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Abstract: In the Metaphysical Foundations of Natural Science, Kant 

attempts to argue a priori from the indefinite divisibility of space to the 

indefinite metaphysical divisibility of matter. This is one type of 

argument from the continuity of space—purportedly established by 

Euclidean geometry—to the continuity of matter. I compare Kant's 

argument to parallel reasoning in Du Châtelet, whose work he knew. 

Both philosophers appeal to idealism about matter in their reasoning, 

yet also face difficulties in explaining why continuity, though not some 

other properties from geometry, applies to matter. Both also risk 

inconsistency in adopting potentialist accounts of material parts, while 

also committing to realism about infinitesimals. An important 

difference between them is that Du Châtelet deploys at least three 

definitions of continuity; only one of these, amounting to indefinite 

divisibility, is shared with Kant. 
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Introduction: A Simple Argument for the Continuity of Matter 

Kant’s Metaphysical Foundations of Natural Science is committed to the continuity of matter. 

This raises the question of what matter’s continuity amounts to. More systematically, one can 

ask whether a continuous matter theory is appropriate for the project of the Foundations. A 

further developmental puzzle is why Kant abandoned his earlier theory of discrete physical 

monads. 

I aim to shed some light on these issues by critically considering a line of reasoning 

that moves from the continuity of space to the continuity of matter. Kant uses this reasoning, 

and it is also found earlier in Du Châtelet. Laying out this reasoning makes it easier to see 

common ground between these two philosophers, as well as more subtle differences between 

their views.  

Here are four reasons why I consider Kant alongside Du Châtelet. First, they both 

argue on the assumption that continuous matter is only a phenomenon, and shares properties 

such as extension with mathematical objects—whereas the fundamental created substances 

are not extended. Both could therefore be said to treat the question of continuity within a 

framework of idealism about space and matter. Second, Du Châtelet is a plausible source for 

Kant’s views. He responded to her in detail in his first publication on living force, where he 
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cites her Institutions de Physique in Steinwehr’s 1743 German translation.1 Although I am not 

making the historical argument that Du Châtelet’s work influenced Kant’s Foundations, the 

plausibility of influence makes it particularly worth comparing their positions. Third, I defend 

an interpretation on which Du Châtelet rejects the rigid atoms and vacuum characteristic of 

Newtonian matter theory. This is also true of Kant’s mature account of matter. At least on this 

issue, she is a possible non-Newtonian source for Kant’s views.2 Finally, putting Kant in 

dialogue with his French predecessor sharpens critical assessment of Kant’s own work on 

continuity. I’ll suggest that Du Châtelet considers various kinds of continuity, making her 

account in some ways richer than Kant’s. Given his access to her work, Kant can be seen as 

missing an opportunity for further reflection on the concepts of continuity available in the 

eighteenth century. He might, for example, have considered possible relations of dependence 

between these continuity concepts, or argued explicitly that only one notion of continuity is in 

fact required. 

The strategy of reasoning in question is a seemingly simple argument accepted by both 

Kant and Du Châtelet, but rejected by such prominent figures as Voltaire and Christian Wolff. 

This Simple Argument goes as follows: 

(S1) Space is continuous; 

(S2) If space is continuous, then matter is continuous; 

⸫ (S3) Matter is continuous. 

Section 1 focuses on the first premise, which requires disambiguation because of the multiple 

senses of ‘continuity.’ On one understanding, space is continuous if any of its parts is 

divisible into further parts.3 Call this the Divisibility Definition of ‘continuity.’ This is the 

conception Kant uses, and it is also important for Du Châtelet. Both take classical geometry to 

demonstrate that space is continuous in the sense of the Divisibility Definition. That is Kant’s 

                                                 
1 See GSK, AA 01:92. Ursula Goldenbaum (“How Kant was Never a Wolffian.” In: Leibniz and Kant, ed. 

Brandon Look, Oxford 2021, 27–56) argues that Du Châtelet’s Institutions is Kant’s main target in his 1748 

essay. Whether or not one agrees with this, he gives her work serious and detailed consideration. 

2 Du Châtelet was conversant with Newton’s physics and framed her Institutions as in part expounding his 

system. Later, she translated his Principia. But as Marius Stan (“Newtonianism and the Physics of Du Châtelet’s 

Institutions de Physique.” In: Collected Wisdom of the Early Modern Scholar, ed. Anna Marie Roos and Gideon 

Manning, Cham 2023, 277–97.) has shown, much of the Institutions’s physics and metaphysics—including its 

matter theory—is not Newtonian, but part of a broadly Leibnizian tradition that includes Jacob Hermann and 

Christian Wolff. A further historical complication is that eighteenth-century Newtonian experimentalists often 

professed atomism without explicitly confronting metaphysical debates about infinite divisibility (Wilson, 

Catherine: “The Reception of Newton’s Theory of Matter and his Atomism.” In: The Reception of Isaac Newton 

in Europe, ed. Helmut Pulte and Scott Mandelbrote, London 2019, II, 437–38; 442–43). Still, these Newtonians 

are committed to metaphysical positions at variance with Du Châtelet’s, since she rejects atomism. 

3 See Du Châtelet, Émilie: Institutions physiques. Paris 1742, 190; 193; Kant (KrV A524/B552). They deny that 

an actual infinity of parts is reached in division. Their statements that all parts can be divided should be read as 

saying that any part can be divided, rather than as quantifying over an actually infinite collection of parts.  
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main reason for accepting (S1). Indeed, he holds that divisibility ad infinitum is the criterion 

of any magnitude’s continuity. Du Châtelet’s position is more complicated. She also makes 

use of other conceptions of continuity, one based on the connectedness of parts, and another 

based on what she takes to be the definition of a continuous function. So she has a more 

expansive account of continuity than Kant does. 

