
Implementation and Interpretation: A Unified Account of Physical Computation 

By 

DANIELLE J. WILLIAMS 
DISSERTATION 

Submitted in partial satisfaction of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Philosophy 

in the 

OFFICE OF GRADUATE STUDIES 

of the 

UNIVERSITY OF CALIFORNIA 

DAVIS 

Approved: 

Zoe Drayson, Chair 

Rohan French 

Corey J. Maley 

William Ramsey 

Committee in Charge 

2023 

DocuSign Envelope ID: 2A886DF4-02FE-4A14-BF92-9008323062E0

i



For James 

ii



ACKNOWLEDGEMENTS 

I would like to thank my advisor, Dr. Zoe Drayson, whom I am deeply grateful for. This project, 

in its current form, would not have been possible without you. Over the years you have been a 

sounding board for ideas, offered valuable insights into how to understand the motivations driving 

the literature, how to understand difficult topics, and so much more. Without you, this project 

would not be what it is. Your profound belief in my work and in my abilities as a philosopher has 

been a constant source of strength throughout this project and my entire graduate student career. 

Without you, I, undoubtedly, would not be the philosopher that I am today.  

I would also like to thank my committee members, Elaine Landry, Rohan French, Corey Maley, 

William Ramsey, and Hanti Lin. It was in Elaine’s mathematical structuralism seminar that I first 

discovered computational structuralism. Her willingness to let me explore the topic as a final 

seminar paper would prove to be the catalyst for this entire project; an opportunity that I am 

extremely grateful for. I am forever indebted to Rohan French for his extensive feedback on many, 

many iterations of various papers that would come to be major parts of this project. Much of what 

I do in this project comes from long discussions in our reading group and chats along the way. As 

someone whom I engage with in many places in this project, I am incredibly grateful to have come 

to know Corey Maley. Our first interaction involved several very long emails back and forth 

discussing some of his work and the mechanistic account of physical computation. At that time, I 

was thinking mostly about the mechanistic account and Corey’s insights and discussion proved to 

be invaluable during that time. I would also like to thank William Ramsey for both his indirect and 

direct contributions to this project. I am very inspired by his work, and I am extremely grateful for 

his insightful comments on this project. Finally, I am indebted to Hanti Lin for taking the time to 

iii



think about physical computation with me and for offering valuable comments about various topics 

in this project.  

I am incredibly thankful to many people who have been willing to discuss this project with me 

over the years including Oron Shagrir, Francis Egan, Colin Klein, David Chalmers, and members 

of the MENTaL reading group at UC Davis. But especially to Gualtiero Piccinini whose support 

has been instrumental in the development of this project. I am also thankful to Felipe De Brigard 

and Walter Sinnott-Armstrong for hosting me at SSNAP (Summer Seminars in Neuroscience and 

Philosophy) at Duke University where I was able to critically engage with theories of 

implementation and their relevance to neuroscience.  

Most importantly, I would like to thank James for his unwavering support through this process. I 

know that I have been successful, in part, because I have had you by my side. Thank you for always 

believing in me, supporting me in every way I need, and always looking forward to the future with 

me even when we’re unsure of what it might look like. I am grateful for my mom who taught me 

to be independent and to work hard. She taught me that if I could manage that, then I could do 

anything. I am also thankful for Lorraine and Len. You’ve been a constant source of support, 

cheering me along and celebrating every milestone. Finally, thank you to my animal companions 

that have taken care of me at every stage. To Kittie, you’ll always be here with me—we finally 

made it! To Jake for keeping me company no matter how late it gets. And finally, to KC for laying 

on my keyboard at least once a day.  

iv



ABSTRACT 

My dissertation provides a framework for understanding how various theories of physical 

computation, which are often taken to be alternatives, can be made compatible when we specify 

different questions targeted by the different accounts across the debate.  In this project, I identify 

three questions: implementation (the relation between a computational structure and a physical 

system), interpretation (what computation the system performs), and individuation (what 

distinguishes computing systems from non-computing systems). I argue that the debate is often 

framed in terms of the individuation question, but that most accounts address either 

implementation or interpretation. A consequence of framing the debate in terms of the 

individuation question is that views that reference semantic content and views that do not end up 

looking like alternative ways to address physical computation. But I argue, semantic and non-

semantic views are not alternative accounts of physical computation. Instead, they answer 

different questions that each address a different aspect of physical computation. I clearly 

distinguish between two questions: implementation and interpretation, and I argue that these 

questions are being answered by non-semantic and semantic accounts, respectively. Once I 

define these questions, I offer a framework that demonstrates how the different views are 

complimentary. In addition, I present a path forward for how to continue engaging with 

questions about physical computation with clearly articulated targets that can be addressed 

independently or cooperatively. 

v



TABLE OF CONTENTS 
Title Page i 
Dedication ii 
Acknowledgments iii 
Abstract v 
Table of Contents  vi 
List of Figures  viii 
Introduction  ix 
Chapter One:  Some background on computation and computing systems 1 

1 Introduction   1 
2 Computing machines 2 

2.1 Analog computers 2 
2.2 Digital computers 7 

3 Key terminology 12 
3.1 Information 12 
3.2 Symbols 15 
3.3 Algorithms 19 
3.4 Programs 19 
3.5 Syntax 22 
3.6 Semantics 23 

4 Some philosophical questions that arise 25 
4.1 Characterizing the analog/digital distinction 26 
4.2 Computation, information, and information processing 35 
4.3 Drawing the syntax/semantics distinction  39 
4.4 Internal versus external semantics  44 

5 Conclusion 45 
Chapter Two:  Functionalism, computationalism, and physical computation 46 

1 Introduction   46 
2 Functionalism and computationalism 47 

2.1 Functionalism 47 
2.2 Computationalism  50 

3 Computation and cognitive science 53 
Chapter Three: Three questions about physical computation 58 

1 Introduction  58 
2 Three questions  60 

2.1 The implementation question 60 
2.2 The interpretation question 64 
2.3 The individuation question 65 

3 What does a theory of computation target?  68 
Chapter Four:  Implementation, interpretation, and triviality  72 

1 Introduction 72 
2 Triviality arguments 74 

2.1 The ‘simple mapping account’ 74 
2.2 Hinckfuss’s Pail  76 
2.3 Putnam’s inputless FSA 77 
2.4 Two types of triviality  78 

vi



2.5 Searle’s wall 80 
2.6 Putnam’s rock  82 
2.7 Chalmers’ clock and dial  83 
2.8 Godfrey-Smith’s transducer 85 

3 Accepting some triviality 87 
Chapter Five:  Non-semantic theories of implementation 91 

1 Introduction 91 
2 From a non-semantic theory to a “theory of implementation” 93 

2.1 Specifying causation 94 
2.2 Causation and counterfactuals  95 
2.3 The dispositional account  102 
2.4 The computational complexity accounts 103 

3 Conclusion 106 
Chapter Six: Semantic theories of interpretation   108 

1 Introduction  108 
2 Breaking up with Jerry Fodor  112 
3 From a semantic account of computation to a “theory of interpretation” 115 

3.1 Semantic theories and philosophy of mind 115 
3.2 Semantic accounts in the context of a “theory of computation” 123 

4 Conclusion  140 
Chapter Seven: Mechanistic accounts and a theory of computation 141 

1 Introduction   141 
2 Thinking about mechanisms   143 
3 Mechanisms and physical computation 145 

3.1 The weak mechanistic account 145 
3.2 Fresco on digital computation  150 

4 The strong mechanistic account  152 
4.1 Functional analysis as a mechanism sketch 153 
4.2 Abstraction and medium independence 156 
4.3 Generic computation  160 
4.4 Marr’s tri-level hypothesis 164 
4.5 Concluding remarks  167 

5 Engaging the mechanistic account 168 
5.1 Targeting explanation 169 
5.2 Targeting the mappings  173 
5.3 Targeting the mechanistic account directly 176 

6 From mechanisms back to mappings 181 
Chapter Eight: Aspects of a theory of computation 183 

1 Introduction 183 
2 A framework for a theory of computation 186 

2.1 Mechanisms-only 187 
2.2 Three questions + three theories  188 
2.3 Three questions + two theories and an option 190 

3 Building a theory of computation 192 
4 Conclusion  197 

Works Cited 196 

vii



LIST OF FIGURES 

Figure 1. Turing machine table  8 
Figure 2. Turing machine tape  8 
Figure 3. Schematic Diagram of a General Communication System 14 
Figure 4. Simple Mapping View 75 
Figure 5. Mechanism-Only Schematic  188 
Figure 6. Three Questions + Three Theories Schematic 189 
Figure 7. Three Questions + Two Theories and an Option Schematic 191 
Figure 8. Zipser – Anderson Equation  194 
Figure 9. Mazzoni et al. Equation 195 

viii



INTRODUCTION 

Several years ago, I read Rescorla’s 2012 paper arguing for a semantic theory of computation. Part 

of his project argued against what he called “structuralist” theories—theories that are often referred 

to as “mapping views” or “non-semantic accounts.” This paper struck me as doing something very 

strange—strange in ways that I couldn’t yet pin down. For starters, why would someone give a 

theory about how to semantically interpret computing systems as a response to a view that said 

that we could identify computational systems with a mapping from formal states to physical states? 

The next paper I read was Sprevak’s 2010 semantic view. I remember getting the distinct feeling 

that there was some kind of switch happening. I found this switch in the additional papers that I 

read as well. The authors identify a problem (what I now call “trivial implementations”), make the 

claim that it’s a problem for the non-semantic account (that addresses what I call “the 

implementation question”), and then give a solution in terms of semantically interpreted states or 

processes. As I read more and more papers, I saw this pattern over and over again. I could not 

shake the thought that we only interpret systems that we already know are computers. This idea is 

at the heart of my dissertation. I define two main questions that are present in the literature: one 

that asks how to understand the relation between a formal structure and a physical system (the 

implementation question) and one that asks how we should understand what that physical system 

computes (the interpretation question). I argue that once we acknowledge that these are different, 

equally important questions, it becomes apparent that non-semantic accounts and semantic 

accounts are compatible, rather than alternative ways to address physical computation.  

The idea that implementation and interpretation are compatible unifies the literature on physical 

computation. I’ve presented my project at several conferences and discussed it with many of the 
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people whose views are present in this project. What became clear to me over the years is that 

there is a third question that looms in the background of many of the more recent views—one that 

is not always made explicit in the literature, but one that many people reference when they question 

whether a project like mine can work. I identify this question as the “individuation question.” This 

question asks what the difference is between systems that compute and systems that don’t. This 

question is what drives the claim that computation is necessarily a semantic process. Some think 

that the very nature of physical computation is that computation is a semantic process, and thus 

they go on to give a “semantic account.” Making sense of how this question was driving the 

literature generated a turning point for my project. If this is the question some people take 

themselves to be answering, then no wonder why it seems like semantic and non-semantic theories 

are in opposition. I acknowledge the importance of this question in the debate, and I develop a 

place for it within my framework.  

In chapter one, I lay some groundwork for later chapters. I introduce some early computing 

systems up to and through the development of computability theory. This is relevant for a theory 

of physical computation for different reasons.  Some theories of physical computation might be 

interested in characterizing digital computers. But you might wonder if we need a more neutral 

theory; one that captures the nature of all types of computation. Moreover, early mapping views 

were characterized in terms of correspondence between transitions on a Turing machine table and 

physical states. Thus, understanding Turing’s contribution to computation plays an important role 

in understanding what many accounts are doing. Additionally, if you think that computation 

necessarily involves information processing, we might wonder what information is in the first 

place. If we want the theory to capture mental computations, how does that change our notion of 
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information? Are there computing systems that do not process information? These questions, and 

many others, will play a role in a theory of physical computation—especially if our goal is to 

capture the nature of physical computation that we can apply not just to computing artifacts but to 

natural computing systems, too.  

In chapter two, I draw the relations between functionalism, computationalism, and physical 

computation. Functionalism and computationalism are distinct but related theses about the mind, 

and both play an important role in accounts that address physical computation. Functionalism is 

the view that what makes something a mental state of a particular type depends on how it functions 

or its role in the system of which it is a part, rather than what the system is made of. 

Computationalism is the view that the functional organization of the brain is computational. These 

two theses are sometimes brought together to form a view called computational functionalism. A 

feature both views share is that they rely on abstract descriptions of physical phenomena, and in 

some cases, the descriptions are computations. This means that the relationship between formal 

computation and physical systems will matter for functionalism, computationalism, and a theory 

of physical computation. This is no surprise given the triviality arguments that plagued early 

mapping theories of implementation stem from arguments against functionalism and sometimes 

computationalism.  

In chapter three, I introduce my framework that distinguishes three questions in the computation 

literature: implementation, interpretation, and individuation. I argue that non-semantic accounts 

answer the implementation question while semantic accounts answer the interpretation question. I 

derive the implementation question from Chalmers (1995). This question asks “What are the 
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conditions under which a physical system implements a given computation?” But the formulation 

of the implementation question is ambiguous between two readings. This ambiguity generates two 

ways of understanding the target of the question. “A computation” is sometimes understood in 

terms of 1) a computational structure or object or 2) a specific computational process. I argue that, 

in some cases, how one interprets the question will lead to either a theory of implementation or a 

theory of interpretation. I maintain that the first option stays true to Chalmers’s formulation and 

should be adopted as the proper formulation of the implementation question. But the second 

formulation generates an additional question that needs answering. I call this the “interpretation 

question.” The interpretation question is what semantic theories answer. In chapter four, I argue 

that these two formulations also track two types of triviality. 

The locus of the debate is often framed in terms of non-semantic versus semantic views, but I 

argue that framing the debate this way is a mistake. But this is because sometimes the debate is 

framed in terms of the individuation question. I derive the individuation question explicitly from 

Piccinini (2015) and Shagrir (2022). They both frame the debate this way, including, sometimes, 

applying it retroactively to older views. I argue that this way of framing the debate supports the 

idea that semantic and non-semantic views (and even a mechanistic account) are alternative ways 

to give a theory of physical computation. Even so, we can still accept the individuation question 

as part of the theory. I will argue that one can maintain their metaphysical commitments regarding 

the nature of physical computation while adopting my framework that distinguishes between 

implementation and interpretation.   
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In chapter four, I argue that there are two types of triviality that are central to theories of physical 

computation. I identify these two types as 1) a trivialization of the implementation conditions and 

2) a trivialization of the interpretation conditions. These two types of triviality can emerge

independently from distinct arguments or arise from the same argument. I also show in this chapter 

that some writers are concerned with one type while giving reasons to dismiss or accommodate 

the other. This is fine within my framework because regardless of whether someone cares about 

one type or the other, they both need to be addressed. Toward this end, I argue that these two types 

of triviality should be articulated as separate problems that require their own independent answers.  

In chapters five and six I argue that non-semantic accounts address the implementation question, 

while semantic accounts address the interpretation question. I also argue that implementation 

views are best equipped to handle the problem of trivial implementations while interpretation 

accounts are best equipped to handle the problem of trivial interpretations. In chapter five we see 

that non-semantic accounts that answer the implementation question are easier to handle because 

they claim to be addressing implementation as Chalmers formulated it. However, things get tricky 

with semantic views because the terminology often reflects the nature of the implementation 

question as I define it. So, much of the work I do in chapter six is revisionary because some people 

aren’t answering the question that they think they are. But importantly, I argue that semantic 

theorists can keep their answer to the individuation question—they can maintain their commitment 

to the idea that computation is necessarily a semantic process. 

In chapter seven I introduce an additional category of views: the mechanistic accounts. In this 

chapter, I distinguish between “weak” and “strong” mechanistic accounts. I also make a more 
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subtle point (which can also be found in chapter 6 regarding one of the semantic views), that 

sometimes theories that are credited as a bonafide theory of physical computation, aren’t actually 

giving a theory of physical computation—at all! But this is no surprise. If the questions aren’t 

clearly defined, then any answer can look like a solution from the right angle. But, most of this 

chapter is concerned with Piccinini’s 2015 mechanistic account. The mechanistic account is 

“strong” in that it’s wholly mechanistic. Interestingly, it turns out that Piccinini’s view is the only 

account that I think answers the individuation question by giving a full-blown theory rather than 

forking off into a theory of implementation or interpretation.  

In chapter eight, I articulate several forms that my framework might take, and I settle on one that 

allows for the inclusion of a supporting mechanistic* account. The asterisk signals a Piccinini-

style view because it abandons his conceptual framework. In this chapter, I build my own unified 

theory of physical computation showing how it’s possible to incorporate one's own views on 

physical computation in a unified account that answers both the implementation and interpretation 

questions.  
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Chapter One: Some background on computation and computing systems 

1 Introduction 

Physical computers are ubiquitous in contemporary society. But, before we all carried little 

computers around in our pockets, computation had its defining characteristics independent of its 

physical counterpart. Computation during this time was mainly understood as a mathematical, 

formal process. It is the abstract, formal nature of computation that made it an attractive candidate 

for functional explanations of mental processes in philosophy of mind and later cognitive science. 

Before physical computers existed (less some mechanical systems that I will discuss later), 

mathematicians—the early computer scientists—were laying its foundations. Turing's Turing 

machine, an abstract theoretical device, gave us one of the first links to a mechanical computing 

device—a way to think about how a physical, mechanical system could perform computational 

manipulations. This allowed for the possibility that we could build machines to perform the 

computations described abstractly. The idea that there are systems in the world that might perform 

computation raises interesting metaphysical questions about the connection between formal 

mathematical computation and the physical machines—or even biological systems—that 

instantiate the computations. When it comes to our computing artifacts, we have a very good 

understanding of this relationship—after all, those are systems we made! But what about systems 

we did not construct; how should we understand the relationship between formal computation and, 

say, the brain? Before I get into these questions, I will guide us on a tour through some history of 

computation and computing devices.  
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I begin this chapter by giving some examples of early analog-style computing devices, including 

some that were built and used well before Turing and others were working on mathematical 

computation. This includes later devices that were electronically powered. In the next section, I 

discuss digital computation. Digital computation is introduced in the context of Alan Turing’s 

work on the Turing machine and, later, physical machines built to implement Turing computations. 

I will introduce and explain some key computer science and information theory terminology in 

section three. This exercise aims to lay some groundwork for future chapters that rely on many of 

these concepts. When they come up in later chapters, I will do some additional explanatory work 

and cite this chapter when I think it might be helpful. This will allow me to sometimes speak freely 

about certain concepts. In the final section, I will consider some philosophical issues regarding the 

concepts I have discussed. For example, what is the difference between analog and digital 

computing systems; when it comes to computation and information processing, what does 

‘information’ amount to; how do the concepts of ‘semantics’ and ‘representations’ influence how 

we think of semantics in a computational system, among others.  

2 Computing machines 

2.1 Analog computers 

To start, we might think that analog computers store data as continuous physical quantities and 

perform computations by manipulating measures that represent numbers. This is because analog 

computers are oftentimes colloquially distinguished from digital computers because of their 

perceived continuous nature. However, analog computing was not always associated with 

continuous quantities. Initially, ‘analog’ derived from the concept of ‘analogy,’ where analog 

computers were so-called because they were used to build models that created a mapping between 
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two physical phenomena (Care, 2006). A roadmap is a good example of an analogous system. You 

can trace the path on the map and calculate the distance to be traveled, but you do not literally 

travel on the map. That map serves as an analog for the real world.  

The earliest known analog computer is the ‘The Antikytherma mechanism’ (dated as early as 200 

B.C.E). This machine can be used to predict astronomical positions and eclipses. The inside of the

device features sixty-nine gears mounted in various ways to represent the position of the sun, 

planets, and various moons and their features. The gears work together on different calculations 

for multiple purposes. From the outside of the machine, a user can turn a calendar dial to a desired 

point in the past, present, or future, and the gears inside move, causing pointers and rings on the 

surface of the machine to be displaced revealing the desired celestial positions (Freeth, 2022). The 

Antikytherma mechanism provides a physical analogy between the positions indicated on the 

machine and the actual celestial bodies in space.  

Analog computers did not always bear this name, though. It was not until the 1800s that the concept 

of an ‘analog computer’ was developed. This concept is often retroactively applied to machines 

from the past, but it was not until the 19th century that the term itself came into use. Nonetheless, 

even the properly called analog computers work by generating an analog between some physical 

phenomena and the machine itself—a representation whose structure corresponds to that of which 

it represents. In 1814 Johan Hermann invented a wedge device to compute the area within an 

irregular boundary contour. He called this invention the “planimeter.” Later, inspired by 

planimeter technology, James Thomson invented the wheel and disc integrator. The wheel and 

disk integrator uses the movements of a roller-driven sphere against a circular flat surface to 
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perform the mathematical procedure known as “integration.” Integration is the summing together 

of a series of cognate elements resulting in a mathematically meaningful whole. The device 

achieves this by analoguing the magnitude of each element onto the radial distance of the ball from 

the center of the disk and letting the number of turns of the sphere accumulate the integral. 

Thomson’s disc integrator went on to become the foundation of analog computing machinery 

(Thomson, 1876).  

 

William Thomson’s Tide Predictor was a popular analog computing device that traced the tidal 

curve for a given location by combining ten astronomical components using the disc integrator. 

