The Underdetermination of Typings

Jan Westerhoff

19th July 2004

[Erkenntnis 2003, 58:3, 379-414]

Abstract

This paper argues that there is no possible structural way of drawing a
distinction between objects of different types, such as individuals and
properties of different adicities and orders. We show first that purely
combinatorial information (information about how objects combine to
form states of affairs) is not sufficient for doing this. We show that for
any set of such combinatorial data there is always more than one way
of typing them — that is, there are always several ways of classifying
the different constituents of states of affairs as individuals and proper-
ties. Therefore, contrary to received ontological opinion, no object is
essentially of any specific type. In the second part we argue that tak-
ing into account logical information does not help either, since logic
presupposes the very distinction we are trying to draw. Furthermore,
this distinction is not even essential for logic, since logic can function
perfectly well without it. We conclude that certain distinctions which
have been traditionally regarded as ontologically basic (such as that
between individuals and properties) cannot be as fundamental as is
often supposed.

1 Typings and their transformations

1.1 The problem

Let us look at an uncontroversial example of objects belonging to the dif-
ferent types of individuals, properties, relations and so on. I take it that
it is as uncontroversial as anything can be in ontology that we consider a
particular like the Tower of London as belonging to the type of individuals,
something like ‘being red’ as a first order (monadic) property of individuals
and something like ‘being a colour’ as a second order (monadic) property of
first order monadic properties. We do this because of the way these three

objects can go together to form states of affairs. The individual and the first
order property can go together to make up a state of affairs (the one picked
out by the sentence ‘The Tower is red’), as can the first order property and
the second order property (‘Red is a colour’). However, the individual and
the second order property cannot go together to form a state of affairs. We
assume that these facts are encoded in our typing the three objects in the
way we do, i.e. that these combinatorial possibilities are expressed by our
calling one an individual, another a first order monadic property and so on.

But this is not the only way in which we can type the objects. Suppose we
consider ‘being red’ as an individual (let us call it ‘Red’ for that purpose)
and both the Tower and ‘being a colour’ as first order properties (let us
call them ‘to tower’ and ‘to colour’). In this case the objects fit together
to produce the very same states of affairs as those above. The state of
affairs corresponding to the one denoted by ‘The Tower is red’ (and which
is now denoted by ‘Red towers’) consists still of an individual and a first
order (monadic) property, although their roles are reversed.! There is also
an equivalent to the state of affairs denoted by ‘Red is a colour’ (now ‘Red
colours’), but now this has exactly the same form as the previous one, rather
than being made up of a first order and a second order property. Equally
there could not be a state of affairs consisting of ‘to tower’ and ‘to colour’
since things forming a state of affairs cannot be of the same order.

There are still further ways of typing the above objects. For example, we
could consider both the Tower and ‘being a colour’ as individuals (and call
them ‘Tower’ and ‘Colour’) and once again take ‘being red’ as a first order
property. Or we could ‘lift’ the two last examples of typings by moving
everything to the next higher type; individuals would become first order
properties, first order properties second order properties. Finally, we could
reverse our initial typing which made use of three levels, so that now ‘being
a colour’ is a individual (‘Colour’), ‘being red’ a first order property, and the
Tower a second order property. As the reader is invited to check, all these
typings allow for the same states of affairs to be put together and are thus
equally acceptable.

1.2 Data and conventions

Before we proceed any further, however, we need to be somewhat more
explicit about how we can be so sure that the above typings really all are
alternatives in that they make the same states of affairs possible.

Note first of all that there are such things as ontological data. These are
information about what can form states of affairs with what; a particular

'From a purely linguistic point of view it might be interesting to note that there are
languages which treat their adjectives in the way we treat nouns, and others which treat
them like verbs. Translations of the sentence ‘The Tower is red’ would therefore become
something like “Tower reds’ or ‘Red towers’. See Baker (2001, 175-176).

example of such a datum is that ‘being red’ and the Tower go together in
the state of affairs denoted by the sentence ‘The Tower is red’. To be a bit
more concise let us write ¢, r and ¢ for ‘Tower’, ‘being red’ and ‘being a
colour’, independent of the ontological type assigned to them in a particular
typing. We shall call the collection B of these the basis of our data. Let
us express the fact that some of them go together to form a state of affairs
by prefixing the multisets containing them with a +, else with a —.? Thus
the ontological data D we have about ¢, r and c is that +[t, 7], +[c, 7] and
—[t,c], —[t,t], —[r,7], —[c,c]. These data act as a constraint on the typing
we want to construct: they are what the typing is to be a theory of.

There is also another kind of constraint involved, which I will call the
type-form conventions. The conventions which were implicitly in play in the
above examples entailed that types are indexed by an ascending, uninter-
rupted sequence of ordinal numbers beginning with zero, and that members
of these types can go together into states of affairs only if they are all located
in two directly neighbouring types. This is just the picture of types found in
the Russellian simple theory of types. In fact it is presumably more restric-
tive than we want our theory of types to be. For example, this theory will
have problems accounting for objects which are applicable to other objects
at more than two levels (‘is a property’ is applicable to first order properties,
to second order properties and so forth). There are also difficulties with re-
lations which take arguments from different levels (‘instantiates’ takes one
object from level n and one from a directly adjacent level). But of course
all we shall have to say below will apply equally to less restrictive type-form
conventions.

The task of constructing a typing for a particular set of objects means
finding a way of remaining faithful to the ontological data within the type-
form conventions in play. Of course it can happen that a certain set of
ontological data cannot be typed at all given a set of type-form conventions.
For example, if your data are +[a,b], +[b,c] and +|[c,a], there is clearly
no way of typing this in the stratified way just suggested. If we put a at
one level, b must go into the level directly above or below. ¢ must then
go directly above or below that level, so that in every case the resulting
typing cannot remain faithful to all the ontological data. But of course if
such a thing happens, this just shows that our type-form conventions (the
structural constraints on our type theory) are unable to deal with the data

2Multisets are just like ordinary sets apart from the fact that they allow for repetitions.
Thus while {a,b} = {a,a,b}, [a,b] # [a, a,b]. They are distinguished from ordered sets in
that the order of elements does not matter, i.e. while < a,a,b >#< a,b,a >, [a,a,b] =
[a,b,a]. We assume that each multiset of cardinality one is automatically prefixed with a
—. (Nothing can form a state of affairs on its own. This, however, does not yet exclude
the possibility that it can form a state of affairs with itself, i.e. although for all a, —[a],
+[a, a] might be the case.) We will use ¢,,... as variables ranging over multisets. See
Blizard (1989) for the formal background of multiset theory.

given. Since the data cannot be captured in the framework, we had better
choose a different framework.

Of course this was not the case with the examples discussed above. There
it was straightforward to check that all of the above typings were in accor-
dance with the ontological data. But we have also seen that there can be
more than one way of achieving such accordance. For example, if our data
demand that two objects cannot go together in a state of affairs (e.g. ¢ and
¢ above) we have different ways of accounting for this: we can put them
‘types apart’ or, to achieve the same effect, put them in the same type.
The important point is that this can happen even if we have agreed on one
system of type-form conventions. It is clear that any such system is purely
conventional (hence the name). We could have said that elements from the
same type can go together, or that only members of types with the same
parity can go together, or any other such convention. But even settling for
a framework in which to give an account of our ontological data radically
underdetermines the form of the resulting typing. Above we have given five
substantially different alternative typings for a set of data on the basis of
one set of type-form conventions. In some there are three levels of types,
in others only two; in some there are individuals, in others there are not;
and in particular each element could turn up at any level, it could be an
individual, a first order property or a second order property.

Of course the data restrict the number of possible typings relative to
some type-form conventions to some extent. For example, typings where ¢
was an individual, ¢ a first order property and r a second order property, or
where ¢t and r are individuals and c¢ a first order property, cannot faithfully
represent the data since on the above type-form conventions they would
entail that +[t,c|] and —[r,t]. However, the restriction provided by the data
is not restrictive enough to guarantee uniqueness.

1.3 A graph-theoretic perspective

We can represent ontological data and their typings visually by invoking
some simple graph theory. Take the members of the basis B to be the
vertices and say that whenever we have an entry of the form +[s,¢] in D,
the vertices s and ¢ are linked by an edge. We then introduce an extra
non-graph-theoretic construction to represent a typing of a graph: a typing
of a graph is a function which assigns a natural number to every vertex in
B in such a way that vertices s, ¢t are mapped to numbers 7, j such that
|i —j| =1 iff s and ¢ are linked by an edge.

