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1 Introduction

Each of us ought to make the world better than it would otherwise be, at least somewhat and

sometimes.

This need not be because a strict form of consequentialism is true. Perhaps the true moral

theory upholds other considerations - constraints, prerogatives, and reasons from other sources.

But it is implausible that this theory does not, in a large class of moral decisions, recognise some

reasons to bring about the best available outcome.1 For instance, when one devotes some of

one’s resources to aid strangers through charity, it seems that one has some reason to use those

resources as effectively as possible - to bring about the best available outcome.2

On top of this, it is plausible that (at least in some decision contexts) one outcome can

be better than another only if the resulting world contains a greater total aggregate of value,

impartially construed.3 Again, this need not be because only total value matters; some form of

pluralism may be true. A range of the plausible moral theories are minimally aggregative in this

sense: in a large class of comparisons, they evaluate one state of affairs as better than another

only if it contains a greater total aggregate of value; and they entail that we have reason to bring

1Rawls (1971:30) himself claims that any plausible deontological theory satisfies this criterion: ‘It should be

noted that deontological theories are defined as non-teleological ones, not as views that characterise the rightness

of institutions and acts independently from their consequences. All ethical doctrines worth our attention take

consequences into account in judging rightness. One which did not would simply be irrational, crazy.’
2For a defence of that claim, see Pummer (2016).
3This definition excludes standard person-affecting views. It also excludes any view with a monistic axiology

under which value does not admit an additively separable representation (e.g., egalitarianism, maximin, averag-

ism). This exclusion is not because such views escape the infinitarian worries described below - typically, they

don’t - but for brevity. And it doesn’t exclude views with a total utilitarian axiology or a prioritarian axiology

in the style of Parfit (1997). Nor does it exclude pluralist views which give any weight at all to either of those

axiologies.

1



about that better world.

Here I am interested in this category of minimally aggregative moral theories. This entire

category faces ruinous problems when applied in a physical setting like ours.

Suppose that our universe has infinite spatial volume or temporal duration. Suppose further

that it contains infinitely many moral subjects, infinitely many of whom have valuable lives

and infinitely many of whom have disvaluable lives (with absolute value greater than some fixed,

finite, positive ε). In such an infinite universe, the total sum of value minus disvalue is undefined.

If this is the case in all worlds that our available actions would bring about, then we cannot say

that any of those worlds contains greater total value than any other. By minimally aggregative

views, none are better than any others: they are all incomparable to one another. So such views

will give us no reason to bring about any of them over any other. And this extends to a large

class of decisions in universes like this: perhaps all pure rescue cases, or all decisions of how to

allocate resources for charitable purposes.

Current physical theories suggest that our universe is like this. That the universe has infinite

spatial volume is independently implied by the inflationary view (Guth, 2007) and the flat-

lambda model (Wald, 1983; Carroll, 2017), each widely accepted among physicists. And it

has an infinite duration, over which life will continue to arise, according to the flat-lambda

model. Both views imply that the universe’s infinite volume will contain infinitely many tokens

of every physically possible small-scale phenomenon, no matter what actions we take (Garriga &

Vilenkin, 2001; Linde, 2007; Simone et al, 2010; Carroll, 2017). But there will be some physical

phenomena which we consider morally valuable (and some disvaluable), e.g., perhaps a human

brain experiencing intense pleasure (or pain) for a given duration.4 So it seems plausible that

we are indeed in a physical setting where all minimally aggregative views fail us. We then have

reason to be sceptical of them or, if we are particularly confident in either physical theory, it

seems that we should reject minimally aggregative views entirely.

But we might replace them with similar, modified views. By tweaking our method of ag-

gregation, and comparing worlds based on something more than a standalone total value - one

that is both one-dimensional and real-valued - perhaps something closely resembling a mini-

4Specifically, we will have a countably infinite number of such tokens. Why? Because they are each positioned

in a four-dimensional spacetime. They’ll also each occupy some (exclusive) finite region of spacetime - for

illustration, for a human brain to experience a given quantity of pleasure, it requires some non-zero spatial

volume and some non-zero, finite duration. So we can only fit a countably infinite number of those token events

into the world.
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mally aggregative view can avoid the problem. Fortunately, we have various proposals for doing

this. We have the ‘expansionist’ methods of Vallentyne & Kagan (1997), Arntzenius (2014),

and Wilkinson (2020). We have the weaker proposal of additivism from Lauwers & Vallentyne

(2004), described below. We have Bostrom’s (2011) hyperreal proposal. And we have Jonsson &

Voorneveld’s (2018) limit-discounting method, among various others. I’ll remain mostly agnostic

here on which, if any, of these is the correct method for comparing worlds.

But, whichever of those methods we choose, we face further problems in practice. As mere

human agents, we are uncertain of the outcomes of our actions, for all actions. Even if we can

compare infinite worlds, that alone provides no guidance for action in the relevant decisions. Put

differently, even if we had a solution to the axiological problem of how to compare worlds, we do

not immediately have a solution to the subjective normative problem of which risky actions we

should take.

For those who hold aggregative views, the standard approach for converting axiology to

subjective normative judgements is expected value theory: we evaluate the expected total value

produced by each action, and are required to choose an action which maximises that expected

value (Jackson, 1991). But, for infinite worlds, we often don’t have defined total values over

which we can take expectations. And by every one of the proposals listed above, we don’t

obtain any cardinal measure of worlds’ value so, even then, we cannot construct expected values.

Thus, minimally aggregative views (and even their modified infinitarian relatives) cannot give

subjective normative judgements in many decision contexts.

I will propose a solution: the ‘expectations of differences’ approach. We can adhere to the

spirit of expected value reasoning without explicitly assigning expected values to lotteries (the

traditional, ‘differences of expectations’ approach). But in doing so we must satisfy certain

crucial desiderata for any plausible ranking of lotteries. This is surprisingly difficult to do. (See

Section 5.) And the one solution proposed so far, by Bostrom (2011), Arntzenius (2014), and

Meacham (2020), does not satisfy them all.

The paper proceeds as follows. In Section 2, I introduce the necessary formal framework.

In Section 3, I describe a minimal aggregation method for comparing worlds: Additivity. In

Section 4, I describe the Arntzenius-Bostrom-Meacham method for comparing lotteries, and

hence providing subjective normative judgements, for infinite worlds. In Section 5, I present

a damning counterexample to their method, which demonstrates that it violates some basic

desiderata for comparing lotteries - desiderata which are on much stronger footing than expected

value theory itself. In Section 6, I propose my own solution: the ‘expectations of differences’
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approach. (Readers averse to formalism may wish to skip this section, but will likely still find

the rest of the paper illuminating.) Section 7 is the conclusion.

2 Preliminaries

Aggregation is the general method of evaluating worlds based on their total aggregates. The

aggregate of a world is some impartial combination of all of the individual instances of value they

contain - their local values. But how do we identify and demarcate local values? Following others

in the literature, I assume that each local value is fundamentally associated with a token entity of

some common type which can exist (or have unique counterparts) across different worlds. Those

entities might be persons, or person-time-slices, or positions in space and time, or something

else. They might have some essential and natural topological structure (as spacetime positions

seem to), or they might not (as persons seem not to). There is disagreement in the literature on

what the correct type is, and whether they have such structure.5 Here I will remain agnostic on

those questions. But, whatever those tokens are, call them locations.

