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Abstract

Kripke [1975] gives a formal theory of truth based onKleene’s strong eval-
uation scheme. It is probably the most important and in�uential that has yet
been given—at least since Tarski. However, it has been argued that this the-
ory has a problem with generalized quanti�ers such as All(φ,ψ), i.e. all φs
are ψ, or Most(φ,ψ). Speci�cally, it has been argued that such quanti�ers
preclude the existence of just the sort of language that Kripke aims to deliver,
that is, one that contains its own truth predicate. In this paper I solve the
problem by showing how Kleene’s strong scheme, and Kripke’s theory that is
based on it, can in a natural way be extended to accommodate the full range
of generalized quanti�ers.

Kripke [1975] famously presented a semantic framework for languages that contain
their own truth predicates, a framework designed to handle the Liar and related
paradoxes. Kripke’s central theory, based on Kleene’s strong evaluation scheme, is
probably the most important and in�uential formal account of truth that has yet
been given—at least since that of Tarski [1935]. It is a straightforward implementa-
tion of the idea that one can assert (or deny) that a sentence is true precisely if one
can assert (deny) the sentence itself. According to the theory, the sentences that
are true are those that can be seen to be such by repeated application of this idea.
Further, many subsequent proposals take this theory as their starting point. To
name just a few examples: the proposals of Skyrms [1984], Gaifman [1992, 2000],
Cobreros et. al [2013], as well as that of Maudlin [2004]. However, Maudlin also
raises a problem for the theory (one that, as he is well aware, applies equally to his

*�is paper began life as a set of comments given at the 2016 Paci�c APA on Shaw [2016]. I am
indebted to Shaw’s paper, without which this one would certainly not have been written.
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own proposal). �e problem is this: it seems that the theory cannot accommodate
the generalized quanti�er All(φ,ψ), i.e. all φs are ψ. In fact, however, if Maudlin is
right, then the problem is far more widespread than he seems to recognize. For his
line of thought would extend to a whole range of generalized quanti�ers, such as
Most, �e, Both and so on. But this would then be a serious limitation of Kripke’s
theory. For, as is now widely accepted, quanti�cation in natural language is via just
such generalized quanti�ers.1 Further, the problem would seem to a�ect not only
Kripke’s theory, but also many that are based on it, i.e. a signi�cant portion of the
recent literature on truth. Indeed, the problem would threaten to a�ect even the
basic—and apparently very natural—idea that Kripke’s theory codi�es.
However, in this paper I solve the problem by showing how Kleene’s strong

scheme, and Kripke’s theory that uses it, can in a natural way accommodate the
full range of generalized quanti�ers. I present the problem in §1, and the solution
in §2.2

1 �e Problem
Maudlin [2004: 59–64] considers the possibility of augmenting the �rst-order lan-
guages, in terms of which Kripke’s theory is presented, with the generalized quan-
ti�er All.3 �ere is of course a tradition of formalizing sentences of the form ‘all
φs are ψ’ in �rst-order logic: as ∀x(φ → ψ). But there are a number of reasons to
be dissatis�ed with this strategy. One (which Maudlin gives) is that there does not
seem to be anything in the English sentence corresponding to→. Another (which

1Shaw [2016] presses this expanded version of Maudlin’s argument, concluding that Kripke’s
theory is indeed limited in this way.

2�ere has in fact been signi�cant discussion of the generalized quanti�erAll in connectionwith
theories of truth. However, these treatments have been within approaches importantly di�erent
from the strong Kleene version of Kripke’s theory, and they do not address Maudlin’s problem. For
example, Priest [2006] andBeall [2009] consider how to handle this quanti�erwithin the dialetheist
framework. (For the relation of the proposal of this paper to dialetheism, see note 23.) Beall et al.
[2006] is concerned with relevant logic. Field [2014, 2016] focuses on accounts of All that preserve
certain classical laws, i.e. logical truths: again an approach very di�erent from the strong Kleene
version of Kripke’s theory, since under that scheme there are no logical truths. (I address the issue
of laws governing All in §2.2.)

3Unless otherwise stated, by ‘Kripke’s theory’ I mean the strong Kleene proposal of [1975]. In
fact, this is not really a single proposal but a family of them, where di�erent members correspond
to di�erent �xed points. For simplicity, I focus on the least �xed point proposal, but everything that
I say carries straightforwardly over to the other members of the family.
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Maudlin doesn’t give but could have) is that no comparable trick is available in the
case of many other generalized quanti�ers, such as Most or Finite.4,5
However, Maudlin claims that it is impossible to add All to our language with-

out completely undermining Kripke’s theory. For such an addition, he claims,
would preclude the existence of just the sort of language that Kripke aims to deliver:
namely, one that contains its own truth predicate.
Before giving Maudlin’s argument, I introduce the concepts that Kripke’s the-

ory involves. �e theory makes use of partially interpreted languages, i.e. those
whose sentences can take the value true, false or unde�ned. More carefully, let L
be a standard formal language: either a �rst-order language, or such a language
augmented with generalized quanti�ers such as All, Most etc.6 A total (or classical)
L-interpretation is a pair A of a non-empty set A, the domain of A; together with
a function that assigns to each individual constant c of L a member cA of A, and
to each n-ary predicate symbol P of L a subset PA of An (the extension of P under
A). A partial L-interpretation is just like a total one, except that an n-ary predicate
symbol P is assigned a pair ⟨PA