The Tide Predictor is a hand-cranked tide predicting machine made of gears and pulleys, each 

analoguing one step towards the final solution. The tide predictor remained in use until the 1960’s 

(Gregersen, 2022). Some analog computing devices came about, in part, due to the engineering 

demands of the military during wartime. For example, Prince Louis designed the Battenberg Mark 

Course indicator. This analog computing device was used for ready reckoning the course to be 

steered in order to close in on a chosen vessel (given your speed) (Schliehauf, 2004). The device 

consists of two position bars for setting the initial and final stations, a speed bar (where the speed 

of the ship relative to the flagship was set), clamped at one end into the diameter grove by the 

speed ration clamp, and a guide bar, together with a circular disk. To use the instrument, the 

flagship course is first set on the guide bar. The initial and final stations are set using the position 

bars, and the speed ration clamp is set to show the ratio of one’s ship speed to the speed of the 

flagship. The course can be read off the circular disk if the pin beneath the speed ration clamp is 

set within the diameter grove.   
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Around the time that digital computers entered the scene, analog computing underwent a 

conceptual shift. Early devices used to solve analytical problems were defined and described using 

continuous real numbers. The shift from analogicity to having a “continuous nature” was a 

terminological shift brought on by engineering practices. During this time, an effort was made to 

develop systems with a minimal set of processing components (such as amplifiers and integrators) 

that ended up being well-suited for processing continuous signals (Stacewicz, 2020). To this day, 

analog computers are generally thought of as processing continuous signals.  

 

In 1931, Vannevar Bush at MIT built the differential analyzer, an analog computing machine that 

took advantage of continuous signals (Owens 1986). The differential analyzer was the first large-

scale automatic general-purpose mechanical analog computer. Like many other analog computing 

devices, this machine was initially based on the wheel and disc integrator requiring a skilled 

mechanic to set up the machine for each new job. But eventually, the wheel and disc integrator 

and other mechanical components were replaced by electromechanical parts, and then finally, fully 

electric components. The differential analyzer can best be understood as a series of ‘black boxes’ 

(Copeland, 2020). Each box performs a process such as adding, multiplying a variable by a 

constant, or integrating. During setup, the boxes are connected so that the desired set of processes 

can be executed. Because all of the boxes work in parallel, the electronic differential analyzer can 

solve equations very quickly.  

 

In 1941 Claude Shannon introduced the General-Purpose Analog Computer (GPAC). The GPAC 

consisted of circuits with several basic units that were interconnected in order to compute some 

function. The GPAC was physically built in 1949 and given the name “Gypsy.” To use Gypsy, 
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parameters and initial values would be entered into the machine (potentiometers). The master 

switch placed in “reset” mode would control relays that applied the initial values to the integrators. 

Turning the switch to “operate” or “compute” mode would set the computational process in 

motion. Placing the switch in “hold” mode would stop the computation and stabilize the values, 

allowing them to be read off (MacLennan, 2009).  

 

The earliest in-home electronic analog computers depended on vacuum tubes for their operations. 

An example of a vacuum-tube, electronic, analog computer is the Heathkit EC-1 (some are still up 

and running today!). The Heathkit is a computer from the 1960s that required the purchaser to 

construct the machine out of supplied parts. It features nine electron tube-based operational 

amplifiers, five variable resisters, various high-tolerance resistors and capacitors for operations, a 

multivibrator for repeatedly resenting and re-running the computations, a meter, other panel 

adjustments, and an oscilloscope is used to read the output. The sweeping of the oscilloscope might 

represent different real-world problems; if it did so accurately, the user would take a picture of the 

result to save for later. However, vacuum tubes are expensive, bulky, and require a lot of 

maintenance. Because of this, eventually they were replaced with modern components such as 

resistors, capacitors, inductors, transistors, etc. The electrical signal flowing through the networks 

or circuits experience variations in amplitude, frequency, phase, and other related properties 

(Schembri & Boisseau, n.d.).  

 

In this section, I have given some examples of early analog computing devices and demonstrated 

the shift from analogicity to continuous processing as the defining characteristic of analog 

computation. While it is reasonable, given this history, to identify analog computing with 
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continuous processing, it is contentious to draw the distinction in terms of continuous versus 

discrete processing. In section three, I will discuss some philosophical considerations that come 

up when drawing the distinction this way.  

 

2.2  Digital computers 

In his 1936 paper, Turing introduced us to an idealized typewriter—what we now famously refer 

to as a “Turing Machine.” He describes an “automatic machine” that is supplied with a “tape” 

running through it which is divided into sections called “squares.” Each section is capable of 

bearing a “symbol” that is located “in the machine.” Only when a symbol is “scanned” is the 

machine “aware” of it, but it is possible for the machine to hold previously scanned symbols in a 

“memory” store. The machine's configuration determines the machine’s behavior and is always 

dependent on the current state that is being “scanned” by the system. The machine can also write 

a symbol in a blank square and move sequentially left or right along the tape to scan different 

squares. The symbols written by the machine are the numbers being computed, while the other 

numbers are present to assist the memory states of the system (Turing, 1936). An a-machine is a 

machine described above whose behavior is entirely determined by its configuration. Any machine 

whose behavior is only partially determined by its configuration is called a “choice machine” (c-

machine). C-machines require the assistance of an external operator to assist the machine under 

some circumstances. In addition, Turing describes a “universal machine”—what we now call a 

“Universal Turing Machine”—a machine that can perform the behavior of any a-machine. In other 

words, it can perform all functions that a single a-machine might be specified to perform; it can 

have m-configurations.  
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The instructions that govern the Turing machine take the form of a machine table which is 

understood as the program. The program is an ‘instruction table’ that includes a finite set of 

instructions, each calling for a single operation to be performed if the appropriate conditions are 

met. Recall the setup of Turing’s a-machine above. The machine starts with an infinitely long 

blank tape. We can give a machine table (program) that tells the scanner to print alternating binary 

digits on the tape while also leaving a blank space between each digit: 

 

 

State Scanned 
symbol 

Print Move  Next state 

a Blank 0 Right b 
b Blank  Right c 
c Blank 1 Right d 
d Blank  Right a 

 

                     Figure 1. Turing machine table 

 

The resulting output would be the following tape (extending on endlessly): 

 

     

           

                    Figure 2. Turing machine tape   

 

The above machine table is an example of the instructions given to an a-machine to get it to 

perform a task. The tape is the resulting output. To turn an a-machine into a universal Turing 

machine, there is an additional requirement. A universal Turing machine requires a dedicated 

0  1  0  1  0  
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machine table that is present no matter which program the machine follows. Call this machine 

table U. Machine table U allows the machine to follow instructions printed on the tape. This lets 

the machine act as if it were following the instructions of any machine table. If, along with its 

machine table U, another machine table were to be translated into binary digits and then written 

on the tape, the machine would behave according to the translated machine table. So long as the 

Turing machine has U as its program, any other program can be translated, written on the tape, 

and executed.  

 

The Turing machine was remarkably simple but convincingly demonstrated that a human 

computer could also compute any function that a Turing machine could compute. This work 

developed the mathematical concept of a “mechanical procedure” by demonstrating equivalence 

between human and mechanical computational processes. This insight became known as “Turing’s 

Thesis.” Turing introduced this work in the context of the Entscheidungsproblem (Hilbert & 

Ackermann, 1928). The Entscheidungsproblem was a decision problem in first-order predicate 

calculus previously thought to be unsolvable. But by showing what was computable, Turing also 

showed what was uncomputable. This led to a solution that specified that there was no effective 

method for solving the Entscheidungsproblem. Because a Turing machine could not tell whether 

or not a formula was a theorem of the calculus, Turing’s Thesis tells us that no human can either. 

Alonzo Church (1936) also came to a similar but equivalent conclusion which is why Turing’s 

Thesis is now known as the Church-Turing Thesis.  

 

At the time that Turing was working on this project, the modern digital computer did not physically 

exist. Importantly, though, Turing was not trying to develop the foundations of a physical, digital 
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computer. Instead, he was concerned with understanding the limits of human computing capacities. 

Turing thought that his idealized machine was the most “natural” model of human computational 

processes. Nonetheless, because Turing was concerned with modeling the human computer, his 

analysis naturally led to an analysis of computation in physical systems more generally.1 Turing’s 

impact on theoretical computer science is substantial. Today, the Turing machine and its 

accompanying theory are part of the theoretical foundations of computer science and have 

contributed to important questions about how to understand the nature of an algorithm, how to 

define computation in general, and how to understand the nature of physical computation (the topic 

of this entire dissertation!).  

 

In his 1945 report, Von Neumann (1993) described the structure of a “very high speed automatic 

digital computing system”2 Within this report, he discusses the different parts found within the 

machine, such as wheels that can be locked into various positions in order to transmit electrical 

impulses that may cause other wheels to move, single or combined telegraph relays that are 

actuated by an electromagnet, and so on. The original input or stimulus causes these internal pieces 

to move and act on each other. He specifies that high speed computing devices should ideally have 

vacuum tube elements because they have high reliability and very fast reaction times. The vacuum 

tubes can be used as a current valve (a gate) and can have an all-or-none feature where a grid bias 

above or below a cut-off determines whether the valve will pass current or not. In addition, there 

can be what von Neumann calls “trigger circuits,” several states in the machine where a 

combination of vacuum tubes maintains a constant equilibrium indefinitely without any required 

 
1 Gandy (1980) proposes a physical version of the Church-Turing thesis that extends Turing’s analysis to discrete 
mechanical devices. 
2 Von Neumann’s italics 
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inputs. Whether the tubes function as gates or triggers, they are set up to take two-valued digits as 

their inputs, meaning that the system is best set up using a binary system. Here we can see the 

discrete nature of how information is processed in the system: in a step-by-step fashion using an 

all-or-none binary symbolic structure (0’s and 1’s).  

 

Prior to von Neumann’s theoretical work on computational architecture, computers would house 

the program memory and data memory in distinct locations within the system. Von Neumann was 

the first to unite the two into a shared memory unit. This made it possible for the instructions to be 

arithmetically modified in the same way the data was because the program and the data were 

treated as the same thing within the system. This architectural shift made a big difference in terms 

of computing power because computations could be performed faster while also being efficient 

and flexible. Because the programs were stored as data in the system, the machine did not require 

reprogramming for each problem set. Instead, it kept multiple programs as subroutines stored 

within a library that could be accessed automatically.   

 

Charles Babbage was one of the first to work on building physical, digital computing machines.  

Babbage’s first machine, the Difference Engine, performed complex mathematical tasks to 

produce accurate mathematical tables. The intended purpose was to aid with astronomy and 

navigation by solving a practical problem: people were bad at math, and ships were regularly 

getting lost! The Difference Engine was to be made entirely of mechanical, non-electric 

components. Although Babbage never completed a full-scale Difference Engine, he provided 

complex plans for how to do so. In 1990, his Difference Engine 2 was built to scale and is currently 

on display at the London Science Museum  (Bromley, 1987).   
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Later, Babbage proposed the Analytical Engine, a general-purpose digital computer. Plans for the 

Analytical Engine included a memory store and a central processing unit. It would also include 

decision-making abilities (conditional branching). The Analytical Engine was promised to bring 

more power along with the ability to perform more complicated tasks that resembled mathematical 

analysis. The behavior of this machine would have been controlled by a program using instructions 

that took the form of punch cards connected with ribbons. These punch cards were old technology 

borrowed from the Jacquard programmable weaving loom. Each row of the punch card 

corresponded to a row in the pattern, allowing the system to work automatically. The Analytical 

Engine was promised to be able to perform an unlimited number of computations—a physical 

universal Turing machine. 

 

The earliest digital computer to include a stored program and the first physical Turing machine 

was built at Manchester University. This computer is now known as the “Manchester Baby” and 

was constructed by F.C. Williams and Tom Kilburn. The Manchester Baby performed its first 

calculation on June 21st, 1948. The Manchester Machine could store 1,024 bits on a cathode-ray 

tube—just enough space to store and run a single program on the system. The machine was built 

to work as a testing system for the Williams tube, the early form of computer memory. Later, the 

Manchester Mark I would be built, serving as the world’s first commercially available general-

purpose digital computer (Centre for computing history, n.d.).  

 

3 Key terminology  

3.1 Information 
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The most influential information theory comes from Shannon (1948) and later from Shannon & 

Weaver (1963).3 Today, we call this type of information “Shannon Information.” Shannon 

Information specifies the amount of entropy in a message. Information entropy is a mathematical 

concept introduced to quantify the amount of uncertainty or randomness in a message. So, what 

Shannon gives us is a mathematical way to measure the amount of uncertainty or unexpectedness 

of a message or signal contained in a set of symbols or variables. For example, imagine receiving 

a message that consists of a series of symbols. The amount of information the message contains 

can be quantified by the amount of uncertainty or unpredictability of the symbols. If the symbols 

are entirely random and have no pattern, then the message contains a high amount of information 

because it has a high amount of uncertainty. Put differently, suppose the symbols follow a 

predictable pattern (one familiar to you). In that case, the message contains a low amount of 

information because you would not be surprised by what it says. Alternatively, if someone tells 

you something new that you have never heard of before, you get a lot of information from the 

message, and if you get a message that tells you facts you already know, you have not taken in any 

new information, so the amount of information you have been given is very low—if you have 

received any at all. This notion is paired with the idea of communication when we consider that 

communication involves transmitting information from one party to another.    

 

Shannon was the first to make the above idea mathematically precise. His formula calculates the 

minimum number of bits (a threshold called Shannon entropy) required to communicate a 

message. He also showed that the message would be distorted if a sender used fewer bits than the 

minimum required. Shannon defines information in terms of the negative log of the probability: 

 
3 The same Claude Shannon that built the GPAC! 

13



 

I(A) = - log P(A). He showed how encoded messages could efficiently transmit information across 

communication channels. His account applied to communication systems, as diagramed below: 

 

 

 

     Figure 3. Schematic Diagram of a General Communication System 

 

The communication systems that Shannon was interested in consisted of five parts. 1) an 

information source that produces a message or sequence of messages. A message source could be 

a telegraph, telephone, radio, television, etc. 2) a transmitter that operates on the message in some 

way to produce a signal suitable for transmission. This might include changing the sound pressure 

into electrical current, encoding a sequence of dots and dashes, etc. 3) A channel—the medium 

used to transmit the signal from transmitter to receiver. This could be wires, cables, frequencies, 

or beams of light. 4) The receiver generally performs the inverse operation of the transmitter: 

reconstructing the message from the signal. Finally, 5) the destination—the person (or thing) for 

whom the message is intended. Shannon’s goal was to specify how information was moved 

through systems containing these features.  
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Using Gibb’s formula for entropy in physics, Shannon showed that the communication entropy of 

a system is maximal when all the messages have equal probability. The amount of information I 

in an individual message x is given by: I (x) = -logpx. This formula tells us that a message x has a 

probability px between 0 and 1 of occurring. If px = 1, then I(x) will = 0 and we will receive a 

message that contains no information. The lower the probability of the message, the more 

information it contains. If two messages are unrelated the amount of information that comes 

through is equal to the sum of the information of the individual messages: I(x and y) = I(x) = I(y) 

(Adriaans, 2020). 

 

3.2 Symbols 

Shannon’s goal was to define information within the context of communication. However, there 

is more to understanding the concept of ‘information’ than just having a mathematical theory like 

the one given above. We can ask additional questions about how to understand information in 

terms of its relation to computation. If symbols are (at least sometimes) understood as carrying 

information, and (at least some) computation involves symbolic structures, then a notion of what 

it means for a symbol to carry information is needed to understand (some) computational 

processes.   

 

A symbol is an element of notation that represents an idea, concept, value, or object. When a 

symbol represents something, it means that the symbol has been assigned a specific meaning or 

interpretation, and that meaning is used to convey information or express a relationship. In 

mathematics, symbols are used to represent numbers, variables, and operations. The symbol ‘x’ 

might represent a variable, while the symbol ‘+’ represents the addition operation. Here symbols 
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are used to express mathematical expressions and equations. In computer programming symbols 

are used similarly to represent values, variables, and operations within a particular programming 

language (this is explained later in the chapter). In symbolic logic, symbols are used to represent 

propositions, logical operations, and relationships between propositions. For example, the symbol 

‘ ^ ’ is used to represent ‘and’ while the ‘v’ symbol is used to represent ‘or.’ 

 

In addition, we also use symbolic representations in our everyday life. Consider the process of 

taking measurements. When we do this, we track features such as length and distance using 

abstract mathematical concepts such as numbers and counting. Measurement is a kind of 

information processing that uses pieces of information to track features of the world—a process 

that can transform otherwise meaningless features into meaningful symbols. For example, using a 

tally system to track the number of times your dog asks to go into the backyard. Each time your 

dog approaches the sliding door, you make a tally mark on a piece of paper. A tally mark on the 

piece of paper, on its own, does not have any symbolic meaning. But, in the context of tracking 

your dog’s trips outside, the tallies take on meaning; they symbolize trips outside within the context 

of your tracking the trips. Once we decide that marks on a paper stand in for some object or 

occurrence, the marks count as a symbol that means something. These symbols represent how 

often my dog asked to go in the backyard (which is a lot). 

 

Different symbols can have the same meaning and be used to represent the same function. Consider 

the following symbolic representations of ‘3 + 2 = 5:’ 

 

3 + 2 = 5 
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| | |  +  | |  = | | | | | 

III + II = V 

. . .  +  . .  =  . . . . .  

 

The above four sentences have the same truth value, but each uses a different symbolic 

representation. In other words, each statement is of the same function using different symbols. Put 

simply, different symbols can be used to represent the same information.  

 

An important notion related to symbol manipulation and computation is recursion. Recursion in 

computer science is a programming technique where a function calls on itself to solve a problem. 

It is a way of solving problems by breaking them down into smaller, similar problems and then 

solving each in turn (Sipser, 2006). For example, we can create a recursive function that calculates 

the product of all the numbers from 1 to 5. First, find the base case: the simplest case that can be 

solved without recursion. In this example, the base case is the number 5. Then, divide the numbers 

by separating the base case from the remaining numbers: 1, 2, 3, 4, and then 5. Then, find the 

product of the first set of numbers, which is 24. Finally, multiply that number by the base case: 24 

x 5. This will give you the answer: 120. This is a simple example of recursion, but it gets at the 

idea that we can break a complex task down into simpler tasks to solve a problem. Some examples 

of recursive functions are factorials (a factorial of a non-negative integer n is the product of all 

positive integers less than or equal to n) and Fibonacci sequences (the Fibonacci sequence is a 

series of numbers in which each number is the sum of the two proceeding ones). Recursive 

functions are abstract relations defined over the natural numbers. These functions can be computed 

without any reference to the physical world. But they can be paired with symbolic representations 
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in the physical world. For example, when we write the steps on paper using a pencil, the pencil 

strokes serve as a symbolic representation of the function. The idea that we can represent recursive 

mathematical functions with physical symbols brings abstract mathematical structures and the 

physical world together.  

 

But you might wonder, how we should understand the relationship between abstract mathematical 

objects and the physical world. Sometimes this relation is cashed out in terms of a mapping 

between mathematical objects such as numbers and functions and concrete phenomena or objects 

in the world. Above, I mentioned drawing tally marks on a piece of paper to keep track of every 

time my dog asks to go out the sliding door into the backyard. Say that he requested access to the 

backyard seven times that day. The seven tallies on the paper: IIIIIII map onto the abstract number 

‘7.’ In other words, the tallies on the paper are isomorphic to the mathematical number 7. In the 

physical world, there are many ways to perform computations—we can use an abacus, manipulate 

pebbles on the beach, draw marks on paper, etc. We can draw a correspondence between the class 

of objects in the world and the natural numbers. Turing machines help to make this clear because 

they operate in both realms. Recall that Turing formulated his theory in terms of an abstract 

machine that operates on an infinite tape using three symbols: 0, 1, and blank spaces. The data 

domain for a Turing machine is the set of relevant tape configurations, which can be associated 

with a set of binary strings made up of 0s and 1s. We can study symbol manipulation using an 

abstract Turing machine without saying anything about the physical world. But we can also think 

about implemented Turing machines: physical machines like the Analytical Engine or the 

Manchester Baby that perform computations over physical structures representing natural 
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numbers, and we might ask, what is the relationship between a mathematical Turing machine and, 

say, the physical states of the Analytical Engine? 

 

3.3 Algorithms 

An algorithm is a set of step-by-step instructions for solving some problem—a sequence of 

operations that can be followed to produce a result or an output. Algorithms are often expressed in 

a high-level programming language. A high-level programming language is a type of programming 

language that provides a higher level of abstraction from the underlying computer hardware. It is 

a higher level of abstraction because algorithms are implemented in programs where programs 

depend, in some ways, on the computer's hardware. For example, an algorithm can be implemented 

in various program languages such as Python, C, C++, JavaScript, or Ruby. However, algorithms 

are not limited to the context of computer science—in fact, we encounter many different kinds of 

algorithms in our everyday life.  The most common everyday life example is a cooking recipe. 

Recipes are algorithms for preparing food because they provide step-by-step instructions for 

ingredients, cooking times and temperature, and other information needed to prepare a dish. There 

are also mathematical algorithms. You might remember the Euclidian algorithm from algebra 

class—instructions to find the greatest common divisor of two numbers. Some other examples 

come from science, such as the Monte Carlo algorithm that can simulate physical systems and 

predict their behavior.  

 

3.4 Programs 

A computer program (sometimes called “software”) is a set of instructions a physical computer 

can execute to perform a task or solve a problem. A computer program is written in a programming 
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language that can be simple or very complex. A programming language is a formal language that 

specifies a set of instructions that can be used to create a computer program. A programming 

language consists of a syntax (more on this later), a set of keywords, commands, and constructs 

that can be used to specify the logic and control the flow of the program. Different programs have 

different syntax and features and some or more suited for particular tasks than others. Programs 

are at a lower level of abstraction than algorithms, but programs themselves can also come in 

different levels of abstraction. The difference between high-level and low-level programming 

languages is that high-level programming languages, such as Python, Ruby, and Java, are designed 

to be easy to read and write. On the other hand, low-level programming languages provide more 

control over the hardware and are typically used for performance-critical tasks or systems 

programming. Some examples include Assembly and C (McGrath, 2019).  