For my purposes, each world W can be represented by an ordered pair 〈L, V 〉. The plurality

of locations it contains is represented by an often-infinite set L = {l1, l2, l3, ...} (in which the

subscripts may be entirely arbitrary).And the value at each location is given on a cardinal scale

by a function V : L → R. I’ll often use the subscript of each Wi to identify it with its set of

locations Li and value function Vi. And where all worlds available in a decision share the same

locations, I denote the common location set as L.6

I seek an ‘at least as good as’ relation for comparing these worlds, a binary relation < on

the set W of (metaphysically) possible worlds. I assume that this relation is both reflexive and

transitive7 over W. (Equivalently, we could say that < is a preorder on W.) Strict betterness is

given by the asymmetric component �, and equality by the symmetric component '.

But we don’t just want to compare worlds; we want to compare lotteries over worlds. For-

5For a defence of adopting persons as the appropriate type, see Askell (2018). For arguments in favour of

adopting spacetime positions, see Wilkinson (2020; n.d.).
6As shorthand, I’ll describe worlds as having ‘the same locations’ whether those locations are really the same

or there is merely a unique, bijective counterpart relation between them.
7Some reject that a the moral betterness relation between worlds must be transitive (in particular, Temkin

2012). The primary motivation for this rejection is to accommodate some form of pluralism. But here, I am

interested only in cases in which the only relevant considerations are aggregative ones. So I’ll assume that <

must be transitive.

4



mally, a lottery L is a probability measure on W - it maps all sets of possible worlds to some

probability in the interval [0, 1] while obeying the standard probability axioms. The set of all

such probability measures on W is denoted by P. We can also define the domain of each lottery

Li by Wi = {W ∈ W|Li({W}) > 0}. For two lotteries Li and Lj , I’ll abbreviate the union of

their domains Wi ∪Wj to W(i,j).

I’ll make a few other abbreviations to keep the notation in check. I’ll abbreviate L({W})

to L(W ) when the input to L is a set {W} with only element. And I’ll use Li(<W ) as an

abbreviation for the probability that Li gives to the set of all worlds in Wi that are at least as

good as W (or, equivalently, {W ′ ∈ Wi|W ′ <W}). And, last, when a lottery has only one world

W in its domain, mapped to probability 1, I’ll use W to denote both world and lottery.

You might think that lotteries don’t contain all of the information relevant to comparing

gambles. If not, we can also talk of the states of the world in which a particular world obtains. I

have in mind the basic framework of Savage (1954), by which each lottery is associated with act :

a function from states to their associated worlds (or, in Savage’s terminology, consequences). For

some set of mutually exclusive and exhaustive states S, each act A can be defined as a function

A : S → W. We will also have some probability measure P on S, independent of A. For each

act Ai, the corresponding lottery Li would be given by Li(E) = P (A−1i (E)) for any subset E of

its domain.

Finally, we need an ‘at least as good as’ relation for comparing lotteries (or acts): a binary

relation <L on P. Again, define strict betterness (�L) and equality ('L) as the asymmetric and

symmetric components, respectively. And again, as basic desiderata, <L must be reflexive and

transitive. It must also be consistent with <: if W1 <W2 then W1 <L W2 too.

3 Comparing worlds: Additivity

The definitions of < and <L above are minimal. We know little more than that they are reflexive

and transitive. I’ll now strengthen them slightly.

How? Suppose two worlds contain the same locations. Some locations might obtain more

value in one world, some more in the other. Sum up all of those increases from one world to the

other, minus all of the decreases. If that total sum of all differences is positive, then one world

seems clearly better.
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For instance, compare worlds W1 and W5. Their only differences are that location la does

better in W1, and that locations lb to lf do better in W5. Perhaps this comparison represents a

decision in which we can either rescue one person from death, or rescue five others (with all else

equal).

la lb lc ld le lf lg lh li lj · · ·

W1 : 1 0 0 0 0 0 1 1 1 1 · · ·

W5 : 0 1 1 1 1 1 1 1 1 1 · · ·

We cannot say much about the total value of either world, but we can say something about

the subtotal over any finite subset of locations. For instance, take the set of all locations which

differ between worlds: la through lf . The subtotal over these is 1 for W1 and 5 for W5. The

worlds have equal values at all other locations, so let us ignore those. And, left with only those

first few locations, the difference between W5 and W1 is 5 − 1 = 4. Thus we might claim that

W5 is the better world.

That’s Additivity in a nutshell. More precisely:

Additivity8: For any worlds W1 and W2 with the same locations L, W1 <W2 if∑
l∈L

V1(l)− V2(l) ≥ 0

(either by converging unconditionally, or by diverging unconditionally to +∞).

Note that Additivity is not biconditional - some worlds may be better than others even

though additivity doesn’t hold. After all, Additivity by itself is not complete - nowhere near it -

nor need it be. I introduce it here only as a weak principle to get us started, which is consistent

with almost all of the stronger principles in the literature, but which lacks their controversiality.

But, aside from the lack of controversy, why accept Additivity? As Lauwers & Vallentyne

(2004:39) show, any transitive < which satisfies all three of the following highly plausible prin-

ciples will also satisfy Additivity.

(Strong) Pareto: For any worlds W1 and W2 with the same locations L, if, for all

l ∈ L, V1(l) ≥ V2(l), then W1 <W2.

If, as well, some li ∈ L has V1(li) > V2(li), then W1 �W2.

8This principle is presented and defended by Vallentyne & Kagan (1997:11), Lauwers & Vallentyne (2004:23),

and Basu & Mitra (2007).
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This says that, if one world has contains at least as much value as another at every single

location, then it’s at least as good. And if that world has strictly greater value at at some

locations, then it’s strictly better. This sensitivity to changes in local value seems a minimal

requirement for any comparison of worlds which stays true to the spirit of aggregation.

Separability of Value: If W1 and W2 contain the same locations and W1 <W2 then,

adding their corresponding local values, W1 +W <W2 +W for all W ∈ W with the

same locations.9

This principle, also called Translation Scale Invariance in the literature, ensures that we are

only sensitive to differences in local value. If between one pair of worlds there is the same pattern

of differences as between another pair of worlds, we must rank both pairs the same way. It does

not matter what local values we start with in a world; all that matters is what we add or take

away; if a certain combination of additions and removals is an improvement to a world, it would

count as an improvement to any world. And, in the finite context, this is a key distinguishing

feature of aggregative views - such as any which endorse totalism or total prioritarianism. So,

moving to the infinite context, Separability of Value seems a necessary condition for staying true

to the spirit of aggregation.

And the final condition we need, Finite Sum, requires only that < remains consistent with

what our judgements would be if the world contained only finite total value. I take this as a

crucial requirement for extensional adequacy.

Finite Sum: If there is a finite total sum of local values in both W1 and W2, and the

sum in W1 is at least as great as that in W2, then W1 <W2.

I find all of these principles (and their conjunction) hard to deny. And so Additivity is hard

to deny. Given this, it is unsurprising that every one of these principles, and hence Additivity

too, is satisfied by each of the plausible stronger proposals in the literature (e.g., Vallentyne

& Kagan 1997; Bostrom 2011; Arntzenius 2014; Jonsson & Voorneveld 2018; Wilkinson 2020).

Given this broad agreement, I will assume in what follows that Additivity holds for <. But I

still remain agnostic as to how we should strengthen it, so my conclusions will still be relevant

for all of those stronger views.

9Define addition of worlds as follows. For all worlds W1 and W2 with the same locations L, the world

W3 = W1 + W2 is given by V3(l) = V1(l) + V2(l) for all l ∈ L. Later, I’ll define subtraction similarly.
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4 Comparing lotteries: Local expectations

In this section, I’ll describe a way to extend Additivity to compare lotteries over worlds, which

is proposed in some form by both Arntzenius (2014) and Bostrom (2011), and also endorsed by

Meacham (2020).