Section 2 turns to the second premise. Both Kant and Du Châtelet uphold this 

conditional in part because they are idealists about matter and space. But as I show, they each 

raise doubts about other conditional claims running from geometry to the physical world. 

These conditionals have a similar structure to premise (S2), suggesting that these doubts 

ought also to apply to (S2). For example, Du Châtelet denies that inferences from geometry to 

the physical world are always exactly correct. The relationship is instead one of 

approximation, opening room for doubt about (S2). Kant, meanwhile, is cautious about an 

reasoning from the unlimited and continuous character of geometrical space to a plenist 

conception of matter. In the Metaphysical Foundations he allows, unlike Du Châtelet, that 

empty spaces of a certain kind are possible. But if one inference from geometry to matter is 

suspect, why isn’t the other?  

A final question, which I touch on in Section 3, is raised by the conclusion of the 

Simple Argument (S3): What does matter’s continuity mean for the priority relation between 

material parts and wholes? Du Châtelet and Kant agree that insofar as matter is continuous, it 

lacks actual simple parts that would be prior to wholes they compose. Instead, both adopt 

potentialist accounts of material parts, grounding them in material wholes. This raises the 

question of how the priority of wholes can be squared with their realism about infinitesimal 

quantities in physics (which suggests that infinitesimals literally sum to finite quantities). 

Section 4 concludes with some brief evaluative remarks on each philosopher’s approach to 

the simple argument for continuity. 

 

1. The Continuity of Geometrical Space 

Du Châtelet lays out three distinct definitions of continuity. This threefold account of 

continuity makes the interpretation of her version of the Simple Argument especially 

complicated. It also raises the question whether she takes one definition of continuity to be 

primary. Kant, by contrast, stipulates that continuity is “a single quality [eine einzige 

Qualität]” of all magnitudes, and amounts to indefinite divisibility.4  

                                                 
4 KrV A176/B218; see also A715/B743. On Kant’s classification of continuity as a quality, see Büchel, Georg: 

Geometrie und Philosophie. Berlin 1987, 132–59. 
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I therefore begin with the Divisibility Definition of continuity. Both philosophers 

endorse it, and they also agree that the key evidence for continuity qua divisibility stems from 

Euclidean geometry. Du Châtelet asserts that “all geometrical extension is divisible to 

infinity.”5 This is based, in her view, on geometrical proofs—credited notably to John Keill—

that lines are divisible ad infinitum.6 So she accepts that geometrical space is continuous in 

the sense that it is divisible ad infinitum. 

Meanwhile, already in the 1760s Kant takes “infallible proofs of geometry” to provide 

a demonstration that no part of space is simple; he reaffirms in 1790 that simple parts of 

matter are demonstrably “absolutely impossible,” leaving any philosophical challenges as 

mere sophistry.7 In the earlier work, Kant sketches a proof of infinite divisibility, which he 

attributes to Keill.8 Consider the straight line l, and two segments perpendicular to it, AB and 

CD, each of which has an endpoint on l. For reductio, assume that geometrical space has 

indivisible elements. If so, AB would have a ‘first’ indivisible element X, closest to its 

endpoint A. Now since by Euclid’s first postulate a straight line can be drawn between any 

two points, a diagonal segment CJ can be constructed that intersects AB at X and continues on 

to intersect l at J. But since l is indefinitely extensible, it is always possible to construct 

another diagonal segment, also starting at C, that intersects l at some further point K. Given 

our assumptions, CK must also intersect AB at X, just as CJ did—but this violates the 

geometrical principle that “not more than one straight line can pass through two given 

points.”9 Therefore, Kant concludes, geometrical space does not have indivisible elements.  

Kant also gives an argument for space’s continuity that does not appeal explicitly to 

geometrical proof. He starts with the assumption that any one-dimensional part of space can 

only be given as enclosed between points. He has in mind the endpoints of a line segment. 

Points alone cannot compose a space, on his view. So every one-dimensional part of space is 

not a point, but a region. Since two-dimensional spaces can only be given as enclosed 

                                                 
5 Du Châtelet, Institutions, 191. 

6 Du Châtelet, Institutions, 190. 

7 “Untrüglicher Beweise der Geometrie” (UD, AA 02:287); “schlechterdings unmöglich” (ÜE, AA 08:203). See 

further MAN, AA 04:506; KrV A439/B467. 

8 See Figure 1. Compare MonPh, AA 01:478 with John Keill (Introduction to Natural Philosophy, London 1733, 

26–27) and J. C. Gottsched’s 1721 Königsberg thesis Dubia circa monades leibnitianas, which can be found in 

Pasini, Enrico: “La prima recezione della Monadologia,” Studia settecenteschi, XIV, 1994, 107–163. Leonhard 

Euler makes a similar argument, while more explicitly addressing the key assumption that a line can be 

indefinitely extended (Lettres à un Princesse d’Allemagne, St. Petersburg 1768, II, 203–4) 

9 “Dass durch zwei gegebene Punkte nicht mehr als eine gerade Linie gehen könne” (ÜE, AA 8:202). Keill calls 

this principle “an Axiom in the Elements” (Introduction, 27). Actually, it is only tacit in Euclid, but becomes an 

axiom in influential later editions, such as Clavius’s from 1574. 
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between one-dimensional spaces, the argument generalizes. He concludes that no part of 

space is simple, that is, that space is a continuous quantity.10 To justify the premises of this 

argument, Kant would presumably appeal again to geometry.  