 

A program and an algorithm are related but distinct concepts. The relation between the two is one 

of implementation in the computer science sense. When a program implements an algorithm, it 

means that the program expresses the steps of the algorithm in a specific programming language 

and performs the computation specified by the algorithm. In the practice of computer 

programming, programs are created by combining instructions that are meaningful within the 

programming language. For example, Python instructions that specify the addition of two numbers 

will give the following instructions: SUM = NUM1 + NUM2. When the inputs are 15 and 12, the 

program will execute the instructions and produce the following output: “Sum of 15 and 12 is 27.”  

  

An even lower level of abstraction is called the “machine code.” The machine code is the low-

level representation of the program that is executed directly by a computer’s central processing 
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unit (CPU). Machine code consists of binary instructions that correspond to the basic operations 

that a CPU can perform (such as moving data, performing arithmetic operations, and moving 

between different parts of a program). This is the bottom-most “layer” of what makes up the 

“software” of a computer. To run a program on a computer, it must first be compiled (translated) 

into machine code. This process is performed by a compiler that takes the program’s source code 

and converts it into a series of machine instructions that the physical computer can then execute. 

The compiler is another program typically located on a computer’s hard drive but varies depending 

on the operating system or programming language. After the compiler encodes the program as 

binary strings (bits that take the form of 0’s and 1’s), the bits are physically realized as voltage 

levels maintained by the hardware.  

 

Ada Lovelace is credited with creating the foundations for the first ever computer program. 

Lovelace’s program was intended to work on Babbage’s Analytical Engine. Lovelace was 

optimistic about the possibilities of a machine like this—she envisioned it as one that could do 

more than simple mathematical equations. She thought that with the right program, it would be 

able to act on any object “whose mutual fundamental relations could be expressed by those of the 

abstract science of operations, and which should also be susceptible of adaptations to the action of 

the operating notations and mechanisms of the engine” (Lovelace, 1843). Essentially, Lovelace’s 

vision was a machine similar to the modern-day computer.  

 

Although Lovelace is credited with creating the first computer program, I think it is better to 

understand her project as creating the first algorithm specifically for use on a physical, digital 

computer.  Here algorithm was designed to allow a machine to compute the Bernoulli numbers, a 
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set of natural numbers that regularly appear in the sums of squares, cubes, and higher powers.  Her 

program was written for one step of the process, the calculation of a number that she called “B7”—

the 8th Bernoulli number. Her program solved the following problem, where each term represents 

a coefficient in the polynomial formula for the sum of integers to a particular power: B7 = -1(A0 + 

B1A1 + B3A3 + B5A5). Unfortunately, her program never made it beyond the stage of a list of 

operations specified with mathematical symbols. This is why I think it is best understood as an 

algorithm—it took the form of natural language operations that could then be later translated or 

implemented in a programming language to create a computer program. In fact, some have done 

the work for her using her diagram. Her program has been successfully translated into several 

programming languages, including C and Python. 

 

3.5  Syntax 

In computer science, syntax refers to the set of rules for constructing a correctly formatted program 

in a particular programming language—it specifies how instructions or statements in the program 

must be written so that they can be parsed and interpreted by the computer. The syntax defines the 

structure of a program, and it includes various elements such as keywords, variables, operators, 

and punctuation. For example, a syntax rule programmed in Python might specify that a statement 

must end with a period or that a variable name must start with a letter. The syntax can only contain 

letters, numbers, and underscores. More simply, syntax works much like grammar in structuring 

sentences in a natural language. 

 

The syntax is written using natural language symbols using words and punctuation marks 

(although it does not read like sentences in English). For example, in Python, indentations are used 
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to indicate blocks of code within the syntax. Each block of code within a function, loop, or 

conditional statement must be indented by the same amount to indicate that it belongs to the same 

block. Below is an example of a Python code that indents each line of code with four spaces: 

 

def example_indentation(): 

    print 

    print 

 

The term ‘def’ is a keyword that is used to define a function. The phrase ‘example_indentation()’ 

is the function defined by ‘def,’ indicating that the text in the following lines should be indented 

four spaces. The ‘print’ text in the bottom two lines is standard code in Python that is used to 

output text to the console. This text-based interface allows the programmer to interact with a 

computer program by entering text commands and receiving text output. The programmer types 

‘print’ to execute the function specified in the code (McGrath, 2019).  

 

3.6  Semantics 

In computer science, ‘semantics’ refers to the meaning or interpretation of the symbols and 

instructions in a computer program—it refers to what the program does. Syntax and semantics 

come apart and also depend on each other in different ways. A good example of how they come 

apart famously comes from a natural language example given by Noam Chomsky (1957): 

 

 Colorless green ideas sleep furiously.  
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The sentence has correct grammar—the syntax is specified correctly, but the meaning is 

nonsensical. Put differently, you can have a well-specified syntax that, nonetheless, lacks any 

meaning. However, both syntax and semantics should generally be defined together. Below is an 

example in the C/C++ programming language that clarifies the connection. We can specify the 

following syntax: 

  

 int x; 

 x = 2 ^ 3;  

 

The above code is syntactically correct, we just do not know what it is for. What value does the 

variable x end up with? We can only solve this if we know what the carrot symbol (^) means in 

C/C++. This symbol is bitwise XOR – a binary operation that takes two-bit patterns of equal length 

and performs the logical exclusive OR operation on each pair of corresponding bits. The XOR 

function compares the first bit to the second bit. If both bits are the same, then the answer is ‘0.’ If 

the bits are different, then the resulting answer is ‘1.’ Now knowing what the carrot symbol means, 

we know that x is equal to 1.  

 

The above example describes what is sometimes called an internal semantics in computer science. 

Notice that the meanings are assigned to the programming language that tells the computer what 

to do. This type of semantics concerns symbolic manipulations inside the machine having to do 

with the programming language. Because of this, it is possible for the same symbol to have 

different semantic interpretations across various programming languages.  For example, ‘+’ means 

addition in the C++ programming language (as we would expect it to). But, in Python, the ‘+’ 
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symbol is used for string concatenation—the process of joining two or more strings, arrays, or data 

structures into a single string.  

 

External semantics, on the other hand, is the meaning of a computer program or its parts as 

interpreted by a source external to the computer, such as a human. It is meaning that is ascribed 

outside of the machine's source code (the set of instructions written in the programming language 

as described above). The external semantics might be influenced by culture, context, or the specific 

domain of use. An external semantics can be understood as a human-centered view of the 

program’s meaning outside of its source code. For example, the external semantics of Microsoft 

Word is that it is a word processing software used for creating and editing text-based documents. 

It is used to help create, format, and edit many different kinds of documents, including 

dissertations. Its key features include text, tables, images, templates, and the ability to collaborate 

with others. Contrast this with the internal semantics—the technical details of how the software is 

designed to solve the problem it was created to address (creating documents). This is the 

underlying structure and design of the software itself.  Colloquially, when people refer to the 

‘semantic’ interpretation of some computer program, they are referring to the external semantics—

the intended use—what the program does for us (McGrath, 2019).  

 

4 Some philosophical questions that arise 

In the first section of this chapter, I gave the basic historical lineage of analog and digital 

computers, including some examples of each type. In the second section, I presented and explained 

some terminology for understanding some concepts from computer science. These concepts are 

important for understanding my dissertation project as well as some key philosophical debates that 

25



 

engage with these concepts. In the next section, I will briefly introduce some of the philosophical 

questions that arise when it comes to thinking about computing systems.   

 

4.1 Characterizing the analog/digital distinction 

At the start of this chapter, I discussed how analog computation originated with the idea of 

analogicity. Then, due to engineering considerations, analog computation became synonymous 

with continuous processing. Continuous processing requires continuous representations. In this 

context, the term ‘representation’ is invoked in an engineering sense meaning that information is 

represented in the system by means of signs or signals. Analog representations are said to be 

continuous because they are processed smoothly. This is contrasted with digital computation, 

which is said to process information in a stepwise, discrete-state style fashion. In this context, 

‘continuous’ and ‘discrete’ are understood mathematically: discrete representational schemes are 

bijective with (a finite subset of) the natural numbers, and continuous representational schemes 

are bijective with the reals (Schonbein, 2013). Put differently, continuous representations vary by 

arbitrarily small degrees, while digital representations do not. This distinction forms the basis of 

the ‘received view’ regarding the difference between analog and digital. Analog computation, then, 

represents information by means of a signal whose information parameter is a physical quantity 

which may assume any value within a given range at any instant within a continuous time interval. 

Digital computation, on the other hand, involves the representation of information by means of a 

digital signal whose parameter may assume one out of a set of discrete values within a given range 

(Frigerio et al., 2013). The received view, then, relies on modes of representation to frame the 

dichotomy.  
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The received view is traced back to Goodman (1968), whose project involved distinguishing 

between types of symbols and symbolic structures. According to Goodman, how a symbol denotes 

depends on the system of symbolization in which the symbol is involved. Whether a symbol 

denotes depends on whether it meets specific syntactic and semantic requirements.4 Roughly, for 

a symbol to denote, the symbol set to which it belongs must not be syntactically dense. A set of 

symbols is syntactically dense if it provides an infinite number of characters arranged so that there 

will always be a third between the two. In other words, we cannot cleanly distinguish between the 

symbols. Goodman explains this by drawing a comparison using analog and digital systems. 

Analog systems are dense because we cannot differentiate between their symbols. In contrast, 

digital systems are not dense because the symbols are discrete. A consequence of this view is that 

analog representations do not denote while digital representations do. Because part of Goodman’s 

project draws a distinction between analog and digital, his view forms the basis of the earliest 

analytical argument for understanding the difference between the two. To put his view in context, 

Goodman aimed to give an understanding of symbols in both the sciences and ordinary life. 

According to Goodman, we use symbols for perceiving, understanding, and constructing the 

worlds of our experiences. So, understanding how symbols are used is an important part of 

understanding our world (Giovannelli, 2017).  

 

Lewis (1971) engages with Goodman, arguing more specifically for a view that distinguishes 

between analog and digital representations of numbers specifically. Lewis argues that there are 

cases of non-dense analog representations and that differentiated representations can be analog in 

some circumstances. In other words, the distinction between analog and digital in terms of density 

 
4 Although there are some similarities to the way that Goodman is using the terms ‘syntactic’ and ‘semantic,’ we 
should not associate them with the syntax/semantics distinction drawn in the previous section.    
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only works for some cases. He gives an example of a particular circuit to demonstrate how analog 

representations might be differentiated. He says an analog computer might represent a number by 

the resistance ohms on the circuit using a switch with various positions. The switch could fix on 

particular ohm resister making it distinguishable from other settings. He then gives a second 

example of a digital machine with continuous representations. In this case, we would understand 

a digital representation in terms of differentiated multi-digital magnitudes. He suggests that analog 

representation involves relating the right sort of magnitude, in the right way, to the right sort of 

magnitude. Since the right sorts of magnitude need not be continuous, neither does analog 

representation. Lewis evolves Goodman’s symbol distinction by generating a view that reframes 

the debate in terms of analog and digital representation.  

 

Haugeland (1981) is interested in whether an analog machine can be simulated on a digital 

machine. Part of answering this question requires engagement with the definitions of ‘digital’ and 

‘analog’—or developing an understanding of the difference between them such that we can say 

that one type of machine is simulated on another type of machine. His interest is in machines in 

general, but his aim requires saying something about the nature of analog and digital 

representations in computing systems. For Haugeland, digital machines have three features: 

copyability (they can flawlessly copy and preserve), complexity (they are composites formed from 

components where the components can be understood as parts of the whole or diachronically, as 

steps or moves in the system), and medium independence (a digital machine can have equivalent 

structures made from different media) (213-214).5 He adds that for a digital device to follow 

 
5 Piccinini (2015) uses the term ‘medium independence’ in the same way but attributes his usage to Garson (2003). 
Garson does not cite Haugeland in his 2003 paper.  
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procedures that involve writing and reading symbols, it must have some specification of its 

operating system. If it does, it can reliably follow any read-write procedure perfectly and without 

error.  

 

Haugeland also describes the features of analog systems. For analog machines, the procedures for 

the write-read cycle are approximation procedures (221). They are approximation procedures 

because they can only “come close” to perfect success. While digital machines execute the 

procedures flawlessly, analog systems execute them with some margin of error.  ‘Approximation’ 

replaces Goodman’s claim that analog symbols are dense. Hougeland thinks that the idea  

“between any two symbols there is a third” is challenging to make sense of because “betweenness” 

is an ill-defined concept. Instead, he offers the concept of “approximation” to make sense of the 

continuous nature. He also provides the following features unique to analog machines: smoothness 

(variations are smooth or continuous without “gaps”), sensitivity (every difference makes a 

difference, e.g., the smallest rotation of a rheostat counts as changing a setting), and dimensionality 

(even with sensitivity, still only specific dimensions are relevant, e.g., slides rules can be made 

indifferently of metal or bamboo) (220). But it is the concept of ‘approximation’ that leads 

Haugeland to consider an interesting consequence of his view: 

 

“…it seems to me that there is an important digital-like character to all the standard analog 

devices - specifically in the dimensionality feature. Speaking freely for a moment, the 

essential point about (atomic) digital types is that there tend to be relatively few of them, 

and they are all clearly distinct and separated. Though the types of analog schemes are 

themselves not like this (they "blend smoothly" into one another), the dimensions along 
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which they vary are relatively few and clearly distinct… the best example is a regular 

analog computer with its electronic adders, integrators, multipliers, inverters, and the like, 

each as discrete and determinate in type as any mathematical symbol, and their circuit 

connections as well-defined as the formation of any equation. Indeed, though the state and 

adjustment types of an analog computer are analog, the set-up types are perfectly digital - 

the component identifications and interconnections are positive and reliable” (222).  

 

He calls the above-mentioned ‘positive and reliable digital set-up types’ a kind of “second order” 

digitalness. He goes on to say that second order digitalness seems to be a necessary condition for 

what enables the write and read procedures of multidimensional analog systems to achieve 

approximation. One-dimensional devices include simple systems like slide rules, while 

multidimensional systems include more complex machines that can carry out copy procedures. For 

a machine to carry out copy procedures sufficiently, some precision components must be present—

this is the only way we can make sense of approximation. This consequence is interesting because 

it challenges the dichotomy in a different way. Although the distinction still exists in terms of 

continuous and discrete, Haugeland begins to wonder whether the distinction between analog and 

digital is as clear-cut as previously thought.  

 

There has been a substantial amount of theoretical work on the analog/digital distinction that 

engages with the debate regarding the nature of cognitive representations (Fodor 1975, Kosslyn 

1981 and 1996, Pylyshyn 1981 and 1986, among others). Some draw the distinction in terms of 

resemblance. Analog representations resemble their referents, while digital representations do not. 

However, drawing the distinction in terms of resemblance requires saying more about what it 
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means to resemble. Analog representations can be understood as representing their referents by 

simply “standing in” for the referent without being an exact duplicate. But, whether this counts as 

genuinely representational in this context ends up being a substantial part of the debate. For 

example, mere resemblance will fail to qualify as genuinely representational if you think cognitive 

representations must have a propositional nature (Fodor and Pylyshyn 1988). You might also 

dislike this characterization if you follow Goodman’s abovementioned distinction. Resemblance 

under this characterization would count topological diagrams as analog representations and 

Goodman explicitly argues against this because resemblance is “too loose” of a notion to capture 

anything useful (Goodman 1968, pgs. 170-171).  

 

Much of the debate on the analog-digital distinction and mental representations engages with the 

nature of representations. This follows early work on the distinction that frames the difference in 

terms of analog having a “copy-like” format while digital does not. But there is reason to resist 

conceiving of the relation between analog and digital forms of representation in terms of the 

relation between pictorial images (analog) and linguistic propositional descriptions (digital). This 

seems to assume that the difference is something like resemblance versus discreteness when the 

question is whether this is the appropriate way to draw the distinction in the first place. As a 

response, some have proposed views that are aimed at separating these issues.  

 

To address the analog-digital distinction, Katz (2008) distinguishes the format of representation 

from the medium of representation. To demonstrate, he asks us to consider several ways of 

representing the natural numbers from zero to nine.  
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A) A beaker filled with liquid increments that correspond to 0-9,  

B) marbles partitioned such that each one represents a number 0-9,  

C) a series of beakers where each holds an increment of water that corresponds to 0-9, and  

D) a large beaker with marbles that are poured in equal increments that correspond to 0-9.  

 

Intuitively, A and B are typically understood as analog and digital representations, respectively 

when we consider the format the representations take.  However, this intuition can be challenged 

when we identify each system in terms of the format and the medium. Whatever stuff is used to 

represent is called the medium of representation, such that, A and C (water) and B and D (marbles) 

have the same medium respectively. On the other hand, call whatever structure is imposed on that 

medium the format of representation, such that A and D (equally poured increments) and B and C 

(equally distributed increments) have the same format respectively. From this distinction, A and 

D are analog while B and C are digital. Thus, according to Kats, the analog-digital distinction 

concerns the format of representation, and not the medium. Kats goes on to say that what drives 

the distinction between analog as continuous and digital as discrete (and what makes us intuitively 

call ‘A’ analog and ‘B’ digital) is how the representational system appears to the user. System C’s 

representations appear discrete to the user while system D’s representations appear continuous 

even though A and C, with the same medium of representation, invoked a different response.  

 

Maley (2009) also pushes back on the idea that we should draw the distinction in terms of 

continuous versus discrete. Instead, he argues that the difference between the two concepts tracks 

something else. To demonstrate, he asks us to consider not just the digit, but the base used to 

interpret the relative value of the digit. He uses the following example of the number three hundred 
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and forty-eight in base 10. ‘348’ has ‘3’ in the hundreds place, ‘4’ in the tens place, and ‘8’ in the 

ones place with a value of (3 x 102) + (4 x 102) + (8 x 100). This is much more complex than just 

viewing the digit on its own. When accounting for the base, he argues that we should characterize 

digital representations in terms of the following formula: 

 

A series of digits, each of which is a numeral in a specific place within the series, and 

A base, which determines the value of each digit as a function of its place, as well as the 

number of possible numerals that can be used for each digit. (pgs. 124-125) 

 

The idea is that what a representation represents in a digital system cannot be read off the digit 

itself. For example, ‘3’ cannot be understood outside of its context. Without specifying the context, 

‘3’ could represent 300, 3,000, or 3 depending on the base. The difference here is that individual 

representations are not by themselves discrete; they are discrete within the representational scheme 

that they are a part of. Thus, associating digital representations with discrete inherently misses the 

nuance of digital computing. 

 

Piccinini (2015) rejects the dichotomy by dismissing the role that representations play in 

computation altogether. Before doing so, he briefly mentions that a system can only be said to be 

digital or discrete under a given mathematical description, which applies to a system at a certain 

level of analysis. The way to determine whether physical systems are ultimately continuous or 

discrete depends on the fundamentals of physics. Some people think that everything turns out to 

be discrete at the fundamental level. At the level of middle-sized objects, differential equations are 

used, so everything seems to be continuous. But ultimately, he thinks that the kinds of 
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representations a system processes should not matter because he thinks that computers should be 

understood independently of what they represent or if they represent at all (199-200).  

 

Instead, he distinguishes analog and digital computers based on their mechanistic properties. The 

main difference is the vehicles that they manipulate. The inputs and outputs of digital computers 

are strings of digits, and the inputs and outputs of analog computers are continuous or real variables 

(physical magnitudes that vary over time, take on a continuous range of values within certain 

bounds, and vary continuously over time).  “Real variables” are physical magnitudes that vary 

over time, take a continuous range of values with certain bounds, and vary continuously over time. 

He cites the rate of rotation of a mechanical shaft and the voltage level in an electrical wire as 

examples. He says, one of the main differences here is that digital systems operate over strings of 

digits, whereas analog systems do not.  

 

Yet, this still seems to characterize the difference in terms of discrete and continuous, just within 

a mechanistic framework. But ultimately, he argues that analog computers do not perform 

computations in the sense defined by the mathematical theory of computation. In other words, we 

cannot apply Turing’s notion of a computable function to analog computers because there are no 

strings of digits in analog systems. So, perhaps, the best way to draw the distinction for Piccinini 

is in terms of whether a system can perform Turing-computable functions or not.  

 

However, not everyone thinks the received view gets it wrong. Schonbein (2013) offers support 

for the dichotomy based on how it emerges from a theory of computation (in computer science) 

and because it allows us to explain engineering practices. Schonbein asks us to consider the Turing 
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machine and its components—a Turing machine is defined by specifying the finite set of controller 

states for the machine and the rules for transitioning between states given inputs and the current 

contents of memory. The inputs and memory contents are the representations the system uses, and 

they are “thoroughly discrete” (p. 416). This is important, Schonbein says because the problem 

that Turing was trying to solve required it. Further, he argues that part of Turing’s view was that 

continuous representations schemes posed a problem for describing what humans do when they 

calculate. Moreover, because all digital computers were engineered in accordance with Turing’s 

account of computation, we have further evidence that digital computation necessarily requires 

discrete representations while analog does not (418).  

 

 

Whether we should accept or reject the received view is an ongoing debate. I have given the origins 

of the debate insofar as how the received view was developed with ties to the work of Goodman, 

Lewis, and Haugeland. I have also surveyed several ways that either challenge, endorse, or reframe 

the distinction. There is still plenty of work to do on this topic, and the consequences of this debate 

will likely have strong influences across several other debates, such as the nature of mental 

representations, the nature of cognitive computation, and a theory of physical computation. 