Consider the following two lotteries: W1, which delivers world W1 for sure; and L, which

brings even odds of W2 or W3, as specified below.

la lb lc ld le lf lg lh li lj lk · · ·

W1 : 1 0 1 0 1 0 1 0 1 0 1 · · ·

L


L(W )

1/2

1/2

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh li lj lk · · ·

W2 : 2 2 2 2 2 2 2 2 2 2 2 · · ·

W3 : 0 0 0 0 0 0 0 0 0 0 0 · · ·

Note that the labelling of locations here may be arbitrary: it need not represent any special

structure in our locations (e.g., their position in time). So we can say that W1 contains infinitely

many locations with local value 1, and infinitely many with value 0, but we cannot say anything

else about which of those sets of locations is larger.

If Additivity holds, then W2 �W1 �W3. But it says nothing about W1 versus the risky bet

L. Using only Additivity, we cannot straightforwardly construct expected values: the differences

between W1 and each of the others have infinite sums, so there’s no clear way to assign a real

value to each option.

But here is one way we might still compare the two. In lottery L, each location l has its own

prospects: probability 1
2 of 2, and probability 1

2 of 0. So we can list the expected local value for

each l under lottery L.

la lb lc ld le lf lg lh li lj lk · · ·

EL(V (li)) : 1 1 1 1 1 1 1 1 1 1 1 · · ·

This defines a new object with the same structure as a world - an ‘expected world’, with

the same set of locations and with a value function given by the expected local values under the

lottery. Equivalently, EWL = 〈L,EL(V )〉.

This ‘expected world’ can easily be compared to W1, via Additivity (indeed, by Pareto alone).

And it’s strictly better. So we might say that L �L W1.
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In effect, this matches the proposals made by Arntzenius10, Bostrom11 , and Meacham.To

an approximation, they all endorse Local Expectations. (See notes for how they differ.)

Local Expectations: For any lotteries L1 and L2 such that all W ∈ W(1,2) contain the

same locations L, L1 <L L2 if EWL1
< EWL2

.

If both Local Expectations and Additivity hold, then we can make the comparison between

the above lotteries W1 and L, as demonstrated. And, in general, we then have the result that

L1 �L L2 if the following sum is (unconditionally) greater than or equal to 0 (or diverges

unconditionally to +∞). ∑
l∈L

EL1(V (l))− EL2(V (l))

This seems promising: it appears we can sidestep the whole problem of taking expectations

over infinite totals. We just need to lower our expectations, down to the local level.

10Arntzenius (2014:55-6) proposes the following.

Weak Location Criterion: For lotteries A and B, A � B iff
∑

l∈L EA(V (l)) − EB(V (l)) “...is

absolutely convergent and > 0, where we are summing over all (epistemically possible) [locations]...”

l ∈ L.

This is almost equivalent to the conjunction of Local Expectations and Additivity. Except: 1) it defines only

a strict betterness relation �L, so does not imply that L1 'L L2 for any lotteries; 2) it remains silent if the

sum diverges unconditionally to +∞, even in cases of certainty in which Additivity gives a verdict. And 3) it

allows worlds in both lotteries to contain different locations (e.g., the same people) summing value instead over

all epistemically possible locations, which requires that we assign some value to the non-existent lives. I don’t

want to make a stand on such cases here, and my modifications to (1) and (2) should be uncontroversial.
11Bostrom’s (2011:20-4) proposal is more complicated. He describes (but doesn’t explicitly endorse) an approach

by which we represent the total value of each world with a hyperreal number : a vector of (countably) infinite

length which consists of the cumulative sums of local values, summed in some common order. In the example

above, if we chose to sum in the order la, lb, lc, etc, then we would represent the total value of W1 by the hyperreal

(1, 1, 2, 2, 3, 3, ...) and of W2 by (2, 4, 6, 8, 10, ...). And we can say that W2 is better: if one hyperreal has entries

larger than another at ‘sufficiently many’ positions, then it is the larger number. W2 has larger entries than W1

at all positions, so it has the larger total.

The standard of ‘sufficiently many’ can vary here but one very minimal condition is that, if the entries of one

hyperreal are greater than another in all but finitely many positions, then that the former is the larger hyperreal.

In effect, this condition is equivalent to Additivity. (There are stronger conditions we might apply too, but those

can be chosen to make the hyperreal approach equivalent to any plausible aggregation rule we want - see Pivato

2014.)

We can also sum hyperreals and multiply them by real probabilities just as we can with vectors, and so they

can give us expected values in roughly the old-fashioned way. L would then have expected value (1, 2, 3, 4, 5, 6, ...),

which is identical to the hyperreal total value of EWL from above. Since this is larger than the total value of

W1, we could say that L �L W1. In effect, this is equivalent to applying Local Expectations as above, but under

different formalism.
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5 The problem

But there’s a problem with Local Expectations. Consider the example of Egregious Energy.

Example: Egregious Energy

A new energy source has been discovered, and you must decide whether humanity

takes advantage of it.

If we do use it, once we get it working there we will obtain enormous amounts of

energy and many lives will be improved. But there are a few downsides. One is that

the fuel needed is limited - we will only reap its benefits for a short time. Another

is that it may take a while to get it working but, the longer it takes, the longer that

cornucopia of energy will last. But the greatest problem is pollution - this energy

source produces a novel form of pollution which will badly harm human health. That

pollution and its effects will decrease over time, but we will never be able to eradicate

it. If we use this source of energy, that pollution will continue to harm human well-

being for the entire future of humanity, which I’ll assume will be infinitely long.

In short, using this energy source will produce some finite benefit, but also cause

an infinite total amount of harm. (The relevant probabilities and values are given

below.)

And, for simplicity, exactly the same persons (and person-time-slices) will exist at

exactly the same physical positions whether or not we adopt this new energy source.

Since the same persons exist at the same physical positions either way, we can treat the

resulting worlds as having the same locations. Then we can represent your options as W0 and the

lottery L. If you forego the energy source, you produce W0, a world with constant cardinal value

0 at all locations, simply representing the baseline of what would have happened otherwise.12

And if you choose to have humanity adopt it, you produce L, a lottery over infinitely many worlds

{W1,W2, ...Wj , ...} (each with probability 1
2j ). You’re uncertain of how long it takes the energy

source to start working, during which time everyone just obtains the same value 0 as in W0. Once

12Note that local values of 0 here do not imply that the lives in question are right on the boundary of not

worth living. They might be extremely valuable lives. But these local values are here represented cardinally - the

numbers only capture the relative size of the differences between them. So these same representations of W0 and

L could describe worlds in which everyone has a blissful life and suffers only a slight reduction in quality of life

due to the pollution. Or they could describe worlds in which everyone suffers terribly and that pollution makes

life even worse.
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it’s working, some number of people obtain some greater value, represented by 2. And then,

once the fuel runs out, every person obtains less value than the baseline, represented by some

negative number. Note that, in every single one of these worlds in L, the total value diverges

unconditionally to −∞. So they’re all infinitely worse than W0.13 Note also that the sequence

of locations (l1, l2, ...) may be chronological, but that need not have any moral significance.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W0 : 0 0 0 0 0 0 0 0 · · ·

L



L(W )

1/2

1/4

1/8

1/16
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W1 : 2 −1/2 −1/2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W2 : 0 2 2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W3 : 0 0 0 2 2 2 2 −1/8 · · ·

W4 : 0 0 0 0 0 0 0 2 · · ·
...

...
...

...
...

...
...

...
...

We can use Local Expectations to compare L to W0. As above, we take L’s expected value

for each location. We obtain EWL as below.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

EWL : 1 1/4 1/4 1/16 1/16 1/16 1/16 1/64 · · ·

The expected local values are all greater than 0, so Additivity (or just Pareto alone) implies

that EWL � W0. And, together with Local Expectations, that implies that L �L W0. It is

allegedly better to adopt the energy source, even though that is guaranteed to leave infinitely

many people worse off.