To be clear, both philosophers think geometrical truths have further metaphysical 

foundations, which include the fundamental properties of space. Yet geometry is supposed to 

evince clear knowledge that space is infinitely divisible (what Kant calls a ratio cognoscendi), 

even if in a metaphysical sense, space partly grounds geometry (as the ratio essendi of most 

geometrical truths).11 As Du Châtelet puts it, cases from geometry allow us to “see” clearly 

that continuity holds with “extreme exactness.”12 

Problems loom for (S1), however. Euclid neither defines continuity nor assumes that 

geometrical figures are continuous. A tradition dating to Aristotle and Proclus does 

nevertheless takes a key result of geometry to be that considering incommensurable 

geometrical magnitudes shows that geometrical figures are continuous.13 Even granting this, 

however, the continuity of Euclidean figures does not entail the continuity of space. Euclidean 

construction operations by compass and straightedge do not suffice to construct a two-

dimensional continuum. So Euclidean constructions cannot demonstrate that infinite 

divisibility holds for every part of space. Recent scholarship has established that the early 

moderns were partly aware of this problem. For example, critics held that Euclid fails to prove 

                                                 
10 See KrV A169/B211; V-Met-L1/Pölitz, AA 28:201; Refl, AA 14:131–2. Kant’s main reason for denying that 

points can compose a region is that in that case, the region would depend on an actual infinity of points, which 

he thinks is inadmissible (KrV A169–70/B211; A439/B467; MAN, AA 4:506; V-Met-L1/Pölitz, AA 28:208). 

Instead, points are mere limits, dependent on regions (Prol, AA 04:352; V-Met-L1/Pölitz, AA 28:204; V-Met-

L2/Pölitz, AA 28:570; V-Met/Mron, AA 29:842). Therefore, his definition of spatial continuity states that 

between any two points, there is not a point but a region. This is typical of Aristotelian continuity (see Physics 

VI.1). By contrast, contemporary set-theoretic definitions of density in terms of open intervals state (roughly) 

that there always exist points between points. 

11 Kant uses the ratio essendi/cognoscendi distinction at e.g. KpV, AA 05:4n. and V-Met/Mron, AA 29:748. 

Though Du Châtelet also takes geometry to reveal the metaphysics of space, unlike Kant she does not consider 

space and time primitive forms of intuition. She instead emphasizes the grounding role of God, the “eternal 

geometer,” who providentially ensures harmony between material nature and geometry (Du Châtelet, 

Institutions, 34; Wells, Aaron: “‘In Nature as in Geometry’: Du Châtelet and the Post-Newtonian Debate on the 

Physical Significance of Mathematical Objects.” In: Between Leibniz, Newton, and Kant, ed. Wolfgang Lefèvre, 

Dordrecht 2023, 69–98).  

12 Du Châtelet, Institutions, 33. 

13 Vincenzo De Risi argues that Euclid did not use the concept of continuity to characterize intersections between 

plane figures (“Gapless Lines and Gapless Proofs.” In: Apeiron, 54(2), 2021, 233–259). For a different view, 

compare Sattler, Barbara: The Concept of Motion in Ancient Greek Thought. Cambridge 2020, 292–95. On the 

Aristotle-Proclus tradition, see Heath, Thomas: The Thirteen Books of Euclid’s Elements. Cambridge 1908, I, 

268. 
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that there exist points of intersection between figures, because he tacitly relies on intuition 

rather than deduction from axioms and definitions.14  

 Du Châtelet’s second definition of continuity focuses on connectedness, rather than 

divisibility, so I’ll call it the Connectedness Definition. Connectedness is required for a 

“being” to be called continuous, where the paradigm case is a body.15 Specifically, she defines 

what it is for two parts of an extended being to be continuous with one another. Here 

continuity is a two-place relation, whereas divisibility is a one-place property. To be 

continuous, two parts must (1) touch each other and (2) be “linked together” in virtue of some 

“internal reason” that prevents them from being separated.16 If condition (1) is met but not (2), 

then the two parts are merely contiguous, not continuous. She goes on to state that “we must 

represent space to ourselves as continuous,” and also that “the continuity of bodies is actual,” 

in that bodies satisfy the Connectedness Definition.17  

 These two-place definitions of continuity and contiguity are indebted to Aristotle.18 He 

deploys similar definitions to make sense of the motion of bodies or physical substances. Two 

continuous bodies, for Aristotle, will move together. Du Châtelet also applies the continuity–

contiguity distinction to bodies. She gives the example of two metal hemispheres that are in 

contact, but are only contiguous. If the hemispheres are not just touching but are fused 

together under high heat, then they will be continuous in the connectedness sense—although 

the sphere remains physically divisible.19 A difficulty is that her distinction between 

contiguity and continuity is also supposed to apply to parts of space and geometrical figures, 

but it’s unclear what that distinction amounts to outside a physical context.20 We could in 

                                                 
14 See De Risi, Vincenzo: “Leibniz on the Continuity of Space.” In: Leibniz and the Structure of Sciences, ed. 

Vincenzo de Risi, Cham 2019, 111–170; “Has Euclid Proven Elements I, 1?”. In: Reading Mathematics in Early 

Modern Europe, ed. Philip Beeley et al., London 2021, 12–32. Despite this, Kant famously embraces the 

justificatory role of intuition in geometry. 

15 Du Châtelet, Institutions, 106. 

16 Du Châtelet, Institutions, 106. 

17 Du Châtelet, Institutions, 107. She’s correcting the first edition, where we read that “this contiguity” is actual 

(Du Châtelet, Émilie: Institutions de Physique. Paris 1740, 103). 

18 See Physics, V.3 (227a10–12); Metaphysics B.5 (1002a28–b10). Aristotle’s two-place definition was a crucial 

starting point for Leibniz (Arthur, Richard: Monads, Composition, and Force. Oxford 2018, 40; De Risi, 

“Continuity”). Notoriously, though, Aristotle also defines continuity as infinite divisibility (e.g. De Caelo, I.1, 

268a). On Aristotle’s two definitions see Sattler, Motion, 295–334; Castelli, Laura: Aristotle: Metaphysics Book 

Iota. Oxford 2018, 26–31; and Pfeiffer, Christian: Aristotle’s Theory of Bodies. Oxford 2018, 53–65, 89–121, 

147–193. 