 

4.2 Computation, information, and information processing 

Computation is typically used to process information, so much so that the notions ‘computation’ 

and ‘information processing’ are often used interchangeably. Even so, there are important 

differences between the two.6 Because information plays different roles in different fields and 

 
6 Even if you think that computation always amounts to information processing, there is still reason to keep them 
conceptually distinct. For example, it seems that different kinds of computational systems will process different kinds 
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comes in different forms, we need a clear understanding of what “information” is in the first place. 

Floridi (2010, 2011) describes the concept as “polysemantic” because it is associated with different 

phenomena such as communication, knowledge, reference, meaning, and truth, to name some. In 

the mind sciences, information is often invoked to explain cognition and the production of 

behavior, as seen in Miller (1951) and Minsky (1968). As we have seen, information also plays a 

role in communication engineering, where information is central to the design of an efficient 

communication system (Shannon 1948). It is also used in biology (Godfrey-Smith 2000) and 

animal communication theory (Bradbury & Vehrencamp 2000). Information is also deployed in 

philosophical theories, which aim to provide a naturalistic grounding for the intentionality of 

mental states (Dretske 1981, Millikan 2004). Given the many contexts in which the concept of 

‘information’ is deployed, we should make clear how information processing and computation fit 

together.  

 

In section 2.1, I described Shannon information in detail. Although entropy has been the main tool 

in the analysis of the concept of information for the past seventy years or so, there were other 

attempts at formulating a general theory of information, such as Fisher (1935) and Li and Vitanyi 

(2008). 

 

Fisher information is a concept that comes from mathematical statistics that measures the amount 

of information that an observed dataset contains about an unknown parameter of interest. In other 

words, it quantifies how much information the data provides about the value of a parameter. The 

 
of information—natural information, non-natural information, etc., and how we understand the computational system 
may turn on the type of information that the system processes. Moreover, Piccinini (2015) has provided extensive 
argumentation worth considering for why the two concepts are distinct.  
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larger value of Fisher information indicates that the observed data contains more information about 

the parameter, and thus the parameter is more easily estimated from the data. Fisher information 

plays a crucial role in statistical inference, hypothesis testing, and model selection in contexts such 

as Frequentist Statistics and Bayesian Statistics (Ly et al., 2017).  

 

Kolmogorov theory provides a mathematical framework for describing the probability of events 

in a random process (Li & Vitanyi, 2008). It defines a probability space, which consists of a set of 

possible outcomes, a set of events, and a probability measure that assigns probabilities to events. 

One of the key contributions of Kolmogorov’s theory is the concept of stochastic processes, which 

are sequences of random variables that represent the evolution of a system over time. This theory 

has applications in many fields, including physics, economics, finance, and engineering. It is used 

to model and analyze complex systems that exhibit randomness or uncertainty, such as financial 

markets, weather patterns, and the behavior of particles in physical systems. A semantic theory of 

computation that I explore in Chapter 6 will rely on this notion of information.  

 

But mathematical information theories such as Fisher information and Kolmogorov theory do not 

seem to be the theories that will help us understand what information amounts to in physical 

systems—especially computational systems. One reason that the idea of processing Shannon 

information is also unclear is that Shannon does not tell us what information is.7 As Floridi (2004) 

puts it, we know that information ought to be quantifiable, additive, storable, and 

transmittable…but apart from this, we still do not seem to have a clear idea about the specific 

nature of information (p. 3). This is echoed by MacKay (1983), who says that as early as our 1950 

 
7 Schroeder (2004) attempts to provide an alternative to entropy in the measurement of information, but even so, this 
view still does not help us to understand what information is or how to understand a system as processing information.  
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Symposium on Information Theory, it was somewhat scandalous that the theory of information 

seemed to have so little working contact with such concepts as the meaning and relevance of 

information.  

 

What might help us understand information processing is a semantic theory of information. 

Semantic theories of information emerged as a supplement to Shannon information meant to 

provide a more general theory of information that could provide a usable framework for calculating 

the amount of semantic information encoded by a sentence in a particular language. The first 

account comes from Carnap and Bar-Hillel (1952). For Carnap and Bar-Hillel, the amount of 

semantic information encoded by a sentence is inversely proportional to the likelihood of the truth 

of that sentence. This idea is cashed out in terms of the set of all possible worlds where given that 

the intention of a sentence is the set of all worlds in which the sentence is true, and that the content 

of a sentence is the set of all worlds in which the sentence is false (Sequoiah-Grayson & Floridi, 

2022). But some philosophical problems arise.  For example, how do we know in practice how 

many possible worlds there are? Also, if we are talking about the number of possible worlds with 

respect to all possible sentences in English, then there will be infinitely many of them which 

complicates things even further. 8  

 

The philosophical literature has contributed to the connection between semantic content and 

information by generating theories of meaning that turn on modes of presentation. The earliest 

view of this sort comes from Frege’s Sense and Reference (1948). This view takes meaning and 

information to amount to pretty much the same thing, which gives rise to the following idea: the 

 
8 Other semantic theories of information include Floridi’s (2004 & 2005) ‘strongly semantic information’ account. 
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word ‘cat’ denotes the property of being a cat, and it means cat because it expresses the concept 

CAT, and the concept CAT means cat. Typing meaning and information together in this way gives 

us a naturalistic causal story about information and meaning. Such information-transmitting causal 

relationships count as information channels or causal connections that facilitate the flow of 

information between the source of information and the receiver. Other views that build on the idea 

of informational semantics include Fodor (1990), Dretske (1981), Evans (1982), Recanati (2012, 

2016) and Jackson (2010). These views vary in different ways, but they all characterize a theory 

of meaning in terms of information channels.  

 

There has been some success for computational theories of cognition that understand cognitive 

computational systems as carrying something like naturalized information in the above sense. But 

it is unclear whether this idea can be extended to non-cognitive computational systems. Put 

differently, our computational artifacts are not the kinds of computing systems that carry natural 

information. Computational artifacts, if they represent at all, have something like non-natural 

meanings—or conventional meanings that are ascribed to the system based on context.   

 

4.3  Drawing the syntax/semantics distinction 

In sections 2.5 and 2.6, I specified a distinction between syntax and semantics in computer science. 

But because computation is deployed to explain cognitive processes, the distinction between 

syntax and semantics outside of the context of computer programming gets murky in ways that 

matter for a theory of physical computation. The syntax/semantics distinction and computation 

come together in the philosophy of mind in ways that affect the way we think about syntactic and 

semantic properties. In this section, I will explain how computation relates to mental processes, 
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why the syntax/semantics distinction is important in this context, and how the distinction is framed. 

This section draws heavily on ‘the computational theory of mind’ or computationalism, explored 

in more detail in the next chapter. 

 

In 1980 Jerry Fodor published a famous paper titled ‘Methodological Solipsism Considered as a 

Research Strategy for Cognitive Psychology.’ In this paper, Fodor outlines a theory of mind that 

(he thinks) can be scientifically investigated. This is the idea that the mind—including intentional 

states—can be understood as a formal arrangement of symbols. Simply put, intentional states are 

the kinds of mental states that are about the world—they carry information about the distal 

environment. For example, our beliefs count as intentional states because our belief states, whether 

true or false, are about features of the external world.9 Part of Fodor’s goal was to make room for 

intentional states in our scientific practice. To accomplish this, he relies on what he calls the 

“formality condition.” Drawing from computational processes in computer science, the formality 

condition says that intentional mental states have both formal and semantic features. In this 

context, intentional mental states are often called mental “representations” based on the connection 

between the formal and semantic properties.10 The semantic properties of a representation are the 

properties it has in virtue of its relationship with the world, properties such as being true or being 

false, of being a representation of something or being about something.  

 

Formal properties, on the other hand, are the properties of the representation itself. Fodor defines 

the formal properties in terms of what they are not: “formal properties are the ones that can be 

 
9 This is explored in more detail in Chapter 2.  
10 Recall that the term ‘representation’ was used when drawing the distinction between analog and digital. Here, 
‘representation’ is being invoked in a non-engineering sense. Representation in this context can be understood as 
shorthand for an intentional mental state that has both syntactic and semantic features.  
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specified without reference to such semantic properties as, for example, truth reference, and 

meaning” (p. 64). This implies that mental processes have access to the formal properties of 

representational states (as opposed to their semantic properties). This is where the ‘methodological 

solipsism’ comes in: “If mental processes are formal, then they have access only to the formal 

properties of such representations of the environment as the senses provide. Hence, they have no 

access to the semantic properties of such representations, including the property of being true, 

having referents, or indeed the property of being representations of the environment” (p. 65).11 

Fodor’s solution to this solipsism is to pair computational psychology with a naturalistic 

psychology—a theory that defines the relations between the representations and the world. 

According to Fodor, the formal properties of representations mirror the semantic properties so that 

mental processes operate on formal properties which can be interpreted as having semantic 

content. Fodor is explicit that formal properties aren’t simply “syntactic” properties, but it is 

reasonable to wonder, then, what the relationship between formal properties and syntactic 

properties are.  

 

This draws a distinction between semantic properties and formal properties. But what about 

syntactic properties? Fodor tells us that ‘formality’ means something like ‘explicitness,’ and that 

there is no reason for thinking that ‘formal’ means ‘syntactic,’ although the “ambiguity abounds 

in the literature” (p. 72). This is because, Fodor says, it is possible that we could have formal 

processes defined over representations that do not also have a syntax. Syntax is, though, a species 

of formal operations in virtue of it not being semantic. Other than syntax not being a semantic 

 
11 The concept of “methodological solipsism” comes from Putnam (1972). (Putnam, 1975) 
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property, Fodor says the concept will have to remain “intuitive and metaphoric” (p. 64). But a 

positive account of ‘syntax’ is needed beyond the idea that it is just “not semantics.” 

 

One place we might look to understand what ‘syntax’ means is to look to a theoretical alternative 

to Fodor’s view, namely, The Syntactic Theory (Stich 1983). The Syntactic Theory of Mind (STM) 

considers cognitive states as uninterpreted syntactic objects. According to Stich, the causal 

relations among cognitive states mirror formal relations among syntactic objects (p. 149). The 

thrust of this view is Stich’s position that we can do psychology without appealing to the 

representational content of psychological states. A view of this kind, then, should make clear how 

to understand the non-representational features of psychological states, including what it means to 

be a syntactic property. Stich tells us that abstract syntactic objects are syntactic because they lack 

relevant semantic properties (p. 153). He goes on to say that abstract syntactic objects are “sets of 

counterfactual relations among stimuli, behavior, and other psychological states” and that the 

“status of a state as a token of [an abstract syntactic object] does not depend on what other cognitive 

states a subject currently happens to be in… it depends only on the causal interactions that the state 

would exhibit with stimuli, with behavior, and with other states” (p. 153).  He later discusses 

syntactic form and syntactic relations between cognitive symbols. However, this still does not tell 

us how to characterize the distinction. So, we still need to look elsewhere. 

 

Maybe we can characterize syntax by looking at linguistics. Consider Chomsky’s distinction 

between surface and deep structures (Chomsky, 1965). The deep structure refers to a sentence's 

underlying meaning or semantic structure, while the surface structure refers to the actual form of 

the sentence. This, paired with a transformational grammar, demonstrates how the deep structure 
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of a sentence can be transformed into different surface structures through a series of grammatical 

operations. Syntactic properties relate to the structure or arrangement of the words and phrases in 

a sentence. The study of syntax, then, has to do with understanding the rules that govern the 

formation of sentences and how they can convey meaning in virtue of their formation. This can be 

contrasted with the formal properties of language. Formal properties are the abstract properties of 

language independent of their meaning, such as phonology, morphology, and syntax. Here we have 

support for Fodor’s claim that syntax is a species of formal properties.  

 

Formal properties include everything but the semantics, including syntactic features. Syntactic 

features are those features that have to do with, roughly, the relations between the words or, more 

generally—between the symbols. These relations are governed by a grammar (or some set of causal 

rules) that determine how the symbols are arranged into well-formed symbol strands. So, the 

syntax concerns the how part of the arrangement of symbols. We can now say something 

meaningful about the distinction between syntax and semantics (with some help from the notion 

of formality). For clarity, I will specify the distinction in terms of symbolic structures.  

  

Semantics: what the symbols mean or what they refer to.  

Formal properties: non-semantic features, including transformational rules and the 

symbols' form, such as shape and size.   

Syntax: the relations between the symbols (perhaps understood as causal properties).  

 

In this section, I have distinguished syntax and semantics as understood in the philosophy of mind. 

To do this, I have explored how we might understand ‘syntax’ by giving a positive definition. 
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Much of this understanding draws from computer science and linguistics and is motivated by a 

desire to explain how contentful mental states can be transformed according to their physical 

properties (as opposed to their meanings). This section gives a foundation for later chapters that 

engage with computational theories that aim to capture semantic content in this philosophical 

sense. Sometimes, they do so by drawing a distinction between syntax and semantics, as it is 

understood in the philosophy of mind.  

 

4.4 Internal versus external semantics 

I have discussed the distinction between internal and external semantics when it comes to computer 

science and programming, but there is more to be said about this distinction and how it applies to 

a theory of computation and a computational theory of mind. Some psychologists and 

neuroscientists believe that minds can be explained computationally and that the computational 

explanation cannot be given without appealing to representations. This brings computation and 

theories of mind together. Moreover, it couples computation with an external semantics. But the 

distinction between an internal and external semantics must be made explicit in the context of a 

theory of computation, even if that theory is meant to extend to computational explanations of the 

mind.  

 

An internal semantics is confined within the physical boundaries of a computer. The internal 

semantics is concerned with the meaning of elements as defined within the system itself. An 

external semantics has to do with how the elements of a system are related to things outside of the 

system, such as the real world or other systems. When it comes to computing artifacts, we define 

the external assignments by interpreting the internal states as representing something in the 
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external world. Mental representations are an example of having external semantics: internal 

mental states represent the distal environment. The difference between computing artifacts and the 

mind, when it comes to an external semantics, is that mental representations seem to have their 

content assignment naturally (independently of some observer). In contrast, computing artifacts 

have them in virtue of the user or context.12  

 

5 Conclusion 

In this chapter, I have introduced some early computing systems up to and through the 

development of computability theory. This is relevant for a theory of physical computation in 

different ways.  Some theories of physical computation might be framed in terms of digital or 

analog computation. You might wonder if we need a more neutral theory if we want to capture the 

nature of physical computation. It also matters how we draw the distinction in the first place, and 

as we saw, the difference is not straightforward. If you think that computation necessarily involves 

the processes of information, what does that mean? What is information? If we want the theory to 

capture mental computations, how does that change our notion of information? Are there 

computing systems that do not process information? These questions, and many others, will play 

a role in a theory of physical computation—especially if our goal is to capture the nature of 

physical computation that we can apply not just to computing artifacts but to natural computing 

systems, too.  

 
 
 
 
 
 

 
12 This difference between these two ways of having content is sometimes discussed in the context of the symbol 
grounding problem (Harnad 1990).  
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Chapter Two: Functionalism, computationalism, and physical computation 

 

1 Introduction 

Functionalism and computationalism are distinct but related theses about the mind, and both play 

an important role in accounts that address physical computation. Functionalism is the view that 

what makes something a mental state of a particular type depends on how it functions or its role 

in the system of which it is a part. Computationalism is the view that the functional organization 

of the brain is computational. These two theses are sometimes brought together to form a view 

called computational functionalism. An early version of computational functionalism comes from 

Putnam (1960, 1967a). Putnam’s computational functionalism says that any creature with a mind 

can be regarded as a Turing machine whose operations can be fully specified by a set of 

instructions. This view associates mental states with states on a machine table specified in terms 

of their relations to inputs, outputs, and the machine's state at a given time. This provides us with 

a model for understanding mental processes mechanically using an abstract functional description 

cashed out in terms of computational states by drawing an analogy between the individuation of 

conditions of mental states and those of Turing machine states. This view is the basis for 

computationalism, which adopts the metaphysical position that the brain is a computing system.  

 

Computationalism, the view that the mind is a computer and that mental states are computational 

states, is a controversial and ongoing debate in the philosophy of mind. A theory of physical 

computation is meant to assist with confirming or denying this thesis. If the theory of computation 

tells us how to pick out the brain as a computing system or it tells us which computations the brain 

performs, then we have confirmation for the computationalism thesis. Thus, a theory of physical 
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computation and the computationalism thesis are closely connected. Some argue for a theory of 

physical computation with this motivation in mind.   

 

In section two, I will explain functionalism and computationalism and explain the relationship 

between them in section two. This groundwork will give insight into the motivations for early 

mapping theories of implementation and the triviality arguments that challenged them (chapters 4 

& 5). It will also be relevant when I discuss the differences between the mechanistic account of 

physical computation and how traditional theories conceptualize the relationship between 

computation and physical systems (chapter 7). In section three, I will discuss how 

computationalism relates to the methodology of cognitive science. In this section, I will carve out 

a place for how to understand theories of physical computation within Marr’s tri-level explanatory 

framework.  

 

2 Functionalism and computationalism 

2.1 Functionalism 

Functionalism is the view that what makes something a mental state of a particular type depends 

on how it functions or its role in the system of which it is a part. This view understands mental 

states in terms of their functional organization rather than their physical constitution. Functional 

organization is often cashed out in terms of causality, where the functional organization includes 

the causal relations between a system’s internal states, inputs, and outputs. The causal notion 

applies to all systems with inputs, outputs, and internal states, which means that any system that 

has the appropriate functional organization can be said to have a mind.  

 

47



 

Functionalism has played an important role in debates over the metaphysics of the mind. Some 

saw the view as a way of avoiding the problems associated with mind-brain dualism and the 

materialist view known as the identity theory of mind (Place 1956 and 1960, Feigl 1958 and 1967, 

Smart 1959, Presley 1967). Although functionalism is neutral between materialism and dualism, 

it is particularly attractive to materialists because it seems that the functional roles in question will 

be physical states. This also makes it an enticing alternative to mind-brain identity theory because 

it allows us to specify likely physical mental states without identifying their physical realizers. 

This is because functionalism accommodates the multiple realizability of mental states.  

 

The multiple realizability of mental states is Putnam’s direct response to Smart’s identity theory. 

The identity theory espoused by Smart says there is an identity relation between psychological 

descriptors and mechanisms in the physical world; there is nothing over and above brain 

processes—they are one in the same thing. Putnam argues that very different kinds of creatures 

might have specific mental properties in common while having different physical properties. This 

means that a theory that associates mental states with specific brain states in the way that Smart 

does will necessarily fail to attribute mental states to organisms or artificial systems because they 

have a different physical constitution than humans.13 Functionalism accounts for the multiple 

realizability of mental states because it defines mental states in terms of their functional role as 

opposed to their physical constitution. Functionalism, then, lets us describe mental states along 

with the processes in which they are involved, abstractly.  

 

 
13 I will flag here that this is Putnam’s reading of what he calls the “mind-brain” identity theorist. It is beyond the 
scope of this project to argue for this position, but I think that Putnam’s description the identity theorists project frames 
the debate incorrectly. I think that the identity theorist’s position is consistent with multiple realizability and even 
functionalism.  
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Functionalism is often thought of in terms of mental “states.” Still, a broader notion of functional 

organization can go beyond states and consider the functional states along with their relations, 

aggregates of states, components bearing the states, functional properties of the components, and 

relations between the components and their properties (Piccinini, 2010). A motivation for 

developing functionalism beyond its typical “state” style description is that functionalism is 

generally associated with computational states. As Piccinini points out, this makes it quite difficult 

to disentangle functionalism from its computational counterpart. The functionalism/ 

computationalism connection comes from Putnam’s “machine state functionalism,” developed 

over a series of papers in the 1960s (1960, 1963, 1967a, 1967b, 1988). This view is often seen as 

a replacement for behaviorism and an alternative to the identity theory. According to machine state 

functionalism, any creature with a mind can be regarded as a Turing machine whose operations 

can be fully specified by a set of instructions (a machine table). The mental states of the organism 

are identified with the machine table states specified in terms of their relations to the inputs, 

outputs, and the state of the machine at the time.  

 

But functionalism does not entail that functional states are computational, which means that we do 

not have to be committed to the idea that mental processes are computational processes in order to 

accept functionalism. However, Putnam gives his functionalism account in terms of probabilistic 

automata, which introduces a way to understand the brain as a computing machine within the 

functionalist program. As I said above, it is also possible to frame the view in terms of a Turing 

machine (as Putnam originally did). The difference between these types of computational systems 

is that the transitions between states are probabilistic rather than deterministic. This means that a 

Turing machine is just a type of probabilistic automaton with transition probabilities of 0 and 1. 
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Pairing functionalism with the idea of probabilistic automata gives us the following hypothesis 

about how to think about a psychological state as being a functional state cast in terms of 

computation: 

 

1. All organisms capable of feeling pain are Probabilistic Automata 

2. Every organism capable of feeling pain possesses at least one Description of a certain 

kind (i.e., being capable of feeling pain is possessing an appropriate kind of Functional 

organization). 

3. No organism capable of feeling pain possesses a decomposition into parts which 

separately possess Descriptions of the kind referred to in (2). 

4. For every Description of the kind referred to in (2), there exists a subset of the sensory 

inputs such that an organism with that Description is in pain when and only when some 

of its sensory inputs are in that subset (Putnam, 1967a, pgs. 162-163).  

 

This argument is, according to Putnam himself, quite vague. None the less, machine-state 

functionalism forms the basis of a theory of physical computation, which aims to connect the 

“description” given in terms of probabilistic automata to a physical system in order to show how 

the probabilistic automata are “implemented” in the physical world.  