But this is implausible. Every single world in L is worse than W0 (by Additivity). So L

guarantees us a worse outcome. Yet Local Expectations still says that it is the better choice.

This means that Local Expectations clashes with Guaranteed Betterness.

Guaranteed Betterness: If every world inW1 (the domain of L1) is better than every

world in W2, then L1 �L L2.

13In each world Wi, the local value at lj is given by:

0 for i < 2i

Vi(lj) = 2 for 2i ≤ j < 2i+1

− 1
2k

for 2k ≤ j < 2k+1, ∀k > i
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This conflict can be stated more formally as Theorem 1.

Theorem 1: For any reflexive, transitive relation <L on P, if <L satisfies Local

Expectations then it cannot satisfy both Guaranteed Betterness and Additivity.

To prove this would be straightforward. We would need only compare W0 and L from

Egregious Energy. Any <L on the set of all lotteries which satisfies both Guaranteed Betterness

and Additivity must give the verdict that W0 is better. And any such relation which satisfies

Local Expectations and Additivity (or just Pareto) must disagree: L is better. So such relations

can only satisfy Guaranteed Betterness and Additivity if they do not satisfy Local Expectations.

Is this so bad? Yes. Although Local Expectations seems plausible, Guaranteed Betterness

seems undeniable. Why? One of the most basic claims of decision theory is: if we must decide

between two outcomes of which one is strictly better, and there is no risk involved, of course

we ought to choose the better one. Likewise for minimally aggregative views in ethics - in

the ethical cases we’re interested in, we ought to choose the better outcome. Intuitively, this

shouldn’t change if we add a little uncertainty to the outcomes of each, but little enough that

every outcome of one option L2 is still worse than every outcome of the other, L1. No matter

the result of L1 or of L2, no matter the state of the world, no matter if we swap those states

around, no matter how lucky or unlucky we are, we are certain that L2 will turn out worse. For

goodness’ sake, we had better not choose it!

Further, the motivation of expected value reasoning (at least in contexts in which it is ap-

propriate to use) is to help us obtain what we ultimately care about. As Schoenfield (2014:268)

forcefully points out in another context, we ultimately care about obtaining outcomes that are

valuable, not outcomes that are merely expectedly valuable. We should only be interested “...in

expected value insofar as it helps [us] obtain what is actually important: value. . . . Any theory

of expected value that makes demands that don’t make sense given our concern with value can’t

do what expected value theory is meant to do.” (ibid.) With the goal of promoting value, a

demand that we abandon Guaranteed Betterness make no sense all.

In my view, this goal of promoting value also places stronger requirements on our rules for

comparing acts and lotteries. For one, if one lottery is guaranteed to bring about a better

world than another no matter which state arises, then it is the better lottery. So says Statewise

Dominance.

Statewise Dominance: Let A1, A2 : S → W be some acts with corresponding lotteries

12



L1, L2. If A1(S) < A2(S) for all S ∈ S, then L1 <L L2. If, as well, A1(S′) � A2(S′)

for some S′ ∈ S, then L1 �L L2.

This too seems undeniable. We know that some state S will obtain and, no matter which

it is, L1 turns out as good or better. If we want to promote value, it makes little sense to not

consider L1 as good as or better than L2.

But it doesn’t matter in which specific state a world obtains; all that matters is its probability

of obtaining. If we take two equally likely states, and swap around the worlds associated with

those states in a lottery, that shouldn’t make the lottery better or worse. As both Easwaran

(2014) and Bader (2018) show, if we accept that such permutations cannot make a lottery better

or worse and we accept Statewise Dominance, then we must also accept Stochastic Dominance.

Stochastic Dominance: Let L1 or L2 be any lotteries onW withW(1,2) totally ordered

by <. If L1(<W ) ≥ L2(<W ) for all W ∈ W(1,2), then L1 <L L2.

If, as well, L1(<W ) > L2(<W ) for some W ∈ W, then L1 �L L2.

This is a strengthening of Statewise Dominance and, in turn, of Guaranteed Betterness. But

it is not a radical one. When our decision theory deals with finite payoffs, all three principles

are consistent with, but weaker than, standard expected value theory - for instance, they do

not rule out risk aversion (see Buchak 2013). Accept expected value theory and you must

accept Stochastic Dominance. But, while expected value theory is somewhat controversial in the

existing literature, Stochastic Dominance and its kin are not. To the best of my knowledge, no

normative decision theory which violates this form of Stochastic Dominance has been seriously

proposed by any philosopher.14

But Local Expectations violates Stochastic Dominance, along with its weaker siblings. So we

must reject it. But how then can we compare lotteries over infinite worlds?

6 My proposal: Expectations of differences

The challenge is to provide a rule for comparing lotteries over infinite worlds which avoids the

above problems, and which satisfies Stochastic Dominance. This challenge is greater in some

14Schoenfield (2014) rejects a similar, but distinct, form of Stochastic Dominance which gives verdicts even

when outcomes in the domains aren’t totally ordered by the betterness relation. She raises no objection to weaker

formulations like mine.

13



cases than in others. I’ll start by giving a weak version of my rule which can handle easy cases.

Then, I’ll give a stronger version which can handle harder cases too.

6.1 Version 1

We start with a class of easy cases: comparing lotteries in which each pair of worlds differ by at

most a finite sum of local differences. L1 and L2 are two such lotteries.

L1


L1(W )

1/2

1/2

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh · · ·

W0 : 0 0 0 0 0 0 1 1 · · ·

W6 : 1 1 1 1 1 1 1 1 · · ·

L2


L2(W )

1/2

1/2

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh · · ·

W2 : 1 1 0 0 0 0 1 1 · · ·

W3 : 0 0 0 1 1 1 1 1 · · ·

Here’s how we might proceed. First, with just Additivity, we can rank the worlds W6 �

W3 �W2 �W0.

Next, we might pick a world at random - say, W0 - and represent these worlds by their sum

of differences with that baseline world. For W0, that’s 0. For W6, it’s 6. For W2, it’s 2. And for

W3, it’s 3. So we have a nice finite, cardinal ‘total’ to represent each world. And that gives us

all we need to represent each lottery with an expected ‘total’ value.

L1(W0) · 0 + L1(W0) · 6 =
1

2
· 0 +

1

2
· 6 = 3

L2(W2) · 2 + L2(W3) · 3 =
1

2
· 2 +

1

2
· 3 = 2

1

2

Calculated this way, the expected ‘total’ of L2 is less than that of L1, so we might claim

that L1 is the better lottery. Putting this approach more precisely, we have Expectations of

Differences 1.

Expectations of Differences 1 (ED1): Let L1 and L2 be any lotteries on W for which

all worlds inW(1,2) contain the same locations L. If there exists a world W∗ ∈ W(1,2)

such that the sum ∑
Wi∈W1

L1(Wi)
(∑
l∈L

Vi(l)− V∗(l)
)

14



is greater than or equal to the corresponding sum for L2 (mutatis mutandis), then

L1 <L L2.

ED1 resembles the way we calculate finite expectations, but with crucial tweaks. In the finite

setting, we take the expectation of the total value in each world and see how they differ. Here,

instead, we represent the value of each world by the sum of all its differences from some ‘baseline’

world W∗. And then, for each lottery, we take the expectation of that sum.

The standard approach compares expected totals to see which is larger - effectively, it relies

on the differences of expectations. My approach is to instead use the expectations of differences.

If we wanted, we could do this in finite cases. We would reach the same verdict as we get with

expected total values - in finite cases, the approaches are equivalent. But in infinite cases like

this, they come apart, and one of the two clearly does better.