19 Du Châtelet, Institutions, 106–107. 

20 On these issues in Aristotle, see Pfeiffer, Bodies, 159–182) and Sattler, Motion, 294); for their uptake in 

Leibniz see Arthur, Monads, 52–3, 179–96 and De Risi, “Continuity;” on related issues in Wolff and 

Baumgarten, see Moretto, Antonio: “La rilevanza matematica della discussione sui concetti di continuo e di 

funzione nella filosofia tedesca dell’età dell’illuminismo.” In: Fenomenologia e società, 18/2-3, 1995, 117–20.  
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principle give a causal account of how the hemispheres are bonded together, whereas no such 

account seems available for two hemispherical solids in geometry. Moreover, Du Châtelet 

states the Connectedness Definition essentially without argument, and it is hard to say how it 

fits into her relationalist theory of space and location.21 

Leaving these difficulties aside, Du Châtelet importantly assumes that evidence from 

geometry is independently sufficient for accepting the infinite divisibility of space and matter, 

apart from the Connectedness Definition.22 Kant, meanwhile, does not offer a definition of 

continuity in terms of the connectedness of parts. This is understandable in the case of 

connections between material parts or the states of these parts. These connections require 

causal action or interaction, not just compositional structure. For pure space, however, Kant is 

committed to a non-causal connection between parts, which ensures that spatial parts cannot 

move relative to each other. He could avail himself of a connectedness definition of continuity 

for pure space, but does not do so.23  

A third definition of continuity appears early in the Institutions. This definition 

pertains to the continuity of processes, and relies on properties of mathematical functions. 

This definition has an important kind of priority. From it, Du Châtelet suggests, one can 

derive continuity as divisibility. On this definition, a function is continuous if its graph has a 

tangent at every point.24 Call this the Continuous Function definition of continuity. A function 

with a smooth graph, she assumes, satisfies this condition, even at inflection points.25 Graphs 

with angular bends fail this condition, since a tangent is not well-defined at the bend. She is 

gesturing at the idea of what we would now call an everywhere differentiable function. In 

                                                 
21 Du Châtelet, Institutions, 116. 

22 As Marij van Strien reads Du Châtelet, continuity is understood only in terms of the Connectedness Definition, 

and this is compatible with denying the infinite divisibility of matter (“Continuity in Nature and in 

Mathematics.” In: EPSA15 Selected Papers, ed. Michela Massimi et al., Dordrecht 2017, 75). I take van Strien’s 

idea to be that two indivisible material atoms might touch each other and be linked together, satisfying the 

Connectedness Definition. However, there is a long Aristotelian tradition arguing that the Connectedness 

Definition does entail infinite divisibility: see Aristotle’s anti-atomist arguments at Physics VI.1, De Caelo III.4, 

and De Generatione et Corruptione I.2. Although Du Châtelet does not present such arguments, she does not 

reject them either—and she in any case asserts the infinite divisibility of matter elsewhere. So van Strien’s 

conclusion is premature.  

23 On causal connections between material parts and their states, see KrV B219 and B233, the telegraphic 

footnote at B201–202, and V-Met/Mron, AA 29:824. Kant states that the parts of pure space are unmovable at 

KrV A41/B58. It’s possible that Kant avoids using the Connectedness Definition because it would apply to pure 

space, but not to matter. Compare the case of the continuity of change, where he explicitly makes the formal 

structure of pure time a condition for the continuity of material and psychological changes (A199/B244). I thank 

Marius Stan for helpful suggestions here. 

24 Du Châtelet, Institutions, 24; 32. 

25 Both of these moves may be indebted to Leibniz, but space does not permit entering into details. For a 

different reading of Du Châtelet on continuous functions, see Pelayo, Areins: “Certitude et loi de continuité dans 

les Institutions de physique d’Émilie du Châtelet.” In: Les études philosophiques, 146(3), 2023, 13–14. 
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modern parlance, a function with angular bends can indeed be everywhere continuous, even 

though it is not everywhere differentiable. While she does not disentangle these issues, she 

recognizes the relative strength of the Continuous Function definition, because an angular 

graph need not display any gap that would violate the Divisibility or Connectedness 

definitions of continuity.26  

Du Châtelet uses this conception of continuity to argue that space, time and matter are 

continuous in the Divisibility sense. In geometrical space, the motion of a point in accordance 

with a function “engenders a continuous succession by its fluxion,” namely a line.27. This is 

motion in an abstract sense, which she treats as prior to static geometrical continua such as 

lines or circles. Next, she generalizes the idea to the motion of concrete physical things. A 

moving body or beam of light will pass through all conceivable locations and times in its 

path.28 Du Châtelet takes it to be uncontroversial that the indefinite divisibility of space, time, 

and matter is at least conceivable. Given that motion satisfies the Continuous Function 

definition—bodies move through every conceivable location and time—she concludes that 

space, time, and matter really are divisible ad infinitum. This indicates that she takes the 

Continuous Function definition to be more basic in the order of explanation than the 

Divisibility Definition. 

This definition differs from Kant’s views in at least two key respects. First, the 

property she labels ‘continuity’ is roughly differentiability everywhere, and to my knowledge 

there is no such conception of continuity in Kant.29 Second, she takes the continuity of 

processes and functions to be prior to the infinite divisibility of both space and time. Kant, by 

contrast, derives the continuity of change from the continuity of time.30  

                                                 
26 She links the principle of sufficient reason to her assumption that any function that can be expressed by a 

single function or “law” has a well-defined tangent at every point (Du Châtelet, Institutions, 34; see further van 

Strien, “Continuity,” 73–75; Wilson, Mark: Imitation of Rigor. Oxford 2022, 135–141. Conversely, she thinks 

any graph with angular bends is a “bastard figure” resulting from multiple functions (34). Both of these 

assumptions are wrong, so her route from the principle of sufficient reason to what we’d call differentiability 

everywhere is obscure. For other connections between continuity and sufficient reason in Du Châtelet, see Wells, 

“Post-Newtonian Debate,” 89–94. 

