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1 Introduction: Two Semantic Projects

Consider a theory whose aim is to say, for a given language, what

each of its expressions means. Call it a semantics of that language.

What might be required of such a theory before it was allowed that

it accomplished its aim or did so in an optimal way? (Travis, 1986)

This is a question which belongs to a well-established philosophical programme:

the Davidson-Dummett programme of using a formal semantics – a “theory

of meaning”, as these philosophers call it – in order to attack philosophical

questions about the relation between language and reality, or between mind

and language (see, for example, (Wiggins, 1997)).

There is also, among theoretical computer scientists, a similar area of study:

it is usually called “the semantics of computer languages”, or often, simply, “se-

mantics”. Its aim is, likewise, to develop a formal account of the meaning of a
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given computer language, and to use that account to answer interesting ques-

tions. These questions might be severely practical – one might, for example,

want to formally verify, using such a semantics, that the language in question

did what it was claimed to do. However, one might also want to answer more

general questions: one might want to design a computer language, and an in-

tended semantics for that language is often a good place to start. Or one might

want to classify existing computer languages: it is clear that some of them are

more similar to each other than to others, and that some languages are merely

notational variants of each other, but how do we put such observations on a more

formal footing? And, finally, we might be tempted to say something about the

nature of computation on the basis of the semantics of the languages in which

we express computations.

I would claim that the semantics of computer language has considerable

philosophical interest: it has a different motivation to the usual philosophical

approach to computation via Turing machines, and, correspondingly, it yields

different insights. One of the main difference is that the semantics of pro-

gramming languages is concerned with the languages in which people actually

program, and, particularly, with the languages which have been found to be

good to program in; it is thus inescapably connected with the practice of pro-

gramming. It is emphatically not a discipline which is developed out of some a

priori notion of computation. And, in fact, it has connections with areas of phi-

losophy which may seem surprising; Quine’s concept of referential transparency,

for example, is an important part of the programming language enterprise.

Some of this material is quite technical, and is also generally unfamiliar to

philosophers (even to those who know the usual technical repertoire of philo-

sophical logic). Many of the more technical details have been segregated into

sections of their own, which can, at first reading, be omitted.
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2 History

The semantics of programming languages grew up in a particular historical

context, and it is worth spending some time describing it: it was developed by

a group of philosophically literate mathematicians and computer scientists, and

the philosophical influences are quite evident. They are also little known: the

history of computing has tended to focus very much on the very early days, and,

at that, mostly on the history of hardware, so that the history of these topics

is doubly neglected.

2.1 The First Programming Languages

In the early days of computers, programming was done by directly writing ma-

chine instructions: this was difficult and error-prone. Programming languages

were invented to allow programmers to write in a more comprehensible form:

Fortran dates from 1954, and made it possible to write programs in a notation

very like that of standard mathematics (Backus, 1981). Although the Fortran

designers paid very little attention to theory – Backus, the leader of the project,

says “we simply made up the language as we went along” (1981, p. 30) – both

syntax and semantics soon became important factors in the design of program-

ming languages. Algol was designed over the period 1958–1960 (Naur, 1981;

Perlis, 1981), Lisp from 1958–1962 (McCarthy, 1981), and many of the difficul-

ties of developing these languages were due to two factors: it was difficult to

define the syntax of a language at all precisely, and the semantics of these lan-

guages seemed utterly mysterious. The latter was an extremely serious problem:

without some sort of semantics, it was hard to say what counted as a correct

implementation of these languages. Although Lisp eventually achieved a pre-

cise semantics, it was designed by starting from the implementation and then

attempting to find mathematical structure in the resulting language: several of

the Lisp primitives were called after hardware features of the machine that it

was originally implemented on (McCarthy, 1981, p. 175), whereas its original
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semantics was “ramshackle” (Landin, 2000). Nevertheless, it was also possible

to see that the rewards for a precise syntax – or, more ambitiously, a precise

semantics – were extremely high: Algol “proved to be an object of stunning

beauty” (Perlis, 1981, p. 88).