 

2.2 Computationalism 

The computational theory of mind (CTM), or just computationalism, is the more general view that 

the mind is a computer. This is compatible with functionalism, but it is its own unique thesis, as 

you can accept computationalism without also adopting functionalism, just as you can accept 
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functionalism without adopting computationalism. This dissertation involves considerations that 

have to do with computationalism specifically. Suppose you adopt a version of functionalism that 

rejects computationalism. In that case, a theory of physical computation is no longer relevant to 

the view (although you may need some theory to reify the abstract functional characterization with 

the physical system it describes). So, the rest of this project concerns functionalist accounts that 

adopt computationalism or computationalism views that reject functionalism.  

 

One of the primary arguments for computationalism is that it can make clear how mental states are 

causally relevant in the physical world. It accomplishes this by saying that mental states are 

syntactic entities that are computed over. Their form makes them causally relevant in the same 

way that form makes parts of source code in a computer causally relevant. This is closely related 

to the “formality condition” that says that mental processes only have access to the formal 

properties of the mental states (rather than their semantic properties) (Fodor 1980).  

 

There are different versions of computationalism available. By associating machine-state 

functionalism with a Turing machine specifically, we end up with a closely associated view of the 

mind known as the “Classic Computational Theory of Mind” or CCTM. This view assumes that 

mental activity is akin to specifically Turing-style digital computation. Turing-style computation 

relies on the notion of a universal Turing machine (UTM) and accepts explicitly that the mind is a 

digital computing device. I say Turing “style” because this view draws an analogy drawn between 

the mind and a universal Turing machine allowing for Turing-equivalent style computation or even 

something like hypercomputation. This is why, even though the analogy is often drawn in terms 

of a UTM, CCTM only requires a commitment to Turing-style computation.    
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An allure of CCTM is that it works in conjunction with the Representational Theory of Mind 

(RTM)—in particular, a version called The Language of Thought Hypothesis (LOTH). Fodor 

(1975) was the first to link CTM with LOTH. He argued that cognitive representations are tokens 

of the Language of Thought and that the mind is a digital computer that operates on these tokens. 

The Language of Thought hypothesis proposes that thinking occurs in a mental language 

sometimes called “mentalese.” Mentalese resembles spoken language in that it contains words that 

combine into meaningful sentences where each sentence’s meaning depends systematically upon 

the meanings of its component words and the way those words are combined (Rescorla, 2019). 

CTM + RTM with LOTH ascribes to the formality condition, which gives a naturalized 

philosophical theory about how contentful mental states can be causally efficacious without 

relying on the meanings of the mental states to carry out the causal work.  

 

But not all computationalism views are committed to the mind as a digital computer in a Turing-

style sense, nor are they committed to a language of thought. Connectionism was offered as an 

early replacement to the CCTM because it seemed more “biologically plausible” given the 

similarities in structure between artificial neural networks (ANN’s) and the neural networks of the 

brain. An ANN is composed of simple processors or nodes acting in parallel. Much of the parallel 

processing is spread over various, perhaps widely distributed, nodes, with representational data 

distributed similarly in a sub-symbolic way. An artificial neural network or connectionist network 

is sometimes preferred because it seems more biologically plausible than explicitly rule-based 

digital computational systems.  
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However, not all neural networks count as non-digital. Thus, it is possible to accept that the mind 

is both a neural network and a digital computer. In other words, you can accept that the mind is a 

digital computing system while also adopting an ANN as the computational architecture. ANNs, 

such as the early models proposed by McCulloch and Pitts, were both neural networks and digital 

systems. McCulloch and Pitts (1943) suggested that the brain’s neuron operations correspond to 

logical connectives (later “logic gates”). Logic gates are the basic building blocks of digital 

computers. This brings together an ANN's architecture with a digital computer's logic gate 

operations. This might be a way of rejecting Turing-style computation while maintaining a digital 

conception of the mind embedded in a neural network structure. But one might ultimately reject 

this version of digital computation on the basis that it is not obviously compatible with LOTH 

because of the distributed nature of the representations.14 This is because it is unclear how 

distributed representations can handle the language-like structure of mentalese (its compositional 

features).  

 

3 Computation and cognitive science 

Computationalism is generally assumed to be the central working hypothesis of cognitive science.  

The main aim of computational modeling in cognitive science is to explain and predict mental 

phenomena. Here, computationalism and functionalism reunite. Functionalism is made more 

robust in cognitive science by introducing Marr’s hierarchy of explanatory levels. We can pair 

computationalism with Marr’s levels by constraining the types of explanations given within the 

framework to computational explanations. Marr gives us a computational theory of early vision 

within the context of computational neuroscience. But I think there is both a broad and narrow 

 
14 Although there has been a recent proposal arguing for this position. (Quilty-Dunn, Porot, & Mandelbaum, 2022) 
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way of construing the Marrian framework. The broad way places all models (whether they count 

as information-processing or not) at the algorithmic level. Some models will have physical 

realizers at the implementation level, while others will not. But, because this project is concerned 

with what I call the narrow way of understanding Marr’s levels—in terms of computational models 

only, I will not argue for the broader framework here. Instead, I will focus on Marr’s framework 

and computational modeling.  

 

Marr’s explanatory framework proposes three “levels” or three distinct but related questions that 

a modeler should answer when giving a computational theory of an information processing system: 

 

Computational:  What is the goal of the computation, why is it appropriate, and what 

is the logic of the strategy by which it can be carried out? 

Algorithmic: How can this computational theory be implemented? In particular, 

what is the representation for the input and output, and what is the 

algorithm for the transformation? 

Implementation: How can the representation and the algorithm be realized 

physically? 

 

Sometimes a mathematical function is given at the computational level. This mathematical 

statement specifies the task being performed in terms of a functional operation or the operation 

that the system executes when it performs the given task. The algorithmic level involves saying 

how the system performs the task. This is where we would place a neural network model, or the 

algorithmic process takes place when the system executes the task specified at the computational 
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level. The implementation level involves the physical realizers that carry out the task. This type of 

explanation is anatomical in that it identifies the physical features of the system that carry out the 

task—the physical realization of the process.  

 

Many theorists interested in giving a theory of physical computation are interested in vindicating 

or supporting the computationalism thesis. If the brain is a computer, we need a theory of physical 

computation that supports the metaphysical claim that the brain is a computing system. Theories 

of physical computation answer different questions about physical computation. If a computational 

description of a physical system is abstract, then a theory of physical computation tells us about 

the relation between the abstract description and the physical system. An abstract description might 

be a kind of computational architecture, or it might be a computational description of which 

computation the system is performing. Those who are interested in a theory of physical 

computation to support computationalism can be interested in either question. In the next chapter, 

I will define the different questions that I take a theory of physical computation to address, but for 

now, I will briefly explore how I think these questions relate to Marr’s framework in cognitive 

science. So, right now, I will state the questions I take a theory of physical computation to be 

addressing without arguing for them just yet. This exercise is meant to relate computationalism to 

a theory of physical computation within the context of cognitive science. 

 

Chalmers (1995) identifies the question of how to relate a mathematical theory of computation in 

the abstract with concrete systems in the physical world—a bridge between the abstract and 

concrete domains. He says that “such a bridge is a theory of implementation” (p. 391). According 

to Chalmers, implementation is the relation that holds between an abstract computational object 
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and a physical system. He then gives his answer in terms of relating the computational object's 

formal structure to the physical system's causal structure. He specifies these computational objects 

as those things such as Turing machines, Pascal programs, cellular automata, connectionist 

networks, and many others. All of these computational objects are versions of combinatorial state 

automata (CSA). The implementation question then relates the abstract computational structure 

(possibly understood as a CSA) to the physical causal structures of the physical world. So, within 

the context of Marr’s framework, this relates the algorithmic level to the implementation level 

because we will find the computational object at the algorithmic level.  

 

It is sometimes said that the implementation relation can also be understood as a relation between 

the computational and implementation levels. I disagree. I push back on this understanding because 

it brings in the identification of a computational function. In other words, it brings in a semantic 

interpretation. When we relate the function to a physical system, we say which function the 

physical system computes—we interpret the system. This is an answer to what I call the 

“interpretation question.” An answer to the interpretation question is not an answer to the 

implementation question. Given this, within the context of cognitive science, a theory of 

implementation should be understood in terms of the relation between the algorithmic and 

implementation levels. And a relationship between the computational level and the implementation 

level corresponds to the interpretation question. 

 

As I will argue, both implementation and interpretation are essential aspects of a theory of physical 

computation. Within Marr’s framework, we can understand this as relating the algorithmic level 

to the implementation level (implementation relation), and we can understand it as interpreting 
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what the system computes (giving an explanation at the computational level). In the next chapter, 

I will define three questions about physical computation, including the implementation and 

interpretation questions, leaving Marr behind. Nonetheless, because computational descriptions 

are prevalent in cognitive science, it is worth mentioning here how my framework fits into that 

methodology.   
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3 Three questions about physical computation 

 

1 Introduction 

We regularly distinguish between physical systems that perform computations, such as computers 

and calculators, and physical systems that don’t, such as rocks and pails of water. We generally 

take it for granted in our ordinary life that we can categorize objects this way. But there are other 

contexts where computation is a central explanatory notion, and we need additional theoretical 

posits to make the categorization. For example, computation is central to psychology and 

neuroscience (among other sciences), and, despite the claims of some, the brain is not obviously a 

computing system. According to the computational theory of cognition, cognition is a kind of 

computation, and the brain is a kind of physical computing system. To confirm or deny this theory 

depends on our computational theory about physical systems in the world: we need to understand 

the nature of physical computation.   

 

As we saw in chapter one, computation can be studied by formally defining computational objects, 

such as algorithms, programs, and Turing machines. This is the study of computation in the 

abstract, mathematical sense. But most uses of computation in scientific practice and ordinary life 

involve physical (concrete) systems. So, there is a close relationship between abstract computation 

and physical systems that requires explanation. We often understand physical computers as 

implementing a Turing machine or performing a computational process. This relationship, the one 

between abstract computation and physical systems, is the target of the kinds of computational 

theories addressed in this project. 
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A key point about terminology is in order before we move on. First, “theory of computation” is 

understood as a “theory of physical computation.”15 I will sometimes just say theory of 

computation as shorthand for a theory of physical computation. This should not be confused with 

a mathematical theory of computation in computer science. As I do this, you will notice a slippage 

in various places between the terms “theory” and “account.” Nothing hangs on this distinction. In 

this project, I will argue that those who offer a “theory of computation” sometimes answer different 

questions about physical computation. Because of this, using “theory of computation” 

interchangeably with “theory of implementation” is problematic. Once my framework is in place, 

I will argue that not all theories of computation are theories that address the implementation 

relation. Ultimately, I will argue that a “theory of computation” should be reserved to describe a 

grouping of theories that each address a different aspect of physical computation.  

 

In section two, I will argue that there are (at least) three distinct questions at play in the literature 

on physical computation, the individuation question, the implementation question, and the 

interpretation question. These questions are sometimes acknowledged but are not distinguished as 

independent questions that require independent answers. In section three, I will define the 

connections between the questions, and I will provide a framework for how to fit the literature into 

it. Much of this project is revisionary because it will reclassify many accounts as answering 

different questions than initially intended. This part of the project will involve characterizing the 

 
15 There have been terminological shifts throughout the course of the literature on physical computation. As different 
and more detailed theories have evolved, so too has the terminology. Earliest accounts (such as Chalmers 1995) 
proposed a “theory of implementation,” where later views offered a “theory of computation” that addressed the 
“implementation question,” and later still, and most recently, theorists (many of the same who used the previous 
terminology) are now referring to their views a as theory of, or an account of the nature of “physical computation” or 
a “theory of physical computation.” It is a mistake to view these terms as meaning one and the same thing, but there 
is a tight relationship between the theoretical evolution and terminological evolution of various views such that, at a 
very coarse-grained perspective on the literature, we can understand them as roughly meaning the same thing, or 
roughly aiming to answer the same question.   
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questions people take themselves to be answering and then recategorizing them into the questions 

I think they actually are answering.   

 

2 Three questions 

2.1 The implementation question 

Theories of computation are sometimes taken as addressing the implementation question. The 

implementation question asks, “What are the conditions under which a physical system 

implements a given computation?” (Chalmers 1995). Importantly Chalmers presents this question 

in the context of cognitive science: “To clarify the notion of computation and its role in cognitive 

science, we need an account of implementation, the nexus between abstract computations and 

physical systems” (p. 391). But many answers to this question are given in a more general 

context—in the context of understanding physical computation simpliciter and not just in cognitive 

science.  

 

However, the formulation of the implementation question is ambiguous between two readings if 

we do not further specify what the terms refer to. This ambiguity generates two different 

understandings of what an answer to the implementation question is meant to address. “A 

computation” can be understood in terms of 1) a computational structure or object or 2) a specific 

computational description of some physical process. How you interpret the question will determine 

the kind of theory you give. This is the first way in which answers to the “implementation question” 

can take different forms. I argue that because we have failed to disambiguate this question, the 

various forms the answers take end up being answers to different questions rather than different 

answers to the same question. This means that one way of disambiguating the question actually 
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generates an entirely different question- one that was never meant to be addressed by an answer to 

the implementation question in the first place. 

 

I will now argue that the first formulation of the question (option 1) stays true to the original 

intention behind the implementation question. In contrast, the second formulation (option 2) 

diverges and generates a different question altogether, what I call the interpretation question. To 

show this, we must engage Chalmers’ classic 1995 paper, ‘On Implementing a Computation.’ In 

this paper, Chalmers says the following: 

 

The crucial element of such a bridge is a theory of implementation. Implementation is the 

relation that holds between an abstract computational object (a computation for short) and 

a physical system, such that we can say that in some sense the system "realizes" the 

computation, and that the computation "describes" the system. The key question that such 

a theory needs to answer is what are the conditions under which a physical system 

implements a given computation? Without an answer to this question, the foundational role 

of computation in cognitive science cannot be justified (p. 391). 

 

The key to disambiguating the implementation question is to pay attention to how Chalmers 

originally formulated it in this passage. In this passage, he is explicit that the implementation 

question addresses the relation between an abstract computational object and a physical system.  

Here he shortens “computational object” to “a computation.” The ambiguity arises when the 

question is taken out of its embedded context. As the “implementation question” has been passed 
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around, stated, and restated, this context has dropped off, leading some to interpret the question in 

the second way.16 Further evidence can be gleaned from the following passage: 

 

It will be noted that nothing in my account of computation and implementation invokes 

any semantic considerations, such as the representational content of internal states. This is 

precisely as it should be: computations are specified syntactically, not semantically. 

Although it may very well be the case that any implementations of a given computation 

share some kind of semantic content, this should be a consequence of an account of 

computation and implementation, rather than built into the definition (p. 399). 

 

Computational objects are specified syntactically. This is not to deny that computational objects 

have semantic interpretation, just that a theory that tells how a computational object is 

implemented does not need to say anything about the semantic interpretation of the computational 

object. It may turn out that different computational objects have the same semantic interpretation 

or that a single computational object has several semantic interpretations. But whether it does or 

doesn’t is a different question. As Chalmers says: “an account of implementation is only half the 

story” (p. 400). The implementation question is a bridge—the “nexus” between the abstract 

domain of computation and the concrete domain, including the domain of cognitive systems. 

Additional questions about the relationship between computation and cognition remain open, 

 
16 At the 2023 Pacific APA, I asked Chalmers what he meant when formulating the question, and he confirmed that 
he meant the first formulation. He also agreed that even though some people take themselves to be answering “the 
implementation question,” they are doing something more like interpretation. He read my writing sample (as part of 
the Bersoff Fellowship application) that draws this distinction and told me directly that he thinks I’ve gotten this 
correct. This doesn’t entail that everyone has to agree that I’ve gotten this entire project correct. Still, it at least 
confirms that my interpretation of Chalmers’ 1995 paper and my reading of his formulation of the implementation 
question is correct and should be trusted.  
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including how we should interpret the computational objects that the brain implements. Or more 

generally, how we should interpret any computation system, not just the brain.  

 

So, how should we understand computational objects when it comes to the implementation 

question? Chalmers specifies some familiar computational objects such as Turing machines, 

cellular automata, Pascal programs, cellular automata, and more. This is no surprise when we 

consider the topics presented in the previous chapter. Both functionalism and computationalism 

described the organization of the mind this way—as having an organization that takes the form of 

a Turing machine or Turing-style machine. This is a type of computational structure. Thus, when 

Chalmers gives his answer to the implementation question (which I will specify in more detail in 

Chapter 5), he says the following:  

 

The relation between an implemented computation and an implementing system is one of 

isomorphism between the formal structure of the former and the causal structure of the 

latter. In this way, we can see that as far as the theory of implementation is concerned, a 

computation is simply an abstract specification of causal organization (p. 396). 

 

Thus, I formulate the implementation question in the following way: 

 

The Implementation Question: What are the conditions under which a physical system 

implements a computational structure? 
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If an account of physical computation gives us an answer that relates the formal computational 

structure to the causal structure of the physical system, then we can say that it answers ‘the 

implementation question’ and provides a theory of implementation. If it does not do this, we should 

say that it answers another question—that it provides some other kind of theory.  

 

2.2 The interpretation question 

Depending on your theoretical starting place or your ultimate explanatory goals, you may interpret 

“a given computation” as meaning some specific computational description. This means that the 

question becomes one about identifying which computation (possibly understood as a 

computational process) the physical system performs (or could perform). This leads to some 

people asking, "Which computation does this system implement?” This question is a natural 

extension of the second reading of the implementation question. But using the term ‘implement’ 

when asking questions about interpretation should be avoided until implementation and 

interpretation are clearly distinguished in the literature. Without a clear distinction, asking the 

interpretation question in the above way further ambiguates what is meant by the implementation 

question. Thus, I formulate the interpretation question in the following way: 

 

The Interpretation Question: What computational process does the physical system 

perform? 

 

The interpretation question asks to identify the computational process that the physical system 

performs. It might also ask for an interpretation of the computational states of the physical 

computing system. Either way, this is a question about what the system computes in terms of states 
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or processes. Nothing hinges on how we apply the interpretation for my purposes. We might ask 

the interpretation question because we want to know whether some physical computing system is 

computing addition or multiplication. Or we might ask if it performs the ‘and’ function or the ‘or’ 

function. When it comes to the brain, we might wonder whether it’s performing one function or 

another—we might want a theory that tells us which function we should attribute to Marr’s 

computational level. My claim is that theories that answer questions about how to interpret the 

states or identify the computational processes of a computing system are answering ‘the 

interpretation question,’ and they provide a theory of interpretation.  

 

This is our first indication that a theory of implementation and a theory of interpretation are 

actually compatible. We can see how these answers complement each other by addressing two 

aspects of physical computation.  

 

2.3 The individuation question 

The implementation question is thought to be closely related to another question and is sometimes 

used interchangeably with it. I call this question the “individuation question.” The individuation 

question asks for a way to distinguish computing systems from non-computing systems and 

originates from the work of Gualtiero Piccinini and Oron Shagrir. Some engaged in the debate 

about physical computation have adopted this question and take themselves to be providing an 

answer to it. To further complicate matters, some (like Mark Sprevak) have associated this 

question with the implementation question. This further confuses the questions that a theory of 

physical computation is meant to address. Now, I will argue that we should distinguish the 

individuation question from both a theory of implementation and a theory of individuation.  
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The first reason we should distinguish the individuation question from the interpretation question 

is that it is only when we take all views to answer this question that we end up with the result that 

theories of implementation and theories of interpretation are incompatible. If they are all seen as 

answering the same question, then it is a mistake to think they go together. But, when we 

distinguish the individuation question from the other two questions, we can have disagreeing 

answers to the individuation question while maintaining the compatibility of implementation and 

interpretation views.  

 

An answer to the individuation question generally takes two forms.17 One answer involves a 

reference to semantic content. This answer ascribes to the idea that there is “no computation 

without representation”—that computation is necessarily a semantic process. So, any theory of 

computation should refer to the semantic content of the computing system. When we take all 

“theories of computation” to address the individuation question, it becomes clear why some 

accounts that bring in a semantic interpretation are thought of as alternatives to those that don’t. 

But, as I have argued, theories that involve semantic interpretation are answering the interpretation 

question. Another way to say this is that a theory of interpretation may stem from an answer to the 

individuation question, but it is not, in itself, an answer to the individuation question. I argue that 

we should understand an answer to the individuation question as stating a metaphysical 

commitment about the nature of physical computation. I formulate the individuation question in 

the following way: 

 
17 It sometimes takes a third form that involves individuating computational systems mechanistically. I set this view 
aside and address it in chapter six.  
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The Individuation Question: How are computing systems distinguished from non-

computing systems?  

 

The other answer to the individuation question says that we can individuate computing systems 

from non-computing systems without referencing their semantic properties. This is not to deny that 

computational systems have representational properties. Instead, it is a claim that we do not need 

them to give a theory of computation. But again, notice how this relies on bringing individuation 

and implementation together. If you are inclined to give a theory of implementation and understand 

it in terms of implementing a computational structure (like Chalmers), then it is no surprise that 

you answer the individuation question this way. But when we account for the different questions, 

an answer to the individuation question does not necessarily have to be the denial that 

representational properties play a role in computation. You might answer the individuation 

question this way while thinking that computation requires semantic properties—you just don’t 

think they need to factor into a theory of implementation!  This is a further reason why we should 

eliminate the individuation question as the target of a theory of computation. Moreover, it is not 

clear that anyone giving a theory of implementation takes themselves to be answering this 

question. 