27 Du Châtelet, Institutions, 127; compare 33.  

28  Du Châtelet, Institutions, 32. 

29 Kant does argue in the 1770s that if a point travels around a triangle, its motion must be discontinuous at the 

vertices (MSI, AA 02:400; V-Met-L1/Pölitz, AA 28:201–4). When the point reaches a vertex, its trajectory must 

switch from one direction to another, and given time’s infinite divisibility, “there is a [finite] time” between 

these two states of motion, during which the point is “at rest,” violating the continuity of motion (MSI, AA 

02:400). Although the triangle example could be considered in terms of differentiability, in fact this flawed 

argument uses the Divisibility Definition of continuity. 

30 His derivation of the continuity of change parallels the Simple Argument for the continuity of space, though 

perhaps with additional premises. He usually suggests that at least as a “formale Bedingung,” continuity of 

change can be established “völlig a priori” from metaphysical or mathematical grounds (KrV A209–210/B254–

56; cf. MSI, AA 02:402; ÜE, AA 08:206). But one passage in the first Critique (A171/B212–13) implies that 
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2. From Continuity in Geometry to the Continuity of Matter 

Recall (S2): If geometrical space is continuous, then matter is continuous. This premise relies 

on the assumption that if a property holds for geometrical space, then it also holds for matter. 

There are at least two prima facie questions about this line of reasoning, however. First, both 

philosophers assume that classical geometry has shown geometrical space as a whole to be 

continuous. The results of classical geometry, however, concern particular plane figures and 

solids rather than geometrical space as a whole. So their reasoning may commit a fallacy of 

composition.31 A second question, which will be my main focus here, is whether Du Châtelet 

and Kant really hold that all properties established in geometry can be assumed to hold for 

matter. It seems that they do not: both reject other inferences from geometrical properties to 

properties of matter. Absent criteria for distinguishing acceptable from unacceptable 

inferences from geometry to matter, their doubts threaten to undermine (S2).  

First consider Du Châtelet’s views on these issues. While she explicitly denies that all 

substances are continuous (since some substances are simple), matter and its properties are 

partly mind-dependent phenomena. Given this partial mind-dependence, she concludes that 

“the same thing happens in nature as in geometry.”32 Geometrical space is continuous and 

therefore matter is continuous.33 She argues for this as follows: 

(G1) Assume for reductio that matter has indivisible parts. 

(G2) To compose matter, these parts would have to take up space. 

(G3) But then these parts would themselves have parts, and would not be indivisible, 

contradicting G1.  

⸫ (G4) Matter does not have indivisible parts.34  

                                                 
continuity of alteration is an empirical issue, perhaps because Kant here understands alteration not as a sheer 

succession of states but as causal and exemplified by motion (see B291–92). In his 1758 “New Doctrine,” Kant 

goes so far as to say that some causal interactions are temporally continuous (as in the case of gravity) but others 

are not (as in the case of impact), and that therefore, the general assumption that physical change is continuous 

can be “widerlegen” on empirical grounds (NLBR, AA 02:21). On these complexities see Jankowiak, Timothy: 

“Kant on the Continuity of Alterations.” In: Canadian Journal of Philosophy, 50(1), 2020, 49–66; McNulty, 

Michael Bennett: “Continuity of change in Kant’s dynamics.” In: Synthese, 196, 2019, 1595–1622.  

31 Thanks to Marius Stan for suggesting this. 

32 Du Châtelet, Institutions, 34; see 176 on the mind-dependence of matter. 

33 Du Châtelet, Institutions, 107; 435–36. 

34 This is a reconstruction of an argument at Institutions, 139; also see 107; 199–203. She stresses that this 

argument is relatively uncontroversial for large bodies, and there is no reason why it does not also hold at 

smaller scales (139–40). Other passages may appear to deny that matter is infinitely divisible, leading some to 

recommend atomist readings (van Strien, “Continuity”; Brading, Katherine and Marius Stan: Philosophical 

Mechanics in the Age of Reason. Oxford 2024, 136). But what Du Châtelet actually wants to rule out is that 

matter is composed of an infinity of “determinate and actual” parts that are prior to the whole (Du Châtelet, 

Institutions, 190; see further Coissard, Guillaume: “Du Châtelet entre monadisme et atomisme.” In: Revue 
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A key assumption in the argument is that if something takes up space, it is divisible. This 

assumption follows from the divisibility of the parts of geometrical space, plus the principle 

that matter and geometrical space have “the same” compositional structure.  

But she also cautions that inferences from geometry to “physical effects…always” 

involve “a considerable loss of exactness and precision.”35 This suggests that mathematical 

representations are only approximately true of the material world, at least insofar as they seek 

to represent causal goings-on. For the broader scientific project of her Institutions, this need 

not be a problem. Approximations can be accurate enough that no appreciable error results, 

and more positively, simplification reasoning in a more “intelligible” way.36 However, the 

infinite divisibility of matter is all-or-nothing. If the relationship between mathematics and 

matter is only approximate, then it’s unclear whether she is licensed to infer matter’s infinite 

divisibility from that of geometrical space.  

Admittedly, Du Châtelet’s reference to physical effects in this discussion leaves room 

for construing the infinite divisibility of matter as just independent from physical causes and 

effects. In that case, the claim about approximation, as only holding for physical causes and 

effects, would not pertain to infinite divisibility. But Du Châtelet herself does not pursue this 

strategy, or attempt to sharply separate questions about the divisibility of matter from causal 

questions. 

