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Abstract

I present and explain the Bohmian account of collapse in quantum mechanics.

1 Introduction

This paper is an explication of an idea due to Detlef Dürr and collaborators. The idea

is striking: Bohmian mechanics has the formal and physical resources to fully account for

the phenomenon of quantum collapse. This account is perhaps not as well understood, in

philosophical circles at least, as it deserves to be. So my goal, in what follows, is to present

a simple yet rigorous version of this account; hopefully, thereby, increasing its audience of

appreciators.

But before doing so, it is worth making a brief remark about the passing of Detlef Dürr.

There is joy, and also pain, in reading through this volume. The joy comes from seeing how

many lives Detlef touched, and the community which formed around him. The pain comes

from the reminder of his loss.

There is some comfort to be had, however, in Detlef’s own research. For Bohmian me-

chanics suggests that when someone dies, their particles disperse according to a determined,
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coordinated dance, one in which—by virtue of nonlocality—we all participate. Just as clouds,

gently floating across the sky, are carried towards the distant horizon by their particulate

motions, so we are carried along by our composite particles, making tracks towards a hori-

zon where everything familiar vanishes; a vanishing point through which Detlef has already

passed, and through which all else passes too, and lucky for us that on the way there, our

trajectories briefly crossed his.

2 Basics

In this section, I present the basics of Bohmian mechanics.1 Roughly put, according

to the version of Bohmian mechanics on which I focus here, the universe consists of some

particles and a universal wave function. The resources used to describe all this, it turns out,

can also be used to describe subsystems of the universe: in particular, those resources can

be used to define the wave functions that subsystems have.

To start, let N be the number of particles in the universe. For each i from 1 to

N , let qi be a variable which ranges over the candidate positions of the ith particle. Let

q “ pq1, . . . ,qNq be a variable which ranges over the candidate configurations of all particles

in the universe. For each time t, let Ψtpqq be the universal wave function at that time.

In addition, for each i, let Qiptq be the actual position of particle i at time t. Let Qptq “

`

Q1ptq, . . . ,QNptq
˘

denote the actual configuration, at time t, of the particles in the universe.

There is an important difference between the symbols ‘q’ and ‘Qptq’. The former is

a generic variable which ranges over all candidate configurations of the universe’s particles.

The latter is, for any given time t, a constant which denotes a single configuration of the

particles in the universe: the configuration which the particles, at t, actually have. So in

Bohmian mechanics, q acts as a generic symbol which can be used to specify the domain of

all possible particle configurations to which the universal wave function Ψt assigns a complex
1For an early formulation of Bohmian mechanics, see (Bohm, 1952a; 1952b).
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number. Qptq, however, specifies a specific particle configuration: the actual one.

Bohmian mechanics posits two equations: one describes the evolution of the universal

wave function Ψpt, qq “ Ψtpqq, while the other describes the evolution of particle configura-

tions. The evolution of the universal wave function is given by the Schrödinger equation.

iℏ
BΨ

Bt
“ HΨ (1)

The evolution of particle configurations is given by the guidance equation.

dQi

dt
“

ℏ
mi

Im
Ψ˚∇iΨ

Ψ˚Ψ
pQ1, . . . ,Qnq i “ 1, . . . , N (2)

In (2), each mi represents the mass of particle i. Together, (1) and (2) describe how the

entire universe evolves.

In addition to describing the behavior of the universe as a whole, Bohmian mechanics

also provides the resources needed to describe subsystems. A ‘subsystem’ is simply a collec-

tion of particles. The ‘environment’ of a subsystem consists of all particles in the universe

which are not in that subsystem.

Subsystems and their environments can be represented by variables and constants, in

the following way. Take any subsystem of M particles, where M ă N . Index all the particles

in the universe so that particle 1, particle 2, . . . , and particle M , are all and only the particles

in this subsystem. For each i from 1 to M , let xi “ qi: so each xi is a variable which ranges

over the candidate positions of particle i in the subsystem. Let x “ px1, . . . ,xMq be a variable

which ranges over the candidate configurations of the subsystem’s particles. Similarly, for

each i from M ` 1 to N , let yi “ qi. So each yi is a variable which ranges over the

candidate positions of particle i in the environment. Let y “ pyM`1, . . . ,yNq be a variable

which ranges over the candidate configurations of the environment’s particles. In addition,

for each time t and each i from 1 to M , let Xiptq “ Qiptq: so for each time t, each Xiptq is

a constant which denotes the actual position of particle i in the subsystem. For each time

t, let Xptq “
`

X1ptq, . . . ,XMptq
˘

be a constant which denotes the actual configuration, at
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t, of the subsystem as a whole. Finally, for each time t and each i from M ` 1 to N , let

Yiptq “ Qiptq: so for each time t, each Yiptq is a constant which denotes the actual position

of particle i in the environment. And for each time t, let Y ptq “
`

YM`1ptq, . . . ,YNptq
˘

be a

constant which denotes the actual configuration, at t, of the environment as a whole.

