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ABSTRACT

The desirable gambles framework provides a rig-
orous foundation for imprecise probability theory
but relies heavily on linear utility via its coher-
ence axioms. In our related work, we introduced
function-coherent gambles to accommodate non-
linear utility. However, when repeated gambles
are played over time—especially in intertemporal
choice where rewards compound multiplicatively—
the standard additive combination axiom fails to
capture the appropriate long-run evaluation. In this
paper we extend the framework by relaxing the ad-
ditive combination axiom and introducing a nonlin-
ear combination operator that effectively aggregates
repeated gambles in the log-domain. This operator
preserves the time-average (geometric) growth rate
and addresses the ergodicity problem. We prove the
key algebraic properties of the operator, discuss its
impact on coherence, risk assessment, and represen-
tation, and provide a series of illustrative examples.
Our approach bridges the gap between expectation
values and time averages and unifies normative the-
ory with empirically observed non-stationary re-
ward dynamics.

Keywords. Desirability, non-linear utility, ergod-
icity, intertemporal choice, non-additive dynamics,
function-coherent gambles, risk measures.

1. INTRODUCTION

The desirable gambles framework [4-6, 18, 20, 23, 25]
is the elemental core of a general account of imprecise
probabilities, subsuming lower [18, 19] and linear previ-
sions [7] as special cases. Yet, its coherence axioms (in
particular, the combination axiom) encode a commit-
ment to linear utility. Although analytically convenient,
linear utility fails to capture phenomena observed in in-
tertemporal choice and repeated gambles where rewards
are compounded multiplicatively. In such contexts, the
arithmetic sum of outcomes is not the appropriate aggre-
gator; rather, the long-run performance is determined
by the geometric mean or time-average growth rate.

Previous work [22] introduced discounted desirable
games to relax the linearity assumption while preserv-

ing essential rationality conditions [24]. Here, we extend
that approach by making three primary contributions.
First, we develop a novel combination operator that pre-
serves coherence while accommodating non-linear util-
ity, addressing a fundamental limitation in the standard
desirable gambles framework. This operator, defined as
f®g=00Q+ f)A+g) — 1, naturally captures the mul-
tiplicative dynamics of compound growth while main-
taining essential rationality properties.

Second, we establish necessary and sufficient condi-
tions for well-behaved combination operators through
a representation theorem. Our characterization reveals
that the logarithmic transformation is not merely one
among many possible choices, but emerges naturally as
the unique operator that simultaneously preserves func-
tion coherence in the transformed space, maintains the
time-average geometric growth rate, and ensures addi-
tivity of sequential risks in the log-domain.

Third, we unify several seemingly disparate concepts
within a coherent mathematical framework. We demon-
strate how the ergodicity problem in multiplicative dy-
namics, function-coherent representations of risk pref-
erences, time-average growth optimization, and non-
stationary reward processes are fundamentally con-
nected through the structure of our combination op-
erator and its induced risk measure. This unification
provides new insights into the relationship between ex-
pectation values and time averages, bridging the gap
between normative decision theory and empirically ob-
served behavior in dynamic choice situations.

These theoretical results are complemented by practi-
cal applications, particularly in portfolio management
and long-horizon decision problems, where we show
how our framework naturally captures phenomena such
as volatility drag and the asymmetric impact of gains and
losses—effects that often require ad hoc adjustments in
traditional approaches.

2. PRELIMINARIES AND MOTIVATION

The desirable gambles framework consists of axioms
for constructing a coherent set D of bounded gambles.
For bounded gambles f,g and positive real number
A > 0, a set of bounded gambles D is coherent when
satisfying:
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Al. If f <0O,then f ¢ D
A2. If f >0,then f €D
A3. If feD,thenAlf €D
A4. If f € Dand g € D, then f+g € D (Combination)

(Avoid partial loss)
(Accept partial gain)

(Pos. Scale Invariance)

Axioms A1l and A2 express core rationality conditions,
while A3 and A4 are closure operations encoding linear
utility. Together they define a convex cone containing all
conic combinations of its elements:

n
cone(D) :=1> A;f; : fi€D,i=1,..,n, 4; 20 (1)
i=1

2.1. The Sequential Decision Problem. While this
framework elegantly captures many aspects of decision
making under uncertainty, it encounters limitations
when applied to sequential decisions, particularly those
involving multiplicative dynamics. Consider two key
cases:

1. Additive Accumulation: For a gamble that modifies
wealth by adding f(w) in state w, repeated applica-
tion over n periods yields total change:

Z f(w;)
i=1

This aligns naturally with axiom A4.