Intuitively, what a typing of a graph does is to divide it into slices num-
bered 0,1,2, ... in such a way that vertices connected by an edge are assigned
to directly neighbouring slices. Diagram 1 shows what the intuitive way of
typing the graph described by the data considered earlier looks like.

ffffffffffffff level 2
@

______________ level 1
®

______________ level 0

Diagram 1: Typing 1

It is now easy to see that the alternative typings discussed above were
achieved by three kinds of transformations of the typings of the graphs.
These are:

LIFTING, which increases the ordinal assigned to each type and thus
lifts all types one level up.

MIRRORING, which takes some vertex a (which is not connected to any
object at a higher level) at level n and moves all the vertices which are
connected to a by a path at lower levels to higher levels: those at n—1
go to n+1, those at n—2 to n+2 and so on (this is upwards mirroring);
or, alternatively, it takes some vertex a (which is not connected to any
object at a lower level) at level n and moves all the vertices at higher
levels to lower levels: those at n + 1 go to n — 1, those at n + 2 to
n — 2 and so on (downwards mirroring). Upwards mirroring can be
applied to all typings, downwards mirroring only if there is ‘enough
space’ below: if a is at level n and the highest vertex in the path is at
level m, we require that (m —n) < n.

FOLDING, which ‘folds’ the graph downwards (upwards) at some vertex
located at level n so that some or all of the vertices which are connected
by an upward (downward) path to that vertex and which are m levels
above (below) it are m levels below (above) it in the transformation.

Applying LIFTING to typing 1 once results in the following:

7777777777777777777 level 3
®
——————————————————— level 2
®
——————————————————— level 1
——————————————————— level 0

Diagram 2: LIFTING applied to typing 1

LIFTING typing 1 up two levels and then MIRRORING it downwards re-
verses it:

®
7777777777777777777777 level 2

@
______________________ level 1

©
—————————————————————— level 0

Diagram 3: LIFTING and MIRRORING applied to typing 1

And finally FOLDING downwards at r gives us
——————————————————————— level 2

______________ level 1

77777777777777777777777 level 0

Diagram 4: FOLDING applied to typing 1

We get a general applicability result for these transformations of the
following form: If a graph can by typed in a stratified way according to
the above conventions at all, all applications of LIFTING, MIRRORING and
FOLDING preserve accordance with the data.

This is immediately obvious in the case of LIFTING and MIRRORING. To
see that it holds for FOLDING as well consider that if we fold downwards (or
upwards) at some level n, all vertices at level n+1 (or n—1) go to n—1 (or
n+1), those at n+ 2 (or n —2) go to n— 2 (or n+ 2) and so forth, while the
edges between them are preserved. FOLDING thus keeps each vertex always
in the company of its direct level-neighbours.

1.4 Ontological import of transformations

It is debatable to what extent all three kinds of transformations result in
genuinely different typings. LIFTING seems to be the least problematic in
this respect. Even though we might say that a typing which dispensed with
individuals altogether by regarding all (former) individuals as first order
properties, all (former) first order properties as second order properties and
S0 on presents a genuine alternative to the typing with individuals, iterating
this lifting further does not make much of a difference, in particular since all
the levels below the level at which the first items occur are empty. It does not
seem sensible to say that the crucial difference between two typings is that
in the one the items of the lowest level are at level 26 while in the other they
are at level 27 and that this has any ontological import. We would rather be
tempted to say, for instance, that the individuals in a typing are whatever
inhabits the lowest level, in which case LIFTING would not constitute an
ontologically relevant transformation at all.

This is essentially what Russell claims in the Principia:

In practice, we never need to know the absolute types of our
variables, but only their relative types. That is to say, if we prove
any proposition on the assumption that one of our variables is
an individual, and another is a function of order n, the proof will
still hold if, in place of an individual, we take a function of order
m, and in place of our function of order n we take a function of
order n + m, with corresponding changes for any other variables
that may be involved.3

MIRRORING is more problematic since it allows us (together with LIFT-
ING) to reverse a typing, making individuals of a typing into properties of the
highest order, and vice versa, as well as reversing all the levels in between.
Gaskin, however, considers reversing to be ontologically harmless:

Let us try to imagine a world-view which systematically reverses
the order in the Fregean hierarchy of his zeroth- and first-level
expressions, by systematically reallocating the expressions which
he locates in the zeroth level to the second level, and then renum-
bering the levels accordingly. It is at least clear that that under
this transformation the valencies of different types of expres-
sions would not be affected. Proper names such as ‘Socrates’,
now located at level 1, would still be constructed with predi-
cates like ‘wise’, now located at level 0, and their corresponding
referents would still engage with one another in the appropri-
ate way, though now with reversed ontological allegiance: that
is, the erstwhile basic particulars would constitute the new first
level universals, and the erstwhile first level universals the new
basic particulars. [...] Metaphysically speaking, the two pur-
portedly different ways of looking at things would surely just
be doublets of one another. In other words, there would be no
absolute difference between the rival hierarchies: the only abso-
lute difference would be the difference of level (i.e. the different
valencies of expression or object) respected by both hierarchies.
[...] The one view says that the particular Socrates instantiates
(among other universals) the universal wisdom, the other that
the particular wisdom instantiates (among other universals) the
universal Socrates. But the two views are surely just using dif-
ferent notations to calibrate the same facts.*

Note, furthermore, that we can only reverse typings got from finite sets of
data and those got from infinite sets which can be typed using only a finite

3Whitehead and Russell (1925, 1:165), see also 161-162.
4Gaskin (1998, 29-30).

number of types. A hierarchy which is infinite in one direction obviously
cannot be reversed in the above way. Nor could we reverse a finite but
potentially infinite hierarchy which is considered to be always extensible
by adding elements at the level above the highest one. If we assume that
the hierarchy has a largest element but that we can also extend it into one
in which the largest element is greater by one (i.e. by adding higher order
properties), then this gives us a substitute for directionality in the finite
case. We cannot reverse the hierarchy since the ‘real’ top of the hierarchy
is the part which can always be extended.

FOLDING seems to be the most problematic transformation. After all,
it implies that elements of levels with the same parity can suddenly be at
the same level, or that in certain cases elements at level n can be moved to
level n 4+ 2 or n — 2. FOLDING goes even further than the transformations
Gaskin is willing to countenance since for him the ‘differences of level in the
hierarchy [...] are absolute’.5 If we accept FOLDING, this will no longer be
true. It is unclear not only which objects are located at which level, but also
how many levels there are (in the above example applying FOLDING could
reduce a typing with three levels to one with only two).

The three transformations together give us the following flexibility result:
A typing of the graph according to the above conventions where some object
a is at level n can by a successive applications of the three transformations
be made into another typing which is also in accordance with the data but
where a is located at level m, for any m. (See the appendix for the proof.)

Thus by applying the above transformations to a typing of some onto-
logical data according to the above type-form conventions, any particular
object can be put in any type we choose, provided we fudge around with the
other assignments in the required way. Clearly that does not mean that this
can be done for all objects and thus that all typings are adequate. Rather,
if we put some object in some type first, faithfulness to the data will imply
that we are restricted in where to put the other objects. Nevertheless, for
each particular object we can put it into whatever type we like.