 

Because a theory of computation is sometimes, by some people, framed as answering the 

individuation question, the false dichotomy between theories of implementation and theories of 

interpretation persists in the literature. Often this is framed in terms of a debate between non-

semantic accounts and semantic accounts of physical computation. So, theories that rely on 

semantic interpretation are often seen as alternative theories of computation to the ones that focus 
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directly on specifying a non-semantic implementation relation. However, once we distinguish the 

implementation question from the interpretation and individuation questions, we can see that the 

views are compatible because they answer different questions that each address different aspects 

of physical computation. This also means that we need to eliminate the individuation question as 

the target of a theory of computation.  

3 What does a theory of computation target?  

So far, I’ve defined three distinct questions: 

i. The Implementation Question: What are the conditions under which a physical

system implements a computational structure?

ii. The Interpretation Question: Which computational process(es) does the physical

system perform?

iii. The Individuation Question: How are computing systems distinguished from

non-computing systems?

Given these three questions, we can now ask: what is the target of a theory of computation—which 

of these questions does a “theory of computation answer?” My answer is that a theory of 

computation should address (i) and (ii), with the option of answering (iii). But an answer to (i) or 

(ii) does not have to hinge on how (iii) is answered.
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But those engaged in the literature do not take themselves to be answering all of these questions. 

This is fine because I don’t think anyone addressing physical computation must do so. Instead, we 

can use a divide-and-conquer strategy. Some people can answer the implementation question, and 

some can answer the interpretation question. They can also adopt whatever answer they want to 

the individuation question (or even leave it out altogether). My position is that a “theory of 

computation” will involve bringing these aspects together into a unified account.  

 

Many of the people engaged in the debate also do not take themselves to be answering either the 

implementation or interpretation questions in the ways that I have formulated them. As I have 

argued, the implementation question has an ambiguous reading when it is removed from its 

original context. But, this is prior to disambiguating the different readings of the implementation 

question. After disambiguating the question, we are in a position to reclassify the views.  

 

Given the above discussion, theorists ought to be taking themselves to be answering either the 

implementation question or the interpretation question, as I have defined them. This means that 

some people who think they are answering the implementation question should take themselves to 

be answering the interpretation question. This also means that some people who take themselves 

to be providing an answer to the individuation question should be taking themselves to be giving 

an answer plus either a theory of implementation or a theory of interpretation, depending on how 

their theory is developed. As it turns out, the literature is already set up quite nicely to adopt this 

framework, which I develop in chapters 5 and 6. Still, I will briefly introduce it before making a 

pitstop with triviality arguments that have also influenced how the literature has been developed.  
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Non-semantic accounts that address the nature of physical computation are always given in terms 

of the implementation relation according to the first reading I specify in section 2.1. This means 

that non-semantic accounts actually do provide a theory of implementation. Thus, we should take 

non-semantic accounts to be addressing the implementation question. Because this aligns with how 

non-semantic theorists would categorize their views, so only a little revision is required here. The 

revision, then, is that those who offer a non-semantic account should take their account to be 

compatible with a theory of interpretation which requires recognizing the distinction that I have 

drawn and accepting that they are only addressing one aspect of physical computation.  

 

Semantic accounts, on the other hand, often take themselves to be answering either the 

implementation question, the interpretation question, or possibly both. This is possibly because 

they take on the second reading of the implementation question. I imagine that other reasons can 

be added to my diagnosis for why semantic accounts are developed as a response to the 

implementation question or why the second reading of the implementation question was adopted 

in the first place. Still, nothing about my framework hinges on why authors come to give the theory 

that they do. I’ve made a charitable diagnosis for why this might have occurred in the literature, 

but I don’t see why any other reason would be a barrier to the success of my framework. Those 

who give a semantic account can maintain their answer to the individuation question, but according 

to my framework, they should take themselves to be answering the interpretation question and not 

the implementation question. This also means that, like the non-semantic theorist, they would need 

to accept that their view is compatible with a non-semantic theory of implementation.  
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In the following chapters, I will show how to place non-semantic and semantic theories into my 

framework. But first, there is an additional reason why adopting my distinctions benefits the 

literature on physical computation. It turns out that triviality arguments can be mapped onto both 

implementation and interpretation. In other words, we can identify a triviality of the 

implementation relation and a triviality of the interpretation conditions. And, even more, a non-

semantic account has the theoretical tools to address trivial implementations, while a theory of 

interpretation has the theoretical tools to address trivial interpretations, but no single approach can 

handle both. I will show this in the next chapter.  
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4 Implementation, interpretation, and triviality 

 

1 Introduction 

In the previous chapter, I argued that there are three questions at play in the computation literature: 

implementation, interpretation, and individuation. I argued that we should understand the 

implementation question as addressing the relation between formal computation and physical 

systems, a connection between abstract computational objects and physical systems. I argued that 

theories that address how to interpret computational states or processes are not answering the 

implementation question. Instead, they are answering what I call the interpretation question. I also 

identified a third question that is sometimes described as the target of a theory of computation, the 

individuation question. I argued that this question could be answered independently as a 

metaphysical claim about the nature of physical computation and that it could be addressed 

separately from a theory of implementation and interpretation. I diagnosed the literature as 

suffering from two readings of Chalmers’ original formulation of the implementation question, 

which is what leads many theorists to propose what seems to be alternative ways to respond to the 

implementation question when really, they are addressing different aspects of physical 

computation based on their understanding of the original question.  

 

In this chapter, I will argue that there is an additional thing that influences how theories regarding 

physical computation are developed. Some of the first views that addressed the implementation 

relation were challenged by triviality arguments that aimed to show that the conditions defined in 

the relation allow for cases where non-paradigmatic computing systems could be shown to 

implement a computational structure. As these triviality arguments were being developed, a second 
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way of trivializing physical computation came about. This second way involved superfluous 

interpretations. Not only was it possible to show that non-computing systems could meet the 

implementation relation, but it would also generate an additional problem; it would also be 

indeterminate which computation the system was performing. As I pointed out in the last chapter, 

the same computational structure can be interpreted in many ways. In this chapter, I will argue that 

a divergence between theories that address the implementation question and theories that address 

the interpretation question can also be traced back to which version of triviality the theorist aims 

to resolve. I will argue that those who aim to resolve the first type end up giving a theory of 

implementation, while those who aim to resolve the second type end up giving a theory of 

interpretation.  

 

Because I developed the implementation and interpretation questions in the previous chapter, I 

will use them freely moving forward. When I mention one of these questions by name, I am using 

the in accordance with how I’ve defined them. This also means that when I use the terms 

‘implementation’ and ‘interpretation,’ I use them based on the definitions I have given. In section 

two, I will introduce triviality arguments. Part of this task includes describing some of the early 

mapping views that address the implementation relation. The next chapter develops these views in 

detail, so I will briefly introduce them with only enough detail to show how triviality arguments 

apply to them. Early in this section, I will identify two types of triviality and pair them with their 

corresponding target questions before moving on to more examples of triviality arguments that 

exhibit the same two features. In section three, I will show how some people interested in physical 

computation accept either one or the other type of triviality. This indicates that not everyone 
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intends to address both types. This fits nicely within my framework, which identifies two kinds of 

triviality and maps to them the type of theory that is the best fit for solving the problem. 

 

2 Triviality arguments 

Triviality arguments can be raised against functionalism, computationalism, or a theory of physical 

computation. The earliest triviality arguments attacked functionalism directly. However, triviality 

arguments against functionalism often extend directly to a broader context, including any view 

that ascribes a computational description to a physical system. In this section, I will follow the 

progression of triviality arguments. This will require a brief introduction to early theories of 

physical computation.  

 

2.1 The ‘simple mapping account’ 

The earliest iteration of a theory of computation can be derived from Putnam (1967). Putnam 

argued that anything accurately described by a computational description is a computing system 

that implements that description. He gave his theory in terms of a Turing machine with a 

corresponding machine table. For Putnam, a machine table describes a machine if the device has 

internal states that correspond to the columns of the table. It obeys the machine table when there 

is a correspondence between the transitions of the read-write head of the Turing machine and the 

transitions of the states of the physical system that is being described. Putnam’s early view is 

visually depicted by the following graphic where a physical system S performs a computation 

defined by description C just in case (i) there is a mapping from the states ascribed to S by a 

physical description to the states C, such that (ii) the state transitions between the physical states: 
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Figure 4. Simple Mapping View Diagram 

 

As explained in Chapter 2, this account is part of the development of what we now know as 

machine-functionalism. Because the view is characterized in terms of a specific type of machine, 

a computing machine, this view ends up being one of the first recognized implementation accounts 

that we now know as the “simple mapping account” (Godfrey-Smith, 2009). It is dubbed “simple” 

because it relies on a straightforward mapping understood in terms of a mirroring relation between 

the physical state transitions and the description of the abstract, computational structure (the 

transitions described by the machine table). We can formalize the simple mapping account in the 

following way: 

 

A physical system X implements a formal computation Y if there is a mapping f that maps 

physical states of X to abstract states of the formal computation Y, such that: for every step-

wise evolution S ® S¢. of the formalism Y, the following conditional holds: if X is in 

physical state s where f (s) = S, then X will enter physical state s¢  such that f (s¢ ) = S¢ 

(Sprevak 2018). 

 

The first triviality arguments challenged this idea. Thus, the first triviality arguments attacked a 

theory of implementation (as I define it) specifically. In the following sections, I will give a 

taxonomy of some of the most popular triviality arguments, and I will show that while they were 
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initially generated to attack a theory of implementation, they led to the development of a second 

problem that I diagnose as contributing to the generation of theories that address the interpretation 

conditions.   

 

2.2 Hinckfuss’s Pail 

Attributed to Ian Hinckfuss, Lycan (1981) gives us the following triviality argument that I call 

“PAIL”: 

 

Suppose a transparent plastic pail of spring water is sitting in the sun. At the micro level, a 

vast seething complexity of things are going on: convection currents, frantic breeding of 

bacteria and other minuscule life forms, and so on. These things in turn require even more 

frantic activity at the molecular level to sustain them. Now is all this activity not complex 

enough that, simply by chance, it might realize a human program for a brief period (given 

suitable correlations between certain micro-events and the requisite input-, output-, and 

state-symbols of the program)? And if so, must the functionalist not conclude that the water 

in the pail briefly constitutes the body of a conscious being, and has thoughts and feelings 

and so on? Indeed, virtually any physical object under any conditions has enough activity 

going on within it at the molecular level that, if Hinckfuss is right about the pail of water, 

the functionalist quickly slips into a panpsychism that does seem obviously absurd . . . 

(Lycan 1981, p. 39). 

 

PAIL does not mention triviality, and it is only later identified as a triviality argument against 

functionalism and then a theory of physical computation. However, because it gives a case where 
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the simple mapping relation supposedly holds, we end up with a triviality result that targets the 

implementation relation specified by the simple mapping account. According to PAIL, a bucket of 

water sitting in the sun has so much causal complexity that, via the suitable categorization of states, 

it can be taken to realize the functional organization of a human agent. This undesirable result ends 

up trivializing the simple mapping account.18 

 

This makes trouble for a theory of physical computation because if we translate the functional 

description in terms of computational states, then it turns out that the bucket of water has the 

appropriate computational structure. This is a problem for a theory of implementation because it 

attributes a computational structure to physical systems that are not computational. This type of 

result trivializes the very notion of computational implementation and calls for theory revision.19  

 

2.3 Putnam’s inputless FSA 

Putnam (1988) argues against his mapping view and concludes that it is possible to attribute a 

computational structure to a non-computing system and that those systems might be said to 

perform any computation at one time or every computation at one time. This second problem is a 

problem that was not present in PAIL. Putnam argues that any machine table can describe any 

system and that the description will always be correct. He gives us the following triviality argument 

that I call “FSA:”  

 
18 Some disagree that PAIL gives a triviality result or that even if it does that it’s not unacceptable. For example, 
Sprevak (2018) argues that what follows with the argument is a version of panpsychism that is not an untenable 
position. His main point, though, is that it’s not clear that PAIL generates a triviality result. He thinks that what is 
imagined is the possibility of an unusual implementation and that we need a reason to think that such an 
implementation is actual in order to have a triviality result. Absent a reason, we should not think that computational 
implementation is trivial in this sense (p. 7).  
19 Piccinini (2015) and Piccinini & Maley (2021) call this “limited pancomputationalism”—the idea that every 
physical system performs at least one computation. 
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Imagine a physical system with defined boundaries, no inputs, and no outputs, and that has 

state transitions that take place in real time intervals-- say in a 7-minute interval from 

12:00pm - 12:07pm.  We can imagine such a system exists because of the laws of physics: 

the principle of continuity and the principle of noncyclical behavior (guarantees the 

disjointness of the physical states). Any machine table with any sequence of states can be 

paired up with the physical system where the system realizes the given machine table 

during the interval specified (Putnam 1988, p. 122). 

 

The trivial implementation comes from the implementation of the FSA structure. This is the same 

type of triviality we glean from PAIL. The additional type of triviality comes from Putnam’s 

inclusion of the idea that “any machine table” can be paired with the physical system. The same 

FSA can have many different corresponding machine tables that specify a number of different 

processes. So, the problem is that any of these machine tables will be compatible with the 

implementation. When we interpret the states of the machine table, we learn what the FSA does—

which computation it is performing.20 Because it is indeterminate which computation the system 

is performing based on the implementation alone, the interpretation is trivialized—the system 

could be understood as performing any or all computations unless we specify an interpretation of 

the machine table.21  

 

2.4 Two types of triviality 

 
20 See sections 1.2 and 2.4 of Chapter 1.  
21 Piccinini (2015) and Piccinini & Maley (2021) call this “unlimited pancomputationalism” – the idea that every 
physical system performs every computation.  
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FSA introduces an additional type of triviality into the literature, a trivialization of the 

interpretation conditions. This gives us two types of triviality when it comes to physical 

computation, one regarding the implementation relation and one involving the interpretation of the 

computational states or processes: 

 

Trivial implementation:  Too many or all physical systems can be seen as 

implementing a computational structure.  

Trivial interpretation:  A physical system can be interpreted as performing 

every computational process.  

 

The literature sometimes recognizes these two types of triviality. For example, the problem of 

trivial implementations is sometimes called “limited pancomputationalism,” while trivial 

interpretation is sometimes called “unlimited pancomputationalism” (Piccinini, 2015 and Piccinini 

& Maley, 2021). I do not think that these labels do justice to how we should understand their place 

in the literature. I provide a new labeling scheme that maps each triviality type onto the aspect of 

physical computation in which they correspond. I also frame the problems in a way that aligns 

with my development of the implementation and interpretation questions. Once this is done, we 

can see how the triviality types neatly map onto the questions: 

 

The Implementation Question: What are the conditions under which a physical 

system implements a computational structure? 

Trivial implementation: Too many or all physical systems can be seen as 

implementing some computational structure. 
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The Interpretation Question: Which computational process(es) does the physical 

system perform? 

Trivial interpretation: A physical system can be interpreted as performing every 

computational process. 

 

These pairings show how a divide-and-conquer strategy could play out in a way that addresses 

both types of triviality. No theory of implementation or interpretation, on its own, will manage 

both at the same time. However, as I will explore at the end of this chapter, some people reject that 

one or the other type of triviality is a problem. Thus, they sometimes set one type aside and move 

on with providing their view that addresses the other. I want to be clear that I am not demanding 

that everyone take both types of triviality seriously. There are genuine reasons people give for 

thinking that one (or maybe both) are not threatening. However, unless we all agree on which ones 

should stay or go, we should make room for them both in a theory of computation. My framework 

carves out a place for both and a clear strategy for addressing wach of them. Those who provide a 

theory of implementation address trivial implementations, while those who provide a theory of 

interpretation address trivial interpretations.  

 

In the following sub-sections of this chapter, I will present several more triviality arguments cited 

in the literature to highlight additional places where the two types of triviality also emerge.  

 

2.5 Searle’s wall 
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Before I get into Searle’s (1990, 1992) triviality argument, some explanation is required. Searle 

argues against the claim that “the mind is a program and the brain the hardware of a computational 

system” (p. 21). His starting assumption is that the mind is not a computer program. He then argues 

against the claim that the brain is a digital computer on the basis of the idea that all there is to a 

computer is syntax and that the mind requires semantic understanding. So, given this, the brain 

cannot be a digital computer. In Searle’s triviality argument, he introduces the concept of a 

“program.” When he discusses a program and implementation, he says that a computer 

“implements the steps of a program.” He defines the program in terms of the instructions provided 

to the Turing machine, which specifies the movement of the read-write head. In other words, the 

program is the transitions specified by the machine table. He argues that anything can count as a 

following a program if following a machine table's steps is all there is to computation. Thus, we 

have his triviality argument that I call “WALL:” 

 

For any program there is some sufficiently complex object such that there is some 

description of the object under which it is implementing the program. Thus, for example 

the wall behind my back is right now implementing the WordStar program, because there 

is some pattern of molecule movements which is isomorphic with the formal structure of 

WordStar. But if the wall is implementing WordStar, then if it is a big enough wall, it is 

implementing any program, including any program implemented in the brain (Searle 1990, 

p. 27). 

 

When introducing the WordStar program, he assigns a semantic interpretation to the machine table 

he is referencing. This is where the second type of triviality comes into his argument. Inside the 
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wall are many microscopic physical changes—so many changes that the physical activity inside 

his wall has at least one structurally isomorphic pattern to a machine table—one that is sufficiently 

complex enough that it could be responsible for generating WordStar. This brings structure (the 

machine table) together with an interpretation (WordStar). Moreover, according to Searle, if the 

wall is complex enough, it could implement any program, not just WordStar. In the WALL 

argument, a trivialization of the implementation relation and a trivialization of the interpretation 

conditions are present.  

 

2.6 Putnam’s rock 

A common feature of PAIL and WALL is that we are not given a way to understand the relevant 

mappings—we are just told that there is one. Putnam (1988), on the other hand, provides a method 

for finding the relevant mapping with “ROCK” (as described by Sprevak 2018).  

 

Pick any open physical system (say, a rock) and any time interval, t0 to tn. Consider the 

‘phase space’ of the rock over this time interval. The phase space is a representation of 

every one of the rock’s physical parameters, including the physical parameters of the rock’s 

constituent atoms, molecules, and other microscopic parts.  Over time, the rock will trace 

a path through its phase space as its physical parameters change. The rock’s physical 

parameters will change owing to endogenous physical causes (its atoms changing state, 

vibrations, atomic decay, etc.), and because of external causal influences (gravitational, 

electromagnetic, vibrational, etc.). Putnam argues that some external influences are certain 

to play the role of ‘clocks’ for the rock: due to these influences the rock will not return to 

precisely the same set of values of its physical parameters in the time interval. Putnam calls 
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this the ‘Principle of Noncyclical Behavior’. He argues that this principle is likely to be 

true of any open physical system (p. 9-10). 

 

The phase space reveals that the rock undergoes multiple changes in its physical state type during 

the time interval, including r1 ® r2 ® r3 ® r4. Additional changes include the following 

disjunctions: r1 Ú  r3 ® r2 Ú  r4 ® r1 Ú  r3® r2 Ú  r4. This means that the rock travels through 

regions of phase space while oscillating between disjointed regions of phase space. Putnam maps 

r1 Ú  r3 to computational state A and r2 Ú  r4 to computational state B giving an isomorphism between 

the physical states and transitions of the rock and the formal state transitions of the FSA. This same 

reasoning can be extended to other physical systems, and therefore, every open physical system 

implements every inputless FSA.  

 

Putnam’s ROCK is an example of pairing a triviality argument with the specifics of a theory of 

implementation so that we can see how an argument that claims trivial implementation can be 

understood in terms of what a theory of implementation might specify. Because Putnam specifies 

his argument in terms of implementation only, then this argument only targets the implementation 

relation.  

 

2.7 Chalmers’ clock and dial 

Some have argued that we can avoid trivializing the implementation relation by strengthening the 

relations between the physical states of the implementing system. One way to do this is to argue 

that the physical state transitions should support certain counterfactuals. Nevertheless, Chalmers 

(1996) shows that a triviality argument can be given for even strengthened mapping views such as 
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the counterfactual account. Chalmers gives us a case involving a clock and dial; call this 

“CLOCK.”  Chalmers describes a ‘clock’ as a component of a physical system that reliably transits 

through a sequence of physical states over a time interval. He describes a ‘dial’ as a physical 

component of the system with an arbitrary number of physical states such that if it is put into one 

of those states, it states in that state during the time interval. Chalmers claims that every physical 

system containing a clock and dial will implement every inputless FSA. Chalmers's argument is 

very similar to Putnam’s. However, he characterizes an FSA that includes inputs and outputs and 

not just a possible trajectory over a phase space but an actual one. 

 

Label the physical states of the system i – j where i corresponds to a clock state and j to a 

dial state. If the system starts in state [1, j], it will reliably transit through states [2, j], [3, 

j], and so on… Now, assume the physical system on the actual run has a dial state 1. The 

initial states of the system will be [1, 1]; we associate this state with an initial state of the 

FSA. We associate states [2, 1], [3, 1] and so on with the subsequent states of the FSA in 

the obvious way. If, at the end of this process, some FSA states have not come up, choose 

an unmanifested state P, and associate state [1, 2] with it. We associate states [2, 3], [3, 2] 

and so on with the states that follow P in the evolution of the FSA… eventually all of the 

states of the FSA will be exhausted.  Now, for each abstract state of the FSA, we have a 

non-empty set of associated physical states {[i1, j1], [i2, j2] …, [in, jn]}. Map the disjunction 

of these states to each FSA state. The resulting mapping between physical and formal states 

satisfies the counterfactually strengthened version (p. 318). 
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Chalmers argues that almost all open physical systems have a clock and dial, and if not, we can 

attach one to the physical system. But, if a trivial implementation can be achieved by adding a 

watch, the implementation account should be rejected. Notice that CLOCK also only targets 

implementation. This is no wonder since Chalmers keeps implementation and interpretation 

distinct.  