2. Multiplicative Growth: For a gamble that modifies
wealth by factor (1 + f(w)), the n-period wealth
evolution is:

wy = wp [ [A + flw)
i=1

Here, the additive combination axiom fails to cap-
ture the compound growth structure.

Example 2.1.To see the difference between an
arithmetic-mean return and long-run (time-average)
growth, consider two investment options:

« Option A: Returns +50% or -40% with equal proba-
bility each period.
« Option B: Consistently returns +5% every period.

A single-period, arithmetic expected return analysis
would tell us:

E[Option A] = 0.5 X (+50%) + 0.5 X (—40%) = +5%,

the same as Option B’s certain +5%. From this perspec-
tive, one might think the two investments are “equally
good.”

However, when invested repeatedly, wealth com-
pounds. Starting with $100 in Option A:

« Up then Down: 100 X 1.5 X 0.6 = $90

« Down then Up: 100 X 0.6 X 1.5 = $90

« Up then Up: 100 X 1.5 x 1.5 = $225

* Down then Down: 100 X 0.6 X 0.6 = $36

Meanwhile, investing repeatedly in Option B (at +5%
each period) grows $100 to $110.25 after two periods:

100 X 1.05 X 1.05 = $110.25.

Notice that in three out of these four equally likely scenar-
ios for Option A, the final wealth is less than $110.25.

This discrepancy arises because the expected value
of Option A for a single period (+5%) does not reflect
how actual wealth evolves through time when gains and
losses compound. Indeed, the average (arithmetic) re-
turn overlooks the fact that recovering from a 40% loss
requires a greater-than-40% gain. When decisions must
be repeated many times, the time-average growth rate
often diverges from the simple arithmetic mean of re-
turns, which can lead to misjudgments if one only uses
traditional expected-value analysis.

This divergence between ensemble averages (what we
expect across many parallel universes) and time aver-
ages (what a single investor actually experiences over
time) is the essence of the ergodicity problem [3, 16]. In
multiplicative processes like investment returns, the se-
quence and path of outcomes matter fundamentally. The
arithmetic average of returns fails to capture this path de-
pendence, leading to potentially misleading evaluations
of long-term growth prospects.

This distinction becomes crucial when evaluating
long-run performance. For a gamble f over |Q| = m
states, let the reward vector x; = (xy, ..., X,,) in R™ rep-
resent state-contingent outcomes. Under linear utility:

Ui (X) = 1x = X @

However, when outcomes compound multiplicatively,
linear utility fails to capture the asymmetric impact of
gains and losses on long-term growth. Figure 1 contrasts
the ensemble average, E,(f) under additive accumula-
tion, with the time-average, multiplicative growth rate,
E,(f). The figure makes clear that, for multiplicative
processes, these two measures can diverge substantially.
Relying solely on the ensemble average can thus mislead
decision makers about the true long-run performance of
a gamble.

This motivates consideration of non-linear utility func-
tions, starting with discounted utility [22]:

Definition 2.1 (Discounted Utility).
xl—oc

u(x,a) .= Toca’ ael0,1), x>0. 3)
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Figure 1. Comparison of ensemble averaging versus time
averaging of Option A in Example 2.1 over a
fixed period of 30 iterations. The dashed line
represents the expectation value E,(f) under
additive accumulation, while the solid line de-
picts the time-average growth rate, E,(f), under
multiplicative growth. The divergence between
these measures highlights the ergodicity problem
in multiplicative processes.

This discounted utility function takes a positive scalar
reward x and discounts its desirability to degree . When
a = 0, we recover linear utility u(x,0) = x. As a ap-
proaches 1, the function increasingly resembles logarith-
mic utility, providing a bridge to the multiplicative case.