1.5 Expansions: adding more of the same

Of course it is important to find out whether the above results are only pro-
duced in situations with three elements or whether they can be generalized.
Let us look at one with four elements ¢, s,t and r which are supposed to be
the type-neutral equivalents of a cup of tea, ‘being 63°C’, ‘being a temper-
ature between 30°C and 70°C’, and ‘being a temperature-range’. We would
intuitively regard these four objects as an individual, a first order monadic
property, a second order monadic property and a third order monadic prop-
erty respectively. Our D will contain +[cs], +[ts], +[rt], while all other

5Gaskin (1998, 27), see also 30-31.

pairwise combinations of members of the basis will be prefixed by —. The
intuitive picture is thus the following:

______________ level 4
®)
______________ level 3
@®
______________ level 2
®
ffffffffffffff level 1
©
ffffffffffffff level 0

Diagram 5: Typing 2

If we consider a typing of D in accordance with the above type-form con-
ventions it is clear that LIFTING will preserve accordance with the data. We
can also reverse the typing by regarding temperature-ranges as individuals,
‘being a temperature between 30°C and 70°C’ as a first order property of
such ranges, ‘being 63°C’ as a second order property of this, and a cup of
tea as a third order property of temperatures. This would then just be the
reverse of the ‘intuitive’ typing 2 suggested above and would look like this:

10

77777777777777777777 level 4

©
77777777777777777777 level 3
®
____________________ level 2
@®
———————————————————— level 1
™
———————————————————— level 0

Diagram 6: LIFTING and MIRRORING of typing 2

Similarly we could apply FOLDING to let the temperature of 63°C come
out as a first order property, a cup of tea and ‘being a temperature between
30°C and 70°C’ as second order properties of this, and ‘being a temperature-
range’ as a third order property of the latter.

11

777777777777777777 level 3

___________ level 2

__________________ level 1

__________________ level 0

Diagram 7: A FOLDING of typing 2

It thus turns out that the typing remains just as underdetermined even
if we consider worlds with more than three elements. Nevertheless, we note
that in the above case we encounter a phenomenon we did not get in the
case with three elements: now there can be elements at level n such that
they cannot go together with both elements at level n + 1 or with elements
at level n — 1, although there are elements at both levels. In the above case
after FOLDING a cup of tea could go together with the object directly below
it (the temperature of 63°C) but not with the only thing on the level above
it (‘being a temperature-range’). While this might seem odd, it is not ruled
out by the type-form conventions given above, for these only specified that
no two elements on the same level could go together and that only elements
at two directly adjacent levels could go together. This does not imply that
elements must be able to go together with all other elements at adjacent
levels. In fact we would not want our type-form conventions to demand
this. We suppose that these give necessary but not sufficient conditions for
‘fitting’: two objects ‘fit’ only if they are obeyed, but not whenever they are
obeyed. If we want our theory of types to be able to cope with individuals of
different kinds, for example, we would not want to say that e.g. ‘is divisible
by 3’ fits together with ‘the moon’, although the first is a monadic first order
property and the second an individual.

12

Given that the above result generalizes in this way it is then apparent
that, for any set of data which consists only of pairs of elements (as is the
case for the above data) and which can be typed given the above type-form
conventions, all three transformations preserve accordance with the data.
This would then imply that in a world where all elements are monadic,
nothing is essentially of any specific type.®

1.6 Expansions: the polyadic case

The next thing to consider is what happens in the polyadic case, where the
lists marked by + or — can contain more than two elements. Consider the
fact denoted by ‘Peter is married to Clare’ and abbreviate its constituents by
p, ¢ and m. Our ontological data D will be as follows: —[pc|, —[pm], —[cm)],
+[mpc], —[mpp], —[mcc], —[mmp], —[mmc]|, —[mmm], —[ppp], and —|ccc].
Intuitively we will type p and ¢ as individuals and m as a first order dyadic
property. Now suppose we reverse this typing and let m be an individual
(‘MarriedTo’) and p and c first order dyadic properties (‘peters’, ‘clares’).
Then the fact that Peter is married to Clare (‘MarriedTo peters clares’)
consists of one individual and two first order dyadic properties. Note that
the property ‘peters’ differs from ‘married to’ in that, although both are
dyadic and first order, ‘married to’ requires two individuals to form a state
of affairs, while ‘peters’ requires one individual and one first order dyadic
property (in our case this is ‘clares’). Again this might appear odd, but it is
not in conflict with the type-form conventions. They do not imply that no
two elements of the same type can form part of a state of affairs (otherwise
even the ‘intuitive’ typing of the above D would not be correct since ‘Peter’
and ‘Clare’ are both of the same type). They only specify that no collection
purely from one type could go together.

Clearly this reverse of the original typing is in accordance with the data.
It is also possible to extend our graph-theoretic account to deal with elements
of D with more than two members. We continue to treat elements with two
members in the usual way. For each +[si,...,sy], with n > 2 we connect
the vertices in such a way that each s,, is connected with exactly two others
sj, sk We call the resulting structure a cluster. To distinguish clusters from
the graphs describe above we will draw the edges in clusters as lines of a
different kind. The above example would thus look like this:

See Denyer (1998, 623).

13

level 1

———————————— level 0

Diagram 8: Typing 3

Given that our type-form conventions stipulate that only objects at di-
rectly adjacent types can go together, every cluster will be wholly located
within two distinct levels. We then note that clusters behave relative to
LIFTING and MIRRORING exactly as the usual edges do. For example, we
can reverse typing 3 by applying LIFTING and MIRRORING to get the follow-

ing typing:

level 1

777777777777777777 level 0

Diagram 9: LIFTING and MIRRORING of typing 3

Clusters can be FOLDED in a similar way to ordinary typings. To see
how this works consider a slightly more complex example. Consider a world
with five elements c, g, s,t and f, which are supposed to be the type-neutral
equivalents of ‘being the converse of’, ‘being greater than’, ‘being smaller
than‘, the number three and the number five. Our D will contain +[c, g, s/,
+[g,t, f], +[s,1, f], while all other pairwise combinations of members of the
basis will be prefixed by —. Intuitively of course the numbers three and five
are taken to be individuals, ‘being smaller than’ and ‘being greater than’
dyadic properties of these, and ‘being the converse of” a dyadic property of

14

properties. The typing representing this is thus the following:”

__________ level 2

level 1

________________ level 0

Diagram 10: Typing 4

FOLDING this downwards along the vertices g and s gives us

"We use different styles of edges to tell apart the three different clusters involved.

15

_________________ level 2

__________ level 1

_________________ level 0

Diagram 11: FOLDING typing 4

It is then easy to check that the above application and flexibility results
generalize to the polyadic case. Neither adding more elements nor the intro-
duction of polyadic elements makes the underdetermination of typings by D
disappear. We can always apply the above transformations to some typing
to end up with something which is also in accordance with the data, but
which takes the elements to belong to quite different types from the original

typing.

1.7 Tightening the type-form conventions?

Let us now look at two ways of ruling out some of the transformations on
typings so as to avoid the flexibility result. Both rely on tightening the
type-form conventions to ensure that in the case of certain transformations
the transformed typing is no longer in harmony with the conventions. We
will look at two ways of enforcing an asymmetry in the relation between the
different levels within a typing.

1.8 Rigidity

Suppose we enlarge the above example involving Peter, Claire and ‘married
to’ by adding the monadic property ‘sleeps’. We thus enlarge our data by
+[s,c] and +[s,p] (while all other combinations containing s will be pre-
fixed by —). The intuitive typing of the result will look like the one given

16

in diagram 12. If we then reverse typing 4 we end up with two individu-
als (‘MarriedTo’ and ‘Sleeps’) and two first order properties, ‘peters’ and
‘clares’, as in diagram 13.

level 1

________________ level 0

level 1

__________________ level 0

Diagram 13: Reverse of typing 5

It might now be argued that applying the transformation in this case
shows that we have destroyed a property which we intuitively expect of
typings. We usually think that objects can go together with a fixzed number
of other objects at the level directly below (a predicate either takes one
name, or two, or three, etc.). while the cardinality of sets of objects they
can go together with which involve objects from the level directly above
is flezible (a name can go with one monadic predicate, or with one dyadic
predicate and another name, or with one triadic predicate and two other
names, etc.).8

But in the above case the first order properties can go together with
a flexible number of individuals: ‘peters’ can take just ‘Sleeps’ or ‘Mar-
riedTo’ together with ‘clares’. The first order properties would thus have to
be regarded as multigrade properties which can have a variable number of

8This point has been made by Carruthers (1983, 53-55) and Gaskin (1998, 27-28).

17

arguments.

The type-form conventions given above do not enforce this asymmetry
of ‘upwards flexibility’ and ‘downwards rigidity’. Of course we can enlarge
them by adding the following conditions.

Suppose that a typing assigns s; to level n such there is some ¢ =
[8i; 85, .. ,8n] such that +¢.

If all the members of ¢ apart from s; are assigned to level n — 1, then
there is no 1 containing s; which is of a different cardinality from ¢
such that +1.