Now consider Kant. As seen in section 1, he thinks we can know a priori that the space 

of classical geometry is continuous.37 In turn, the continuity of geometrical space entails the 

continuity of matter. “Nature,” he writes in 1770, “is completely subject to the prescriptions 

of geometry, in respect of all the properties of space which are demonstrated in geometry”; in 

1790, he reaffirms that “concrete time and space” are “subject to that which mathematics 

demonstrates of its abstract space,” so that anything occupying a space “can be divided into 

just as many things…as…the space…which it occupies.”38 As a supporting argument, Kant 

                                                 
d’histoire des sciences, 74(2), 2021, 297–329; Wells, “Post-Newtonian Debate”). This is compatible with 

matter’s continuity.  

35 Du Châtelet, Institutions, 417–18. 

36 Du Châtelet, Institutions, 395; 250. 

37 As I remarked there, the epistemological priority of geometry for our knowledge of continuity does not entail 

that it is metaphysically prior to space as a form of intuition (Carson, Emily: “Kant on Intuition in Geometry.” 

In: Canadian Journal of Philosophy, 27(4), 1997, 489–512; Sutherland, Daniel: Kant’s Mathematical World. 

Cambridge 2022, 125–26).  

38 MSI, AA 02:404; ÜE, AA 08:202 (“Nun kann man hier nicht die Ausflucht suchen, die konkrete Zeit und der 

konkrete Raum sei demjenigen nicht unterworfen, was die Mathematik von ihrem abstrakten Raume…als einem 

Wesen der Einbildung beweiset…So lässt sich ebenso apodiktisch beweisen, dass ein jedes Ding im 

Raume…sobald sie einen Theil des Raumes…einnehmen, grade in so viel Dinge…geteilt werden, als in die der 

Raum…welche sie einnahmen, geteilt werden”). See also KrV A165/B206; A439/B467; V-Met/Mron, AA 
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urges that if geometrical space and matter did not have the same structure, then mathematical 

physics would make erroneous claims about the world. Like Du Châtelet, Kant takes the 

compositional structures of space and matter to be in harmony. 

This derivation from geometry is further worked out in the first Critique. A key 

premise is that any material object or body is a mere appearance in space. Appearances, in 

Kant’s technical terminology, are representations through intuition.39 Therefore, appearances 

partly depend on space and time as forms of intuition. In particular, the fact that bodies are 

essentially extended wholes depends on space. Since bodies fill space by being extended 

wholes, Kant concludes that the compositional structure of any body is the same as the 

compositional structure of the space it fills.40 This line of reasoning is a priori. It establishes 

what Kant calls the metaphysical divisibility of matter. So whereas Du Châtelet sees a relation 

of approximation between the compositional structure of matter and geometrical space, Kant 

holds that these strictly correspond. 

The Metaphysical Foundations gives a further argument that matter is not just 

metaphysically but also physically divisible ad infinitum. Physical divisibility requires a 

mechanism by which every part of matter can be moved away from its adjacent parts, but this 

does not follow from mere metaphysical divisibility.41 This is why the Foundations argues at 

length against absolutely impenetrable parts of matter (atoms), and against discrete point-

particles that exert repulsive and attractive force (physical monads), instead of relying on 

(S2). Still, Kant treats matter’s metaphysical divisibility as a necessary prerequisite for its 

physical divisibility.42 To establish metaphysical divisibility, Kant repeats a version of the 

Simple Argument from the mathematical continuity of space to the continuity of matter. A 

key supporting premise is that matter is merely an appearance.  

                                                 
29:930. In the 1750s, he assumes without argument that Euclidean constructions “can be done not only in the 

geometrical sense but also in the physical sense” (MonPh, AA 1:478). But the mature Kant does not quite assert 

the identity of concrete physical space and abstract geometrical space. Following Anja Jauernig, I think his 

argument requires only that these spaces have the same topological and compositional structure (“The Labyrinth 

of the Continuum.” In: The Sensible and Intelligible Worlds, ed. Karl Schafer and Nick Stang, Oxford 2022, 

207).  

39 Kant equates appearances with “bloße Vorstellungen” (KrV A491/B519), though he also says appearances are 

indeterminate objects of empirical intuitions, i.e. objects of representations (A20/B34). For current purposes, the 

key point is that essential formal properties of appearances are grounded in space and time as forms of intuition.   

40 For dependence claims, see KrV B202 and A525/B553. For sameness-of-structure claims, see A525/B553, 

A170/B212, V-Met-L1/Pölitz, AA 28:202–203, and Refl, AA 18:410. 

41 For the claims discussed in this paragraph see MAN, AA 04:503–506. Arthur, Monads, 39–43 considers 

similar definitions of physical divisibility in Leibniz and various Cartesians. Physical divisibility in this sense is 

also treated in Du Châtelet: see footnote 51 below.  

42 See further Pollok, Konstantin: Kants ‘Metaphysische Anfangsgründe der Naturwissenschaft’: Ein Kritischer 

Kommentar. Hamburg 2001, 257–64.  
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However, Kant does not assume the soundness of just any inference from general 

structural features of geometrical space to features of matter. A striking example is his 

discussion of empty space in the Foundations. Geometry, Kant thinks, presupposes an 

unbounded space, lacking either outer limits or internal gaps. But Kant does not conclude that 

matter is actually an unbounded plenum: 

The well-known question as to the admissibility of empty spaces in the world may 

serve as our conclusion. The possibility of such spaces cannot be disputed. For space 

is required for all forces of matter, and since it also contains the conditions of the laws 

of diffusion of these forces, it is necessarily presupposed prior to all matter. Thus 

attractive force is attributed to matter insofar as it occupies a space around itself, 

through attraction, without at the same time filling the space. Thus the space can be 

thought as empty.43  

Neither geometry nor the metaphysics of attractive forces settle the question whether there 

exist dynamically empty spaces—that is, spaces in which no repulsive forces act. This is a 

point of contrast with Du Châtelet, whose principle of sufficient reason rules out empty 

spaces.44 Kant instead indicates that if the question of dynamically empty spaces were to be 

settled, then empirical evidence for or against empty spaces would need to be available to 

us.45 By contrast, Kant does not think establishing the infinite metaphysical divisibility of 

matter requires empirical evidence.46 It is unclear why Kant accepts one inference from 

geometry to matter, but not the other.  