2.2. Challenge of Sequential Decisions. The frame-
work of desirable gambles with linear utility faces three
fundamental challenges in sequential decision contexts:

1. Growth Rate Evaluation: The arithmetic mean of
returns fails to capture the geometric growth rate
that determines long-run performance under multi-
plicative dynamics.

2. Risk Assessment: Linear utility implies symmetric
treatment of gains and losses, but multiplicative
processes are inherently asymmetric—a 50% loss
requires a 100% gain to recover.

3. Dynamic Consistency: The standard combination
axiom may lead to dynamically inconsistent prefer-
ences when applied to sequences of multiplicative
gambles.

These challenges motivate our development of a more
general framework that can accommodate both additive
and multiplicative dynamics while preserving the essen-
tial rationality properties of desirable gambles. In the
following sections, we first introduce function-coherent
gambles [24] to handle non-linear utility, then develop a
theory of combination operators suitable for sequential
decisions.

3. FUNCTION-COHERENT GAMBLES

Having established why standard additive combina-
tion fails to capture multiplicative dynamics, we now
introduce a more general framework that can accom-
modate non-linear utility while preserving essential ra-
tionality properties [24]. The key insight is to relax the
linear utility assumption embedded in traditional desir-
able gambles while maintaining a convex structure in an
appropriately transformed space.

3.1. Basic Framework. Following [24], we start by gen-
eralizing the coherence axioms to accommodate non-
linear utility functions. Given a strictly increasing, con-
tinuous utility function u : X — R normalized by
u(0) = 0, a set of gambles D C X is said to be function-
coherent if it satisfies the following axioms:

(F1) Avoid Losses: If f < 0 (a sure loss), then f ¢ D.

(F2) Monotonicity: If f > g (pointwise) and g € D,
then f € D.

(F3) u-Convexity: For any f,g € D and any nonnega-
tive scalars A, u for which

h=u" (Au(f) + uu(@)
is well-defined, we have h € D.
The acceptance set is then naturally defined as

D={feX u(f) =0

Observe that if we choose u to be the identity function,
these axioms reduce to the classical desirability axioms.
Moreover, by defining the transformed acceptance set

UD) = {u(f) : f €D}

we see that U(D) forms a convex cone. Thus, even though
u may be nonlinear, the mapping into the u-space pre-
serves the essential convex (and hence linear) structure
required for coherence.

3.2. Representation Theorem. Under appropriate reg-
ularity conditions, this convex structure leads to a repre-
sentation theorem that characterizes function-coherent
sets of gambles. Following [24], we require:

(i) U(D) is closed in the appropriate topology
(ii) U(D) has nonempty interior

Theorem 3.1 (Representation Theorem). Under the con-
ditions above, there exists a nonzero continuous linear
functional ¢ : 'V — R, unique up to multiplication by a
positive scalar, such that for every gamble f € X,

feD < ¢tu())=>o.
Equivalently, defining the evaluation functional
p(f) 1= ¢ (u(f),

we have
febh < p(f)=0.
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This representation theorem reveals that—even
though gambles are evaluated through a nonlinear func-
tion u—the acceptance criterion can be represented lin-
early in the transformed space. When ¢ corresponds to
integration with respect to a probability measure, we
recover representations of the form

feD = Efu)]=o0,

providing a bridge to classical expected utility theory
while maintaining the flexibility of non-linear evalua-
tion.

3.3.Discussion and Domain Restriction. A crucial as-
pect of the function-coherence framework is the domain
restriction inherent in the utility function u. All gambles
must lie in the domain X where u is well-defined. This
is not merely a technical constraint but reflects the re-
ality that not all possible gambles may be meaningfully
evaluated under a given utility function.

For example, with logarithmic utility u(x) = log(1+x),
the domain naturally excludes gambles that could lead to
negative wealth. More generally, the domain restriction
encodes structural assumptions about which gambles
are economically meaningful in a given context.

The upward closure property (F2) remains well-
behaved under this domain restriction. Again from [24],
we have:

Theorem 3.2 (Upward Closure Under Domain Restric-
tion). Let f be an acceptable gamble (i.e., f € D) and let
g be any gamble in X such that g(s) > f(s) for every state
s. Theng € D.