But this approach won’t always succeed. For some pairs of lotteries, the expectation of

differences will not exist for any W∗. Then my rule often falls silent. But it won’t always fall

silent in such cases. Consider a further class of easy cases: when one of those sums diverges

unconditionally to (positive or negative) infinity. As long as only one of them does, then we

can still say which lottery is better. For instance, we can do so in the case of Egregious Energy.

Recall W0 and L.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W0 : 0 0 0 0 0 0 0 0 · · ·

L



L(W )

1/2

1/4

1/8

1/16
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W1 : 2 −1/2 −1/2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W2 : 0 2 2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W3 : 0 0 0 2 2 2 2 −1/8 · · ·

W4 : 0 0 0 0 0 0 0 2 · · ·
...

...
...

...
...

...
...

...
...

Unlike the Arntzenius-Bostrom-Meacham approach, Expectations of Differences implies that

W0 is better than L. How? First, let our ‘baseline world’ be W0. Then the sum of differences

between W0 and W0 is simply 0. Meanwhile, between each world in the domain of L and W0,

15



the sum diverges unconditionally to −∞.15

We have unconditional divergence for one lottery (L) but not the other (W0), so we face the

sort of situation mentioned above. And ED1 can still say, thankfully, that W0 < L. After all,

−∞ is a lot less than 0. So we seem to be doing better than the Arntzenius-Bostrom-Meacham

approach.

ED1 has other arguments in its favour too. Intuitively, it seems a plausible and natural way

to judge lotteries. It’s a rough analogue of Additivity for this new setting of comparing lotteries.

In fact, in cases of certainty, it implies Additivity. And, like Additivity, the most compelling

reason to accept it is that it is entailed by some highly plausible conditions. (All proofs are in

the appendix.)

Theorem 2: For any reflexive, transitive relation <L on P, if <L satisfies Statewise

Dominance, Finite Expectations, and Separability of Value (for Lotteries) then it

satisfies ED1.

Statewise Dominance will be familiar from the previous section. Recall that it is consistent not

just with standard expected value theory but also with risk aversion. To impose risk neutrality,

we can use Finite Expectations. This is the analogue of Finite Sum (from Section 3) for comparing

lotteries. It requires only that <L remains consistent with what our judgements would be if our

lotteries contained only finite expected total value. If <L doesn’t satisfy this, then it’s not an

adequate extension of finite expected value theory.

Finite Expectations: Let L1 and L2 be any lotteries such that the expected total

sum of local values converges unconditionally to finite values k1 and k2, respectively.

L1 <L L2 if and only if k1 ≥ k2.

Then there’s the highly plausible Separability of Value (for Lotteries). As did Separability

of Value above for comparisons of worlds, this says that we can take any two lotteries and add

15The calculation is: ∑
Wi∈W

L(Wi)
(∑
l∈L

Vi(l)− V0(l)
)

=
∑

Wi∈W

1

2i

(∑
l∈L

Vi(l)− 0
)

=
∑

Wi∈W

1

2i

(
0 + 0 + ... + 2 · 2i−1 +

∞∑
k=1

−1
)

→−∞
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whatever string of local values we want to (all of the worlds in the domain of) them, and the

resulting lotteries are ranked the same way. This implies that comparisons of lotteries are only

sensitive to differences in the local values of the worlds in their domains, and that local values are

additively separable. This is a direct analogue of Separability of Value for the lottery context,

so much so that I’ll abbreviate it to ‘Separability of Value’ in what follows.

Separability of Value (for Lotteries): For any lotteries L1 and L2 and world W ′ ∈ W

with the same locations as all worlds in W(1,2), let lottery L′1 on W be defined as

L′1(W ) = L1(W −W ′) for all W ∈ W1 +W ′, and similarly for L′2. If L1 <L L2 then

L′1 <L L
′
2.16

I find Statewise Dominance, Finite Expectations, and Separability of Value, as well as their

conjunction, hard to deny. So ED1 is on firm ground as a minimal principle for comparing

lotteries, just as Additivity is for comparing worlds. And it seems to me to be on strictly firmer

ground than Local Expectations, which implies Finite Expectations and Separability of Value

but violates all three of the dominance principles we saw above.

6.2 Version 2

But that first principle doesn’t get us far. Consider L1 and L2.

L1


L1(W )

0.1

0.9

∣∣∣∣∣∣∣∣∣
la lb lc ld le · · ·

W4 : 4 4 4 4 4 · · ·

W1 : 1 1 1 1 1 · · ·

L2


L2(W )

0.2

0.8

∣∣∣∣∣∣∣∣∣
la lb lc ld le · · ·

W2,1 : 2 1 2 1 2 · · ·

W0 : 0 0 0 0 0 · · ·

Take any pair of those worlds and sum their local differences; the result is infinite. If we apply

ED1 here, no matter which baseline-world we pick, the expected sums are undefined. Using ED1

alone, we cannot compare these lotteries. So we need a stronger rule.

Before I present that rule, consider how little we need to compare two lotteries over finite

payoffs. We can make judgements without knowing the probabilities in each lottery - we just need

16This also implies the converse since, for all W ′, the condition also applies to −W ′.
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to know the differences in probability of each outcome between one lottery and the other. And

we can make judgements without knowing the values of the payoffs - we just need to know the

(scale of the) differences between them. We can even make judgements often without knowing

the precise differences in probabilities and values - upper and lower bounds may be enough.

Here are two lotteries over finite payoffs which we can compare with incomplete information.

L′1: value v + u+ 1 with probability p; value v with probability 1− p.

L′2: value v + 1 with probability 2p; value 0 with probability 1− 2p.

Here, v and u are some real numbers such that v > 0 and u > 2. And p is some probability in

(0, 12 ). We cannot assign precise values to any of them, perhaps because those values are vague

or indeterminate. But we can still judge which lottery is better. Take their expected values: L′1

has expectation v + p(u + 1), which is greater than v + 3p; and L′2 has expectation 2p(v + 1),

which is less than v + 2p. So L′1 is better. Imprecision is no problem here.

We have similar information when comparing the above lotteries L1 and L2 over infinite

worlds - it turns out that they are structurally equivalent to the finite lotteries L′1 and L′2. So

we can take a fairly similar approach.

First, take the difference in probabilities of obtaining a world at least as good as each Wi

between L1 and L2, given by ∆pi = L1(<Wi)−L2(<Wi). Where this is positive, L1 has a greater

probability of delivering Wi or better; where it’s negative, L2 has the greater probability.

∆p4 = L1(<W4)− L2(<W4) = 0.1

∆p2,1 = L1(<W2,1)− L2(<W2,1) = −0.1

∆p1 = L1(<W1)− L2(<W1) = 0.8

∆p0 = L1(<W0)− L2(<W0) = 0

Second, take the difference between each world and the next best world in the domain. If

our worlds had finite total values, we would represent those differences with finite values. But,

with infinite worlds, we must represent differences as worlds themselves - worlds given by the

differences in local values. For each world Wi which has some distinct next best world Wj in

W(1,2), the difference between them is given by Di = 〈L, Vi − Vj〉, with local values Vi(l)− Vj(l)

at every location. (Note that if there is no world in W(1,2) that is strictly worse than Wi, then

Di is undefined.)
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la lb lc ld le · · ·

D4 : 2 3 2 3 2 · · ·

D2,1 : 1 0 1 0 1 · · ·

D1 : 1 1 1 1 1 · · ·

Third, compare how large those differences are relative to one another. Again, this would be

straightforward with real, finite differences, but less so when the differences are infinite worlds.

Fortunately, we can compare their size. To start with, we can use the same old < relation

that we would use to compare the size of worlds. By Additivity (or just Pareto), we’ll have

D4 � D1 � D(2,1).

