reverse Mathematics provides a fascinating characterization of the strength
of MML in terms of a combinatorial principle weaker than WKL, yet still
not derivable in RCA0. Let T be a binary tree and let Tn be the number of
nodes of T at level n. WKL formalizes the principle that for every binary
tree T , if Tn > 1, for every natural number n, then T has an infinite path.
WWKL formalizes the principle that for every binary tree T , if there is a k
such that Tn/2n > 1/k, for every natural number n, then T has an infinite
path.69 It is evident that WKL implies WWKL over RCA0. The following
remarkable results characterize the strength of the resolution of the Paradox
of Measure.70

Theorem 7 (Yu-Simpson and Brown-Giusto-Simpson) .

1. RCA0 `WWKL ⇐⇒ MML.

2. RCA0 6`WWKL.

3. RCA0+WWKL 6`WKL.

The foregoing Theorem establishes that MML, which represents for us the
resolution of the Paradox of Measure, though strictly weaker than the Borel
Finiteness Theorem, is, nonetheless, independent of RCA0, a system strong
enough to prove the uncountability of the linear continuum.

richer than RCA0 from a mathematical point of view, it is nonetheless still compara-
tively weak from a metamathematical point of view – it is a conservative extension of
primitive recursive arithmetic with respect to Π0

2 sentences. This finititistic reduction is
of great significance from the point of view of partial realizations of Hilbert’s Program,
cf. [Simpson, 1988] and [Simpson, 2009], pp. 377-378.

69That is, WWKL asserts that if there is a fixed positive lower bound on the density of
the levels of a binary tree T , then T has an infinite path. Cf. [Simpson, 2009], p. 393.

70Part 1 of the theorem follows immediately from Theorem 1 of [Yu and Simpson, 1990],
p. 175 and Theorem 3.3 of [Brown et al., 2002], p. 196, while parts 2 and 3 are established
in [Yu and Simpson, 1990], p. 172. Denis Hirschfeldt (private communication) informs us
that a further reversal of WWKL of interest in connection with the Paradox of Measure
may be obtained via methods developed by [Brown et al., 2002] and [Dorais et al., 2016].
Namely, let MNZ be a formalization of the statement that the modern-measure of an
interval is not zero; RCA0 `WWKL ⇐⇒ MNZ.
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5 Conclusion
In this paper we have presented a novel interpretation of Zeno’s Paradox
of Measure. The crux of the interpretation is the definition of a notion of
magnitude, ancient-measure, with respect to which all potential infinities of
points lack magnitude. The notion of ancient-measure itself, and the proof
we give to show that the ancient-measure of potential infinities of points is
zero, lie entirely within the conceptual repertoire of the mathematicians of
antiquity. We observe that essentially the same argument remained a puz-
zle to mathematicians through the 1880’s, especially insofar as it applies to
collections of points dense in the linear continuum. The Paradox was finally
resolved by Borel, who established that the ancient- (and modern-) measure
of a line segment is equal to its length. This not only resolves the Paradox,
but also buttresses the claim that ancient-measure is a suitable notion of
magnitude in application to collections of points, especially in relation to the
Paradox of Measure, where the only such collections in question are potential
infinities and line segments. Indeed, Borel’s name for his Finiteness Theorem
– “The First Fundamental Theorem of Measure Theory” – signals his own
recognition of its significance in this respect. We have also gone on to discuss
the metamathematics of Borel’s Finiteness Theorem, and the light this sheds
on the extent to which the resolution of the Paradox outruns the resources
of the mathematics of antiquity.

There are a number of respects in which our treatment of the Paradox of
Measure diverges from prior discussions in the philosophical literature. First,
we have emphasized that the resolution of the Paradox did not come about as
a result of Cantor’s proof that the linear continuum is uncountable: we have
presented historical evidence that the Paradox remained puzzling through
the 1880’s, and we have observed that the resolution of the Paradox is in-
dependent of formal systems that are adequate to establish Cantor’s result.
This represents a major departure from earlier treatments of the resolution
of the Paradox in the twentieth century. In particular, the highly influential
works [Grünbaum, 1952] and [Grünbaum, 1967] advance the view that the
crucial element in the resolution of the Paradox is exactly the fact that the
linear continuum is uncountable. This view is echoed in [Skyrms, 1983], and
is invoked in [Holden, 2004] and [Friedman, 2012], who discuss the Paradox
in the context of the early and late modern period, and persists in what
may be regarded as the standard contemporary treatment of Zeno’s Para-
doxes, [Huggett, 2019]. Insofar as our interpretation of the Paradox reveals
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that it is not the uncountability of the continuum, but rather the Finiteness
Theorem of Borel that leads to the resolution of the Paradox, scholarly un-
derstanding of the response of thinkers throughout the history of philosophy
to the import of the Paradox for issues ranging from the reality of space to
the possibility that intervals of time are composed of instants lacking du-
ration will need to be reconsidered. Borel’s Finiteness Theorem establishes
a fundamental property of the linear continuum, the “compactness of line
segments (closed intervals)”, independent of the continuity of the line as un-
derstood from Aristotle to Dedekind; it is this fundamental property, first
articulated and established by Borel, that lies at the heart of the resolution of
the Paradox of Measure. As far as we are aware, philosophers have not been
cognizant of the significance of Borel’s Finiteness Theorem in this regard.
We hope that directing attention to the fact that Borel’s Finiteness Theorem
represents a fundamental property of the linear continuum may have philo-
sophical impact even beyond discussions of the Paradox of Measure. Second,
we have refrained from deploying any measure-theoretic apparatus in our ar-
guments, such as the “summation of zeroes” as would be legitimated by the
countable additivity of Lebesgue measure. Borel’s Finiteness Theorem is the
prolegomenon to measure theory, and, from an intuitive point of view, it is
at some conceptual remove from the apparatus he and Lebesgue built upon
it. In particular, we have not appealed to two principles, clearly articulated
in [Chen, 2021], that lie behind the prevailing contemporary interpretations
of the Paradox:

Additivity. The size of the whole is the sum of the sizes of its
disjoint parts.
Zeros - Sum -To - Zero. Zeros, however many, always sum up to
zero.71

As we have emphasized, we interpret the Paradox of Measure as a valid math-
ematical argument rooted in the practice of the mathematics of antiquity that
does not appeal to either of these principles. Again, this represents a radical
departure from other interpretations, and its impact on reevaluation of argu-
ments concerning the nature of time and space may be even greater than the
insight that cardinality plays no role in the resolution of the Paradox. This is
connected with a third matter, worthy of note. We have not discussed issues
concerning the existence of point-sets that are not Lebesgue measurable, nor

71[Chen, 2021], p. 4442.
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speculated about their bearing on the resolution of the Paradox. We regard
issues concerning Lebesgue measurability as entirely irrelevant to the reso-
lution of Zeno’s Paradox of Measure, insofar as the Paradox deals only with
the magnitude of potential infinities of points and line segments, with re-
spect to which ancient-measure and Lebesgue measure coincide. We do not,
of course, mean to suggest that there is no philosophical interest in issues
surrounding Lebesgue measure. Indeed, one might attach some metaphysical
significance to questions in contemporary set theory dealing with “cardinal
characteristics of the continuum,” for example: “what is the least cardinal κ
such that there is a subset of R of cardinality κ whose modern-measure is
not zero?” We might see in this investigation the contemporary pursuit of
a question distantly related to the Paradox of Measure: how small a point
set (in the sense of cardinality) can have positive magnitude (in the sense
of modern-measure)?72 Remarkably, it is consistent with ZFC that there are
sets of cardinality less than c that have positive modern-measure.73

A Proof of Proposition 3
Proof : Let X satisfy the hypothesis of the Proposition and suppose that X
is dense in [0, 1]. We must show that

1. for every finite collection of intervals Ξ covering X, τ(Ξ) > 1.

2. for every positive integer n, there is a finite collection of intervals Ξ
such that Ξ covers X and τ(Ξ) < 1 + n−1.

(2): Fix n, and let Ξ = {(−(3n)−1, 1 + (3n)−1)}. Ξ covers X and τ(Ξ) =
1 + 2 · (3n)−1 < 1 + n−1.

72Note that if a set X of cardinality less than c, the cardinality of R, has positive
modern-measure, then X is not Lebesgue-measurable. This follows from the fact that
every Lebesgue-measurable set contains a closed set of positive modern-measure. But
every set of positive modern-measure is uncountable, and every uncountable closed set
has cardinality the continuum, by the Cantor-Bendixson Theorem.

73[Jech, 2002], pp. 529-537. Indeed, let κ be the least cardinal such that there is a
collection of points of cardinality κ that has positive modern-measure, and let λ be the
least cardinal such that there is a family of cardinality λ of collections of points, each of
modern-measure 0, whose union has positive modern-measure. It is consistent with ZFC
that λ < κ < c. This suggests that the Paradox of Measure, even conceived in terms of
cardinality of point-sets of positive measure, is a separate issue from questions of additivity.
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(1): Suppose that Ξ = {(a1, b1), . . . , (ak, bk)} is a finite collection of open
intervals covering X. We may suppose, without loss of generality, that the
intervals are ordered in such a way that a1 < a2 < . . . < ak < 1 and
b1 < b2 < . . . < bk, for if that were impossible, one interval would be a
subinterval of another and could thus be removed from Ξ and the remaining
collection of intervals would cover X and be of smaller total length. To
conclude the proof it suffices to show that

(1.1) a1 ≤ 0,

(1.2) 1 ≤ bk, and

(1.3) for every 1 ≤ j < k, aj+1 ≤ bj.

(1.1): Suppose to the contrary that 0 < a1. Since X is dense in [0, 1], it
follows that for some p ∈ X, 0 < p < a1. Since aj > a1 for all j > 1, it
follows that p is not contained in any interval in Ξ. This contradicts the
hypothesis that Ξ covers X.
(1.2): The argument here is virtually identical to the that for (1.1).
(1.3): The argument again is very similar to that for (1.1). Suppose to the
contrary that that for some 1 ≤ j < k, bj < aj+1. Since X is dense in [0, 1],
it follows that there is a p ∈ X such that bj < p < aj+1. Therefore, contrary
to hypothesis, Ξ fails to cover X.
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