This framework sets the stage for developing non-
additive combination rules that can properly capture
multiplicative dynamics while maintaining coherence.
The representation theorem will prove crucial in estab-
lishing that these new combination rules preserve the
essential properties we desire.

4. NON-ADDITIVE SEQUENTIAL DYNAMICS

Building on the function-coherent framework, we now
develop a theory of combination operators that prop-
erly captures multiplicative dynamics while preserving
coherence. The standard additive combination axiom
(A4) from [18, 25] guarantees that if two gambles are ac-
ceptable, their arithmetic sum is also acceptable. While
this aligns with linear utility, many real-world decision
problems—particularly in domains like long-term invest-
ments studied in [22]—exhibit multiplicative dynamics
where wealth evolves through compounding rather than
simple addition.

To illustrate, consider a gamble f that updates wealth
by a factor of 1 + f(w) in state w. After n independent
repetitions, wealth evolves as

w' = wH(l + f(w))).
i=1

Following [15, 16, 22], we observe that the long-run per-
formance of such a process is determined by the geomet-
ric mean, or equivalently, by the time-average of loga-
rithmic returns:

% Z log(1 + f(wy)).
i=1

4.1. The Nonlinear Combination Operator. Moti-
vated by this observation and building on [22], we in-
troduce a nonlinear combination operator that respects
multiplicative compounding by working in the logarith-
mic domain. Let f and g be gambles defined with respect
to a state space Q with the property that

fw)>—-1 and g(w)>-1 forallwe Q

This condition ensures that the logarithmic transforma-
tion is well defined. Next define the transformation func-
tion

P(x) =log(1+x), x>-1

with its inverse given by
p7l M =e -1

Then, for any two gambles f and g, we define their se-
quential (pointwise) combination:

(F4) Nonlinear Combination: If f € Dand g € D,
then their nonlinear combination

f @ g@) =7 ($(f @) +¢(s@))
= (1+ f@) (1 +g@) - 1,

is alsoin D.

A crucial feature of this operator is that it converts
multiplicative effects into an additive structure in the
log-domain. Define the log-return transformation as

L(f) =log(1 + f)
Then, by construction we have
L(f ®g) = L(f) + L(g).

This additive property mirrors the behavior of multiplica-
tive processes when expressed in logarithmic terms [23].

Theorem 4.1 (Log-Domain Additivity). Let f and g be
gambles satisfying f(w), g(w) > —1 for all w. Then, for
everyw € Q,

log(1+ (f @ 8)(@)) = log(1 + f()) + log(1 + g()).
Proof. By definition, we have:

(f ® 2)(w) =1+ f(w)( + glw)) — 1.
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Then,

1+ (f @ &)(w) =1+ f(w) + g(@)).

Taking logarithms on both sides gives:

log(1+ (f @ )(@)) = log((1 + f(@)(1 + g(@)).

Finally, using the logarithm product rule, we have

log((1+f (@)(1+8(®))) = log(1+ f(w))+log(1+g()).
O

The operator @ is particularly useful in scenarios
where wealth or rewards compound over time. Under
multiplicative dynamics, the net effect of two sequen-
tial gambles is not given by the arithmetic sum but by
their product (adjusted via the transformation ¢ and its
inverse). The property

L(f @ g) = L(f) + L(g)

ensures that the log-returns add up, thus providing a nat-
ural framework for analyzing long-run growth rates, risk
assessments, and ergodic properties in dynamic settings.

4.2. Preservation of Function-Coherence. An impor-
tant question is whether replacing the standard additive
combination axiom with (F4) maintains the desirable
properties established in our representation theorem.
The following result shows that it does, while shifting
the analysis to the space of log-returns.

In our setting the acceptance set D C X is defined
with respect to a space of gambles X defined on a state
space Q with the restriction that, for every f € X and
every w € Q, f(w) > —1. (This restriction ensures that
logarithms are well defined.) Further, suppose D satisfies
the function-coherence axioms F1 - F4.

‘We now state the preservation theorem.

Theorem 4.2 (Function-Coherence Preservation). Let X
be a space of gambles on Q with f(w) > —1forall f € X
and w € Q. Suppose the acceptance set D C X satisfies
axioms (F1)-(F3) and the nonlinear combination axiom
(F4). Then there exists a continuous linear functional ¢
on a suitable vector space V (of log-returns) such that for
every gamble f € X,

feD <= ¢(L()) >0

Proof. We proceed in three steps.