2.2 Algol-Like Languages

What, then, do these programming languages look like? We will describe a

generic language, quite similar to Algol; since Algol has had an enormous in-

fluence on language design its features can be found in many others. These

languages have some similarity to formal languages like first-order logic: like

these languages, they have variables, to which values can be assigned, and they

have both predicates and functions. And many of the basic operations of pro-

gramming can be viewed as the assignment of values to variables, so one might

think that these operations, too, could be viewed in this way.

However, programming languages also have features which are strikingly dif-

ferent from the sort of logical languages familiar to philosophers. In large part,

these other features come from a need to control the structure of programs: pro-

grams are extraordinary large entities, and programmers can only keep control

of this complexity by making programs out of smaller components, which can

be individually constructed and tested and, if possible, reused in many different

programs. Programs, then, tend to be made of hierarchically nested compo-

nents; there are various names for these components, but we can – following

Algol usage – call them blocks.

Furthermore, unlike the logical languages which philosophers are familiar

with – namely, variants of untyped first-order logic – modern programming

languages are typed: variables, and the values that they take on, have types.

This is partly for practical reasons: many programming errors can be detected

automatically, simply by checking the types of the entities involved. But there

are also rather deeper reasons: programming does not fit very well into a set-

theoretic view of things, since sets – even finite sets – are collections without
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any extra structure, and, however we may choose to store data in a computer,

we always do so in some structured way (the data may be ordered, or arranged

on the leaves of a tree, or the items may be mapped to integers, and so on).

There is a final difference, which is extremely far-reaching. Most program-

ming languages allow programs to perform actions that change the values of

variables, or which have other irreversible effects (input or output, for exam-

ple); we say that these actions have side effects. These features add further

complications to the task of giving semantics to these programming languages.

2.3 The Development of Semantics

The first steps towards the semantics of these languages were taken, in the 60’s,

by a group – Peter Landin, Dana Scott and others – associated with Christo-

pher Strachey (Scott, 1977; Landin, 2000). They provided what is called a

denotational semantics: that is, rather than describe the operations that pieces

of code perform, they associated mathematical objects – denotations, or seman-

tic values – to the syntactic entities of a programming language. Values are

assigned to entities on all scales: the variables (and constants) of the language

get values, of course, but so do assignment statements – the parts of programs

which give values to variables – as do blocks and subroutines and, finally, the

entire program. This requirement – that programs should have semantic values

on all scales – is part of the basic programme of denotational semantics: it is

motivated by the view that programming constructs which have well-defined

semantic values will be easy to reason about, and it has, over the years, shown

itself to be quite justified.

This requirement means that the semantic values assigned to these entities

must belong to a quite intricate system. To see this, consider a particular case

of programming entities: namely, those that are sometimes called subroutines.

These are pieces of code that have parameters: they are invoked with particular

values of their parameters, and they then perform various actions on them. A

subroutine, then, can be thought of as a sort of function: its arguments are
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the semantic values of its parameters, and its value is the semantic value of the

expression that it returns. So the semantic value of a subroutine must be a

function type: it maps its argument types to its return type.

But now consider a subroutine which takes a subroutine as a parameter.

Such things occur frequently in the normal practice of programming: for exam-

ple, we might want to write a subroutine which constructed a button in a user

interface. Buttons can perform various actions, and – because we are writing

a subroutine which we can use for constructing all sorts of buttons – we want

to be able to give the code for the action to the button code as a parameter.

The “code for the action”, of course, is itself a subroutine: so the code for the

button is a subroutine which has a subroutine as one of its parameters. The

need for “higher-order” entities of this sort seems to be natural and pervasive

in programming: our example is from user interface programming, but there is

a differently motivated example in (Abelson et al., 1996, pp. 21–31).

A subroutine with a subroutine as argument, then, can be considered as a

piece of code which takes the subroutine and returns a value: so its semantic

value will map the semantic value of its subroutine parameter to the semantic

value of its result. The semantic value of subroutine-calling code, then, is a

function which takes another function as an argument: in technical terms, it is

a functional.