+ , PA
− ⟩ of disjoint subsets of An; PA

+ is the extension of
P underA, while PA

− is the anti-extension.7 P is true of themembers of PA
+ underA,

false of those of PA
− , and unde�ned of the remaining members of An. More gener-

ally, which formulas are true or false under which assignments underA depends on
which evaluation scheme is employed. Unless otherwise stated, we assume that the
standard connectives and quanti�ers are handled using Kleene’s strong scheme.8 If
A is a total (partial) L-interpretation, then ⟨L,A⟩ is a totally (partially) interpreted
language.
Maudlin’s argument is then as follows. Let L be the partially interpreted lan-

guage under consideration. Maudlin suggests that if L contains All, then formulas
containing this should be given truth conditions as in (A). Here φ(x) and ψ(x) are

4�at is, there is no way to de�ne these in �rst-order logic: see Barwise and Cooper [1981].
5In fact, Maudlin also gives another reason: he claims that in the context of Kripke’s theory, i.e.

partially interpreted languages understood via Kleene’s strong scheme, ∀x(φ → ψ) has the wrong
truth condition. On the contrary, he claims that any adequate formalization of ‘all φs are ψ’ should
have truth condition as in (A) below. As will become clear, I do not think that this is a good reason
to reject the �rst-order formalization. Nevertheless, the reasons just given in the text seem quite
su�cient to motivate augmenting �rst-order languages with All.

6For simplicity, I inessentially assume that L does not contain function symbols other than in-
dividual constants.

7�us, a total L-interpretation A is not in general a partial one. However, A may be identi�ed
with the partial L-interpretation A′ that is just like A except that if P is an n-ary predicate symbol,
then PA′ = ⟨PA ,An − PA⟩.

8For details see §2.
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formulas of L,9 and φL+ is the extension of φ in L—i.e. the set of things φ is true of.
In contrast, φL− is the anti-extension: the set of things it is false of.10

(A) Allx(φ,ψ) is true i� φL+ ⊆ ψL+ .

Why think that this is the right truth condition? Well, when we say ‘all φs are
ψ’ we seem to be saying something about the φs—and only about these. �us,
the truth condition for Allx(φ,ψ) should apparently be a condition on the φs, i.e.
the members of φL+ , and nothing else.11 But once we have decided that the truth
condition for Allx(φ,ψ) should be concerned exclusively with the members of φL+ ,
it seems obvious that it should be that to the e�ect that these are also all members
of ψL+—which is precisely what (A) says.
If we give Allx(φ,ψ) the truth condition as in (A), then it will not be equivalent

to the traditional �rst-order formalization of ‘all φs are ψ’, i.e. ∀x(φ → ψ). For
example, if some a ∉ φL+ ∪ φL− , then Allx(φ, φ) will of course be true (given (A)),
but ∀x(φ → φ) will not be.12
It turns out, however, that given standard assumptions about resources for self-

reference, (A) precludesL from containing its own truth predicate. �at is, if T is a
unary predicate symbol ofL, then (A) entails that TL+ is not the set of true sentences
of L.13 For let λ be14

Allx(T(x) ∧ x = λ, x ≠ x).
9By writing φ(x) I mean that the formula has no free variables except possibly x.
10�us, in (A) and the discussion to follow, attention is for simplicity restricted to formulas with

at most x free. However, extension to the more general case is straightforward. I write ‘Allx ’ rather
than ‘Allx’ for ease of reading.

11�e intuitive idea that Allx(φ,ψ) is about the extension of φ (and nothing else) is intimately
related to the formal claim that All is conservative. �us, in the context of a totally interpreted
languageK, the semantic value of All can be represented as a relation R between sets, i.e. Allx(φ,ψ)
is true i� R(φK ,ψK) (where φK and ψK are the extensions of φ and ψ, respectively). All is then
said to be conservative if, for any sets A and B, R(A, B) i� R(A,A ∩ B). See Barwise and Cooper
[1981] (where they use the terminology of ‘living on’ for this property) or Westerståhl [1989].
12Under Kleene’s strong scheme, a universal quanti�cation is true only if all of its instances are,

and χ → ζ is unde�ned if both χ and ζ are. But then ∀x(φ → φ) is not true, in virtue of the
unde�ned instance φ(x/a) → φ(x/a). Here and throughout I assume for simplicity that every
object a in the domain of L is denoted by an individual constant of L, and, in our metalanguage, I
use the same terms for object and constant (e.g. I use φ(x/a) for a sentence of L).
13�e assumption that T is a predicate symbol is just for simplicity, the point applies equally well

to compound formulas.
14I am of course speaking slightly loosely in using ‘λ’ to characterize λ. More carefully, λ is a

sentence that is equivalent to Allx(T(x) ∧ x = ⌜λ⌝, x ≠ x), where ⌜λ⌝ is a term denoting λ (or a
code for λ).
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�us (reading T as truth) λ says: all truths identical to me are self-distinct. By (A),
λ is true i� [T(x) ∧ x = λ]L+ ⊆ (x ≠ x)L+ = ∅, i.e. i� λ ∉ TL+ . �at is, TL+ is not the
set of true sentences.