And, further, we can judge their relative size by comparing them to scalar multiples of one

another.17 A scalar multiple can be defined as k ·W = 〈L, k × Vi〉 for any real k, with local

values each k times that in W . Then we have:

2 ·D1 ≺ D4 ≺ 3 ·D1

0 ·D1 ≺ D2,1 ≺ 1 ·D1

So we can say that D4 is more than twice, but less than three times, as great as D1. And

D2,1 is less than D1, but greater than 0 times D1. And that’s all we need. The information we

have here is analogous to what we had for L′1 and L′2 above, and the lotteries L1 and L2 are

analogous to them as well. D1 is analogous to v, D4 analogous to u, and D2,1 analogous to the

value 1. We know that D4 � 2 · D2,1, much like we knew that u > 2 before. And so, if these

lotteries can be compared in an analogous way, we can say L1 �L L2.

And we can make judgements much more generally, even for lotteries which do not resemble

L′1 and L′2 specifically. To see why, note that, if we were dealing with any lotteries L1 and L2

over finitely-valued outcomes w ∈ W(1,2), we would say that L1 <L L2 if and only if L1 had at

least as great an expected value:

E(L1)− E(L2) =
∑

w∈W(1,2)

(L1(w)− L2(w))× V (w) ≥ 0

And this equation rearranges to the following, where the outcomes (w1, w2, w3, ...) are ordered

from least to most value. Here, we use the probability of each lottery turning out at least as

17Since the local values in the original worlds Wi and Wj are represented on a common interval scale, the local

values in Di can be represented on a ratio scale - they have an absolute zero, 0. So it makes sense to compare

their absolute size via scalar multiplication, and likewise for the difference-worlds at large.
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good as each wi, rather than the probability of wi alone.

E(L1)− E(L2) =
∑

wi∈W

(
L1(<wi)− L2(<wi)

)(
V (wi)− V (wi−1)

)
≥ 0

That difference in probabilities between L1 and L2 is just ∆pi from above. And the difference

in values is equivalent to Di. If we can represent the Dis with some real values ki which measure

their relative size, then we can use this equation as is. But we don’t even need their precise

relative size. We can get by with kis which capture an upper or lower bound on the relative size

of each Di.

In effect, we can apply Expectations of Differences 2, which goes like this.

Expectations of Differences 2 (ED2): Let L1 and L2 be any lotteries on W such that

all W ∈ W(1,2) have the same locations.

If, for some W∗ ∈ W(1,2), and for all Wi ∈ W(1,2) such that ∆pi 6= 0, there exists

ki ∈ R such that

ki∆pi ·D∗ 4 ∆pi ·Di and
∑

Wi∈W(1,2)

ki∆pi ≥ 0

then L1 <L L2.

Here, W∗ is just some world in the domain, and D∗ the difference between it and the next

best world, against which the size of each Di will be compared.

The first equation constrains the ki that we can use as a stand-in for each Di. It represents

an upper or lower bound on how many times greater Di is than D∗. To say that L1 <L L2, we

need ki to give an upper bound on the size of Di when Wi (or better) is more likely under L1

- when ∆pi > 0. And we need ki to give a lower bound when it’s more likely under L2 - when

∆pi < 0. That’s why ∆pi appears on both sides of that equation - it allows the inequality to

switch direction when ∆pi < 0.

Once we have those kis to represent the size of the differences, the second equation runs the

same probability-weighted sum we saw above. Like above, when it’s positive, L1 is better. And

that’s ED2.

But should we accept ED2? I think so, and not just based on that analogy with imprecise

values. For one, it implies all of the (very plausible) judgements of ED1, as long as < obeys

Additivity.
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Theorem 3: For any reflexive, transitive relation <L on P, if <L satisfies Expec-

tations of Differences 2 and Additivity, then it satisfies Expectations of Differences

1.

Given that compatibility, we already know that this version of Expectations of Differences

will deal with cases like Egregious Energy better than rival views. But it’s also stronger than

the previous version, as demonstrated in the example above.

Also in its favour, the rule is implied by the conjunction of several highly plausible principles.

Theorem 4: For any reflexive, transitive relation <L on P, if <L satisfies Stochastic

Dominance, Separability of Value (for Lotteries), Independence, and Extrapolated

Expectations, then it satisfies Expectations of Differences 2.

You’ll recognise Stochastic Dominance and Separability of Value from above. Then we have

two newcomers.

First, Independence is the same principle that is often used to axiomatise expected utility

theory. Suppose we evaluate L1 is at least as good as L2. Independence says that we could mix

each lottery with some third lottery L3, whatever it might be, and the resulting mixed lotteries

would be ranked the same way. Equivalently, take a mixed lottery which gives you probability

p of running lottery L1 as normal, and a probability 1− p of running L3 instead; Independence

says that that mixed lottery is still at least as good as the mixed lottery in which L2 replaces

L1. More formally, it can be stated as follows.

Independence: Define lotteries L1∨3, L1∨3 on W by

L1∨3(W ) = p× L1(W ) + (1− p)× L3(W ) for all W ∈ W

and L2∨3(W ) = p× L2(W ) + (1− p)× L3(W ) for all W ∈ W

For any lotteries L1, L2, and L3 on W and for any p ∈ [0, 1], L1∨3 <L L2∨3 if and

only if L1 < L2.

We then have Extrapolated Expectations, which should also be uncontroversial for those who

accept expected value theory in the finite context. It merely says that, for any world W ′ � 0, a

lottery with probability p of W ′ (and 0 otherwise) is precisely as good as p ·W ′.
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Extrapolated Expectations: For any world W ′ ∈ W such that W ′ � 0 and any

p ∈ (0, 1] the following lottery L 'L p ·W ′.

L(W ) =


p for W = W ′

1− p for 0

0 for W /∈ {W ′,0}

If we faced a similar lottery over finite payoffs, w and 0, we’d assign it expected value p · w

without hesitation. Extrapolated Expectations requires that we treat infinite worlds in the same

way. And it’s on firm footing of its own - if our < for comparing worlds obeys Additivity,

as any plausible < does, then Extrapolated Expectations follows straightforwardly from Finite

Expectations and Statewise Dominance. It is also worth noting that it follows from Local

Expectations - if one is tempted to adopt Local Expectations instead of ED2, Extrapolated

Expectations must hold either way.

And if you accept Extrapolated Expectations, Independence, Stochastic Dominance, and

Separability of Value, then you must also accept Expectations of Differences 2, by Theorem 4.

6.3 Weaknesses of Expectations of Differences

You might notice in the definition of Expectations of Differences 2 that the antecedent of the

conditional is awfully strong. The rule, then, is awfully weak. It can only provide judgements

when:

• 1) Every world in the domain of either lottery contains precisely the same locations;

• 2) Every pair of such worlds is comparable;

• 3) Many pairs of such worlds have a difference which is also comparable to many of the

other differences; and

• 4) Those differences are also comparable with certain scalar multiples of other differences

(depending on the probabilities in the lotteries).

To demonstrate my view’s weakness, here is a pair of lotteries similar to those I used earlier

to demonstrate Local Expectations in action, but with slightly different probabilities. (Here, ε

is some small positive number.)
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la lb lc ld le lf lg lh li lj lk · · ·

W1 : 1 0 1 0 1 0 1 0 1 0 1 · · ·

L


L(W )

1/2− ε
1/2 + ε

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh li lj lk · · ·

W2 : 2 2 2 2 2 2 2 2 2 2 2 · · ·

W3 : 0 0 0 0 0 0 0 0 0 0 0 · · ·

What does ED2 say? Well, here are our differences-below, and a relevant scalar multiple.

la lb lc ld le · · ·

D(W2,W1) : 1 2 1 2 1 · · ·

D(W1,W0) = W1 : 1 0 1 0 1 · · ·

(1 + ε′) ·D(W1,W0) : 1 + ε′ 0 1 + ε′ 0 1 + ε′ · · ·

By Additivity alone, we cannot compare D(W2,W1) to the scalar multiple (1+ε′)·D(W1,W0),

since the former does better at locations lb, ld, lf , ... and the latter does better at the rest. The

sum of their local differences is undefined. And given the probabilities here, there is no way to

generate kis both of the equations needed for ED2.