We must also remember that the functions corresponding to subroutines

cannot, in general, be everywhere defined. We know, from the theory of re-

cursive functions, that any reasonably expressive programming language must

have programming constructs – looping, recursion, or both – which cannot be

guaranteed to give a result in all cases. This must be accommodated in the

semantic values of such subroutines.

2.3.1 Technical Interlude: Semantic Values in Detail

The initial stages of this accommodation are quite easy to see: we can deal with

partial functions from, let us say, the integers to the integers by regarding them

6



as functions from int – the usual integers – to int⊥ – the integers together with

an extra element, ⊥, which is the value of the function when the computation

fails to terminate. But now a subroutine which takes such a subroutine as

argument must itself have a type which is not merely the type of functions

(int → int) → int, but rather the type of functions (int → int⊥) → int⊥

(which is, one should point out, much more complex than ((int → int) →

int)⊥). The moral is clear: although we only have to add a single extra element

to our base types, the changes required at higher types become progressively

more complex.

Recursion, also, needs a suitable treatment. Consider a recursively defined

subroutine, for example:

function f(x:int ) : int

begin

if (x = 0) then f := 1 else (f:= x ∗ f(x−1))

end

We can regard this as saying that the subroutine f is a fixed point of a cer-

tain operation, namely the operation which takes a subroutine F as input and

returns, as output, the subroutine G, defined by

function G(x:int) :int

begin

if (x = 0) then G :=1 else (G := x ∗ F(x−1))

end

So the semantic value of f must be fixed under the semantic counterpart of

the operation F 7→ G; and thus, to handle recursion, the appropriate semantic

domains must be closed under certain fixed point operations.

Finally, the need to accommodate assignment statements brings another

complication. Consider the following subroutine:

function f(x:int ): int

begin
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y := x;

f:= y + 1

end

which first assigns the value of its argument to a global variable y, and then

returns y + 1. Consider also the simpler subroutine

function g(x:int): int

begin

g:= x + 1;

end

f and g yield the same values for the same arguments, but they are not sub-

stitutable, one for the other: g changes the values of a global variable, which f

does not. (We say that f has side effects.)

Accommodating this sort of behaviour, and still preserving the composi-

tional nature of our semantics, makes the type system for our semantic values

somewhat complex and intricate – see (Tennent, 1994, pp. 250ff) for details.

The development of semantics, then, is a process of progressive elaboration

of semantic values. We might think of it like this: originally, we have a straight-

forward conception of what the values of programming entities are: variables

stand for their values, subroutines stand for functions from parameters to return

values, and so on. We may call this original conception the intended seman-

tics. However, it proves impossible to preserve substitutivity with this intended

semantics, so we have to progressively elaborate the semantic values that we as-

sign to programs and their parts; in the process, these semantic values become

further and further removed from the original, intended semantics.

The divergences are caused by phenomena that can be viewed, when mea-

sured against the intended values, as a lack of referential transparency. The

intended values of subroutines such as these ought to be given by the maps,

from arguments to return values, that they induce, but, as we have seen, sub-

routines with the same intended values might not be intersubstitutable: and
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such a failure of substitutivity is, in Quinean terms, described as referential

opacity.
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3 The Uses of Semantics

A working semantics on these lines can, indeed, be achieved (Stoy, 1977; Ten-

nent, 1994), and such semantic accounts of programming language have been

widely used.

However, the uses are not as direct as one might imagine. It is rarely expedi-

ent, for example, to establish correctness for a particular program by examining

the semantic values of it and its components: these semantic values are usually

extremely complex. They must necessarily be complex: since it is possible to

decide whether a given program terminates or not, purely on the basis of its

semantic value, there must be facts about the semantic values of programs that

are as difficult to establish as the halting problem (i.e. undecidable).

On the other hand, semantics has a large number of metatheoretical uses.

One can, for example, establish equivalences between programs, and, more gen-

erally, one can develop, and semantically justify, logics (the so-called Floyd-

Hoare logics) for reasoning about programs (Tennent, 1994, pp. 196ff), (Jones,

1992); and, unlike direct reasoning with semantic values, these logics are, for

typical problems, easy to work with.