�e standard argument for the existence of an interpretation of T in which
it applies exactly to the truths is blocked, because this argument relies on mono-
tonicity, which (A) violates. An evaluation scheme is monotonic if, whenever we
sharpen the interpretation of our intended truth predicate T , nothing that was true
(or false) ceases to be true (or false, respectively).15 �us, if ⟨S+, S−⟩ is a potential
interpretation of T (i.e. S+ and S− are disjoint subsets of the domain), then I say
that a sentence is true (false) in ⟨S+, S−⟩ if it is true (false) when T is interpreted
by ⟨S+, S−⟩ (i.e. holding the interpretation of other expressions �xed). Further, let
j(S+, S−) be ⟨R+, R−⟩, where R+ (R−) is the set of sentences that are true (false) in
⟨S+, S−⟩. �e condition of monotonicity is then

⟨U+,U−⟩ ≤ ⟨V+,V−⟩ ⇒ j(U+,U−) ≤ j(V+,V−).

If ⟨S+, S−⟩ is a �xed point for j, i.e. j(S+, S−) = ⟨S+, S−⟩, then the sentences that are
true (false) in ⟨S+, S−⟩ are precisely those that are in S+ (S−). �us, when T is inter-
preted by ⟨S+, S−⟩, our language contains its own truth predicate in a very natural
sense. Further, given monotonicity, it is easy to see that j will have a �xed point.16
However, when All is interpreted by (A), λ produces a violation of monotonicity,
because ⟨∅,∅⟩ ≤ ⟨{λ},∅⟩, yet j(∅,∅) ≰ j({λ},∅) (for λ is true in ⟨∅,∅⟩ but not
in ⟨{λ},∅⟩). So themonotonicity-based argument for the existence of a �xed point
no longer goes through.
It might seem, therefore, that Kripke’s theory cannot handle All. Maudlin puts

the point even more starkly. �e generalized quanti�er All, he writes, ‘su�ers a
deadly defect: it is not free from paradox’ [2004: 64].
As I noted in the introduction, however, the problem that Maudlin raises is in

fact far more widespread than he recognizes: for it seems to apply to a whole range
of other generalized quanti�ers.17 To illustrate, consider Most. �e line of thought
behind (A) leads to the following truth conditions.18

15⟨S+ , S−⟩ sharpens ⟨R+ , R−⟩ (written ⟨R+ , R−⟩ ≤ ⟨S+ , S−⟩) if R+ ⊆ S+ and R− ⊆ S−.
16Consider the sequence of interpretations ⟨Rµ

+
, Rµ

−
⟩ for ordinals µ as follows: ⟨R0

+
, R0

−
⟩ = ⟨∅,∅⟩;

⟨Rη+1
+
, Rη+1

−
⟩ = j(Rη

+
, Rη

−
); and, if θ is a limit ordinal, then ⟨Rθ

+
, Rθ

−
⟩ = ⟨⋃η<θ R

η
+
,⋃η<θ R

η
−
⟩. Mono-

tonicity ensures that this sequence is increasing (i.e. ⟨Rµ
+
, Rµ

−
⟩ ≤ ⟨Rη

+
, Rη

−
⟩ whenever µ ≤ η).

But then, given that there are more ordinals than sentences of L, we eventually reach µ with
⟨Rµ+1

+
, Rµ+1

−
⟩ = ⟨Rµ

+
, Rµ

−
⟩.

17�e extension of Maudlin’s argument to other generalized quanti�ers is given in Shaw [2016].
18∣A∣ is the cardinality of A.
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(M) Mostx(φ,ψ) is true i� ∣φL+ ∩ ψL+ ∣ > ∣φL+ − ψL+ ∣.

�at is, Mostx(φ,ψ) is true i� the things that φ and ψ are both true of outnum-
ber the things that only φ is true of. Again, (M) seems inevitable given the initial
thought that ‘most φs are ψ’ is about the φs, i.e. the members of φL+ , and only those.
For it follows that the truth condition for Most must be concerned exclusively with
the members of φL+ . But then it seems obvious that this condition must be: more
of these members are ψ (i.e. in ψL+ ) than are not; which is exactly what (M) says.
Again, however, (M) spells disaster for Kripke’s theory. For example,19 let α be

0 = 0; letW be a unary predicate symbol that is true of the sentences written on
the wall (and false of everything else); and let ρ be

Mostx(T(x) ∧W(x), x ≠ ρ).

�us ρ says: most truths on the wall are not me. Suppose further that the only
things written on the wall are α and ρ. (M), together with α ∈ TL+ , gives: ρ is true
i� ∣[T(x) ∧W(x)]L+ ∩ (x ≠ ρ)L+ ∣ = ∣{α}∣ = 1 > ∣[T(x) ∧W(x)]L+ − (x ≠ ρ)L+ ∣; i.e. i�
ρ ∉ TL+ . �at is, TL+ is not the set of truths. As with (A), (M) violates monotonicity,
and so blocks the standard argument for the existence of a �xed point.
But this is just one more example: it is straightforward to extend Maudlin’s ar-

gument to cover a whole range of generalized quanti�ers. For example, �e, Both,
No, Finite and so on. Kripke’s theory thus seems unable to handle any of these.