Thus, ED2 and Additivity together say nothing about how we should compare W1 to L.

And this is even though every pair of worlds at play is comparable and, on top of that, so are

the differences between each of them. Even worse, we only made the smallest of changes to the

lottery - all we did was give a mere +ε of probability mass to one outcome, and now we cannot

say a thing!

My first response to this silence is simply: tu quoque. Suppose we adopt the rival view of

Arntzenius, Bostrom, and Meacham, and we swap out ED2 for Local Expectations. Then we

still cannot compare these two lotteries. So I am doing no worse here. But that is little comfort.

My second response is that this is no shortcoming of Expectations of Differences; it is a

shortcoming of Additivity. Additivity is a very weak constraint on betterness. I have used it so

far because it is so weak - this weakness makes it uncontroversial and, indeed, all of the plausible

stronger principles in the literature are consistent with it. We can treat the conjunction of ED2

and Additivity similarly: it is just a weak and (hopefully) uncontroversial condition for comparing

lotteries. So it is fitting that it makes no judgement in this case. The correct judgement is not

obvious, so it should remain silent.
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My third response is that, actually, ED2 allows us to do even better. It can be combined with

almost any betterness relation we choose - the definition above makes no reference to Additivity,

but instead to some unspecified < relation. We might adopt the < relation from Vallentyne

& Kagan (1997:19), Jonsson & Voorneveld (2018), or Wilkinson (2020), each of which is much

stronger than Additivity. Personally, I favour the betterness relation described in Wilkinson

(ibid.) - unlike the others, it can be shown to give comparisons for every pair of physically

possible worlds that could occur as a result of our actions (see Wilkinson n.d.).

And even without a betterness relation stronger than Additivity, ED2 does just fine in the

examples in the previous sections, including Egregious Energy. And so this approach is not so

weak after all.

7 Conclusion

If you hold a minimally aggregative ethical view, you may be dismayed to discover that the

universe is infinite. Your moral theory seems to fall silent in all cases where it must rely on facts

of betterness. You may want to advise others to make the world better, but your axiology tells

you that this is impossible.

It may be a relief to then come across the existing proposals for betterness relations which

resemble finite aggregationism but which fare better in infinite worlds (e.g., Vallentyne & Kagan

1997; Lauwers & Vallentyne 2004; Bostrom 2011; Arntzenius 2014; Jonsson & Voorneveld 2018;

Wilkinson 2020). But then you recall that you are a limited epistemic agent - you’re uncertain

about the effects of your actions - and you may be dismayed once more. After all, most of these

betterness relations offer no clear way to compare lotteries over infinite outcomes, and so no

way to make subjective normative judgements. And those which do offer this have implausible

implications, as we saw in Section 5.

If you have ridden that emotional rollercoaster, you have my sympathy. I hope that I’ve

allowed you to disembark. We now have a plausible method for comparing lotteries over infinite

outcomes, which avoids the problems of the previous proposals. With a sufficiently complete

betterness relation, this proposal can restore the subjective normative judgements of minimally

aggregative views. We may well be able to make decisions based on what will promote the good

after all.
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8 Appendix

Theorem 2: For any reflexive, transitive relation <L on P, if <L satisfies Statewise Dominance,

Finite Expectations, and Separability of Value (for Lotteries) then it satisfies ED1.

Proof : Define the binary relation <ED1 on P by:

L1 <ED1 L2 if and only if there is some W∗ ∈ W such that∑
Wj∈W1

L1(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)
≥

∑
Wj∈W2

L2(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)

(i)

This is the relation given by ED1 alone. To prove Theorem 2, it suffices to show that, for

any L1 and L2 such that L1 <ED1 L2, it must also hold that L1 <L L2 if <L abides by Statewise

Dominance, Finite Expectations, and Separability of Value (for Lotteries).

Let L1, L2 ∈ P be some such lotteries. (We already know that such lotteries exist - see

Section 6.) Then there exists some W∗ ∈ W such that (i) holds. So either 1) both sides of the

inequality converge unconditionally to some real values, with the LHS greater than or equal to

the RHS, or 2) the LHS diverges unconditionally to +∞, the RHS diverges unconditionally to

−∞, or both.

1) If both sides of (i) converge:

Define two additional lotteries L∗1 and L∗2 by L∗1(W −W∗) = L1(W ) and L∗2(W −W∗) =

L2(W ) for all W ∈ W(1,2) (and L∗1(W ), L∗2(W ) = 0 otherwise). Since both sides of (i) converge

unconditionally to real values, the expected total sums of local value in L∗1 and L∗2 will be finite,

and the expected total sum for L∗1 will be greater than or equal to that for L∗2. So L∗1 <L L∗2,

by Finite Expectations. Then, by Separability of Value (for Lotteries), L1 <L L2, as required.

2) If either or both sides of (i) diverge:

The LHS diverges to +∞, or the RHS diverges to −∞, or both. If both, then define L∗1 as

above and L∗2(W0) = 1. If not both, then define L∗1, L
∗
2 as above.

If the LHS diverges to +∞, then there is some lottery L∗∗1 with finite expected sum such that

L∗1 <L L
∗∗
1 by Statewise Dominance and L∗∗1 <L L

∗
2 by Finite Expectations. We can obtain L∗∗1

from L∗1 by replacing any worlds in its domain that have total sums of local value greater than

some chosen large finite bound with some other worlds with totals below that bound.

If the LHS does not diverge but the RHS does diverge to −∞, then there is some lottery L∗∗2
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such that L∗2 4L L
∗∗
2 by Statewise Dominance and L∗∗2 4L L

∗
1 by Finite Expectations.

Either way, L∗1 <L L
∗
2. Separability of Value (for Lotteries) then implies that L1 <L L2. �

Theorem 3: For any reflexive, transitive relation <L on P, if <L satisfies ED2 and Additivity,

then it satisfies ED1.

Proof :

Define a binary relation <ED2 on P by:

L1 <ED2 L2 if and only if 1) for all worlds Wa,Wb ∈ W(1,2), La = Lb, and 2) there

is some W∗ ∈ W(1,2) such that, for each Wi ∈ W(1,2), there is some ki ∈ R such that

ki∆pi ·D∗ 4 ∆pi ·Di and
∑

Wi∈W(1,2)

ki∆pi ≥ 0

This is the relation given by ED2 alone. Define <ED1 as above, and let L1, L2 ∈ P be any

lotteries such that L1 <ED1 L2. And assume that < satisfies Additivity. Then, to prove Theorem

3, it suffices to show that L1 <ED2 L2.

Since L1 <ED1 L2, for some W ′ ∈ W(1,2),

∑
Wj∈W1

L1(Wj)
(∑
l∈L

Vj(l)− V ′(l)
)
≥

∑
Wj∈W2

L2(Wj)
(∑
l∈L

Vj(l)− V ′(l)
)

⇒
∑

Wj∈W(1,2)

(L1(Wj)− L2(Wj))
(∑
l∈L

Vj(l)− V ′(l)
)
≥ 0 (i)

Assume that the signs of L1(Wj)−L2(Wj) and
∑

l∈L Vj(l)−V ′(l) differ for some Wj ∈ W(1,2),

and hence also that the signs are the same for some other Wi. (ii) (If not, then we immediately

have L1 <ED2 L2.)