There is another, less formal, but very pervasive use of semantics. The

practice of programming involves a great deal of substitution: replacement of

one subroutine by another (or one object by another, one library by another,

and so on). We like to have languages in which substitutions like this are

easy to justify: if we can be sure that, if two items “behave the same” (in

some suitably informal sense) they can safely be substituted for each other. In

the development of semantics, it very soon became apparent that the semantic

properties of languages were decisive for this question: that certain semantic

properties made substitution behave well.
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3.0.2 Technical Interlude: An Issue in Programming Language De-

sign

Here is an example of the sort of guidance that semantics can give in language

design. Suppose we define a subroutine – call it S, and that we later invoke it.

Suppose also that, in the code defining S, there is a global variable x. Suppose,

finally, that we change the definition of x between the time that S is defined

and the time that it is invoked. Which value do we use for x? There are two

obvious choices:

1. the value it had when S was defined: this is called lexical binding, and

2. the value it had when S was invoked: this is called dynamic binding.

It turns out (Stoy, 1977, pp. 46ff) that lexical binding gives a language much

better substitution properties, and, in fact, languages with dynamic binding –

the typesetting language TEX, for example – are terribly difficult to program

with. More generally, it seems to be the case that, if a language has clean,

elegant semantic properties, then it will be easy to program in.

3.1 Identity of Programs

We use semantics, then, to conclude facts about the behaviour of programs

on the basis of mathematical properties of their semantic values. We could,

for example, observe that, if the semantic values of programs P and Q were

different, then the programs themselves must be different.

This is more subtle than it might seem. What do we mean by identity and

difference between programs? A trivial answer would be that it simply consisted

in the identity or difference of their source code: but this is rarely of any interest.

Programs can vary a good deal, in a merely notational way, and still remain

“essentially the same” (whatever that might mean).

A better criterion for the identity of programs is that of observational equiv-

alence; philosophically, it can be regarded as a sort of functionalism (see (Lycan,

1995), (Block, 1995)). One definition is as follows:
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Two programs, P and Q, are observationally equivalent if and only

if, whenever the inputs of P and Q are the same, then so are their

outputs.

We can define this also for constituents of programs (subroutines, statements,

blocks, and the like: these are generically called program phrases. We define

equivalence by observing what happens when phrases are substituted for each

other in programs (here a program with a phrase deleted is called a program

context):

Two program phrases, f and g, are observationally equivalent if and

only if, for any program context P (·), the two programs P (f) and

P (g) are observationally equivalent.

Observational equivalence is an extremely versatile property. If we think of

anything which might be (in the non-technical sense) an “observation” of the

behaviour of a program – stimulating it with certain input, checking the output,

and so on – we can automate this observation by writing another program to

perform it. This other program will provide a program context with which

we can test the program that we are interested in: and thus our definition

of observational equivalence can be regarded as an automated version of the

everyday concept of observation.

However, observational equivalence is a difficult property to establish, since

it talks about what happens when a program fragment is substituted into any

program context at all, and in most cases we have no grasp of this totality of

program concepts.

If our semantics respects observational equivalence, then we call it fully ab-

stract :

A semantic valuation v(·) is fully abstract if, whenever program

phrases f and g are observationally equivalent, v(f) and v(g) are

the same.
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Full abstraction is, of course, an important concept, because we are interested

in observational equivalence. But its interest rather wider than that: a fully

abstract semantics will, in some way, reflect the essential structure of programs,

abstracting away from notational or implementational details (Tennent, 1994,

p. 242). Of course, we can – rather fraudulently – define fully abstract seman-

tics by starting with a non-fully abstract semantics and imposing equivalence

relations on it; but unless we have independent access to the model thus con-

structed, it would do us no good. In the case when we can find a fully abstract

model, and characterise it in some meaningful way – for example, in terms of

games (Abramsky et al., 1994; Hyland & Ong, 2000) – we have a mathemati-

cal object which tells us a great deal about the deep structure of a particular

programming language.