If all the members of ¢ apart from s; are assigned to level n + 1, then
there are v containing s; which are of a different cardinality from ¢
such that +1.

As is now easy to check, if we enlarge our type-form conventions in this
way then the transformations of LIFTING and MIRRORING together (which
allow us to reverse) and FOLDING will generate typings of the graph which
are no longer in harmony with the new type-form conventions in cases con-
taining at least one dyadic and one monadic property (LIFTING on its own,
however, still remains possible). Thus the most problematic sources of un-
derdetermination are eliminated.

But of course now the question is whether we want to adopt these
strengthened type-form conventions which are obviously more complicated
than the ones we employed in the beginning. We already considered these to
be too restrictive and might therefore be wary of accepting anything which
confines us even more. The greatest problem with the above strengthened
conventions is undoubtedly that they rule out multigrade predicates and
properties. And indeed there are some who think that properties essentially
have fixed adicities:

It is naturally an essential part of understanding — that is,
‘grasping the sense of’ — a relational expression for instance,
that you should know that it requires completing by two proper
names. Similarly it would be natural to think that it must belong
to the essence of the relation itself — conceived of as the refer-
ence of the relational expression — that it should hold between
two objects, rather than holding of one or between three.’

However, while it is perfectly possible to give a precise semantics for
multigrade predicates,'® it is far from obvious that we can get by with

?Carruthers (1983, 54).
10See e.g. Taylor and Hazen (1992).

18

reducing all supposedly multigrade predicates by changing them to fixed-
adicity predicates holding of some sort of ‘plurality’.!! If we cannot, then of
course we would not want our type-form conventions to forbid the existence

of something we obviously need.

1.9 Cardinality

The different levels in the set-theoretic hierarchy are related to one another
by cardinality constraints. If there are n objects at some level m, there are
exactly 2" objects at level m+1. One might want to transfer this cardinality
constraint to ontology and incorporate it into the type-form conventions.!?
The idea would be to demand that a typing is adequate only if the cardinal-
ities of objects at two neighbouring levels m and m + 1 are related to one
another as n and 2".

The motivation for such a demand is obvious in the case of such posi-
tions as set-theoretic nominalism, which conceives of all properties as sets
of individuals. It is clear that according to such an account there cannot
be more properties of individuals than sets of individuals. But equally once
we accept the set-builder we accept all the sets which can be recursively
constructed from the individuals. So if properties are really nothing more
than sets of individuals, in a world with n individuals there will be 2" first
order properties, 22" second order properties and so on, all the way up the
set-theoretic hierarchy.

For an intensionalist who claims that for every extension there is a cor-
responding property, but who does not want to identify properties with
extensions (since he fears there might not be enough extensions to account
for all the properties), 2" is obviously only the lower limit: there might
conceivably be even more first order properties.

The opposite position would be held by someone who wants to differ-
entiate properties by extensions but who insists that all properties must be
instantiated. In this case 2" would be the upper limit: there could not be
more first order properties, but there might be fewer, since the properties
corresponding to some extensions might not be instantiated.

Once we incorporate the cardinality constraint into our type-form con-
ventions it is evident that none of the above three transformations is allowed
any more. Even the unproblematic LIFTING is ruled out. It is easy to see
why this is so. Suppose we have some typing which satisfies the cardinality
constraint which we LIFT by two levels. The first two levels will now be
empty so that the first objects will not be encountered until level 2. But
given that level 0 has cardinality 0, level 1 should have cardinality 20 = 1,
which it does not, since it is empty as well. Therefore the typing transformed

" Qliver and Smiley (2001).
12This consideration was suggested to me by Peter Simons.

19

by LIFTING no longer satisfies the type-form conventions incorporating the
cardinality constraint.

It is similarly obvious that both MIRRORING and FOLDING are ruled out
as well. Both transformations affect the number of objects at a given level:
MIRRORING by permuting the cardinalities at different levels, FOLDING by
increasing the cardinality of one level at the expense of another. Each of
these necessarily disturbs the rigid structure imposed by the cardinality
constraint.

The asymmetry introduced via the cardinality constraint into the type-
form conventions allows us to determine in all cases in which we can con-
struct a typing at all whether some level in the typing is or is not above
another one. For example, if our ontological data consist of information
about eleven objects, eight of which are grouped together in one level, while
the remaining three are in another one, it is clear that the second level must
be the more fundamental one, with the first level directly above it.

But such determinacy comes at a price. The price in our case is the
impossibility of typing vast ranges of ontological data in a way that obeys
the type-form conventions incorporating the cardinality constraint. Data
such as those represented in typings 1, 2 and 3 above could no longer be
typed with the strengthened type-form conventions. Given that these data
are in no obvious way deviant, we should be able to type them with the
resources at hand. If our conventions do not allow us to do this, so much
the worse for the conventions.

But in fact this is not the only problem with the cardinality constraint.
Much more problematic is the fact that the picture of individuals and prop-
erties contained in it is highly implausible from an epistemological point of
view. If we consider properties as regularities by which we structure in-
formation about the individuals we encounter, there should not be more
properties than individuals, but considerably fewer. And if the existence
of predicates of different levels is anything to go by, the picture we get is
not that of the bucket or cone familiar from set theory, but rather that of
a funnel turned upside-down. It is easy to think of examples of first order
predicates, second order predicates are a bit harder to come by, while the
number of third order predicates is really very small. Predicates of even
higher order are rarely encountered in natural languages. All of this is of
course as it should be. There is a great epistemological demand for sys-
tematizing similarities between individuals, which is done by the first order
predicates. There is less need for regularities between regularities, while we
hardly ever need to refer to regularities between regularities of regularities.
If there is anything like a cardinality constraint at work in the way we ac-
tually type objects in natural language, it seems to be the opposite of the
constraint proposed above.

It thus turns out that the cardinality constraint only really makes sense
in the context of set-theoretic nominalism. But unfortunately this account

20

is riddled with so many intrinsic and epistemological problems that I find
it hard to consider it as a satisfactory way out. It therefore turns out that
neither the appeal to rigidity nor that to cardinality presents a satisfactory
way of tightening the type-form conventions. The problem of underdeter-
mination remains.

We therefore see that if we say that an object belongs to a certain type
we have certainly not mentioned any essential property of the object. It is
even doubtful whether we have said anything important about the object
at all, since by making amendments elsewhere, everything could be in any
type. Whether certain constituents of states of affairs can go together will
constitute ontologically relevant information, but not whether a particular
object is assigned to this or that type in a particular typing. It is thus evident
that the statement that something is an individual, a property, or a relation
cannot claim to express anything of fundamental ontological importance.

2 Adding Logic

We have argued that there is no procedure for drawing a distinction between
objects belonging to different types relying solely on the combinatorial in-
formation about which objects go together to form states of affairs. But
perhaps combinatorial information is not the only information which we
can appeal to here.

The ontological data we have considered above provide us with purely
combinatorial information, i.e. with information about what can go together
with what. As such the data need not be about parts of states of affairs at all:
they could describe any collections of objects where it made sense to speak
of some objects ‘fitting into’ some other objects. Our data could for example
describe which atoms can go with which other atoms to make up a molecule,
or which tiles of some given set can be used to tile a plane, or which nuts
fit into which bolts. It is therefore not surprising that we could systematize
these data in lots of different ways and that they do not automatically fall
into the slots of the simple theory of types in a unique way. One kind of
object is not inherently above another, nor is there an inherent ‘up’ in the
hierarchy of levels: these are just results of our theoretical systematization
of the data.

We might think that the hierarchy only emerges in a determined (or
at least less underdetermined) way once we regard the objects whose com-
position is encoded in the combinatorial data (i.e. the states of affairs) as
objects we can apply a logic to, i.e. as propositional. The idea is thus that
the simple theory of types is embedded in our conception of inference. It
only shows up once we consider not only what goes together with what but
also what follows from what. This would then distinguish the objects we
are considering from atoms, tiles, nuts and bolts: it does not make sense to

21

say that some molecule or some collection of tiles entails another molecule
or another tile, while it does make sense to say this about propositional
objects. If we take this additional feature into account, much of the above
underdetermination might disappear.

Let us therefore explore the idea that although distinctions between ob-
jects belonging to different types, and in particular the distinction between
individuals and properties, cannot be drawn in a purely combinatorial way,
some or all of them can be regained by taking logical relations into account.