�is would be very signi�cant, for the following two reasons. Firstly, it seems
clear that such generalized quanti�ers are the bestway of formalizing quanti�cation
in natural language.20 But, secondly, Kripke’s theory, i.e. the strongKleene proposal
of [1975], plays an absolutely central role in the subsequent literature on truth. It is
not simply that many writers take it to be the best theory that we have—it is also
that many alternative proposals take it as their starting point. �ese include the
proposals of Skyrms [1984], Gaifman [1992, 2000], Maudlin [2004] and Cobreros
et. al [2013]. Indeed, Kripke’s theory seems to be a straightforward implementa-
tion of the basic idea behind it: i.e. that we can assert (or deny) that a sentence is
true precisely when we can assert (deny) the sentence itself. �ese arguments thus
threaten to show even that there is a �aw with this idea. Our predicament appears
dire.
I should note that there are theories to which the above arguments do not ex-

tend: for example, the supervaluationist proposals of Kripke [1975] or the revi-
19�is example is similar to one in Shaw [2016].
20For arguments to this e�ect, see Barwise and Cooper [1981], Higginbotham andMay [1981] and

Westerståhl [1989].
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sion theory of truth.21,22 To illustrate, consider the basic supervaluationist theory
of Kripke [1975], and the example of All. As we saw, if we accept that the truth
condition of Allx(φ,ψ)must concern only the members of φL+ , then Maudlin’s (A)
seems inevitable. However, a supervaluationist approach would resist this initial
move. Rather, Allx(φ,ψ) will be true in L i� it is true in every classical sharpen-
ing of L. �is means that the truth of Allx(φ,ψ) depends not just on φL+ but also
on possible sharpenings of φL+ . Further, it is easy to see that monotonicity is re-
tained on this approach, and thus that the argument for the existence of a �xed
point goes through as before. In the resulting language, λ is treated like a standard
Liar sentence: it is neither true nor false. Similar remarks apply to Most and other
generalized quanti�ers.
Nevertheless, it would be a major blow if a theory as central to our theoriz-

ing about truth as Kripke’s strong Kleene proposal was unable to incorporate such
quanti�ers.23

2 �e Solution
Fortunately, there is a way of resisting Maudlin’s argument (and its extensions).
In this section, I show how Kleene’s strong scheme, and Kripke’s theory that uses
it, can in fact be naturally extended to incorporate the full range of generalized
quanti�ers.24

21For the latter, see Gupta [1982], Herzberger [1982] and Gupta and Belnap [1993].
22In contrast, although I will not discuss the case in any detail, these arguments do seem to extend

to the weak Kleene proposal of Kripke [1975].
23Another family of proposals that it is natural to ask about here are those in the dialetheist

tradition. For these also employ Kripke’s strong Kleene �xed point construction—but taking the
third value to represent being both true and false. See, e.g., Dowden [1984] and Beall [2009: 18–
24]. Does Maudlin’s argument extend to these proposals? It seems not. For in this case (A) is
unmotivated: since on such an approach the third value represents true and false, objects a such that
φ(x/a) receives the third value should clearly not be ignored in the truth condition of Allx(φ,ψ)
(as they are in (A)). And similarly for (M). Nevertheless, even within the dialetheist framework,
one faces the question of how, in general, to incorporate generalized quanti�ers—and the solution
proposed in §2would seem to apply just as well there as it does inmore orthodox contexts. However
I do not elaborate on this point here.
24�e line of thought of this section can similarly be used to extend Kleene’s weak scheme, and

that version of Kripke’s theory. But I do not do this here.
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2.1 �e Idea Behind the Scheme
We should start by getting clear on the idea that lies behind Kleene’s strong scheme.
Its treatment of connectives is given by the following truth tables.25

α ¬α
t f
f t
u u

α β α ∧ β α ∨ β
t t t t
t f f t
t u u t
f t f t
f f f f
f u f u
u t u t
u f f u
u u u u

Similarly, ∀xφ is true according to this scheme if every instance is, false if some
instance is false, and unde�ned otherwise. ∃xφ is true if some instance is, false if
every instance is false, and unde�ned otherwise.
Where do these treatments of these logical operators come from? �ey are not

of course pulled out of thin air. Rather, there is a clear guiding idea behind them.
I am going to argue in this section that this idea can in fact be naturally extended
to generalized quanti�ers, and that, when we do this, the resulting treatment is
immune to the problems of §1.
So what is the idea? To illustrate, consider ∧. �e basic idea is this: α ∧ β gets a

standard value s (i.e. t or f ) i� one has already done enough to determine that α∧β
will get this value—however one turns the us into standard values. �at is, α ∧ β
gets s i� however one turns us into standard values, α ∧ β gets s. For example, we
have f on the sixth row, because however one turns the u under β into a standard
value, α ∧ β will get f . But we have u on the third row, because turning the u into
t gives α ∧ β the value t, while turning it into f gives α ∧ β the value f .