Given (i), either 1) for at least one Wj ,
∑

l∈L Vj(l)− V ′(l) diverges unconditionally to +∞,

or 2) all of those sums are finite.

1) For at least one Wj ,
∑

l∈L Vj(l)− V ′(l) diverges unconditionally to +∞:

There will be at least one Di with an infinite sum of local values and ∆pi > 0, but none

with ∆pi > 0. Given (ii), we also have at least one D∗ with negative ∆p∗. Given that the

sum diverges unconditionally, that D∗ must only have a finite total sum of local values. For all
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finite-sum Di, set ki = 0. For all infinite-sum Di, set ki = 1. Then we have ki∆pi ·D∗ 4 ∆pi ·Di

for all Di.

And
∑

Wi∈W(1,2)
ki∆pi ≥ 0, since it will simply be the sum of the (at least one) infinite-sum

Di with positive ∆pi. Thus, both conditions are thus satisfied, and we have L1 <ED1 L2, as

required.

2) For all Wj ,
∑

l∈L Vj(l)− V ′(l) is finite:

Then each Di will also have a finite total sum of local value, Si =
∑

l∈LDi(l).

Let D∗ = D′. Then let each ki = Si

S∗
. Since all Si are finite and all Di < 0, Additivity says

that ki∆pi ·D∗ ' ∆piDi if and only if ki∆pi×S∗ = ∆piSi. Since ki = Si

S∗
, this holds for all Di,

as required.

We now seek the second condition. First, note that P (W ) · V + (1 − P (W )) · V ′ = V ′ +

P (W ) · (V − V ′). By iterating that rearrangement, we can obtain the following from (i).∑
Wi∈W(1,2)

(PL1(Wi or better)− PL2(Wi or better)
(∑
l∈L

Vi(l)− Vj(l)
)
≥ 0

( where Wj = max{W ∈ W(1,2)|Wj ≺Wi})

⇔
∑

Wi∈W(1,2)

∆pi
∑
l∈L

Di(l) ≥ 0

⇔
∑

Wi∈W(1,2)

∆piSi ≥ 0

⇔ 1

S∗

∑
Wi∈W(1,2)

∆piSi ≥ 0

( since S∗ > 0)

⇔
∑

Wi∈W(1,2)

∆piki ≥ 0 �

To prove Theorem 4 below, it will help to first establish Lemma 1. If Independence and

Extrapolated Expectations hold, then this lemma effectively implies that we can evaluate any

lottery in which every outcome is some scalar multiple of some world W � 0. And we evaluate

it as equally good as the probability-weighted sum of the scalar multiples of W . Effectively, the

lottery is valued at its expected value, as some multiple of W .

Lemma 1: Let L ∈ P be any finitely-supported lottery such that, for some W ∈ W, L(Wj) > 0

if and only if Wj such that Wj = kj ·W for some positive, real kj . If <L is a reflexive, transitive

relation on P which satisfies Independence and Extrapolated Expectations, then:
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L 'L (
∑

Wj∈W
L(Wj)× kj) ·W

Proof :

Let kmax be the greatest such kj (which exists and is unique, since L is finitely-supported).

For each kj , 0 <
kj

kmax
< 1.

Let Lj be the lottery such that Lj(kmax) =
kj

kmax
and Lj(0) = 1 − kj

kmax
. (So the remaining

probability mass goes to 0.) Since kj ·W =
kj

kmax
· (kmax ·W ), Extrapolated Expectations implies

that:

kj ·W 'L Lj (i)

By Independence, we can replace each world kj ·W in L with the lottery Lj . In other words,

by (i) and Independence, L 'L L
′, where:

L′(W ′) =


∑

kj∈R L(kj ·W )× kj

kmax
for W ′ = kmax ·W

1− L′(kmax ·W ) for 0

0 for W ′ 6= kmax,0

By Extrapolated Expectations, L′ 'L (
∑

kj∈R L(kj ·W )× kj

kmax
) · (kmax ·W ).

∴ L 'L (
∑

Wj∈W L(Wj)× kj) ·W , as required. �

Theorem 4: For any reflexive, transitive relation <L on P, if <L satisfies Stochastic Dominance,

Separability of Value, Independence, and Extrapolated Expectations, then it satisfies ED2.

Proof :

Define <ED2 as above, and let L1, L2 be any lotteries such that L1 <ED2 L2. To prove

Theorem 4, it suffices to show that L1 <L L2.

If ∆pi ≥ 0 for all Wi ∈ W(1,2), then L1 <L L2, by Stochastic Dominance, as required.

If not, there are some Wi,Wj ∈ W(1,2) such that ∆pi < 0 and ∆pj > 0. Assume from here

on that such Wi and Wj exist.

From the definition of <ED2, there is some W∗ ∈ W(1,2) such that, for each Wi ∈ W(1,2) there
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is ki ∈ R such that:

ki∆pi ·D∗ 4 ∆pi ·Di (i)

and
∑

Wi∈W(1,2)

ki∆pi ≥ 0 (ii)

For some such kis and W∗, define lotteries LD
1 , L

D
2 ∈ P by

LD
1 ((

∑
{Wj∈W(1,2)|Wj4Wi}

kj) ·D∗) = L1(Wi) for all Wi ∈ W1

and likewise for LD
2 , mutatis mutandis.

And D∗ � 0 since it is the difference between some world and a worse world, by Separability

of Value. So Lemma 1 applies to both LD
1 and LD

2 .

∴ LD
1 'L (

∑
Wi∈W1

L1(Wi)(
∑

{Wj∈W(1,2)|Wj4Wi}

kj)) ·D∗ (by Lemma 1)

and likewise for LD
2 (mutatis mutandis).

So LD
1 <L L

D
2 iff that scalar multiple of D∗ is as good or better than the corresponding world

for LD
2 . Since D∗ � 0, that holds if and only if:∑

Wi∈W1

L1(Wi)(
∑

{Wj∈W(1,2)|Wj4Wi}

kj) ≥
∑

Wi∈W2

L2(Wi)(
∑

{Wj∈W(1,2)|Wj4Wi}

kj)

⇔ kmin +
∑

Wi∈W(1,2)

L1(<Wi)× ki ≥ kmin +
∑

Wi∈W(1,2)

L2(<Wi)× ki

for kmin = min{ki|Wi ∈ W(1,2)}

⇔
∑

Wi∈W(1,2)

ki∆pi ≥ 0, which is given by (ii).

Therefore, LD
1 <L L

D
2 .

For some such kis and W∗ as above, define lotteries L∗1, L
∗
2 on W by

L∗1(W −W∗) = L1(W ) for all W ∈ W1
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and likewise for L∗2(mutatis mutandis).

These lotteries resemble L1 and L2; they have the same probabilities, but W∗ is subtracted

from each outcome. As a result, each outcome W−W∗ can be represented as a sum of differences

W −W∗ =
∑

{Wj∈W(1,2)|W∗4Wj4W}

Dj

(or, for W ≺W∗,W −W∗ = −
∑

{Wj∈W(1,2)|W4Wj4W∗}

Dj).

But, by (i), whenever ∆pi > 0,

Wi −W∗ =
∑

{Wj∈W(1,2)|W∗4Wj4Wi}

Dj < (
∑

{Wj∈W(1,2)|Wj4Wi}

kj)) ·D∗.

And, whenever ∆pi < 0, the inequality is reversed.

Therefore, by Stochastic Dominance and (i), L∗1 <L LD
1 and L∗2 4L LD

2 . And, since LD
1 <L

LD
2 , transitivity implies that L∗1 <L L

∗
2.

By Separability of Value, L1 < L2 if and only if L∗1 <L L
∗
2. Therefore, L1 < L2, as required.

�
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