 This suggests that he should have taken more seriously how empirical considerations 

might bear on the compositional structure of matter.47 While I cannot go into the topic in 

                                                 
43 “Den Beschluss kann die bekannte Frage wegen der Zulässigkeit leerer Räume in der Welt machen. Die 

Möglichkeit derselben lässt sich nicht streiten. Denn zu allen Kräften der Materie wird Raum erfordert und, da 

dieser auch die Bedingungen der Gesetze der Verbreitung jener enthält, notwendig vor aller Materie 

vorausgesetzt. So wird der Materie Attractionskraft beigelegt, sofern sie einen Raum um sich durch Anziehung 

einnimmt, ohne ihn gleichwohl zu erfüllen, der also selbst...als leer gedacht werden kann.” (MAN, AA 04:534–

35). 

44 Du Châtelet, Institutions, 96; 207ff. 

45 Kant denies the consequent: “alle Erfahrung giebt uns nur comparativ leere Räume zu erkennen” (MAN, AA 

04:535). By modus tollens, we can’t be sure if empty spaces exist. The conclusion of the Foundations returns to 

this topic, however, and seems more hopeful about empirically ruling out dynamically empty spaces, in favour of 

an aether (MAN, AA 04:563–64). On this apparent conflict see Pollok, Kommentar, 341–46; 360–70). 

46 More precisely, the following conditional proposition needs no empirical evidence: If matter exists, then it is 

infinitely metaphysically divisible.  

47 Michael Friedman argues that Kant did attend to empirical considerations—from Euler’s fluid dynamics—in 

switching from physical monads to continuous matter (“Synthetic History Reconsidered.” In: Discourse on a 

New Method, ed. Mary Domski and Michael Dickson, Chicago 2010, 604–10). But Friedman’s supporting text is 

buried in a remark on cohesion (MAN, AA 04:526ff.) that does not support the main argumentative structure of 
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detail, Kant’s embrace of the continuity of matter in the 1760s may be linked to his 

abandonment, around the same time, of a relationalist account of space. He was partly 

inspired by Newton, but as his contemporaries appreciated, the dynamics of Newton’s 

Principia has serious limitations. Marius Stan has argued, in turn, that Euler’s extension of 

Newton’s dynamics is the best fit, among the historically available options, for the 

Metaphysical Foundations. But Euler’s rotational dynamics crucially involves a torque law, 

and for Kant to be able to derive this law from premises he’d accept, he would probably have 

to abandon his continuum account of matter.48 Given these empirical factors, Kant might have 

been better served by sticking with a version of his early physical monadology, on which 

matter is composed of mass-points exerting distance forces.  

  

3. Continuity, Parts, and Wholes 

So far, I’ve focused on two main senses in which matter may be said to be continuous: infinite 

divisibility and connectedness of parts. Kant and Du Châtelet accept infinite divisibility, while 

stressing that matter is not composed of an infinite number of actual, prior parts. They hold 

that the parts of matter, like the parts of space and time, are merely possible or potential. Both 

of them draw the further conclusion that potential parts are not prior to composites, but 

instead are dependent on wholes.49 Yet there is a tension here that’s still relatively neglected, 

because these philosophers both adopt a realist stance on infinitesimals. 

For Du Châtelet, the number of parts in a geometrical object is absolutely 

indeterminate, as the objects of geometry only have potential parts.50 We’ve seen that she 

argues against the possibility of indivisible parts of matter by reasoning that, because such 

                                                 
the Foundations. Kant’s official justification of matter’s infinite divisibility stems from mathematics and 

metaphysics, not fluid dynamics. 

48 Euler’s torque law says that 𝜏 =
𝑑𝐿

𝑑𝑡
, where τ is net torque and L is angular momentum. For Kant to ground this 

law, he arguably would need to assume the principle that forces between particles are not only equal and 

opposite, but central: acting on a straight line between the particles (Stan, Marius: “Kant and the object of 

determinate experience.” In: Philosophers’ Imprint, 15(33), 2015, 12). This assumption needs a model of matter 

where discrete particles interact at a distance. 

49 The proposal that continua possess parts potentially, and lack an actual infinity of parts, goes back at least to 

Aristotle (Metaphysics Δ.13; Sattler 2020, 305–11). Aristotle seems to conclude that substances, as wholes, are 

ontologically prior to their potential parts (e.g. De Anima III.6). In the early modern period, Leibniz agrees that 

parts of continua are potential, and takes this violation of the usual priority of part over whole to be a major 

problem raised by the composition of matter (Jauernig, “Labyrinth,” 189–97). But in the 1740s German 

Monadenstreit and most of Kant’s discussions, the focal issue is not priority but divisibility, especially 

metaphysical divisibility. Kant nevertheless faces puzzles about part–whole priority. For instance, he thinks 

determinate parts of space, time, and matter are extensive magnitudes, which by definition involve some kind of 

priority of part over whole, despite being continuous (210; Sutherland, Mathematical World, 98–101). I here 

raise a related puzzle for Kant’s physics. 

50 Du Châtelet, Institutions, 190. 
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parts occupy space, they must in principle be divisible. For metaphysical or in-principle 

divisibility, then, the number of parts in material things must also be indeterminate.51 She 

takes this to solve a Zeno paradox that results from assuming that physical extension is 

composed of an infinite number of extended parts that exist prior to division. The implication 

is that potential parts depend on the wholes they make up, and also depend on acts of division. 