3.2 Functional Programming

We have been describing an approach to the theory of programming languages

which simply seeks to analyse the usual languages that people program in. We

might, though, take a different approach to language design: we might want the

theory to be more prescriptive, and design programming languages so that they

had a good, perspicuous, metatheory.

One of the features which give languages a good metatheory is referential

transparency: the property that terms of the language, which stand for the same

entities, can always be substituted for each other. Languages with side effects –

such as statements that change the values of variables – do not have referential

transparency. A term of such a language might stand for, let us say, a number,

but might also, in the course of evaluating that number, change the values of a

particular variable; another term might evaluate to the same number, and might

change the values of other variables; and it is easy to see that these two terms,

even though they evaluated to the same numbers, could not be substituted for

each other.

So we might consider designing a programming language in which we could
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not change the values of variables. What would such a language look like?

There could be variables, and we could have definitions that assigned values to

variables: however, once we have let a variable have a certain value, we could

not subsequently change it. We could also have subroutines: subroutines would

take parameters and return values. Because we have no assignment statements,

the result returned by a subroutine on particular arguments depends only on the

values of its arguments: the same subroutine, evaluated on the same argument,

always yields the same result. Subroutines, then, are extensional: they give the

same results on arguments with the same referents, and in this respect they

behave like mathematical functions. Following Quine, it is usual to refer to

languages with this property as referentially transparent.

As we have seen, programming needs higher-order constructs. These lan-

guages are no exception: we can let higher-order entities (in this case, functions

and higher-order functionals) be the values of variables, we can pass them as

parameters to subroutines, and so on. Following Quine’s slogan “to be is to

be the value of a variable” – a slogan explicitly used by the pioneers of pro-

gramming language semantics – we can, and do, give a rough ontology to our

language: the entities that can be the values of variables, that are passed to

and returned by subroutines, are usually known as “first class citizens”, and

they will figure largely in any account of the semantics of the language. These

languages – known as functional languages – generally have a large array of

such higher-order constructs. Lisp is such a language, but is semantically some-

what impure: modern, more principled versions are untyped languages such as

Scheme, and typed languages such as ML.

3.2.1 Technical Interlude: The Lambda Calculus

There is an alternative description of these languages. Consider a subroutine,

such as the following:

begin function f(x,y):

return 3 ∗x + 2 ∗ y
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end

This is the subroutine which takes two parameters, x and y, and returns 3x+2y.

We can give an alternative description of this – in more mathematical notation

– as a term in the λ-calculus:

λx.λy.(3x + 2y)

This rough analogy can be made precise: we can set up a correspondence be-

tween functional programs and λ-calculus terms, which is compositional and

extensional, in such a way that we can obtain a semantics for our programs

from a semantics for the λ-calculus.

We can go on from here. It is known that terms in a suitable λ-calculus

can be used to encode proofs in higher-order intuitionistic logic (Lambek &

Scott, 1986); this is called the Curry-Howard correspondence. This suggests

that functional programs can also be considered to be proofs in that logic: and

such, in fact is the case. The correspondence between programs and proofs is

illuminating in its own right. Consider a subroutine which takes a parameter

– say x – and which computes, for example, 3x + 2. This corresponds to the

lambda-term

λx : int.3x + 2,

which corresponds to a proof of the proposition

∀x : int∃y : int

but not, of course, just any proof: it is the proof which takes the integer x

introduced by ∀, computes 3x + 2, and then uses that integer as a premise in

∃-introduction.
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4 Conclusions

We have surveyed a rather large area of theoretical computer science; we now

have to consider its philosophical relevance. There are, of course, several points

of direct relevance: programming language semantics tells us a great deal about

the processes of abstraction involved in programming computers, and also about

the nature of algorithms (for which (Moschovakis, 2001) is a good comparison).

However, there are less direct points of interest. The overall goal of programming

semantics is quite similar to the philosophical project of developing a theory of

meaning: however, the methods and results are strikingly difficult. To a large

extent this is because the philosophical project has been developed in isolation,

with unsophisticated technical tools, and with the aid of a very small number

of examples, none of them either large or complex. The practical necessities

of producing a useful body of theory have made it impossible for programming

language semantics to indulge in any of these luxuries. So, the comparative use

of programming language semantics is, perhaps, more interesting than its direct

use.