 

2.8 Godfrey-Smith’s transducer 

Godfrey-Smith (2009) provides a triviality argument meant to build off of Chalmers’ CLOCK. He 

argues that any sufficiently complex physical system can be made into a behavioral duplicate of 

an intelligent agent via a change to the “transducer layer of that system.” He draws on early 

mapping views to develop his argument and concludes that functionalism combined with a simple 

mapping account collapses into triviality. He begins with the idea that any functionally 

characterized physical system whose operations link it with its environment can be broken down 

into a transducer layer and a control system. When it comes to inputs, the transducer layer responds 

to physical impacts in a form that the rest of the system can use for further processing (something 

like a perceptual system). When it comes to outputs, the transducer layer, like muscle fibers, allows 

it to respond to various inputs. The control system is used for everything functionally important to 

the system other than the transducer layer. Locating the transducer layer is a matter of locating the 

boundary between the system and its environment (p. 284-285). I call this argument 

“TRANSDUCER;” 

 

The transducer layer can be seen as the input-output devise. that maps one set of physical 

magnitudes to another, or many to one without constraint. And a change to the transducer 
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layer may result in a change to the formal properties of the mapping as well as which 

physical magnitudes are involved. Now, consider an actual human agent, A, with non-

marginal mental properties. If functionalism is true, then this agent has its mental properties 

in virtue of its functional organization. This functional organization is labeled S and is 

specified in the form of some combinatorial state automata (CSA). Then we take a complex 

physical system, B, that has interactions with its environment—B may be a pail of water 

such as in PAIL. There will be a possible transducer layer that can be added to B that will 

give it the input-output profile associates with S. B, with its added transducer layer would 

be a realization of S in the functional sense (p. 287).                                                                                                                                                      

 

This case generates the following argument: 

 

1. For any sufficiently complex system B, there is a possible system that differs internally 

from B only in its transducer layer, and that has the input-output properties of a human 

agent with non-marginal mental properties. 

2. Any sufficiently complex system with the input-output properties of a human agent is 

a functional duplicate of that agent. (Simple mapping criterion for realization.) 

3. Functional duplicates share all their mental properties (functionalism). 

4. Two systems that differ only in their transducer layers must either both have, or both 

lack, non-marginal mental properties.  

5. Therefore, any sufficiently complex system has non-marginal mental properties (p. 

288). 
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Godfrey-Smith targets functionalism, but we can extend the argument to a theory of physical 

computation. TRANSDUCER, like CLOCK, shows that any sufficiently complex system can be 

given a transducer layer, and if this is done, it can be shown to implement some CSA. Godfrey-

Smith concludes that the mapping relation is too weak and that views of this kind collapse into 

triviality. TRANSDUCER, then, is an argument that trivializes the implementation relation.  

 

In this section, I have shown how some arguments target implementation, interpretation, or both. 

One reason someone might target only one and not the other is that they may find only one type 

threatening.  

  

3 Accepting some triviality  

Some people take the stance that one or possibly both types of triviality are permissible. This is 

also a motivating factor for why someone might be satisfied with addressing either the 

implementation or interpretation questions and not both. For example, suppose you think that 

triviality when it comes to an interpretation of the computational system is permissible. In that 

case, we can address physical computation by focusing solely on the implementation relation. On 

the other hand, if you think there is nothing concerning about the trivial implementations, then you 

might think we can address physical computation by focusing on interpretation conditions. 

However, whether you think only one type of triviality matters should not affect whether we need 

a theory of computation that addresses both implementation and interpretation. It is possible to 

deny that a triviality argument threatens the adequacy of either a theory of implementation or a 

theory of interpretation while accepting that both implementation and interpretation are essential 

aspects of understanding computation in physical systems. After all, a metaphysical account is 
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meant to explain the nature of some phenomenon, not just the aspects of that phenomenon that we 

care about. In this section, I will show how some people are okay with triviality in some respects. 

This might be understood as motivation for focusing on either a theory of implementation or a 

theory of interpretation.  

 

Chrisley (1995) argues that instances of Putnam-style triviality may occur in a reduced sense. 

Given the natural complexity of the physical world, there is much room for indeterminacy. So, 

even if every system does not instantiate every automaton, it might be that every ordinary 

macroscopic system (like the brain) instantiates an infinite number of automata. This is a reduced 

Putnam-style argument because only some systems will have multiple interpretations instead of 

every system being interpreted as performing every computational process. This is an acceptance 

that some systems might be given multiple interpretations. Chrisley is specifically interested in the 

sufficiency of the computational theory of mind when he argues that we can accept some 

triviality—he says that “for computational states to be ontologically sound, one does not have to 

show that there is only one, unique computational characterization that applies to a given system” 

(p. 417). In other words, it is possible that the same computational system (perhaps the brain) can 

be understood as performing many different computational processes.  

 

Rescorla (2013) argues that trivial interpretations are harmless because, in some cases, facts about 

a system’s physical properties and the surrounding computational practice may not fully determine 

whether the system performs a particular computation. He draws an analogy with language to 

support his point. He argues that the term ‘bank’ can mean either a financial institution or a river 

bank and that whether it means one or the other is fixed by the speaker's intentions and expectations 
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(p. 702). Similarly, the context will fix the computation that the system performs. In other words, 

facts about computational interpretations will depend on the context in which the computation is 

being performed. In this way, Rescorla accepts some cases of trivial interpretations.  

 

Schweizer (2016) argues that trivial implementations are not something that we should necessarily 

avoid. He thinks that trivial implementations pair with anti-realism about physical computation 

and whether any number of abstract mappings exists across various systems in a purely 

mathematical sense is not a problem. He contrasts this with the idea that there is any number of 

mappings from the set of positive integers to collections of physical objects and particles, but 

whether we care about the mapping is a matter of context. So, whether we count the mapping as 

implementing a computation will depend on the context in which the mapping occurs. This is an 

explicit acceptance of trivial implementations on the basis of the idea that we can resolve triviality 

within whatever context we are applying the description.  

 

Dewhurst (2018) argues that we should accept that many (or any) physical system can be 

understood as performing some computation. He thinks that we can avoid trivial implementations 

because when we adopt, what he calls an explanatory perspective, the range of functional 

attributions (including computation) will be constrained by the underlying physical structure of 

the system we are interested in. But he argues that this permits each system to be seen as 

performing multiple computations simultaneously. He thinks that the explanatory perspective will 

help pick out which computation is being performed, but nonetheless, it is possible to view the 

system as susceptible to trivial interpretations.  
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In this section, I have shown that not everyone is moved by both types of triviality. I gave examples 

of some people who accept trivial implementations or interpretations as permissible. This is 

compatible with my framework. My framework does not require that everyone address both types 

of triviality. But I have shown that there are two types that map cleanly onto the questions I 

identify. Thus, two types of triviality concerns map onto the two aspects of physical computation 

I identify.  
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5 Non-semantic theories of implementation 

 

1 Introduction 

In this chapter, I will present what are sometimes categorized as “non-semantic” theories of 

computation. Non-semantic accounts address physical computation without specifying how to 

interpret the computational system semantically. I classify non-semantic accounts as theories of 

implementation because they all, in different ways, address the implementation relation. Most 

people who give a non-semantic account characterize themselves as providing a theory of 

implementation, a theory of computation, or both. Because I reserve ‘theory of computation’ for a 

unified account that addresses both implementation and interpretation (at least), I classify non-

semantic accounts in terms of a theory of implementation only, as on their own, they are not giving 

a theory of computation. I am not arguing for the claim that to answer the implementation question 

that you must provide a non-semantic account. It is an artifact of the literature that all theories that 

address the implementation relation happen to be non-semantic.22 Not all non-semantic accounts 

answer (or recognize) the individuation question. This is fine because I argued that we could take 

or leave that question; it is not an essential part of a theory of computation.  

 
22 This chapter categorizes accounts that are already developed, so it might be possible to give a semantic account of 
implementation in the future. But I am suspicious of a project that claims to do this. As we will see in the next chapter, 
many accounts addressing interpretation are characterized as theories of implementation. One way someone might go 
about this is by bringing in an internal semantics and then calling their view semantic in virtue of this move. However, 
the only way that I think this can be pulled off without causing additional problems for the literature is to adopt a 
framework like mine first. This is because semantics accounts are semantic in virtue of referencing an external 
semantics. All non-semantic accounts accept that computation requires an internal semantics. So, explicitly 
referencing it doesn’t make the view semantic in the way that semantic views are semantic. I say that we would need 
to adopt a framework like mine because it gets rid of the “semantic” versus “non-semantic” debate and re-classifies 
the views as either a theory of implementation or interpretation. Once we adopt a framework like mine, we could 
reintroduce semantic and non-semantic in a more nuanced way. So, a non-semantic implementation account tacitly 
accepts an internal semantics while a semantic implementation account explicitly it, for example.  
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There are two argumentative components to this chapter. The first is that we have good reason to 

distinguish between the implementation and interpretation questions. This benefits the literature 

because it clearly shows how views often thought of as alternatives are compatible. This means 

that the literature should not be understood in terms of non-semantic versus semantic accounts. 

Instead, we should understand different accounts as addressing either implementation or 

interpretation and that these views are complimentary because they each address a different aspect 

of physical computation. This is not adequately addressed in the literature and is often entirely 

obscured by the liberal use of the term “implementation” across theories. The second component 

is revisionary. Adopting my framework requires accepting a re-structurization of the literature in 

terms of implementation and interpretation rather than semantic and non-semantic. This means 

that people will need to accept that they were not answering the question that they initially thought 

they were. Another revisionary component is that no single account can address both types of 

triviality. Some people who incorporate an answer to the individuation question into their theory 

think that doing so helps to ward off trivial implementations. For example, suppose physical 

computation is necessarily a semantic process. In that case, this rules out trivial implementations 

such as pails of water, walls, etc., because those are not systems that semantically represent their 

environment. However, because I distinguish an answer to the individuation question from a theory 

that addresses physical computation and then pair triviality results with either implementation or 

interpretation, an answer to the individuation question can no longer serve as a bonafide response 

to triviality.  

 

In section two, I will introduce a variety of non-semantic accounts. I will maintain that these views 

address the implementation relation and therefore count as a theory of implementation. I will also 
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point out when these views are meant to address trivialization. Taxonomizing the views will be 

primarily a descriptive project because people who give these views take themselves to be giving 

a theory of implementation as I define it. The revisionary part is that I will argue that these views 

only address implementation and are only equipped to handle trivial implementations meaning 

they only address one aspect of a theory of physical computation. I pair implementation theories 

with the problem of trivial implementations in the following way: 

 

The Implementation Question: What are the conditions under which a physical system 

implements a computational structure? 

 

Trivial implementation: Too many or all physical systems can be seen as implementing 

some computational structure. 

 

  

2 From a non-semantic theory of computation to a “theory of implementation” 

As we saw in Chapter Three, what is now known as the ‘simple mapping’ account is one of the 

earliest and most influential theories of implementation (Putnam 1960, 1967, 1975). According to 

the simple mapping account, a physical system S performs a computation defined by description 

C just in case (i) there is a mapping from the states ascribed to S by a physical description to the 

states defined by computational description C, such that (ii) the state transitions between the 

physical states mirror the state transitions between the computational states (Piccinini & Maley 

2021). To see how the view works, suppose the physical system S has physical states p1 – p2 that 

93



 

map onto states s1 – s2 of the computational description C for any computational state transitions 

of the form s1 ® s2, S transitions from p1 to p2 whenever it goes into state s1.  

 

The simple mapping account is a theory of implementation that addresses the implementation 

question because it draws a relation between a formal computational structure and the states of a 

physical system. The physical system implements a computational structure if the specified 

conditions are met. Putnam initially gives his account in terms of Turing machines, meaning if the 

conditions were met, the physical system would implement a Turing machine. But eventually, 

Putnam abandoned the Turing machine requirement and specified the view in terms of a physical 

description of the system. This means that the view can be generalized to computational structures 

other than a Turing machine.23  

 

The simple mapping account faced immediate challenges because acceptable mappings under this 

specification are quite easy to find in the world. As we saw in the previous chapter, PAIL initially 

demonstrated how liberal the simple mapping account is.  While Putnam’s view was never meant 

to address trivial implementations (instead, it seems to generate the concern), it is still a theory of 

implementation.  

 

2.1 Specifying causation 

A common way to address the trivial implementations permitted by a simple mapping is to provide 

constraints on the mapping relation. Some do this by introducing causal requirements into the 

theory. There are different ways to understand causation. In this section, I will address the different 

 
23 Piccinini (2015) challenges this move, but we can let it slide.   
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ways that people have defined causal relations in order to prevent trivial implementations. Adding 

causal requirements begins with Putnam’s (1988) expansion of the simple mapping view. 

 

Putnam specifies a physical-causal structure that must obtain for a physical system to implement 

a computational structure. This is an improvement on his original mapping account (that he ends 

up rejecting anyway). In order to strengthen the simple mapping account, Putnam argues that the 

state transitions in the physical system must “stand in the appropriate causal relations to one 

another and to the inputs and the outputs” (p. 124). The appropriate causal relation, in this case, 

has to do with the “type that commonly obtains in mathematical physics… that is, if a program 

says, as it might be, that ‘state A is always followed by state B’… in classical physics this would 

be determined by either the Hamiltonian or the Lagrangian equations of the system… in familiar 

language, this is to say that a mathematically omniscient being of the kind once envisioned by 

Laplace… could predict that the system X would go into state B at the relevant time given the 

information that it was in state A at the earlier time given the boundary conditions” (p. 96).  

 

By adding this causal requirement, the states will be maximally compatible with each other in a 

way that demands that they progress in the order they do. Putnam’s strengthened account still 

addresses the implementation relation, but now it also addresses trivial implementations by 

strengthening the causal relations between the physical states in the system. 

 

2.2 Causation and counterfactuals 

Chalmers (1995, 1996) argues for a theory of implementation that builds on Putnam’s causal 

requirement. Putnam ultimately rejects his strengthened mapping view when he argues for ROCK. 
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Chalmers thinks the improved mapping view is still susceptible to trivial implementations because 

the specified physical system does not satisfy the right state-transition conditionals. Chalmers 

argues for the following causal relation: 

 

The conditionals involved in the definition of implementation are not ordinary material 

conditionals, saying that on all those occasions in which the system happens to be in state 

p in the given time period, state q follows. Rather, these conditionals have modal force, 

and in particular are required to support counterfactuals: if the system were to be in state 

p, then it would transit into state q. expresses the requirement that the connection between 

connected states must be reliable or lawful, and not simply a matter of happenstance. It is 

required that however the system comes to be in state p, it transits into state q (perhaps 

with some restriction ruling out extraordinary environmental circumstances; perhaps not). 

We can call this sort of conditional a strong conditional (Chalmers, 1996, p. 312-313). 

 

Chalmers concludes that it is not clear from Putnam’s description that his conditionals have this 

sort of modal force. In any case, Chalmers thinks that Putnam’s view does not satisfy the strong 

conditionals in the way that implementation requires. In addition, Chalmers does not think that 

Putnam includes all of the necessary state transitions in the mapping. As a solution, Chalmers 

specifies his counterfactual account in the following way: 

 

A physical system implements an inputless FSA in a given time-period if there is a mapping 

f from physical states of the system onto formal states of the FSA such that: for every 
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formal state-transition P ® Q in the specification of the FSA, if the physical system is in 

a state p such that f (p) = P, this causes it to transit into a state q such that f (q) = Q (p. 315).   

 

Chalmers gives a strengthened mapping account that requires counterfactual supporting transitions 

and the requirement that the unmanifested state transitions are reflected in the physical structure 

of the machine. This account specifies the implementation relation and addresses trivial 

implementations.   

 

Chrisley briefly discusses a consequence of causal views that is relevant to this dissertation's 

project and worth noting here. In his discussion regarding Searle’s triviality argument (WALL), 

he says that “if one adopts a causal notion of computation, then every system will not realize every 

computation, but every system will realize multiple (perhaps infinitely many) computations 

simultaneously” (Chrisley 1996, p. 404). I interpret Chrisley as saying that a theory of 

implementation can only address one type of triviality: trivial implementations. This leaves the 

problem of trivial interpretations on the table, which is why we must have another way of 

addressing the problem, namely, a theory of interpretation. As I have said before, some are 

concerned with a trivialization of the interpretation conditions, but other are not. Chrisley is in the 

latter camp. He thinks that cognitive science does not require a unique computational description 

for a system. Thus, the possibility of ascribing multiple computational processes to the same 

system is not of concern to him.  

 

Like Chalmers, Chrisley (1995) argues that Putnam’s notion of causation is too liberal.  To 

strengthen the relation, he requires proper embedding conditions and a stronger specification of 

97



 

causation. Chrisley considers embedding conditions in terms of the signals received and produced 

via various inputs and outputs—how the system interacts with its environment. For computers, 

this might include a mouse, keyboard, monitor, video camera, etc. (p. 414). He then argues that to 

be true to computation, the inputs and outputs of the system must be characterized in terms of their 

intrinsic properties. This requires us to fix the definition of an input and output to a system before 

drawing the mapping relation. For example, a digital desktop computer might have as its output a 

video display. Notice that output is understood in terms of an architectural feature of the system, 

not an interpreted state or process. Chrisley thinks that if the outputs are fixed, it eliminates systems 

like walls being shown to implement computations because they cannot produce the required 

output—they do not have a video display.  

 

Chrisley also specifies something called “full causation.” He thinks Putnam's notion of causation 

is much too liberal in that it allows events outside the context of mathematical physics that we 

would not consider causally related (p. 414). Chrisley mainly provides an argument against 

Putnam’s use of causation rather than providing an original account of causation, so I cannot give 

it here. However, he does say that he thinks that Putnam’s account needs a stronger version of 

causation. 

 

Chrisley’s project gives us a theory of implementation that includes a reference to the inputs and 

outputs of the physical system in terms of the structures that allow the system to take in and 

produce inputs and outputs. This is what prevents Searle’s WALL from implementing a Turing 

machine:  
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Consider an animated display of a Turing Machine on a computer screen. Since, ex 

hypothesi, there is a one-to-one correspondence between the states of the display screen 

and the states of some Turing Machine, Searle and Putnam would apparently claim that the 

screen realizes the Turing Machine, if anything does. But it seems clear that we would say 

that the screen depicts a Turing Machine, but is not itself one. One reason why we would 

deny it computational status is because the state of the screen that corresponds, in the 

putative interpretation function, to a computational state A does not produce, as a causal 

effect, the screen state that corresponds to the successor computational state B, even though 

the Turing Machine depicted does make a transition from state A to state B. Computational 

states must be able to cause other computational states to come about. 

 

Chrisley thinks that trivializing the interpretation conditions is not a problem for a theory of 

computation—that it is acceptable for a multitude of semantic interpretations to be assigned to the 

computational system. What Chrisley adds to a theory of implementation is the idea that the inputs 

and outputs, as he characterizes them, should be defined in advance, and this prevents trivial 

implementations. Chrisley offers a theory of implementation that addresses a trivialization of the 

implementation conditions.  

 

Copeland (1996) argues that to say a physical system computes is to say that there exists a 

modeling relationship of a certain kind between it and a formal specification of an algorithm and 

supporting architecture. For Copeland, a formal specification of an algorithm is something like a 

machine table, and architecture is a physical structure. An algorithm is understood as a finite list 

of machine-executable instructions such that anyone or anything that correctly follows the 
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instructions in the specified order is certain to achieve the result in question (337). To say that an 

algorithm p is specific to an architecture is to say that a machine with this architecture can run p 

and that each instruction on p calls for the performance of some sequence of the primitive 

operations made available in the architecture. ‘Primitive operations’ are those procedures for 

which the architecture is specifically enabled. For example, a program calling for multiplications 

can only run on such an architecture because the compiler (the program that converts instructions 

into machine code) replaces each multiplication instruction in the program with a series of addition 

instructions (337). These primitive operations will vary from architecture to architecture.  

 

To see how the view works, call the formal specification of the architecture and algorithm in 

question “SPEC.” Let SPEC take the form of a set of axioms. 24 SPEC is connected with some 

physical system, e. The bridge between e and SPEC is carried out in terms of a labeling scheme 

for e.25 A labeling scheme for an entity consists of two parts: (1) the designation of certain parts of 

the entity as label-bearers, and (2) the method for specifying the label borne by each label-bearing 

part at any given time (338). Copeland thinks that this can help eliminate trivial implementations. 

He considers Fodor’s example involving the solar system and Kepler’s Law. Fodor, when 

discussing rule following in psychology, says, “If you are willing to attribute regularities in the 

behavior of organisms to rules that they unconsciously follow, why don’t you say… that the planets 

‘follow’ Kepler’s law in pursuit of their orbits around the sun” (Fodor 1975, p. 74).  Copeland 

argues that acting in accordance with Kepler’s law is not the same as executing an algorithm 

 
24 Copeland notes that nothing in his view turns on using the axiomatic method as opposed to some other style of 
formalization.  
25 Labels can be understood in different ways. Some examples given by Copeland included the following: eight binary 
digits associated with groupings of subdevices where the possible states (maybe measured in volts) are divided into 
two mutually exclusive classes and a state is labelled ‘0’ if it falls into the first and ‘1’ if it falls into the second (338). 
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because Kepler’s law is not an algorithm. Even if it were, Copeland thinks that we cannot say 

whether the solar system computes without a description of the solar system’s computational 

architecture.   