�is idea can easily be made precise: here’s the simplest way. To a �rst ap-
proximation, the semantic value of a connective can be thought of as a function
from assignments of values to the letters ‘α’ and ‘β’. �is is essentially what truth
tables do. Of course, we do not really want to claim that the semantic value of a
connective involves these greek letters—our o�cial such values are given later in
25Although I focus on the Boolean connectives everything that I say applies equallywell to others,

such as→ and↔.
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this section. However, these toy models allow a nice illustration of the idea behind
Kleene’s strong scheme.

�us, in these terms, the classical semantic value of ∧ can be thought of as
a function whose domains consists of all (total) functions from {α, β} to {t, f },
and whose range is included in (indeed, in this case is) {t, f }. In contrast, the
strongKleene semantic value can be thought of as a partial function, whose domain
consists of all partial functions from {α, β} into {t, f }, and whose range is again
included in {t, f }. �us, for example, the partial function that sends α to t and
is unde�ned for β corresponds to the row of the truth table with t under α and u
under β. �e strong Kleene semantic value is then determined by the following
condition, where Partial0 is the set of partial functions from {α, β} into {t, f }, and
Total0 is the set of total ones; and ∧C

0 and ∧SK
0 are the classical and strong Kleene

semantic values of ∧, respectively.26

(∗) For any g ∈ Partial0 and standard value s, ∧SK
0 (g) = s i� for any h ∈ Total0

sharpening g, ∧C
0 (h) = s.

Similarly in the case of all the other connectives.
Similarly, too, in the cases of ∀ and ∃. In the context of a partially interpreted

language, the semantic value of a formula φ(x) with exactly one free variable can
be thought of as a pair of disjoint sets (i.e. subsets of the domain); and the semantic
value of a quanti�er can be thought of as a function from such pairs to standard
values.27 �e strong Kleene semantic values of ∀ and ∃ are then determined by the
following condition.

(†) ∀SK
0 (∃SK0 ) sends ⟨S+, S−⟩ to standard value s i� ∀C

0 (∃C0 ) sends every total
sharpening of ⟨S+, S−⟩ to s.

Our o�cial semantic values unify these conditions as follows. LetAssign be the
set of assignments, that is, total functions from the set of variables to the domain.
�en, in the classical context, we can take the semantic value of a formula ψ to be
a total function H ∶ Assign→ {t, f } as follows:

H(g) =
⎧
⎪⎪
⎨
⎪⎪
⎩

t if ψ is true under g
f if ψ is false under g .

26�e subscript ‘0’ indicates that these are merely �rst approximations.
27Again, these are �rst approximations. Our o�cial semantic values are given below.
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Note that H is a total function in the classical context, because ψ is always either
true or false under g. In the context of a partially interpreted language, by contrast,
the semantic value of a formula becomes a partial function I ∶ Assign→ {t, f }, with
the same de�nition as H, except that the function is only partial since ψ might be
neither true nor false under g:28

I(g) =
⎧
⎪⎪
⎨
⎪⎪
⎩

t if ψ is true under g
f if ψ is false under g .

LetTotal (Partial) be the set of total (partial) functions from Assign to {t, f }. Note
that Total ⊆ Partial. In the classical context, the semantic value of an n-ary logical
operator is a total n-ary function on Total. �us, if H,H′

∈ Total, we have29

¬
C
(H)(g) =

⎧
⎪⎪
⎨
⎪⎪
⎩

t if H(g) = f
f if H(g) = t

∧
C
(H,H′

)(g) =
⎧
⎪⎪
⎨
⎪⎪
⎩

t if H(g) = H′
(g) = t

f if H(g) = f or H′
(g) = f

∀
C
x (H)(g) =

⎧
⎪⎪
⎨
⎪⎪
⎩

t if for each a in the domain, H(g(x/a)) = t
f if for some a in the domain, H(g(x/a)) = f .

We can extend the functions ¬C , ∧C and ∀C
x , currently de�ned only on Total, to

functions¬SK ,∧SK and∀SK
x de�ned on all ofPartialwith exactly the same de�nition,

this time applied to partial functions H and H′.30,31

28�e relationship between these o�cial semantic values and our previous way of thinking about
the semantic value of φ(x) is as follows. If, to our �rst approximation, the semantic value of φ was
⟨S+ , S−⟩, then its o�cial semantic value is I such that

I(g) =
⎧⎪⎪⎨⎪⎪⎩

t if g(x) ∈ S+
f if g(x) ∈ S− .

29I write ∀C
x rather than (∀x)C for ease of reading. Here g(x/a) is the assignment that sends x

to a but is in other respects the same as g.
30Strictly speaking, we should in this case write ∀SK ,A

x rather than ∀SK
x , where A is the partial

interpretation at issue, since the value of this function depends on the domain. But since the domain
will be clear from the context, for readability I omit the extra superscript.
31�e relation of the o�cial semantic values of logical operators to our �rst approximations of

these is as follows. If g and g′ are partial functions, then g(x) = g′(y) means that either both
are de�ned and they are equal, or both are unde�ned. If h(α) = H(g), and h(β) = H′(g), then
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On this approach, the semantic value of a formula is de�ned by induction as
follows. Let K be a language, and let A be a total K-interpretation. �e semantic
value of a formula φ of K under A is written φA. If P is an n-ary predicate symbol
and u1, . . . , un are terms, then32

[P(u1, . . . , un)]
A
(g) = t i� ⟨uA,g

1 , . . . , u
A,g
n ⟩ ∈ PA.