4.1 What Aren’t We Interested In

Programming language semantics was developed in order to address certain

specific needs, and one must understand the biases resulting from those needs

to be able to understand the theory and its place in the world.

We Know the Mechanism The first is obvious: we know all about the

mechanisms of computers, because, after all, we made them. This contrasts

very strongly with the situation in the philosophy of language and in linguis-

tics, where we have very little information about underlying neurophysiological

mechanisms.

We Design the Systems We also design computers, their operating systems,

and the programming languages that we use on them. Many of the choices that
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we make when we do this are reflections of our needs, rather than of the nature

of computation as such; for example, operating systems are extremely modular,

and most programming languages have a great deal of support for modularity,

simply because modularity makes computers much easier to program. Mod-

ularity does not seem to be entailed by the nature of computation as such.

By contrast, Fodor’s work (Fodor, 1983) works from much more transcenden-

tal premises: he is attempting to establish that any minds such as ours must

be modular, whatever their mechanisms and however those mechanisms might

have arisen. The semantics of programming languages can, of course, neither

prove nor disprove the validity of a program like Fodor’s – though, of course, it

might provide illuminating results on the nature of modularity and on its formal

analysis.

Reference is Not Problematic If we are using computers to solve a problem

in the real world, we generally know what the expressions of our programming

language stand for: we have, if we are sensible, set things up that way.

Foundationalism is Not Interesting We may, in principle, know the physi-

cal processes that the expressions of our programming languages result in, when

they are suitably compiled and run. However, we are very rarely interested:

looking at computers on that sort of level would submerge the interesting fea-

tures in an ocean of low-level detail. We would be unable to distinguish, on

that level, between operations which were performed by the operating system

and those which were performed by programs; of the programs running on a

real computer, by far the majority would be concerned with trivial housekeeping

tasks, rather than anything we were interested in: of the instructions which exe-

cute in an interesting program, by far the majority of them would be concerned

with rather dull tasks such as redrawing windows on the screen, interacting

with the operating system, and so on. On the level of machine-level instruc-

tions, none of these processes would be distinguishable from each other in any

tractable way.
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4.2 What Are We Interested In?

So what are the interesting problems?

Making Languages Different There is a huge number of different program-

ming languages, and there are also genuine differences between them. If we

were to analyse these languages using the methods of recursive function the-

ory, or by representing programs written in them as Turing machine programs,

we would find (since programming languages are generally Turing complete)

that they were indistinguishable from each other. So we want a theory that is

finely-grained enough to be able to represent the genuine differences between

languages. On the other hand, we do not want to differentiate languages that

are merely typographical variants of each other, or which differ simply by trivial

definitional extensions: we want, that is, a theory that is sensitive to genuine

differences between languages, and only to those. We would also like to go on

and construct a taxonomy of languages: that is, we would like to arrange lan-

guages in some sort of formal scheme in which we could describe how to get

from one language to another by regularly varying theoretical parameters of

some sort.

Attaining Abstraction There is a common theme running through all of

these considerations. When we are designing, or using, a high level programming

language, we are concerned about attaining a sufficient degree of abstraction.

Low-level, detailed, grounded descriptions of our systems are unproblematic,

but we do not want these: we want to be able to forget about such merely

implementational details in order to program, and reason about programs, at

the level we are interested in. In order to do this, we need to be able to design

languages to do it; and in order to do that, we need some sort of theoretical

conception of what these languages should look like. Thus, our semantics should

give us a view of computational processes which is equally as abstract as the

languages that we want to design. Abstraction, then, is an achievement.

18



This contrasts sharply with the traditional task of the philosophy of lan-

guage. Here we start with a high-level view – a speaker’s intuitions about lan-

guage – and we attempt to find a suitably grounded account of this high-level

view (Dummett, 1991, p. 13). Attaining the abstract view is not a problem:

grounding it is. In the semantics of computation, on the other hand, we already

have a grounded view of our subject matter: it is the construction of a suitably

abstract view that is the major difficulty.