2.1 Quantificational reasoning

Quantificational reasoning seems to be what we want to look out for when
considering entailment relations. For a simple example consider the possi-
bility of reversing a typing discussed above. Although there are different
ways in which to interpret quantifiers, one that has been rather influential
is to regard them as higher level properties. In particular, quantifiers over
objects at level n are regarded as objects at level n + 2. (For example, we
can regard the first order existential quantifier as a property of a property
of individuals, namely as the property of being non-empty.) Now if we have
objects at a given level n, there does not seem to be anything to keep us
from quantifying over these, thus introducing level n + 2 objects into our
hierarchy. Therefore the hierarchy will always be finite (have some highest
level) but potentially infinite: we can make this level as high as we want
it to be. Now if we have this picture, it seems to be no longer possible to
reverse a typing since we can now identify a top end of the hierarchy: this
is the end where new levels can be added to the hierarchy.

Hugh Mellor has argued (in his exegesis of Ramsey) that we should
identify the place of individuals in the hierarchy via quantification: they are
exactly that which our first order quantifiers range over.'® If we adopt this
position then it is clear why the transformation of LIFTING is ontologically
unproblematic.

Our aim is of course to take into account the inferences we can draw
from particular typings so that the transformations will no longer constitute
genuine alternatives, for we are looking for a case in which it can happen
that we can draw some inferences from one particular typing which we can
no longer draw from another. Here is how we can develop the above idea to
do just this.

Consider a language containing quantifiers of different orders 3°,3',.. ..
A formula like (3%z)(p,) will be interpreted as ‘there is some element z at
level 0, p is at level 1, and +[p, z]’. In general we take (3"z)(p, z) to mean
‘there is some element z at level n, p is at level n + 1, and +[p,z]. Now
clearly typing 1 depicted in diagram 1 allows us to infer (3°z)(r, z), while

13Craig (1998, VIII: 48), Mellor (1990, xx).

22

this is not true in the typing represented in diagram 2. Similarly (3'z)(c, z)
holds in diagram 1 but not in 2, 3 or 4.

So all transformations can make a difference regarding the inferences we
can draw. It is, however, possible to let LIFTING come out as a transfor-
mation which does not affect inferences by saying that the quantifiers over
individuals (i.e. our 3°) range over whatever are the objects at the lowest
level, regardless of whether this is level 0 or level 17. To do this we adjust the
interpretation of the quantifiers in the following way. Let m be the lowest
level at which there are any elements. Then (3°z)(p, z) will be interpreted
as ‘there is some element z at level m, p is at level m + 1, and +[p, z]’. This
generalizes in the obvious way, (3"z)(p,z) means ‘there is some element z
at level m +n, p is at level m +n + 1, and +[p, z]’. It is then obvious that
(3'z)(c, x) is true in diagrams 1 and 2, but not in 3 or 4.

In this way we can account for the fact that LIFTING on its own, as
opposed to LIFTING with MIRRORING, and FOLDING, is supposed to be an
ontologically harmless transformation.

However, none of the above approaches attempting to remove the un-
derdetermination by recourse to logic is really satisfactory. Consider first
the idea that reversing a typing conflicted with the introduction of higher
order quantifiers. This is the case only if we assume that the quantifier is
always two levels higher than the objects it ranges over. But in fact this is
an additional assumption not implied by the way in which quantifiers (un-
derstood as higher order properties) enter into states of affairs. Clearly all
that is demanded is that the quantifier is located at a level directly adjacent
to that of the properties of the objects it quantifies over. But this can also
be the case if it is on the very same level as the objects it quantifies over.
Thus we could apply FOLDING and say e.g. that quantifiers over individuals
are also a particular kind of individual (since they can form states of affairs
with properties of individuals). But then it is clear that the demand for
adding quantifiers of ever higher orders does not force the hierarchy to be
open-ended in one direction. If our current highest level is m and we want
to quantify over objects at level m — 1 we can introduce a level m + 2, but
we could equally place the quantifier at level m — 1.

Similarly the proposal inspired by Mellor’s exegesis of Ramsey does not
seem to be able to provide us with a non-circular logical characterization of
individuals. It presupposes that we have a prior way of checking whether
some quantifier is first or higher order. But this cannot just be based on
taking them to be located at particular levels in the hierarchy for, as we
have seen, their position will be affected by transformations as well.

23

2.2 Distinguishing objects through their logics

A more sophisticated argument for a purely structural distinction between
objects at different levels has been developed by Nicholas Denyer.'* He
argues that a structural difference between objects at different levels is im-
plied by the different metalogical properties of logics quantifying over them.
Denyer considers first order logic, which quantifies over objects at level 0,
pure second order logic, which quantifies over objects at level 1,'5 and stan-
dard second order logic, which quantifies over both. First order logic is
compact, complete and the Léwenheim-Skolem theorem holds for it. Stan-
dard second order logic has none of these properties. Pure second order logic
has a property which neither of the other two has: logical truth is decidable
in it.

If this works it is surely a most elegant way of removing the underde-
termination of typings by appealing to logic. We will then e.g. be able to
say that the objects which really belong to the zeroth level are those such
that the logic quantifying over them has a particular set of properties, while
other levels are distinguished by the specific metalogical properties of the
logics quantifying over them.

But unfortunately several caveats have to be added here. The meta-
logical properties of a logic depend crucially on the semantics relative to
which we determine these properties. The metalogical distinctions between
first and second order logic appealed to certainly hold if we give second or-
der logic a standard semantics. But if we take a Henkin or a many-sorted
semantics (or first order semantics, as the latter is sometimes called), the
differences disappear: second order logic is now compact, complete and the
Loéwenheim-Skolem theorem holds for it.!

Henkin semantics and many-sorted semantics differ from the standard
semantics in important ways. In Henkin semantics the analogues of prop-
erties are regarded as subsets of the powerset of the domain (and thus as
set-theoretical constructions from the individuals). But as compared to
standard semantics not all the members of this powerset are included in the
semantics (unless we have a full Henkin model, which is then in turn equiva-
lent to a standard model). Many-sorted semantics, on the other hand, takes
the denotation of predicates to be objects in some distinct and disjoint sets in
the model (and therefore not as constructed from the individuals). Because
of this, many-sorted semantics needs a primitive predication function which
connects the individuals with the properties (standard and Henkin semantics
could just use set-membership for this purpose). Henkin and many-sorted
semantics are very closely related — for any model of the one sort there is an

Denyer (1998).
5For the formal details of pure second order logic see Denyer (1992).
18Shapiro (1991, 88-95), see pp. 70-74 for a survey of these different kinds of semantics.

24

equivalent model of the other sort.'” However, in the context of our inquiry
there are important differences which are brought out by distinguishing the
two.

The standard semantics for second order logic seems be attractive be-
cause it is a natural continuation of that of first order logic, whereas Henkin
or many-sorted semantics deviate from this standard. But such a unity can
also be achieved by using a many-sorted semantics for first and for second
order logic. In such a uniform semantics the metalogical differences just
mentioned will disappear.

Let us first consider a simple variant of first order logic which we will call
L1 and which has the peculiarity that it contains the primitive predication
predicate £.!® Thus instead of formulae like Fa we have £(F,a), instead
of Gab we have £(G,a,b), and instead of (3z)(Fz) we have (Iz)(e(F, z)).
Instead of the non-well-formed formulae aF', aGb, Gb and the like we have
e(a, F), e(a,G,b) and (G, b), which are well-formed but false.

To see how this works consider that the semantics for this first order
language is very similar to the standard semantics for standard first order
logic. It consists of a domain D = {a,b,...} of objects and an interpretation
function I which assigns an x € D to each name of our language, a subset
of D to each monadic predicate letter, a set of ordered pairs from D to each
dyadic predicate letter and a set of n-tuples from D to each n-adic predicate
letter. We shall denote the referents of the names and predicate letters given
in this way by underlining them.

A sentence of the form ¢(F, a) is then true in a model of the above kind if
a € F, e(G,a,b) is true if (a,b) € G. (Iz)(e(F, x)) is true if there is at least
one x € D such that x € F, etc. It is then clear that e(a, F'), €(a, G, b) and
e(G, b) are all false since they denote the non-obtaining facts that F € a,
(G,b) €aand b€ G.