Step 1. Transformation and Convexity in the Log-Domain.
Define the transformation L : X — V by

L(f) = log(1 + f),

where V is an appropriate vector space of functions (for
example, a subspace of R?) in which the image L(X) is
convex. By (F4), for any f, g € D we have

fog=0+/)1+g -1

Taking logarithms yields

L(f & g) = log((1 + H(1 +))
=log(1+ f)+1log(1+g)
= L(f) + L(g).

Moreover, the scaling properties implied by (F3) (via
the mapping u, which in this case is replaced by the
log-transformation) ensure that

L(D) :={L(f) : f € D}
forms a convex cone in V.

Step 2. Application of the Hahn-Banach Theorem.
Assume that L(D) has nonempty interior in V,
which is a standard regularity condition. Then, by
the Hahn-Banach separation theorem, there exists a
nonzero continuous linear functional ¢ V - R
(unique up to positive scaling) such that

LD)={veV:¢t) >0}
That is, forany v € V,

veLD) << {¢@)=0.

Step 3. Equivalence of Acceptance in X.

Since the transformation L is bijective on its domain (its
inverse being L~!(v) = e¥ — 1), we obtain that for every
gamble f € X,

feED = LHeLDd) << (L))o

O

Remarks: The proof relies on representing the acceptance
set D in the log-domain. A key assumption is that L(D)
has nonempty interior, which allows the application of
the Hahn-Banach theorem to obtain a continuous lin-
ear functional that separates the cone from its comple-
ment. The main point is that even though we replace
standard addition with the nonlinear operator @ in the
original outcome space, the transformation L turns the
operation into standard addition, preserving convexity.
Consequently, the evaluation of gambles via the contin-
uous linear functional ¢ remains valid, ensuring that
the function-coherent structure is preserved in the log-
domain. This representation is critical when analyzing
multiplicative dynamics and long-run growth in sequen-
tial decision problems.
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From Theorem 3.1, if ¢ corresponds to integration
with respect to a probability measure p, we obtain

feD = EfLpNl 20,

which directly connects acceptance to the expected log-
return—precisely the criterion suggested by the ergodic-
ity considerations of the previous section.

4.3. Risk Assessment Under Sequential Dynamics.
The representation clarifies the relationship between risk
and time-average growth. The evaluation functional

p(f) = —¢(L(f)),

can be interpreted as measuring the risk of negative long-
run growth. This provides a natural bridge between the
multiplicative dynamics of wealth evolution and coher-
ent risk measures developed in [22]. In classical portfolio
theory [8], risk measures like Value-at-Risk (VaR) [10] or
Conditional Value-at-Risk (CVaR) [17] focus primarily
on the dispersion or tail behavior of returns, often ne-
glecting the dynamic interplay of gains and losses over
time. In contrast, our risk measure p(f) captures the
multiplicative dynamics inherent in sequential decision-
making. By evaluating the negative expected log-return,
p(f) not only quantifies the magnitude of potential losses
but also inherently accounts for the asymmetry between
gains and losses: for example, a 50% loss requires a 100%
gain to recover. This alignment with the long-run geo-
metric growth rate provides a more robust assessment
of risk in environments where volatility and compound-
ing effects are critical, thereby addressing limitations of
traditional additive risk measures.

These features emerge naturally from the mathemati-
cal structure rather than requiring ad hoc adjustments,
providing a more principled approach to sequential
decision-making under uncertainty.

with L(f) = log(1 + f),

5. ILLUSTRATIVE EXAMPLES

The theoretical framework developed in the preced-
ing sections provides a rigorous foundation for handling
multiplicative dynamics in sequential gambles. Here we
present a series of examples that demonstrate both the
practical utility of our approach and its advantages over
traditional methods from [20, 25].

5.1. Basic Nonlinear Combination. We begin with
a simple example that illustrates how our combination
operator differs from standard addition. Consider two
positive-outcome gambles:

f=010 and g=0.20

representing 10% and 20% returns respectively. Under
standard addition, these would combine to give a 30%
return. However, standard addition fails to capture the
multiplicative nature of sequential returns.