If σ is an n-ary logical operator (i.e. a connective or a quanti�er together with a
variable), then

[σ(φ1, . . . , φn)]
A
(g) = σC

(φA
1 , . . . , φA

n )(g).

Similarly, ifB is a partial K-interpretation, then

[P(u1, . . . , un)]
B
(g) = t i� ⟨uB,g

1 , . . . , u
B,g
n ⟩ ∈ PB

+ ,

[P(u1, . . . , un)]
B
(g) = f i� ⟨uB,g

1 , . . . , u
B,g
n ⟩ ∈ PB

− ;

[σ(φ1, . . . , φn)]
B
(g) = σSK

(φB
1 , . . . , φB

n )(g).

�e relationship between the classical and strong Kleene semantic values of the
logical operators can be stated as follows. Here σ is an n-ary logical operation.

(‡) For any H1, . . . ,Hn ∈ Partial, g ∈ Assign and standard value s,

σSK
(H1, . . . ,Hn)(g) = s i� for any I1, . . . , In ∈ Total with Hi ⊆ Ii ,

for i = 1, . . . , n, σC
(I1, . . . , In)(g) = s.

As this account of the strong Kleene scheme brings out, it is in a certain way
similar to the supervaluationist scheme. Speci�cally, both crucially involve quan-
ti�cation over classical sharpenings of partial semantic values. But the key di�er-
ence is this. In the strong Kleene case, this quanti�cation plays a ‘local’ role: it gives
the semantic values of speci�c lexical items, i.e. the logical operators. In contrast,
in the supervaluationist case, the quanti�cation plays a ‘global’ role: it occurs in
the account of what it means for whole formulas to be true or false. It is because
of this di�erence that the supervaluationist scheme, unlike the strong Kleene one,
is sensitive to when a single predicate symbol occurs more than once in a formula.

∧SK(H,H′)(g) = ∧SK
0 (h). Similarly,∀SK

x (H)(g) = ∀SK
0 (⟨S+ , S−⟩), if S+ = {a ∈ A ∶ H(g(x/a)) = t}

and S− = {a ∈ A ∶ H(g(x/a)) = f } (where A is the domain). Similarly for other standard logical
operators, and for the classical case.
32Here uA,g

i is the denotation of u i under A and g, de�ned in the usual way.
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Hence the contrasting treatments of φ ∨ ¬φ, ¬¬φ → φ, etc. As one might put it in
a slogan: supervaluationism = strong Kleene + coordination.33
More carefully, the relationship is as follows. Let K be a partially interpreted

language, and let K′ be another such language, such that each predicate symbol P
of K has been replaced by countably many ‘copies’ P1, P2, . . . ; where Pi = Q j only
if P = Q and i = j; and where each Pi is interpreted in K′ as P is interpreted in K.
Now let φ be a formula of K, and let φ′ be the result of replacing each occurrence
of a predicate symbol P in φ with a distinct ‘copy’ Pi (i.e. di�erent copies for dis-
tinct occurrences of a single symbol). We then have: φ is true (false) in K under
the strong Kleene scheme (and assignment g) i� φ′ is true (false) in K′ under the
supervaluationist scheme (and g).34

2.2 Applying the Idea
With that on the table, what to say about generalized quanti�cation? Since we have
arrived at a completely general principle relating the strong Kleene and classical
semantic values of logical operators, i.e. (‡), we can simply apply this to generate
the strong Kleene values of generalized quanti�ers. And we are going to arrive
at the values for these quanti�ers that are determined by (‡). But it will be more
instructive to proceed somewhat less abstractly.

�us, consider �rst All. �e classical treatment is as follows. HereK is a totally
interpreted language, and φK is the extension of φ in K.

Allx(φ,ψ) is true i� φK ⊆ ψK.

As before, let us to a �rst approximation think of the semantic value of All as a
function from extensions (in the classical case) or pairs of extensions and anti-
extensions (in the partial one) to standard values. �en if we follow the guiding
idea behind the strong Kleene scheme, we will give All the semantic value de-
termined by the following condition.35 (Here AllSK(B,C ,D, E) is shorthand for
All(⟨B,C⟩, ⟨D, E⟩); the o�cial semantic value of Allx , generated by (‡), is related
to this �rst approximation just as in the case of ∀.)