4.3 The Technical Tools

The technical tools used also differ strongly from those current in the philosophy

of language community. Programming language semanticists use higher order

logic and the mathematical theory of categories: linguistic philosophers use first

order logic and set theory. This is a fairly profound difference in mathematical

cultures, but it also has to do with the difference between the problems that

these communities are addressing.

Intuitionistic Logic Semantics uses intuitionist logic a great deal: we have

seen, above, that the semantics of functional programming looks very like the

proof theory of higher order intuitionist logic, because programs correspond to

proofs of certain propositions. For this, we must use intuitionist, rather than

classical, logic: because we want to make programs correspond to proofs, there

must be a large number of essentially different proofs of the same proposition.

We can rephrase this in terms of equivalence of proofs: we should be able to de-

fine a notion of proof equivalence which disregards merely notational variation,

but which is not so coarse that the set of equivalence classes becomes trivial. It

turns out that, for technical reasons, we can do this for intuitionist logic, but

not for classical logic (Girard, 1991).

However, this use of intuitionist logic is less ideological than it might seem.

We are using it because we need a finely-grained proof theory, and it would

be perfectly possible for an ideologically classical logician to use intuitionist
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logic for these purposes, only because, for computational purposes, one needed

a fine-grained proof theory.

In a similar way, we use higher-order logic: higher-order constructions are

pervasive in programming, and it is appropriate to have a metatheory which

reflects that. However, this preference, again, is not straightforwardly ideolog-

ical: these higher-order entities are, after all, algorithms, and carry no taint

of the infinite. Correspondingly, there are constructive models of set theory

in which sets are modelled by equivalence relations on subsets of the integers:

we can, in such models, carry out all of the constructions needed to develop

programming language semantics, although we cannot quite accomodate all of

traditional higher-order logic, (Robinson, 1989; Hyland, 1982). There is very

little that a constructivist can find about such models to object to.

Category theory is also part of the semantic toolkit (see (Tennent, 1994,

pp. 290ff) for some examples). But this is hardly any surprise: category the-

ory has found wide application in areas of mathematics – algebraic topology,

algebraic geometry, and proof theory – where one wants to disregard “implemen-

tational” (or merely notational) detail, and concentrate on the essential features

of a situation.

This can be rephrased in more traditional philosophical terms as follows.

There is a well-known example, due to Benacerraf (Benacerraf, 1965), which

is (slightly rephrased) as follows: consider two mathematicians (A and B) who

both talk about ordered pairs, except that A encodes the ordered pair 〈x, y〉

as {x, {x, y}}, whereas B encodes it as {y, {x, y}}. Now – though A and B

clearly each have accounts of ordered pairs which are mathematically adequate

– they do not seem to be talking about the same objects (and, in fact, they

can be made to disagree by asking them stupid questions of the form (“is x

a member of 〈x, y〉?). One approach to this would be to invoke a difference

between specification and implementation, and to say that A and B were simply

using different implementations of a single specification. Of course, to do that

we need to have some way of making these specifications explicit: and category
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theory gives us that. We can, given two sets X and Y , specify their cartesian

product X × Y (the set of ordered pairs with members in each set) in terms

of the two maps X × Y → X and X × Y → Y , and of the properties of these

two maps. And this characterisation turns out to characterise the construction

exactly, without involving any purely implementational decisions.

We can think of category theory as ruling out the stupid questions which

differentiated between A’s and B’s mathematics: that is, of giving us a distinc-

tion between observable and unobservable properties of mathematical construc-

tions. The observable properties are those which can be expressed in terms

of mappings (’morphisms’, in category-theoretic terms) between mathematical

objects, and in terms of identities between those morphisms; the unobservable

ones need identities between objects (Bénabou, 1985). It is no surprise, then,

that programming language semantics, which is intimately tied to the observ-

able properties of computer programs, also uses category theory to express that

notion of observability.