We thus interpret the predication predicate € simply as set-membership.
In this way the semantics for L1 does not need any more resources than
standard first order logic. Its point is just to make the predication ex-
pressed implicitly in standard first order language by concatenation explicit
by assigning a special syntactic element to it.*

We now introduce a first order language L2 which is syntactically just
like L1 but which does not have a standard semantics like L1 but a many-
sorted semantics. A model of L2 will consist of a domain D which is the
union of infinitely many sets Dy, D1,..., an asymmetric dyadic relation P
between n-tuples from Dy and one member from D, (where n > 1) and
the interpretation function I which assigns a member of Dy to each name,
a member of D; to each monadic predicate and so on. A sentence £(F,a)

17Shapiro (1991, 88).
18 Compare the A-predicate introduced in Bealer (1982, 82).
19Shapiro (1991, 77).

25

will then be true if P(F,(a)), ¢(G,a,b) will be true if P(G, (a,b)), and
(3z)(e(F, z)) will be true if there is at least one member of D such that the
singleton containing that member stands in the relation P to F.

This semantics introduces the special relation P as the interpretation of
the ¢ predicate, rather than using € to fulfil this réle. This is usually only
done in giving many-sorted semantics for second order languages?® but there
is no good reason why it should not be done for first order languages as well.
It allows us to give a uniform semantics for first order, pure second order
and standard second order languages, simply by postulating that in the first
case our quantifiers range only over members of Dy, in the second case over
members of any set other than Dj, and in the third case over members of
any D,, whatsoever.

Given that for the third case it can be shown that the system is compact,
complete and the Lowenheim-Skolem theorem holds for it, these results also
hold for the first and the second case, where we quantify not over members
from all Dy, but only over some. But in this case the argument for the
difference between individuals and predicates from the different metatheo-
retical properties of the logics quantifying over them hinges on our adopting
the standard semantics in all three cases, rather than the many-sorted se-
mantics. We will thus need an argument why the standard semantics is
inherently preferable to many-sorted semantics.

The obvious thing to say here seems to be that Henkin models do not
allow our quantifiers to range over really all properties. In assigning a de-
notation to e.g. a dyadic predicate-letter in a Henkin model, we might not
have the entire set of pairs of individuals in the domain to choose from, but
only a limited subset of it. This limitation is essential for the metatheo-
retical properties of the logic. If it is lifted, we get a full Henkin model (or
equivalently a full many-sorted model) which will allow us to prove the same
metalogical results as the standard model.?! We might now argue that if we
formalize our talk about ‘all properties’ of a certain sort, we should choose
a semantics in which this is faithfully represented, rather than one which
understands our ‘all’ as an ‘all of some particular kind’.

2.3 Blind logic

Let us suppose we accept this criticism. In that case the metalogical dis-
tinctions are reinstated. But even so they do not give us the required dis-
tinction between individuals and properties. The fundamental problem is
that, as we have seen, metalogical distinctions only make sense once we have
a semantics. But all usual semantics, including the ones discussed above,
already presuppose the distinction between individuals and properties we
want to draw, since they assign structurally different objects to names and

20Shapiro (1991, 75).
ZShapiro (1991, 89).

26

to predicate letters (objects to the former and sets of objects to the latter
in the standard case, objects from different sets in the many-sorted case).
Therefore the metatheoretical differences appealed to are actually the result
of the distinction between individuals and properties drawn at the level of
semantics, rather than a guide to such a distinction.

In all of the above systems the properties of the predication function
(regardless of whether we took it to be set-theoretical membership or to be
primitive relation) provided us with an obvious way of identifying the indi-
viduals in the semantics. There were always some items in the semantics
which could not occupy the first position in the predication function — the
ones which could not have any members nor could be predicated of some-
thing. These, of course, were the individuals. This identification relies on
the fact that the predication function is asymmetric: if ¢ can be predicated
of b (b is a member of a) b cannot be predicated of a (a cannot also be a
member of b) and b must therefore be an individual. But the fact that there
is such a predication function present is not a fact of logical necessity. In
fact we can devise a logic, a blind logic as one might call it, which can do
everything which the above logics can, but whose semantics does not con-
tain a predication function but only a weaker symmetric substitute, called
application. In this logic individuals and properties cannot any longer be
distinguished in the above way.

Let us look at a toy example of such a blind logic. The alphabet of our
language will consist of the seven names t, j, p, f, [, n, 0, multigrade applica-
tion predicate A, the propositional connectives — and A, a way of expressing
quantification, and the necessary punctuation conventions. The names will
be divided into three groups, 7 = {t,7,p}, 72 = {f,l} and 73 = {n,0}. An
atomic sentence is well-formed if it has one of the two following forms:

A(11,72)
A(Tla T1, TZ)

Writing down the application predicate, followed by a name from the first
and one from the second group will therefore result in a wff, as will writing
down the application predicate followed by two (not necessarily distinct)
names from the first and one from the second group. We further stipulate
that if A(7;, ..., 7x) is well-formed, so is every formula obtained by permuting
the 7s.

Molecular sentences sentences will be formed from atomic sentences in
the familiar way: if some sentences ¢, ¥ are wifs, so will be ¢ and ¢ A 1.
Furthermore, if ¢ is well-formed, replacing one name belonging to 7; in it by
an z and prefixing the result with an Jz,, is also well-formed.

A model of this language consists of three sets Dy = {T,J, P}, Dy =
{F,L} and D3 = {N, O}, a set S of multisets of elements of D;—D3 and
an interpretation function I which assigns an object from some D; to every

27

name and an element from S to every atomic sentence. A sentence of the
form A(u,v) will be true if [I(u),I(v)] is in S. —¢ is true if ¢ is not true,
¢ A if both 9 and ¢ are. Jzy, A(z,u) is true if there is some z in the D;
such that [I(z),I(u)] is in S.

There is also an intuitive interpretation of this language. In this inter-
pretation T, J and P stand for three Cambridge Colleges, Trinity, St John’s
and Peterhouse, F' stands for the property ‘being first in the league-table’, L
for ‘is liked by tourists’, O for ‘is as old as’ and N for ‘is next to’. So A(4,1)
is true if there is an actual state of affairs containing just St John’s and ‘be-
ing liked by tourists’ (i.e. if St John’s is liked by tourists); A(t,1) A A(t, 7, n)
is true if both Trinity is first in the league-table and Trinity is next to
St John’s; and 3z, A(z,p) if either Peterhouse is liked by tourists or it is
first in the league-table.

Now it should be clear that everything a standard first order theory of
the three Colleges, their two properties and three relations can express can
be expressed using this blind logic. However, as opposed to standard sys-
tems with standard or many-sorted semantics we cannot draw a distinction
between the different items in the model according to the position they oc-
cupy in expressions of the form A(u,v), since e.g. A(u,v) and A(v,u) will
be logically equivalent.

Intuitively we would claim that 7', J and P in the model are individuals,
F and L first order monadic and N and O first order dyadic properties.
This is surely a sensible assumption to make. But there is nothing in the
semantics which forces us to go down that road. As we have seen in the
previous sections, we could equally regard T, J and P as first order monadic
properties and F, L, N and O as different kinds of individuals. Or T" and J
could be taken to be individuals, P as a second order property and F, L, N
and O as first order properties which can take arguments both from level 0
and from level 2.

2.4 Ordered application

The reader may have realized already that the expressive equivalence be-
tween our theory of the three Colleges formulated in blind logic and in
standard first order logic holds only because we took care to include just
symmetric relations. Assume now that we had included some non-symmetric
predicates (such as ‘admires’) or asymmetric predicates (such as ‘has more
students than’). In this case expressive equivalence would not have been
preserved, since clearly we can express that Trinity has more students than
St John’s in the standard first order language as M (t,s), while the blind
logic equivalent A(m,t,s) only tells us that m can go together with ¢ and s
in a state of affairs, but not in which direction it does.