(A1) For any standard value s,

AllSK(SP+ , SP− , RP
+, RP

−) = s i� for any total ⟨ST+ , ST−⟩ ≥ ⟨SP+ , SP−⟩ and
⟨RT

+ , RT
−⟩ ≥ ⟨RP

+, RP
−⟩, AllC(ST+ , RT

+) = s.
33I.e. coordination in the sense of Fine [2007].
34�is is proved by a routine induction on the degree of complexity of φ.
35In this section I omit the subscript ‘0’ for ease of reading.
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�is then reduces to (here Bc = A− B, where A is the domain)

(A2) AllSK(SP+ , SP− , RP
+, RP

−) =

⎧
⎪⎪
⎨
⎪⎪
⎩

t i� (SP−)c ⊆ RP
+

f i� SP+ ∩ RP
− ≠ ∅.

Clearly, (A1) is quite di�erent from (A): although the truth condition of (A1) entails
that of (A), the reverse is certainly not the case. For example, if the interpretation
of T is ⟨U+,U−⟩, with U+ ∪ U− ≠ A, then Allx(T(x), T(x)) is neither true nor
false, according to (A1); but it is of course true, according to (A). Indeed, it is easy
to see that, understood via (A1), Allx(φ,ψ) is equivalent to ∀x(φ → ψ)—just as
in the classical case. It follows that the sentence λ that caused di�culty for (A) is
handled like a familiar sort of Liar sentence under (A1); and, further, that when
All is understood via (A1), monotonicity is restored. �us, the argument for the
existence of a �xed point goes through just as before. It seems, therefore, that far
from su�ering from a ‘deadly defect’, All is no more paradoxical than the familiar
�rst-order logical operators. Rather, we have found a natural way of extending
Kripke’s theory to accommodate this.

�e fact that Allx(φ,ψ) ends up being equivalent to∀x(φ → ψ) doesmean that
(just as in the classical case) adding it to our language does not allow the expression
of any new truth conditions. What we have seen, however, is that this treatment of
All emerges naturally from the same basic idea that generated the treatments of the
more familiar connectives and quanti�ers. Further, as we will see, our approach
to All naturally applies to other generalized quanti�ers, such as Most: and these
certainly do allow the expression of new truth conditions.
Before considering these additional quanti�ers, however, there are some fur-

ther issues to take up in connection with All. First, we should return to the argu-
ment of §1 that I presented in favour of (A). �is started with the idea that ‘all φs
are ψ’ is about the φs, and only these. �is was then taken to mean that the truth
conditions for Allx(φ,ψ) should concern only the members of φL+ . In contrast, the
truth condition given by (A1) concerns the members of the (possibly larger) set
(φL−)c. On re�ection, however, this more liberal construal of the original idea is
surely very natural. For on perhaps the most natural understanding of partially
interpreted languages—and certainly that which seems natural in connection with
truth—the members of (φL+ ∪ φL−)c are such that it is indeterminate whether they
are φs. But then of course one cannot ignore these when it comes to the question
of whether all φs are ψ: since it is not determinate that these are not in fact φs; that
is, they may be φs. �e correct understanding of the original idea, then, should
insist only that the truth condition of Allx(φ,ψ) is a condition on (φL−)c—which is
of course compatible with (A1).
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A �nal point about All is this. On the proposed treatment, there are no logical
truths. For example, Allx(φ, φ) does not hold with full generality. �is might be
thought to constitute an objection: mustn’t any adequate treatment yield this prin-
ciple (perhaps among others)? No: our aim was to extend Kleene’s strong scheme
(and Kripke’s theory based on it) to generalized quanti�ers. If one has chosen to
use this scheme for the standard connectives and quanti�ers, then one has already
made one’s peace with the fact that none of the classical laws for these come out
as logical truths. �ere would thus seem to be little motivation for insisting that
certain classical laws for All (such as Allx(φ, φ)) must be maintained. Of course,
things would be di�erent if any adequate treatment of All had to include (A)—then
Allx(φ, φ)would indeed be logically true. We have seen, however, that contrary to
what has been supposed, the natural extension of Kleene’s strong scheme to All
does not include (A).36 So much, then, for the supposed objection.
Consider now Most. �e classical treatment is

Mostx(φ,ψ) is true i� ∣φK ∩ ψK∣ > ∣φK − ψK∣.

As before, the guiding idea of the scheme (or (‡)) yields

(M1) For any standard value s,

MostSK(SP+ , SP− , RP
+, RP

−) = s i� for any total ⟨ST+ , ST−⟩ ≥ ⟨SP+ , SP−⟩ and
⟨RT

+ , RT
−⟩ ≥ ⟨RP

+, RP
−⟩, MostC(ST+ , RT

+) = s.

�is then reduces to

(M2) MostSK(SP+ , SP− , RP
+, RP

−) =

⎧
⎪⎪
⎨
⎪⎪
⎩

t i� ∣SP+ ∩ RP
+∣ > ∣(SP−)c − RP

+∣

f i� ∣(SP−)c ∩ (RP
−)
c
∣ ≤ ∣SP+ − (RP

−)
c
∣.