4.4 Theories of Meaning

Finally, we should compare these semantic theories with the philosophical project

of a theory of meaning. We should recall that the goal of Davidson’s program

was to develop an axiomatic theory which would yield, for each sentence of a

natural language, a suitable instance of the schema (Dummett, 1991, p. 63)

S is true if and only if A

Truth is not particularly salient in the semantics of programming languages,

but we do have an important central notion: that of observational equivalence.

So, if we do have a fully abstract semantics, then it can (after suitable manip-

ulation to express it in philosopher-friendly terms) be construed as a sort of

counterpart of a theory of meaning: it is a mathematical theory from which

we can derive a great number of conclusions about observational equivalence of

computer languages. And there are such fully abstract semantics.
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However, there are one or two caveats to be made. There is a presumption

that, when one had achieved a theory of meaning, one could simply examine to

see what its “central notion” was (Dummett, 1991, p. 34). But these semantic

theories are possibly a little more recalcitrant: they assign mathematical objects

– semantic values – to program phrases, but these mathematical objects do not

wear their meanings on their sleeve: there is still room for considerable argument

about what they mean. We may, it is true, present mathematical objects using

vocabulary which is sufficiently tendentious to make one think that they have

a clear and obvious meaning: but this would be merely tendentious, having to

do with a particular presentation of those objects.

The other caveat is this. The semantics of programming languages has paid

particular attention to the question of full abstraction: this concept has been

somewhat neglected in the philosophy of language, where the problems have

seemed to be those of finding rich enough semantic values to hold all of the

components of meaning that we want. However, full abstraction ought to play

a role in the philosophy of language as well: as Quine said, there should be no

identity without identity (Quine, 1969, p. 23), and the semantic values that we

assign to sentence fragments should, in some way, respect the identities of the

meanings that we are trying to model.
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Glossary

abstraction, full A semantics for a programming language

is fully abstract if it does not distinguish

programs, or program phrases, which are

observationally equivalent.

Algol A programming language, developed in

the late 1950’s, which established many

of the features of modern programming

languages

assignment The process whereby a variable in a pro-

gram acquires a new value, thereby losing

whatever old value it had

compositionality A semantics is compositional if the val-

ues it gives to composite entities can be

constructed from the values of the com-

ponents of those entities.

Curry-Howard correspondence A correspondence between terms in the

λ-calculus and proofs in intuitionist logic

Fortran A programming language, designed in the

1950’s, intended for the solution of scien-

tific problems

functional programming A programming language is functional if

it has no assignment statements: this

makes its semantics particular tractable.

halting problem The problem of deciding whether a par-

ticular computer program will ultimately

halt or not. This was historically the first

undecidable problem to be discovered.
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lambda calculus A logical calculus based on the idea of

the application of functions to their ar-

guments

Lisp Historically the first functional program-

ming language

logic, intuitionist A logic, invented by Brouwer and based

on the idea of mental constructions, which

rejects the principle of bivalence.

looping The process of repeatedly executing a sec-

tion of a program until some condition is

met

ML A functional programming language with

a sophisticated type system

observational equivalence Two program phrases are observationally

equivalent if they can be substituted for

each other in all contexts.

parameter A variable, belonging to a subroutine,

which receives a value when the subrou-

tine is executed

program context A program with a gap in it, into which

program phrases may be substituted

program phrase A syntactic constituent of a program

recursion A subroutine is recursive if it repeatedly

calls itself until some condition is satisfied

referential transparency A program context is referentially trans-

parent if it allows program phrases with

the same value to be substituted for each

other.
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Scheme A functional programming language

which is a version of Lisp with cleaner

semantics

scope The portion of a program within which a

particular variable has a value

semantic value The value assigned to a program phrase

by a semantic theory

subroutine A fragment of code, with parameters,

which can be invoked with particular val-

ues of its parameters

Theory of Meaning A philosophical project, initiated by

Davidson and taken over by Dummett, of

investigating the meaning of natural lan-

guage in order to solve philosophical prob-

lems

type An attribute of a component of a program

(especially of a variable): it specifies what

sort of values that component can have

undecidability A problem is undecidable if there is no

algorithm which will solve all particular

instances of it.

variable An entity in a computer program whose

role is to hold arbitrary data
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