Some more notation will be helpful. For any subsystem of M particles as described

above, the variable q—which ranges over candidate configurations of the universe—may be

rewritten as q “ px, yq. This equation conveniently represents the split between (i) the can-

didate configurations of the subsystem, and (ii) the candidate configurations of the environ-

ment. Similarly, for each time t, the constant Qptq—which represents the actual configuration

of the universe—may be rewritten as Qptq “
`

Xptq, Y ptq
˘

. This equation conveniently rep-

resents the split between (i) the actual configuration of the subsystem, and (ii) the actual

configuration of the environment.

These resources can be used to define a particular sort of wave function—called the

‘conditional wave function’—for any given subsystem (Dürr et al., 1992, p. 864).2 To see

how, take the subsystem of M particles described above. Let x, Y , t, and Ψt be as defined

earlier. Then for any given time t, the conditional wave function of this subsystem is the

function ψtpxq defined as follows.

ψtpxq “ Ψt

`

x, Y ptq
˘

(3)

In other words, the wave function3 of a given subsystem at a fixed time is obtained by (i)

taking the actual positions of the particles in the subsystem’s environment, and (ii) plugging

those positions into the universal wave function.4

This feature of Bohmian mechanics—that it contains the resources required to formu-
2For a more accessible account of wave function collapse, see (Goldstein, 2010). For more discussion of

different ways to interpret wave functions like these, and different ways to understand the physical significance
of universal wave functions too, see (Goldstein & Zanghì, 2013).

3Note that (3) is not normalized. This does not matter, however. All wave functions related by a constant
non-vanishing multiple may be regarded as physically equivalent.

4For more on conditional wave functions, see (Dürr et al., 2004, pp. 966-968).
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late equation (3)—is striking. In more orthodox interpretations of the quantum mechanical

formalism, certain functions are simply stipulated to be the wave functions of subsystems.

Subsystems’ wave functions are not defined in terms of anything else. Similarly, in fact, for

other interpretations of quantum mechanics, such as the Everett interpretation. Bohmian

mechanics, in contrast, can be used to define the wave functions of subsystems in terms of a

few basic posits: the existence of a universal wave function, and the actual positions of the

physically real particles which comprise the environment. So altogether, whereas Bohmian

mechanics has the formal and physical resources to account for how certain wave functions

are associated with certain subsystems, many other interpretations of quantum mechanics

do not. And that is a significant point in favor of Bohmian mechanics.

3 Collapse

In this section, I discuss the Bohmian account of how the wave functions of subsystems—

that is, conditional wave functions—collapse.5 Then I briefly present the conditions under

which conditional wave functions conform to a version of Schrödinger’s equation. Finally, I

explain why this version of Schrödinger’s equation does not always describe how conditional

wave functions evolve.

To start, here is the account of how conditional wave functions evolve in accord with

the collapse postulate of quantum mechanics. Let t1 be a time shortly before a measurement

occurs. Suppose that at time t1, the subsystem’s conditional wave function ψt1pxq is in a

superposition of the eigenstates ψt1,α1pxq, ψt1,α2pxq, . . . , ψt1,αnpxq of the observable being

measured. So for some constants cα1 , cα2 , . . . , cαn , the following holds.

ψt1pxq “

αn
ÿ

α“α0

cαψt1,αpxq (4)

5This discussion is based on the theory developed in (Dürr et al., 1992; Dürr & Teufel, 2009; Goldstein,
2010).

5



In addition, suppose that before measurement of the observable, the subsystem and the

environment do not interact with one another. Moreover, let us assume that at time t1, there

is a function ϕt1pyq such that the universal wave function is ψt1pxqϕt1pyq.6 So (4) implies that

at time t1, the universal wave function is

Ψt1px, yq “ ψt1pxqϕt1pyq “

αn
ÿ

α“α0

cαψt1,αpxqϕt1pyq (5)

In other words, before measurement, the universal wave function is in a superposition of the

wave functions ψt1,αpxqϕt1pyq, where each ψt1,αpxqϕt1pyq represents a universal wave function

in which the subsystem’s state is ψt1,αpxq and the environment’s state is ϕt1pyq.