In order to get full expressive equivalence with standard first order logic
we therefore have to add to our logic some device for expressing this ‘direc-

28

tion’ or ‘ordering’ of elements. We do this by introducing a second applica-
tion predicate A’. The syntax of this will be similar to that of A, with the
difference that it will apply to different sorts of names. For example if we
add the two names a, m to the above language (standing for the predicates
‘admires’ and ‘has more students than’) which belong to a type 74, we would
amend the above rules for forming atomic sentences by adding

AI (Tla T1, T4)

Since A’ is supposed to express ‘ordered’ predication it is obviously not
the case any more that if A'(7;,...,7%) is well-formed, so is every permuta-
tion of the 7s. We had multisets to serve as the denotations of ‘unordered’
application and will consequently have lists to serve as the denotations of
‘ordered’ application. Thus we add a set L of lists of elements from D;—D3
to the model and stipulate that a sentence of the form A’(u,v) is true if
(u,v) is in L. We can then e.g. express sentences like ‘St John’s admires
Trinity but not the other way round’ as A'(j,t,a) A =A'(t, j,a), something
which obviously could not be done in a language containing A alone. It is
then clear that a language containing the two application predicates has the
same expressive power as standard first order predicate calculus.

Note furthermore that the expressive power does not decrease if we just
restrict ourselves to A’. Everything we can express by using unordered
application can be expressed by ordered application. Such a system will be
identical to a many-sorted first order system with a single special multigrade
predicate representing ordered application.

2.5 Partially ordered states of affairs

We saw above that on the basis of a blind logic containing just the applica-
tion predicate A we are not able to distinguish the elements of the domain
which are individuals from those which are properties. We then realized,
however, that this logic fell short of the expressive power of standard first
order logic. We had to add the ordered application predicate A’ in order to
get a language in which we could say the same things as in standard first
order logic.

Having such an ordered application predicate makes for a simple syntax,
but given that we are presently concerned with the extent to which formal
syntactic features are merely convenient conventions, rather than necessary
in some ‘more fundamental’ sense, let us pause for a moment to see whether
we really need the full power of ordered application for achieving what we
set out to do.

It turns out that we do not. In order to represent the difference between
‘Albert loves Becca’ and ‘Becca loves Albert’ we do not need a framework
which fixes the order of all three constituents of that state of affairs. All we

29

need to know is whether — in a manner of speaking — Albert or Becca comes
first in that state of affairs. The exact position of ‘loves’ is then irrelevant;
we could position it anywhere in the state of affairs. Therefore it seems to be
much more sensible to express the state of affairs that Albert loves Becca not
as A'(l,a,b) but rather as A(l, A’(a,b)). This notation emphasizes that the
state of affairs is not completely flexible, as are states of affairs involving
symmetric properties such as ‘Albert marries Becca’, where the order of
constituents is irrelevant, but partially flexible: the order of some, but not
of all its constituents is important. A(m,a,b) is identical with A(m,b,a),
but A(l, A'(a,b)) is different from A(l, A'(b, a)).

We should be immediately warned, however, against trying to exploit
this syntactical convention for ontological purposes, e.g. by claiming that the
constituents whose order is important are the individuals, while the remain-
ing one is the property. That would be reading too much into the syntax.
That we need some device for expressing the order of (some) constituents of
states of affairs is syntax-independent. This is something made necessary by
our desire to develop a language with a certain expressive power. But how
this is achieved is determined by convention, even if we settle for the above
syntactic framework. After all, the difference between ‘Albert loves Becca’
and ‘Becca loves Albert’ could equally be expressed by writing A(a, A'(l, b))
for the one and A(a, A’(b,1)) for the other. If we adopt this convention,
saying that the individuals are the elements linked by ordered application
will deliver intuitively false results.

Apart from providing us just with the minimal resources we need for
achieving expressive equivalence with standard first order logic, the above
notation has the additional advantage of bringing out a distinction between
states of affairs which is usually overlooked by focusing just on the difference
between symmetric and non-symmetric predicates.

We have seen above that there are states of affairs where the order of
constituents is completely irrelevant. These unordered states of affairs are
usually considered to contain symmetric properties such as ‘is married to’
or ‘is as tall as’. Nevertheless, states of affairs with just two constituents
can also be subsumed under this heading, given that it is irrelevant in which
order the individual is linked with the monadic property.

Other states of affairs, such as those containing non-symmetric or asym-
metric properties depend on the order of all their constituents but one, as
we have seen in the case of ‘loves’ above. These are the ordered states of
affairs.

There is, however, a third class of states of affairs which we will call
partially ordered. In these the order of only a small number of constituents
is important. An example of a partially ordered state of affairs is ‘that a is
between b and ¢’. Clearly this is not unordered, but equally it is not ordered,
since it is not the case that the order of all but one constituent is important.
This state of affairs has four constituents, ‘is between’, a, b, and c¢. But we

30

do not have to know the order of three of them to identify uniquely which
state of affairs is meant; to know the order of two is quite sufficient. After
all, ‘that a is between b and ¢’ is the very same state of affairs as ‘that a is
between ¢ and b’.

The same distinction between three kinds of states of affairs can be drawn
if we consider their combinatorial potential. The combinatorial potential of
a state of affairs is the number of different states of affairs which can be put
together from its constituents. Unordered states of affairs obviously have
a combinatorial potential of 1: there is only one state of affairs which can
be constructed by putting together the constituents of ‘Albert is married
to Becca’, namely that very state of affairs. Ordered states of affairs, on
the other hand, have a combinatorial potential of (n — 1)!, if they have n
constituents. This is due to the fact that all the permutations of all the
constituents but one of such a state of affairs result in different states of
affairs.?2 The combinatorial potential of partially ordered states of affairs
will be between that of unordered and that of ordered states of affairs. The
state of affairs ‘a is between b and ¢’ has a combinatorial potential of 3; an
unordered state of affairs with four constituents would have one of 1, an
ordered state of affairs one of 6.

2.6 Ordered states of affairs and natural language

The problem of distinguishing a state of affairs like ‘Albert loves Becca’
from its converse is obviously not just relevant for the formal language we
have been discussing, but is equally acute for natural languages. Different
languages have different ways of tackling this problem. In English the fact
that ‘Albert’ comes before ‘Becca’ in ‘Albert loves Becca’ indicates that
Albert is the lover and Becca the beloved, rather than the other way round.
The two states of affairs are thus distinguished by word order.

The second linguistic mechanism by which this can be achieved is case
marking. To indicate in Latin that Domitilla sees Polybius we put Domit-
illa’s name in the nominative case and Polybius’ in the accusative: ‘Domitilla
Polybium videt’. In the case of triadic relations like ‘z gives y to 2’ we also
employ the dative, as in ‘Domitilla Polybio librum dat’.

Each of the two methods is each on its own able to fulfil the task of dis-
tinguishing different ‘directions’ of relations. Once a case marking system
is in place we do not need to appeal to word order for the same purpose,
or vice versa. In Latin the word order is quite flexible, though not com-
pletely arbitrary. There are, however, examples of languages employing
case markers such as the native American polysynthetic language Mohawk

22(p — 1)! is the greatest combinatorial potential a state of affairs can have. For any
state of affairs there will thus be always more permutations of its elements than different
states of affairs which can be constructed from it.

31

where sometimes every permutation of the words of a sentence is a sentence
as well.23

Whether a language employs word order or case marking seems to be a
quite fundamental difference which is decided by how very general parame-
ters are set.?* The formal languages of logic have always gone for employing
word order rather than case markers. One reason for this presumably is
that it keeps the size of the primitive vocabulary down, since case mark-
ers would constitute additional primitives. The above syntactic device of
partially ordered application can be taken to contain some elements of such
case marking within a system relying fundamentally on word order, since the
order (like the case marking) applies only to certain parts of the sentence,
not to the entirety of its constituents.

2.7 Distinctions which can be drawn

We have now seen that neither ordered nor partially ordered application
gives us a way of distinguishing individuals and properties. Let us therefore
look at the distinction between the objects in the domain which can be
drawn in terms of the two application predicates A and A’. The criteria
of well-formedness tell us which objects can go together to form states of
affairs. For example, from the fact that A(m, 71, 72) is well-formed we know
that one object of the kind denoted by names of type 72 and two objects
of the kind denoted by names of type 7 can be assembled into a state of
affairs. This is essentially the same information which is formulated in the
graph-theoretic model developed in 1.3-1.6. In this model this fact would
be expressed by the fact that each collection of vertices consisting of one
member of 75 and two members of 74 would be part of a cluster of three
elements.