Using our framework:

L(f) = log(1.1) ~ 0.0953
L(g) = log(1.2) ~ 0.1823

The nonlinear combination yields:
f®g=(11)(12)—1=032
with log-return
L(f ® g) = 1og(1.32) = 0.2776

This exactly equals L(f) + L(g), demonstrating how &
preserves additivity in the log-domain while capturing
multiplicative growth in the outcome space.

5.2. Mixed Outcomes and Growth Rates. Following
[22], we now consider a more realistic gamble with both
positive and negative outcomes:

_)0.25  with probability 0.5

h=
—0.10 with probability 0.5

The standard expected value is positive:
E[h] = 0.5(0.25) + 0.5(—0.10) = 0.075

However, this masks the asymmetric impact of gains and
losses under compounding. Computing the log-returns:

L(0.25) = log(1.25) ~ 0.2231
L(—0.10) = 10g(0.90) =~ —0.1054

The expected log-return is
E[L(h)] ~ 0.5(0.2231) + 0.5(—0.1054) = 0.05885

This lower value reflects a key insight from [23]: under
multiplicative dynamics, the 25% gain does not fully com-
pensate for the 10% loss. While traditional expected value
analysis suggests strong positive returns, our framework
reveals that the growth prospects are more modest due
to the multiplicative interaction of gains and losses.

5.3. Portfolio Management Application. Building on
[24], we now examine a practical portfolio allocation
problem. Consider two investment strategies with his-
torical returns:

f =1{0.08,-0.03,0.12,0.05, —0.02}
g ={0.04,0.03,0.05, 0.04, 0.03}

Strategy f has higher volatility but seemingly higher
returns, while g is more stable. Under traditional additive
analysis from [12]:

E[f] =0.04 and [E[g]=0.038
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suggesting that f is superior. However, our framework
reveals a different picture:

E[L(f)] ~ 0.0362
E[L(g)] ~ 0.0379

suggesting instead that g is superior.

This reversal highlights three crucial insights:

Volatility Drag: Strategy f’s higher arithmetic mean is
more than offset by its higher volatility, a phenomenon
that emerges naturally from our log-transformation.

Asymmetric Impact: The negative returns in strategy f
are especially damaging because they must be overcome
by proportionally larger positive returns to maintain the
same growth rate, following [22].

Time Horizon Effects: As the investment horizon
lengthens, the advantage of strategy g becomes more
pronounced. The compound growth rates over five peri-
ods are:

> 5
JIa+f)~1195 versus ] +g)~1205

i=1 i=1

This example demonstrates how our framework au-
tomatically captures features that traditional expected
value analysis misses. The nonlinear combination opera-
tor @ accounts for both the compounding of returns
and the asymmetric impact of gains and losses, pro-
viding more accurate assessment of long-term growth
prospects.

5.4. Sequential Decision Analysis. Our final example
illustrates how the framework handles longer sequences
of decisions. Consider three successive gambles:

fl = 005, f2 = —002, f3 = 010

The sequential combination under our framework yields:

f10 f2® f3 = (1.05)(0.98)(1.10) — 1 ~ 0.1319
Computing the log-returns:

L(f) ~ 0.0488
L(f,) ~ —0.0202
L(f3) ~ 0.0953

Their sum, approximately 0.1239, agrees with L(f; &
f2 @ f3) = log(1.1319). This demonstrates how our
framework preserves the essential algebraic properties
needed for coherent sequential decision-making while
properly accounting for multiplicative dynamics.

6. GENERALIZED COMBINATION OPERATORS

While the log-transformation-based operator @ intro-
duced earlier elegantly handles multiplicative dynamics,
it represents just one member of a broader family of com-
bination operators. The representation theorem from

[24] suggests a natural generalization that encompasses
a wide range of utility functions satisfying axioms (F1)-
(F3).

In this section we generalize the combination operator
to accommodate an arbitrary strictly increasing, contin-
uous utility function

u:X->R,

with the normalization u(0) = 0. Here, X denotes the do-
main of gambles for which u is well defined. In order for
the generalized operator to be well defined, we assume
that for every f € X, the value u(f) lies in the range

R :=uX) CR,

and we require that R is closed under addition. In other
words, for all 1,7, € R, it is necessary thatr; + r, €R
and the inverse u~!(r; +r,) is again in X.