Now to describe some post-measurement wave functions which will be relevant in

what follows. Let t2 be a time right after the measurement occurs. Take any α from

α0, . . . , αn. Then from t1 to t2, the wave function ψt1,αpxqϕt1pyq evolves to a new wave func-

tion ψt2,αpxqϕt2,αpyq, where ψt2,αpxq and ϕt2,αpyq have several important properties. First,

ψt1,αpxq “ ψt2,αpxq: this corresponds to the fact that measurements of a given observables’

eigenstates do not alter those eigenstates. Second, ϕt2,αpyq is the wave function associated

with the environment recording the fact that the subsystem is in state ψt2,αpxq: that is just

part of what it is for the event in question to count as a measurement of the observable

in question.7 Third, for all α1 such that α ‰ α1, the support of ϕt2,αpyq is macroscopically

disjoint from the support of ϕt2,α1pyq:8 basically, this too is just part of what it is for the
6This assumption is unrealistic: the universal wave function generally does not factorize into a product

state of functions ψt1pxq and ϕt1pyq. But as it turns out, this assumption is not really necessary, even
approximately. It is sufficient that the universal wave function satisfies Ψtpx, yq “ ψt1pxqϕt1pyq ` ΨK

t1px, yq,
where ϕt1pyq and ΨK

t1px, yq have macroscopically disjoint y-supports (Dürr et al., pp. 861-864).
7For more discussion of why the state ψt2,α must record the state of the subsystem—which is based on

considerations of what it is to conduct a measurement—see (Albert, 1992, pp. 74-79).
8In other words, if ϕt2,αpyq is non-zero for some configuration y, then ϕt2,α1 pyq is zero for all configurations

y from which that former configuration is macroscopically indistinguishable. And if ϕt2,α1 pyq is non-zero for
some configuration y, then ϕt2,αpyq is zero for all configurations y from which that former configuration is
macroscopically indistinguishable. Put in intuitive terms, this all amounts to the following: the configurations
of the environment, which record the outcome of the measurement, are macroscopically distinct from one
another. In other words, the measurement device never enters a state in which it is somehow recording two
distinct experimental outcomes.
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event in question to count as a measurement.9 So each term ψt1,αpxqϕt1pyq, in (5), evolves

to a wave function ψt2,αpxqϕt2,αpyq such that (i) ψt1,αpxq is ψt2,αpxq, (ii) ϕt2,αpyq says that the

system is in state ψt2,α, and (iii) the ϕt2,αpyq have macroscopically disjoint supports.

With all that as background, here is the Bohmian account of collapse. Since each

ψt1,αpxqϕt1pyq evolves to ψt2,αpxqϕt2,αpyq, the linearity of the Schrödinger equation implies

that the universal wave function in (5) evolves to the universal wave function below.

Ψt2px, yq “

αn
ÿ

α“α0

cαψt2,αpxqϕt2,αpyq (6)

By the definition of conditional wave functions from (3), the conditional wave function of

the subsystem at time t2 is obtained by substituting Y pt2q—the actual configuration of the

environment particles at t2—for y in (6). The following results.

ψt2pxq “ Ψt2

`

x, Y pt2q
˘

“

αn
ÿ

α“α0

cαψt2,αpxqϕt2,α

`

Y pt2q
˘

Since the functions ϕt2,αpyq all have macroscopically disjoint supports, at most one of the

quantities ϕt2,α

`

Y pt2q
˘

is non-zero. Since each of the wave functions ψt1,αpxq are eigenstates

of the original conditional wave function ψt1pxq, at least one of the quantities ϕt2,α

`

Y pt2q
˘

is non-zero. Therefore, for some αj, the above sum reduces to ψt2,αj
pxqϕt2,αj

`

Y pt2q
˘

where

ϕt2,αj

`

Y pt2q
˘

‰ 0. Dropping the unnecessary constant ϕt2,αj

`

Y pt2q
˘

10—and using the fact,

mentioned earlier, that ψt1,αj
“ ψt2,αj

—it follows that at time t2, the conditional wave func-

tion of the subsystem is as follows.

ψt2pxq “ ψt1,αj
pxq (7)

In other words, the conditional wave function of the subsystem after measurement is one of
9For more details, see (Dürr et al., 1992, pp. 863-866).

10Recall that as mentioned in footnote 3, wave functions related by a constant non-vanishing multiple are
physically equivalent.
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the eigenstates of the conditional wave function of the subsystem before measurement. The

subsystem’s conditional wave function has collapsed.

Basically, according to the Bohmian account, collapse results from two different features

of subsystems, environments, and the universe as a whole. First, the wave function associated

with any given subsystem is determined by (i) the wave function of the universe, and (ii) the

actual positions of the environment particles. In other words, the wave function of any given

subsystem is the conditional wave function given by (3). Second, after measurement, the

universal wave function has the following property: when the post-measurement positions of

the environment particles are plugged into the universal wave function, the resulting function

is an eigenstate of the conditional wave function of the subsystem just before measurement.

In slogan form: what it is to be a subsystem’s wave function is to, among other things,

exhibit collapse-like behavior.