This information is not sufficient, however, for achieving a distinction
between individuals and properties. We cannot argue that, in a state of
affairs described by a formula of the form A(7y, 71, 72), T2 is a dyadic property
since it takes two other objects to form a state of affairs, because this is
also true of the 7; (this is essentially the point made in 1.6). We are in
the strange situation that we can structurally establish whether some state
of affairs contains an m-adic constituent but not which constituent this is.
On the basis of all the combinatorial and logical information which we can
bring in to decide this problem, there is no way of settling the issue. There
seems to be no fact of the matter and therefore no distinction between the
ontological categories of individuals and properties.

ZBaker (2001, 88-89).
2 For the notion of a hierarchy of parameters and the réle of the polysynthesis parameter
see Baker (2001, chapter 6).

32

2.8 Conclusion

Let us briefly summarize the results we have reached. In the first section
we argued that there is no procedure for distinguishing between objects of
different types on the basis of purely combinatorial information about what
goes together with what in states of affairs. In the second section we explored
whether one of the type-distinctions between the constituents of states of
affairs, namely that between individuals and properties, could be salvaged
by wheeling in information about logical relations to supplement that about
combinatorial relations. Our conclusion was negative since the distinctions
logic allowed us to draw were only those which it had already previously
made at the level of semantics. Logic is therefore unable to provide us with
information about either the origin or the justification of the individual-
property distinction.

Both the combinatorial and the logical information can be regarded
as structural information if we follow Carnap in equating structural in-
formation with relation-descriptions and non-structural information with
property-descriptions.?> Relation-descriptions tell us about certain relations
objects stand in, while property-descriptions (unsurprisingly) tell us about
their properties. Combinatorial information is structural because it is about
the way the different parts of states of affairs are related in ‘fitting together’
to form complexes. The description of logical relations is structural because
it is about entailment relations between states of affairs. As such the above
can be taken as a (partial) argument for the impossibility of a structural
foundation of the distinction between individuals and properties of different
orders and adicities. I consider the philosophical significance of the above
results to consist in showing that this distinction between individuals and
properties cannot be as fundamental as is usually assumed.

Of course one might argue that there are other ways of drawing the
distinction, based on relations which can equally be regarded as structural.
Unfortunately I presently do not see any plausible candidates for such sup-
plementary structural relations. Ramsey examined a number of possible
procedures in his paper Universals,?® which he calls the psychological, the
physical and the logical. The last one corresponds closely to our concep-
tion of a ‘structural’ account. As we have seen above, this does not lead to
success. The other two accounts do not look much more promising and are
(rightly) given short shrift by Ramsey .27 His conclusion is therefore corrob-

*5Carnap (1928, 11-12). Carnap claims that relation-descriptions and thus structural
descriptions are the only descriptions science deals with.

26Ramsey (1990).

*TThe psychological account, based on the distinction of different mental acts does not
play any role in the present ontological discussion. This is not so for the physical account,
which argues that properties, but not individuals can be at more than one place at any
one time. For a criticism of this and a conclusion which is in some respects quite similar
to our own see MacBride (1998).

33

orated: it seems high time to dismiss talk about individuals and properties
from the set of fundamental ontological distinctions. If we want to con-
fine ourselves to distinctions which can be drawn structurally, we have to
restrict ourselves to weaker notions codifying which objects fit together to
form states of affairs. How far they can be incorporated into existing on-
tological frameworks and what a purely structurally grounded ontological
theory would look like remain fascinating and fundamental questions for
further research.*

Appendix

T 1. A typing of a graph according to the type-form conventions where
some vertexr a is at level n can by a successive applications of the three
transformations be made into another typing which is also in accordance
with the data but where a is located at level m, for any m.

It is clear that we can move a graph arbitrarily far upwards by LIFT-
ING. Showing that this also holds for the downwards direction is a bit more
difficult. We will prove the downwards case, the full T1 will then be entailed.

T 2. Let a (the candidate) be a vertex in a graph located at level n (the
candidate-level). It is possible to transform that graph by repeated applica-
tion of the three transformations LIFTING, MIRRORING and FOLDING so that
in the result a is at any level n' (the target-level), provided n' < n.

We first observe that since the set of data we consider is always finite,
each graph in a typing will contain some mazimal element (which is not
connected to any vertex at a higher level) and some minimal element (which
is not connected to any vertex at a lower level). If ¢ is the level of the
maximum, b that of the minimum, the length [of the graph will just be
(t—b).

We now need to establish two simple lemmas.

L 1. Ifa is a vertex in a graph in some typing the graph can be transformed
in such a way that in the result a is minimal.

Proof. If a is not maximal, we FOLD the graph upwards at a. Now everything
which used to be below a is above it, so that a is minimal. If ¢ is maximal,
we simply mirror the entire graph upwards, so that the maximal element
becomes the minimal element.

O

*Thanks are due to Georg von Hippel, Michael Potter, Hugh Mellor, Nicholas Denyer,
Uwe Scheffler, and Peter Simons, as well as to audiences at Cambridge, Lund, Leeds, and
Bonn for helpful comments on earlier versions of this paper.

34

We will therefore always assume in the following that the candidate is
minimal.

L 2. If the candidate is at level n, MIRRORING downwards x times results
in a graph whose minimal element is located at level n — (zl — x).

It is now possible to describe a procedure for moving the candidate to
any lower target-level which will serve as a proof of T2.

Proof. We distinguish three cases:

1. The candidate is at level n and the target-level is n — (zl —), where
T is an even number > 2.

2. The candidate is at level n and the target-level is lower than n—(zl—x).

3. The candidate is at level n and the target-level is higher than n— (zl —

In the first case by L2 we know that we can just apply MIRRORING
downwards z times, which moves the entire graph downwards, so that the
candidate is now at the target-level.

In the second case we apply MIRRORING downwards until applying it two
times more would either be impossible (because there would not be ‘enough
space’ below) or would move the candidate below the target-level. We have
then reduced the second to the third case.

In the third case we know that the target-level is (n — (2] — 3)) or higher.
Now if we want to move the candidate to (n — (2] — 3)), we first LIFT the
entire graph by one level and then MIRROR downwards two times. The
graph will then have been moved downwards, with the candidate now being
at the target-level. If we want to move the candidate to (n — (21 — 4)) we
first LIFT the entire graph by two levels and then MIRROR downwards two
times. Generally, if we want to move the candidate to (n — (2] — y)), where
(2l —y) > 0 and y > n we first LIFT the graph y — 2 levels and then MIRROR

downwards two times.
O

References

Mark C. Baker. The Atoms of Language. The Mind’s Hidden Rules of Gram-
mar. Oxford University Press, Oxford, 2001.

George Bealer. Quality and Concept. Clarendon, Oxford, 1982.
Wayne D. Blizard. Multiset theory. Notre Dame Journal of Formal Logic,
30(1):33-66, 1989.

35

Rudolf Carnap. Der logische Aufbau der Welt. Weltkreis-Verlag, Berlin,
1928.

Peter Carruthers. On object and concept. Theoria, 49(2):49-86, 1983.

Edward Craig, editor. Routledge Encyclopedia of Philosophy. Routledge,
London, 1998.

Nicholas Denyer. Pure second-order logic. Journal of Symbolic Logic, 33(2):
220224, 1992.

Nicholas Denyer. Names, verbs and quantification. Philosophy, 73:619-623,
1998.

Richard Gaskin. The unity of the declarative sentence. Philosophy, 73:
21-45, 1998.

Fraser MacBride. Where are particulars and unviversals? Dialectica, 52(3):
203-227, 1998.

D. H. Mellor, editor. F.P. Ramsey. Philosophical Papers. Cambridge Uni-
versity Press, Cambridge, 1990.

Alex Oliver and Timothy Smiley. Strategies for a logic of plurals. Philo-
sophical Quarterly, 51(204):289-306, 2001.

Frank P. Ramsey. Universals. In D. H. Mellor, editor, Philosophical Papers,
pages 8-33. Cambridge University Press, Cambridge, 1990.

Stuart Shapiro. Foundations without Foundationalism. The Case for Second-
Order Logic. Oxford University Press, Oxford, 1991.

Barry Taylor and A.P. Hazen. Flexibly structured predication. Logique &
Analyse, 139-140:375-393, 1992.

Alfred North Whitehead and Bertrand Russell. Principia Mathematica.
Cambridge University Press, Cambridge, 1925.

36