�is treatment of Most again satis�es the more liberal—and plausible—cons-
trual of the idea that Mostx(φ,ψ) is about the φs (and nothing else). For the truth
36Onemight insist that there is a sense in which, on the strong Kleene version of Kripke’s theory,

there are in fact logical truths (involving the standard connectives and quanti�ers). Firstly, one
might note that if the base language is classical, then any instance of a classical law that does not
contain the truth predicate will come out as true on this theory. Secondly—an alternative strategy—
onemight point out that the classical laws, although sometimes untrue, are never false. I am grateful
to a referee for this journal for suggesting these strategies. However, each strategy applies equally
well to the proposed treatment of All: if the base language is classical, then it is similarly the case
that instances of classical laws (e.g. Allx(φ, φ)) that do not contain T are true; further, even when
these do contain T , they will never be false. Again, then, the proposed extension of Kleene’s strong
scheme would seem to be on a par with the original as far as logical truth is concerned.
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condition is again in terms of themembers of (φL−)c. Further, it is easy to show that
this restores monotonicity, and thus that the argument for the existence of a �xed
point goes through just as in the �rst-order case.37

�e sentence that caused problems for (M), ρ, is handled as follows. If ⟨U+,U−⟩

is a potential interpretation of T , with α ∈ U+, letLU be the result of interpreting T
by ⟨U+,U−⟩. With (M), we got the disastrous result that ρ is true in LU i� ρ ∉ U+.
With (M1), we get that ρ is true in LU i� ∣[T(x) ∧W(x)]LU

+ ∩ (x ≠ ρ)LU
+ ∣ = ∣{α}∣ =

1 > ∣[[T(x) ∧W(x)]LU
− ]

c
− (x ≠ ρ)LU

+ ∣; i.e. i� ρ ∈ U−. �is is just what we get in the
case of a standard Liar sentence38—and far less disastrous. Similarly, ρ is false in
LU i� ρ ∈ U+. Again, just as with a standard Liar. Consequently, in any �xed point
⟨V+,V−⟩, ρ will be neither true nor false in ⟨V+,V−⟩.
Further, it is easy to see that other generalized quanti�ers, such as Finite, Both,

etc. can be accommodated in just the same way.
To drive home how natural this treatment of generalized quanti�ers is, I con-

sider one �nal example. For one of the �rst examples of Kripke [1975] in fact in-
volves ‘most’ (even though Kripke does not himself consider how to give a formal
treatment of this). �us, Kripke supposes that Jones asserts

(1) Most of Nixon’s assertions about Watergate are false.

AsKripke points out, although there aremany situations inwhich (1) seems straight-
forwardly true or false (e.g. if Nixon’s utterances aboutWatergate are themselves all
so), there are other situations in which it seems paradoxical. For example, if (1) is
Jones’s sole utterance about Watergate, while Nixon’s is

(2) Everything Jones says about Watergate is true.

In this case, it seems that (1) is true i� (2) is false i� (1) is not true.
�e proposed treatment of generalized quanti�ers, however, seems to give ex-

actly the right results. �us, suppose that we formalize these as
37Indeed, one can show that as long as the logical operators of our language satisfy (‡), mono-

tonicity obtains. �us, suppose that ⟨U+ ,U−⟩ ≤ ⟨V+ ,V−⟩ are potential interpretations of T . We
show by induction on the degree of φ that if φ is true (false) in ⟨U+ ,U−⟩, under an assignment g,
then it is also true (false) in ⟨V+ ,V−⟩ under g. �ere are two cases: φ is atomic, or φ is σ(ψ1 , . . . ,ψn)
for some n-ary logical operator σ . But the atomic case is obvious, so suppose φ is σ(ψ1 , . . . ,ψn).
For each ψ i , let HU

i be the partial function that sends an assignment to t ( f ) i� ψ i is true (false)
in ⟨U+ ,U−⟩; and similarly for HV

i . By the inductive hypothesis, HU
i ⊆ HV

i , for each i. But then
it follows from (‡) that, if σSK(HU

1 , . . . ,HU
n ) = s (∈ {t, f }), then σSK(HV

1 , . . . ,HV
n ) = s, which

establishes our claim.
38I.e. β with β = ¬T(β).

15



(1*) Mostx(N(x),¬T(x))

(2*) Allx(J(x), T(x))

where N and J are unary predicate symbols of L. If N is true only of sentences that
are straightforwardly true or false, e.g. do not contain T (and false of everything
else), then (1*) will similarly be straightforwardly true or false. �at is, it will be
true in the �xed point constructed i� more of the sentences that N applies to are
true in this �xed point than are false in it; otherwise it will be false. In contrast, if
NL+ = {(2*)}, and NL− = A−{(2*)}; and similarly JL+ = {(1*)} while JL− = A−{(1*)};
then it is easy to see that, on the proposed treatment of the quanti�ers, neither
(1*) nor (2*) will be true or false in the �xed point. For if ⟨U+,U−⟩ is a potential
interpretation of T , then (1*) will be true in ⟨U+,U−⟩ i� (2*) ∈ U−; and false in
⟨U+,U−⟩ i� (2*) ∈ U+; and similarly for (2*). �us, neither (1*) nor (2*) will be
added to the extension or anti-extension of T in the construction of the �xed point.

It seems, then, that Kleene’s strong scheme, and Kripke’s theory that is based on it,
can in a natural way be extended to cover the full range of generalized quanti�ers.
�ese quanti�ers thus pose no threat to Kripke’s theory or the many proposals that
are based on it—or, indeed, to the basic idea that lies behind it.39
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