6.1. Properties of the Generalized Combination Op-
erator. We now state and prove the following theorem
that establishes the key algebraic properties of @,,.

Theorem 6.1 (Properties of Generalized Combination).
Letu : X — R be a strictly increasing, continuous func-
tion with u(0) = 0 and assume that R = u(X) is closed
under addition (so that u='(r; + r,) is defined for all
¥1,¥5 € R). Then the operator

@y XXX > X, (f.8)r u ' (u(f)+u),

satisfies:

1. Associativity: (f &, 8) d, h = f &, (g D, h) for
allf,g,h e X.

2. Commutativity: f ®,g=g®, f forall f,g € X.

3. Identity: f @, 0 = f forall f € X, where 0 denotes
the unique element of X satisfying u(0) = 0.

4. Monotonicity: If f,g,h € X and f > g (pointwise,
or in the sense that u(f) > u(g) since u is strictly
increasing), then

f®,h>gd,h.

Proof. We prove each property in turn.
(1) Associativity: For any f, g, h € X, note that by
definition

u(f @y 8) = u(u ™ (u(f) + u(@)) = u(f) + u(g).
Then,

u((f ®u®) @0 h)

u(f @y, 8 +uh)
(u(f) +u(g)) +u(h)
= u(f) + (u(g) + u(h))
= u(f) +u(g ®y, h)

= u(f ®u (2 @y ).
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Since u is strictly increasing and hence invertible, it fol-
lows that

(f®ug)®uh:f@u(g@uh)-

(2) Commutativity: For any f,g € X,

u(f @y 8) = u(f) +u(g) = u(@ + u(f) = ulg &, f).
Again, applying u~! yields
fOug=8®. [

(3) Identity: Let 0 € X denote the neutral element
such that u(0) = 0. Then, for any f € X,

u(f @, 0) = u(f) +u0) = u(f) + 0 = u(f).

Applying u~! shows that

(4) Monotonicity: Assume that f,g,h € X and f >
g. Since u is strictly increasing, it follows that

u(f) = u(g).

Then, adding u(h) (which does not affect the inequality)
gives
u(f) + u(h) > u(g) + u(h).

Applying the inverse u~! (which preserves the order,
again because u is strictly increasing) yields

u t(u(f) + uh)) > ut(u(g) + uh)),

that is,
fOuh>g®d,h

This completes the proof. O

6.2. Characterization of Well-Behaved Combination
Operators. Next, we provide a necessary and sufficient
condition for the operator @,, to be well behaved in the
sense of being closed on its domain and preserving the
ordering of gambles.

Theorem 6.2 (Characterization of Well-Behaved Com-
bination). Let u : X — R be a strictly increasing, contin-
uous utility function with u(0) = 0. Then the generalized
combination operator

f@®ug=u(u(f)+u)

is well behaved (that is, it is closed on X, preserves ordering,
is associative, and has a neutral element) if and only if the
following conditions hold:

(i) u is surjective onto its range R C R.

(ii) The range R is closed under addition: Forallry,r, €
R,we haver; +r, ER.

(iii) For allry,r, € R, the inverse u=*(r; + r,) belongs
to X.

Proof. We prove the equivalence by showing both direc-
tions.

(Only if): Suppose that @,, is well behaved. Then by defi-
nition, for any f, g € X, the sum u(f) + u(g) must lie in
the set R so that u=(u(f) + u(g)) is defined and lies in
X. This immediately implies that:

(ii) For anyr; = u(f) and r, = u(g) with f,g € X, we
have r; +r, € R. Hence, R is closed under addition.

(iii) The closure of X under @, means thatu~!(r;+r,) €
X forallr;,r, €R.

Moreover, since u is a function from X onto its range R,
by definition it is surjective onto R; hence, (i) holds.