Note that according to this account, collapse is real: the wave functions of subsystems

really do, that is, undergo collapse. For when measurement occurs, a subsystem’s wave

function really does become an eigenstate of the wave function which the subsystem had

before the measurement event. The subsystem starts out with one conditional wave function

before measurement; after measurement, the subsystem’s conditional wave function is an

eigenstate of the conditional wave function from earlier. So collapse is a real, actual part of

the physical world, according to the Bohmian account.

It is worth briefly explaining why conditional wave functions sometimes conform to a

version of Schrödinger’s equation. For conditional wave functions do not always collapse:

they often exhibit Schrödinger evolution. Basically, that happens whenever the subsystem—

corresponding to the conditional wave function in question—is suitably isolated from its

environment.

For example, take the subsystem of M particles once more. Suppose that the universal

wave function factorizes such that for all times t, there is a function Φt such that Ψtpx, yq “

ψtpxqΦtpyq; or at least, suppose that the universal wave function approximately obeys an

8



equation of this form.11 In addition, suppose that there is negligible interaction between

the subsystem and the environment; so the universal Hamitonian H may be written as

H “ Hx `Hy.12 Finally, let ψ be defined by ψpt, xq “ ψtpxq. Then it can be shown that the

following holds.13

iℏ
Bψ

Bt
“ Hxψ (8)

The conditional wave functions of subsystems which are approximately in product states, in

other words, conform to a version of Schrödinger’s equation.

Before concluding, it is worth discussing two reasons why the Bohmian account of

collapse is preferable to the account of collapse that orthodox quantum mechanics endorses.

First, that other account—call it the ‘orthodox account’—simply stipulates that collapse

occurs. The phenomenon of collapse, in other words, is a primitive posit of the orthodox

account. The Bohmian account, however, does not merely posit a collapse principle. Instead,

the Bohmian account shows how collapse derives from other, more basic posits: namely, posits

about actual configurations and universal wave functions.

Second, and relatedly, the orthodox account does not offer a clear method for associating

wave functions with subsystems in the first place.14 To illustrate, consider the following ques-

tion: for any given subsystem of the universe, at any given time t, what wave function should

be associated with that subsystem? The answer to this question, that Bohmian mechanics

supports, is clear: given that (i) the wave function of the universe at t is Ψt, (ii) the subsystem

in question is defined as the collection of particles with actual positions X1ptq, . . . ,XMptq,

so that the environment particles have actual positions YM`1ptq, . . . ,YNptq, and (iii) a con-
11For the reasons mentioned in footnote 6, this assumption is unrealistic, but not necessary. It is made

here merely in order to simplify the discussion.
12Hx is the contribution to H arising from terms involving only degrees of freedom from particles in the

subsystem, while Hy is the contribution to H arising from terms involving only degrees of freedom from
particles in the environment.

13See (Dürr et al., 1992, pp. 861-862).
14Arguably, this is true for other accounts too, like accounts of collapse suggested by some versions of the

Everett interpretation.
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dition about macroscopically disjoint supports of the sort mentioned earlier, it follows that

(iv) the wave function which should be associated with this subsystem is the conditional

wave function ψtpxq “ Ψt

`

x, Y ptq
˘

“ Ψt

`

x1, . . . ,xM ,YM`1ptq, . . . ,YNptq
˘

. Orthodox quan-

tum mechanics does not support an analogously clear answer to this question. For orthodox

quantum mechanics does not provide clear, precise principles which, for any given subsystem,

define the wave function associated with that subsystem in terms of anything as well-defined

as actual configurations and universal wave functions. And so whereas Bohmian mechanics

can be used to provide a satisfying answer to this question, orthodox quantum mechanics

cannot.

This is, in my view, one of the most attractive features of Bohmian mechanics. It

provides precisely the resources needed to clearly define the wave functions which should be

associated with subsystems: those resources consist of a few simple posits about particles and

a universal wave function. And in so doing, it supports an account of how collapse occurs.

In short, by helping itself to physically real particles, Bohmian mechanics clarifies

decades of confusion surrounding quantum collapse. The orthodox account exacerbates that

confusion, since it resists positing an actual configuration for any given subsystem’s environ-

ment: so given the orthodox account, there is nothing to plug into a universal wave function,

to obtain the wave functions associated with subsystems—that is, according to the Bohmian

account, the conditional wave functions—which undergo collapse. Bohmian mechanics does

posit an actual configuration for each subsystem’s environment, however. And as a result,

Bohmian mechanics supports an illuminating account of how, and why, collapse occurs.

4 Conclusion

Bohmian mechanics can be used to provide an attractive, elegant, and simple account of

collapse. The account says, basically, that collapse is a consequence of how conditional wave

functions evolve over time. Their evolution generates the phenomenon of collapse because of
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how the environment particles, and the universal wave function, evolve.
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