This is in tension, however, with her treatment of infinitesimal moments of force:  

An infinitely small living force…can only become a finite living force when it is 

repeated an infinite number of times, and accumulated by an infinity of successive 

pressures [pressions] in the body that receives the motion…this infinitely small 

force…is the element of the living force.52 

This is no mere mathematical idealization. The infinitesimal moments of living force have 

physical reality, insofar as they are the effects of pressure or dead force. So she is committed 

to infinitely many infinitesimal moments. These are not mere potential parts or limits, but real 

non-Archimedean magnitudes, existing prior to the finite forces to which they ‘sum.’53 

Parallel issues arise in Kant’s Metaphysical Foundations. On the one hand, “the parts” 

of matter, “as belonging to the existence of an appearance, exist only in thought, namely, in 

the division itself.”54 In other words: matter does not consist of infinitely many prior parts, but 

parts of matter are merely potential, coming into being when wholes are divided. 

Nevertheless, Kant sometimes commits himself to realism about infinitesimals. Some forces, 

such as gravity, are infinitesimally small at an instant, but ‘sum’ over time to a finite result. 

The infinitesimal “moment [Moment]” of gravity is a real “cause [Ursache]” rather than a 

mathematical idealization (KrV A168/B210). In these passages, then, Kant commits to 

                                                 
51 This may seem hard to square with her statement that each physical object has a “fixed number” of 

determinate parts (Du Châtelet, Institutions, 191). As Coissard, “Monadisme” has shown, however, Du Châtelet 

distinguishes metaphysical divisibility from physical division. The latter requires a causal mechanism by which 

parts of matter can be “really separated” or moved away from their adjacent parts (1742, 222; 200). So she likely 

means that physical objects are actually physically divided into a fixed, finite number of parts, yet potentially 

metaphysically divisible into an indefinite number of parts.  

52 Du Châtelet, Institutions, 438.  

53 Fluxions and infinitesimals are sometimes used interchangeably by both Du Châtelet (Institutions, 127; 265; 

Cajori, Florian: “Madame Du Châtelet on fluxions.” The Mathematical Gazette, 13, 1926, 252) and Kant (Refl, 

AA 18:167). Like many after Leibniz, she understands integrals as literal ‘sums’ of infinitesimals, akin to the 

indivisibles of Cavalieri and Torricelli (compare Leibniz 1849–63, V, 226–33). I put ‘sum’ in scare quotes 

because Du Châtelet’s mathematical foundations, like Kant’s, only define addition for Archimedean magnitudes, 

not for infinitesimals (Institutions, 132; Kant, V-Met-L2/Pölitz, AA 28:561). We know that she owned and 

consulted a calculus textbook written by l’Hôpital and Johann I Bernoulli. She may have assumed that 

l’Hôpital’s approach to infinitesimals, based on ratios with non-finite terms, was sufficiently rigorous. 

54 “Die Theile, als zur Existenz einer Erscheinung gehörig, existiren nur in Gedanken, nämlich in der Theilung 

selbst” (MAN, AA 04:507). See further Pollok Kommentar, 264–65. 
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infinitely many infinitesimals that would be prior to finite quantities, rather than merely 

potential and dependent on them.55  

Both philosophers are realists about infinitesimal moments of force, but potentialists 

about the parts of matter. This could suggest a philosophically relevant difference between, 

say, active force and passive matter. However, they each take matter to be essentially 

endowed with active force. Indeed, both seem to ground matter’s extension—and thus its 

part–whole structure—in more basic forces.56 So no clean distinction between active force 

and passive matter is available to them.   

 

4. Concluding Assessment 

By way of conclusion, let me sketch some successful and unsuccessful aspects of each 

philosopher’s approach to continuity, which may suggest avenues for future research. Du 

Châtelet’s discussion is richer than Kant’s, in that it deals with not one but three notions of 

continuity. She thereby touches on ideas that were especially fruitful for later mathematics, 

including analysis and topology.57 Moreover, she presents continuity as differentiability 

everywhere (and perhaps also continuity as Connectedness) as more basic than continuity as 

divisibility. The Simple Argument may be just one possible route to matter’s infinite 

divisibility. Unfortunately, this is hard to assess: it is not always clear how Du Châtelet 

justifies her various accounts of continuity, nor what entailment relations might hold between 

them. 

As for Kant, he holds that continuity is a unique, qualitative property and amounts to 

the divisibility of every part of a magnitude. There is only one sense in which matter is 

continuous. But to his credit, the logical structure of Kant’s position is clearer than Du 

Châtelet’s, as he takes care to give justifications and explications of each premise in the 

Simple Argument. Still, his narrow focus on divisibility has at least two negative 

consequences. One is a failure to engage in detail with relational definitions of continuity, or 

with the notion of continuity as differentiability everywhere. Another consequence is that his 

                                                 
55 See also KrV A168/B210; NG, AA 02:168; and especially MAN, AA 04:551–52. Further similar texts are 

discussed by Sutherland, Daniel: “Continuity and Intuition in Eighteenth-Century Analysis and in Kant.” In: The 

History of Continua, ed. Stewart Shapiro and Geoffrey Helman, Oxford 2021, 178–79. Sutherland concludes that 

given Kant’s potentialist language elsewhere, he should be read on balance as handling infinitesimals in terms of 

limits. While this may be the most charitable reading, textual tensions remain.  

56 See Du Châtelet (1742, 165); Kant (MAN, AA 04:536, V-Met/Mron, AA 29:841).  

57 De Risi, “Continuity” explores the historical importance of what I’ve called the Connectedness Definition of 

continuity.  
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assumption that matter is continuous stands or falls with Simple Argument, and with its 

dubious assumption that classical geometry has proven space to be continuous.  
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