(If): Conversely, assume that conditions (i)-(iii) hold.
Then for any f, g € X, we have u(f) € R and u(g) € R.
By (ii), their sum u(f)+u(g) € R, and by (iii), the inverse
u~ (u(f) + u(g)) is an element of X. Therefore, @, is
closed on X. The proofs of associativity, commutativity,
identity, and monotonicity (given in Theorem 6.1) rely
solely on the properties of u being strictly increasing and
continuous and do not require additional assumptions.
Thus, under (i)-(iii) the operator &, is well behaved. [

6.3. Important Classes of Operators. Following [24],
several important classes of well-behaved utility func-
tions emerge:

1. Power Utilities: For y # 0,

xV
-, x>0
u,(x) =47

-0, x<0

Leading to the combination operator:

f @ 8= +gN""
2. Exponential Utilities: For a > 0, as studied by [2]:
ax

ug(x)=1—e"
With combination operator:
f®u 8= —é log(e™®/ +e7%8 —1)
3. Logarithmic Utility: Our previous case from [22]:
u(x) = log(1 + x)
With combination operator:

fog=0+)10+g -1
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6.4. Risk Measurement and Dynamic Properties.
Each class of operators induces its own risk measure
through the representation theorem. Following [24]:

Definition 6.1 (Induced Risk Measure). For a utility
function u with well-behaved combination operator @,,,
the induced risk measure is:

pu(f) 1= —t(f))
where ¢ is the linear functional from Theorem 3.1.

These risk measures exhibit systematically different

properties:
1. Power Utility Risk Measures (y € (0, 1)):
4
on(f) =-E [f7]

exhibits decreasing relative risk aversion. Under power
utility, an agent’s risk aversion decreases as wealth in-
creases [1, 14].

2. Exponential Risk Measures:

pu(f) = — logEle/]

exhibits constant absolute risk aversion, recovering the

entropic risk measure. Under exponential risk utility, an

agent’s risk aversion is absolute regardless of wealth [9].
3. Logarithmic Risk Measures:

Piog(f) = —E[log(1 + f)]

exhibits constant relative risk aversion and naturally
captures multiplicative risks. Like power utility, loga-
rithmic risk aversion is proportional. Unlike power util-
ity, logarithmic risk captures proportional multiplicative
risk (i.e., compounding), which is a property of gambles
rather than a psychological appetite for risk [11, 15, 21].

The logarithmic case is unique in simultaneously pre-
serving

« the natural scaling of multiplicative processes,

« additivity of sequential risks in the appropriate do-
main, and

« the connection to time-average growth rates.

This explains its emergence as particularly relevant for
long-run growth optimization [13], while highlighting
how other utility functions might be more appropriate
when different risk characteristics are primary concerns.

7. CONCLUSION

This paper makes three contributions to the theory of
imprecise probability and sequential decision making.
First, we developed a novel combination operator that
preserves coherence while accommodating non-linear
utility. Our motivation stemmed from a fundamental

limitation in the standard desirable gambles framework
identified in [22], namely, the inability to properly han-
dle sequential decision problems with multiplicative dy-
namics. While the standard additive combination axiom
(A4) from [18, 25] is mathematically convenient, it fails
to capture compound growth effects that characterize
many real-world processes, particularly in long-horizon
decisions studied in [22].

Second, we established necessary and sufficient con-
ditions for well-behaved combination operators through
our representation theorem. The characterization re-
vealed that the logarithmic transformation f @ g =
1+ f)(1 + g) — 1isnot just one among many possible
operators, but emerges naturally as the unique operator
that simultaneously preserves function coherence in the
transformed space, the time-average geometric growth
rate, and additivity of sequential risks in the log-domain.

Third, our framework unifies several seemingly dis-
parate concepts into a coherent whole. We show how
the ergodicity problem in multiplicative dynamics,
function-coherent representations of risk preferences,
time-average growth optimization, and non-stationary
reward processes are intimately connected through the
structure of the combination operator and its induced
risk measure. Building on [24], this unification provides
new insights into the relationships between these previ-
ously separate areas of study.

The practical implications of this work extend beyond
theoretical unification. Our examples in portfolio man-
agement demonstrate how the framework naturally cap-
tures phenomena like volatility drag and the asymmet-
ric impact of gains and losses—effects that are often
treated ad hoc in traditional approaches. The connection
to coherent risk measures provides new tools for risk
assessment in dynamic settings, particularly relevant
for long-horizon decision problems where compound
growth effects dominate.
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