 

Copeland’s view includes a second part, explaining the behavior and function of the labeled entity. 

He says to explain the system's behavior is to interpret the labeling scheme. Importantly though, 

Copeland is not thinking of interpretation in terms of ascribing external semantic content to the 

system. Instead, he is thinking more along the lines of internal semantics. A specification of an 

internal semantics maintains Copeland’s view as a non-semantic theory.26 Copeland describes the 

interpretation of the labeling scheme of system M in terms of implementing an algorithm in a 

program.27 The axioms for M are specified in terms of the instructions in the machine code. For 

example,  

 

Ax1 If I = 00000001 ACTIONS-IS (A Þ D) 

Ax2 If I = 00000010 ACTIONS-IS (A Þ A + D) 

 

The intended interpretation of a statement of the form ‘if X ACTION IS Y’ is that the occurrence 

of X produces or brings about the action of Y with the same logical strength as the statement that 

X causes Y in a counterfactually supporting way (p. 341). Here Copeland adds an additional 

constraint on the physical system:  counterfactual supporting transitions between the physical 

states. This is what makes Copeland’s view a counterfactual implementation view. His account is 

 
26 See Chapter One, sections 2.5 and 2.6.  
27 See Chapter One, section 2.4. 
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a theory of implementation that strengthens the physical requirements of the implementing system 

by requiring that it have the appropriate type of architecture such that it is capable of implementing 

an algorithm, and the physical state transitions must have the appropriate kind of causal structure.  

 

Melnyk (1996) also gives us an implementation view. Melnyk’s target is Searle’s argument against 

Strong AI, and, in particular, his goal is to respond in terms of the Robot Reply. To do this, he 

strengthens a causal mapping view. He thinks Searle’s thought experiment involving placing 

himself inside a room with a rule book does not meet implementation requirements because it fails 

to include an embodiment condition.  Here Melnyk characterizes Searle’s thought experiment as 

an example of a trivial implementation. To avoid this kind of trivial implementation, the 

embodiment condition causally connects the state transitions inside the room to the outside world 

appropriately (p. 406). Melnyk proposes that we might think of the connections as something like 

nomological dependence. While Melnyk’s goal is not to specifically provide a theory of 

computation, he does give a theory of implementation that addresses the problem of trivial 

implementations.28  

 

2.3 The dispositional account 

 
28 Melnyk’s project overlaps with the computation literature, but there are some differences in the dialectic. Melnyk 
can be best understood as contributing to the debate about the nature of physical realization (see Francescotti 2002 for 
a reply to Melnyk and Kim 1998 & 1999 for a similar view, and Papineau 1995 for an explanation of what is at stake 
in the debate). In some places, this debate overlaps with debates about functionalism and sometimes computational 
functionalism specifically. Whenever the debate moves toward computational functionalism, we end up with an 
interesting overlap with the computational literature. So, while many of Melnyk’s interlocutors are not engaging in 
the debate about computational implementation, his view fits in quite nicely with other implementation theories 
because he engages with the relation between computational architecture and a physical system. Note, though, that 
just because an author describes their view in terms of a “realization function” does not mean they are engaging in the 
same debate as Melnyk (for example, Scheutz 1999).  
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Klein (2008) offers a dispositional theory of implementation to reply to Maudlin’s 1989 conclusion 

that conscious states can neither supervene on computational states nor be explained by an appeal 

to computation. Klein calls this problem the “superfluous structure problem,” where in order to 

count as an implementation, it looks like a system must have more structure than is strictly active 

during a particular computational process.29 To solve the problem, Klein gives us a view that 

requires that the computational states map onto the dispositions of the implementing system. He 

defines dispositions as things that are or supervene on objects' intrinsic properties, giving them 

conditional causal powers. An object's disposition is picked out by specifying the conditions under 

which the disposition would manifest and the effect that this manifestation would have—meaning 

they support counterfactuals. The dispositional account strengthens the causal relations by 

requiring a dispositional relation between the physical states where for any computational state 

transition of the form s1 ® s2, if the system is in the physical state p1 that maps onto s1, the system 

manifests a disposition whose manifestation is the transition from p1 to the physical state p2 that 

maps onto s2 (Piccinini & Maley 2021).30 This view is a theory of implementation that addresses 

trivial implementations.  

 

2.4 The computational complexity accounts 

In this section, I will introduce a category of theories I call “computational complexity accounts.” 

These accounts go beyond strengthening causal relations in various ways by introducing a series 

of complexity requirements of varying types.  

 
29 This can be seen as a consequence of Searle’s Chinese Room argument. If you can’t get something like “conscious 
understanding” from the physical-causal computational manipulations, then there must be some required structure that 
exists over and above the computational structure—a superfluous structure.  
30 Bishop (2009) cites an additional paper from Colin Klein (2004) titled ‘Maudlin on Computation’ as a “working 
paper.” I asked Colin for a copy, and he said that the 2008 paper I cite here is what ended up as the final, published 
copy of the paper that Bishops cites.    
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Schuetz (2021) gives a theory of implementation in terms of bisimulation.31 This view defines the 

mapping between the computational structure and the physical system. According to this view, in 

order for a physical system to implement some computational structure, the computation and the 

physical system must share one crucial aspect: the state transitional structure of the computation 

is at most as complex as the causal transitional structure of the implementing physical system with 

respect to the computational sequences (p. 560). Scheutz calls the similarity between the 

complexity of the transitional structures a “bisimulation.” This notion of implementation is meant 

to relax the conditions established by mapping views that relate computational states to physical 

states. Instead of requiring a mapping between states, this view requires only a correspondence 

between computational and causal paths—every computational sequence corresponds to a causal 

sequence, and every causal to a computational sequence.32 Scheutz’s bisimulation view addresses 

the implementation relation by incorporating a causal complexity requirement.  

 

Millhouse (2019) gives what he calls a “simplicity criterion for physical computation.” He aims to 

provide a formal criterion for physical computation that allows us to distinguish between 

competing computational interpretations of a physical system objectively. Millhouse describes his 

view as distinguishing between “interpretations,” but he takes a ‘computational interpretation’ to 

be a description of a physical system as “an abstract discrete state machine” (160). Contrary to the 

terms he chooses, Millhouse provides a theory for how we are to “interpret” some physical system 

 
31 He also discusses bisimulation in his 1999 paper.  
32 Scheutz (2001) is classified as a causal view in the SEP article on physical computation, but it’s not clear to me that 
it actually counts as a causal view in the ways that makes the previous views “causal.” Scheutz also does not seem to 
categorize his own view as causal either, but instead, as one that focuses on “computational complexity.”  
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as implementing a discrete state machine. So, “interpret” here ends up being misleading. What 

Millhouse is addressing is the implementation relation.  

 

To address triviality, Millhouse relies on Kolmogorov complexity to show how information 

distance might help address triviality.33 Kolmogorov complexity is the measure of information 

contained in a string of symbols or data where complexity is defined as the length of the shortest 

possible description that can produce the desired output. Information distance is the measure of 

similarity between two pieces of data and their shortest possible descriptions. So far, I have 

described trivial implementations as an overgeneralization problem: too many systems implement 

computational structures. When Millhouse characterizes trivial implementations, he does so in 

terms of being unable to adjudicate between the computational structures that a single system 

implements. This is an interesting deviation from how trivial implementations are typically 

presented, but it is still a type of trivialization of the implementation relation.  

 

Millhouse gives his view in terms of P, an abstract discrete state machine, M, an ordered pair of 

functions mapping states P to M. The interpretation is I and its component function S and C. To 

address implementation, Millhouse says that a physical system P implements an abstract discrete 

state machine M, if there is an ordered pair of functions mapping (i) the states of P to the states of 

M, and (ii) inputs to M to possible interventions in P. In addition, he requires that the mapping 

support the counterfactuals specified by the abstract machine’s transition function (160-161). So 

far, his view is similar to Chalmers's (1996). What he adds to the view is a way to evaluate whether 

 
33 See Chapter One, Section 3.2 for more on Kolmogorov information. 
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the computational description is appropriate for the given machine—which helps eliminate trivial 

implementations.  

 

He argues that to prevent trivial implementations, interpretations (in terms of Kolmogorov 

Complexity) assigned a smaller value should count as better than those assigned a higher value 

where for any physical system P, and any pair of abstract machines, M1 and M2, if the optimal 

interpretation of P as M1 is better than P as M2, then P more genuinely implements M1 than it does 

M2. The Kolmogorov complexity of I, K(I) is the length of the shortest program that computes S 

and C. This gives the simplicity criterion for choosing between implementations. Essentially, the 

criterion allows us to quantify the minimum amount of information required to use a physical 

system as a particular type of computing machine (163). Although Millhouse’s view is strange in 

some ways, it still follows the basic pattern of giving a theory of implementation that address trivial 

implementations.  

 

3 Conclusion 

The influence of philosophy of mind on implementation theories should be evident based on the 

abovementioned views. Many were interested in justifying the computationalism paradigm 

because Computationalism is silent on how the brain realizes the computational states. Putnam’s 

earliest account, now known as the “simple mapping” view, was one of the first attempts to make 

good on the computationalist claims by giving a theory of how we might understand the brain as 

implementing a computational structure. So, what we now know as the literature on computation 

and implementation has its foundations not in computer science but in the philosophy of mind. 

However, we can easily see how this extends beyond the context of cognition when we consider 
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that any metaphysical account that addresses the nature of the implementation relation should 

necessarily get it right about all computing systems. In other words, it should ensure that only the 

right systems implement computational structures.  

 

In this chapter, I have demonstrated that non-semantic theories address the implementation relation 

in various ways and that they address the problem of trivial implementations. Although the 

terminology may differ across the various views in some ways, all theorists are interested in 

relating a computational structure to a physical system.   
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6 Semantic theories of interpretation 

 

1 Introduction 

In the previous chapter, I argued that non-semantic theories of computation naturally lend 

themselves to the implementation question, as I have defined it (and as most of them define it). 

While these views vary across different dimensions, what they have in common is that they directly 

address questions about computational implementation. In doing so, they address the problem of 

trivial implementations. What these theories do not address is the interpretation question. This is 

by design; they do not intend to address questions beyond implementation. But, by not addressing 

the interpretation question, they leave the problem of trivial interpretations on the table. Whether 

authors of these views take the problem of trivial interpretations seriously or not does not alter the 

result that their view only addresses one aspect of physical computation.  

 

Views that address interpretation provide a way to understand how to attribute a particular 

computational process, description, etc. (sometimes just called a “function”) to a physical system.34  

Some who offer a theory of implementation do not think that trivial interpretations threaten a 

theory of computation for various reasons, some of which include the claim that what a system 

computes is a matter of perspective, so we do not need to fix the interpretation (Chalmers 1996). 

But this reason is not strong enough to eliminate the need for a theory of interpretation. For 

 
34 In Chapter Two, I mentioned that a function is placed at Marr’s computational level. Some people who give a 
semantic view are interested in ascribing the function to a physical system, which means that in the context of Marr’s 
framework, they want to relate the computational level to the implementation level. This is different from 
implementation views that relate the algorithmic level to the implementation level. This is another place where we 
can see the difference between implementation and interpretation. So, my framework has benefits for understanding 
the relationship between Marr’s levels. It seems to me that when we relate the computational level to the 
implementation level and when we relate the algorithmic level to the implementation level, we are doing different 
things, especially if the levels are meant to capture different kinds of explanations. My framework helps make sense 
of this. 
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example, if you think that what a system computes is a matter of perspective, you still have not 

said anything about how the perspectival stance works or which contexts are appropriate. Without 

an accompanying theory, it is an empty claim. Moreover, some who offer a theory of interpretation 

also take this stance.35 So, just because you think that attributing computational descriptions is a 

matter of perspective (or context), you have not dispelled the need for a theory that explains which 

perspectives and when are appropriate—there must be some constraints on how we make our 

ascriptions—this is what a theory of interpretation does for us and what interpretation theorists 

take to be an essential aspect of physical computation. Nevertheless, as I have also argued, theories 

of implementation are not responsible for the problem of trivial interpretation because a theory of 

interpretation has the resources to handle the issue. In this chapter, we meet views that pair with a 

theory of implementation, and together we can see them as addressing two important aspects of 

physical computation in a complimentary way.  

 

In this chapter, I will argue that “semantic accounts” address a second aspect of physical 

computation, namely, interpretation. The individuation question is most obviously derived from 

semantic accounts because some involved in the debate answer it explicitly. Semantic theorists 

offer a semantic account because they take on the metaphysical commitment that computation 

necessarily (or essentially) involves the manipulation of representations (Piccinini & Maley 2021, 

Sprevak 2010, Shagrir 2022). This sometimes takes its cue from Fodor’s famous claim that there 

is “no computation without representation” (Fodor 1981, p. 122). This metaphysical claim is 

sometimes given as a response to the perceived failure of non-semantic accounts (what we now 

know as theories of implementation). So, sometimes those who provide a semantic account take 

 
35 For example, Rescorla 2013 and Shagrir 2022. 
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themselves to be giving a theory of physical computation that answers the individuation question. 

My framework distinguishes the individuation question from the implementation and 

interpretation questions. This means that semantic theorists may provide an answer to the 

individuation question in the form of a metaphysical commitment, but their theory is an answer to 

the interpretation question that addresses the problem of trivial interpretations.  

 

However, a second way of answering the individuation question adopts a weaker stance. This 

weaker stance says that our explanations regarding computational systems should reference what 

the system represents. This weaker version is compatible with the idea that computation may not 

involve the manipulation of representations in some cases. I identify this second, weaker answer 

to the individuation question because, as we will see, some theorists that propose a theory of 

interpretation do so because they think that our explanations should reference representations in 

some cases. If we do not acknowledge this weaker notion, then some accounts that require 

reference to semantic content will not be properly categorized as semantic accounts, generating an 

extraneous third category of “middle” views.36 So, as long as the view references semantic content 

in some way, regardless of the metaphysical commitments regarding the relationship between the 

content and computation, I will refer to the view as a “semantic account.” The idea that semantic 

accounts involve answers to the individuation question that vary in strength is no surprise, given 

my argument that the individuation question is distinct from the implementation and interpretation 

questions.  

 

 
36 For example, Rescorla (2013) maintains that his view is neither semantic nor non-semantic because he thinks that 
we only sometimes need to appeal to semantic interpretation, but as we will see later in the paper, his view is clearly 
a semantic account—it just adopts the weaker claim. 
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In this chapter, I will argue that semantic accounts address the interpretation question, and in virtue 

of doing so, they address the problem of trivial interpretations: 

 

The Interpretation Question: Which computational process(es) does the physical system 

perform? 

 

Trivial interpretation: A physical system can be interpreted as performing every 

computational process.  

 

This chapter is far more revisionary than the previous chapter. Before I get started, I will flag that 

semantic accounts are quite messy when it comes to figuring out how they all fit together. Some 

people take themselves to be answering the individuation question while others do not. Some 

people refer to their view as answering the “implementation question,” and then they frame the 

question in several different ways. Some claim to address “triviality” but only tackle one type. 

This is sometimes because they think that an answer to one implies an answer to another, but not 

always. When it comes to implementation views, even the more complex ones, we can see that 

they all generally aim at a similar target. In contrast, it is not so clear that semantic views do. I 

think this is the source of many of the problems in the literature and a very good reason why a 

framework like mine is needed. 

 

Once we re-classify semantic accounts as theories of interpretation, we place distance between an 

answer to the individuation question and a theory of interpretation. Within my framework, it does 

not matter how interpretation theorists answer the individuation question—they can be committed 
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to whatever computation/representation combination they want. A consequence of this is that it 

makes a variety of implementation and interpretation views compatible. You can answer the 

individuation question however you would like while adopting whatever pair of theories you think 

best explains the various aspects of physical computation. I show this in Chapter Eight.  

 

2  Breaking up with Jerry Fodor 

Jerry Fodor’s work on computation and representation has been widely influential in the 

philosophy of mind and the philosophy of computation. His famous quote, “There is no 

computation without representation” (Fodor 1981), is often cited as support for the claim that any 

computational theory should necessarily involve a reference to semantic properties—and 

sometimes even further that computation is the manipulation of representational symbols.37 One 

of Fodor’s main contributions to cognitive science and philosophy of mind was pairing the 

computationalism thesis with the representational theory of mind. This pairing produced Fodor’s 

famous Language of Thought Hypothesis (Fodor 1975). The representational theory of mind 

combines Turing’s work on computation with intentional realism—the idea that there are lawful 

relations between intentional states that are physically realized. These representational states have 

both syntactic structure and a compositional semantics leading to the hypothesis that thinking is a 

process that takes place in an internal language of thought.  

 

When Fodor’s statement that there is “no computation without representation” is invoked in 

various philosophical contexts, “representation” is understood as a mental state bearing a 

 
37 Pylyshyn also references this slogan in his 1984 book ‘Computation and Cognition: Toward a Foundation for 
Cognitive Science’ on page 62.  
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semantic/representational relation to the external world—that their truth conditions are determined 

by how the external world is.38 This is because Fodor was giving a theory of mind and not a theory 

of computation. It makes sense that when Fodor discusses a computational theory of mind that he 

thinks that mental computations represent—that they are intentional. After all—this is exactly 

what his theory is meant to explain. However, it is a mistake to extend this quote to a theory of 

physical computation and claim that for some physical process to count as a computation requires 

that it necessarily has semantically interpreted physical states. Put differently, using this quote to 

answer the individuation question misappropriates the context in which it was given in the first 

place.  

 

There is reason to think Fodor would not endorse this kind of answer to the individuation question 

anyway. Consider the entire context in which the quote is embedded: “To think of a system (such 

as the nervous system) as a computer is to raise questions about the nature of the code in which it 

computes and the semantic properties of the symbol in the code. In fact, the analogy between minds 

and computers actually implies the postulation of mental symbols. There is no computation 

without representation” (Fodor 1981, p. 122). But Fodor is talking about neural computations and 

not computation simpliciter. So, what is the nature of the code involved with neural computation? 

The semantic properties involved with neural computations are supposed to be mind-independent 

and fixed by the causal relations to the external world. There is a tight connection between the 

semantic and formal properties of neural computation. Still, the necessity of the external semantics 

is a feature of neural computations and not computing artifacts. So, to assume this stance assumes 

too much of computation simpliciter. Computers have an external semantics, but not in a mind-

 
38 For examples of this see: Piccinini (2006). 
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independent way. Moreover, some people who give a semantic account take a perspectival stance 

toward the semantic ascription—they think of the representations as mind-dependent. 

 

Sometimes Fodor is characterized as giving a semantic account of computation—the kind meant 

to be a contender for how we should understand the nature of physical computation in general. For 

example, Piccinini (2015) argues that Fodor (1975) and Pylyshyn (1984) take computational 

vehicles to require structures that have a language-like combinatorial syntax and semantics, and if 

the vehicles do not have this structure, then they don’t count as computations (p. 29). But this is a 

serious overstatement of their view. Fodor and Pylyshyn were giving a computational theory of 

mind. They thought that mental computations required a combinatorial syntax and semantics to 

account for the systematicity and productivity of thought—a reason to reject neural networks as a 

sufficient model of mental processes. They were not arguing that neural networks weren’t 

computational, just that they were the wrong kind of computational architecture to account for 

mental computations (Fodor and Pylyshyn 1988).  

 

Before importing Fodor’s quote into the literature on physical computation, we should ask whether 

his analogy between neural computation and physical computation, in general, holds within the 

context and whether his project genuinely fits in with the goals of a theory of physical computation. 

I contend that it does not. Just because some theoretical posits and arguments from the 

functionalism/computationalism area of philosophy import nicely into the computation literature 

does not mean everything does. So, I propose that we break up with Jerry Fodor when it comes to 

our metaphysical commitments about the nature of physical computation.  
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3 From a semantic account of computation to a “theory of interpretation” 

 In this section, I will taxonomize various semantic accounts that have been offered throughout the 

literature. This will include accounts that accept the strong and weak ways of answering the 

individuation question. I will then classify them as theories of interpretation that address the 

problem of trivial interpretations. 

 

3.1 Semantic theories and philosophy of mind 

In section two, I argued that we should reject Fodor’s slogan as motivation for giving a strong 

semantic response to the individuation question. But it is still possible to offer a theory motivated 

by the desire to understand the mind or brain as a computing system. Many theorists in the 

philosophy of mind give accounts of the nature of physical computation by addressing computation 

in cognitive psychology.  

 

Pylyshyn (1984) tells us that a computer “is a physical object whose properties vary over time in 

accordance with the laws of physics” (p. 55) and later that “to count as computation rather than 

simply any functionally described physical system… it must contain symbols that are interpreted” 

(p. 62).39 I consider this to be Pylyshyn’s answer to the individuation question if he were to give 

one. He says, “Because an unlimited number of physical properties and their combinations can be 

specified in the physical description, there is, in fact, an unlimited number of such sequences” (p. 

55).  Pylyshyn notes how mappings from physical states to computational states might not even 

be possible and that “not only can… computational sequences be realized in any digital computer 

ever made, or that will ever be made… they can be realized in devices operating in any imaginable 

 
39 After this statement, he gives Fodor’s famous quote “no computation without representation” in a parenthetical. 
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media—mechanical… organic—even a group of pigeons trained to peck as a Turing machine” (p. 

57).  In this passage, I understand Pylyshyn as describing the problem of trivial implementations. 

Pylyshyn is saying that we shouldn’t characterize computing systems in terms of some mapping 

because it will end up trivializing which systems count as computing systems.  

 

As a response to the problem of trivial implementations, Pylyshyn offers a semantic account that 

tells us something about the computational process in the machine (p. 55). He says, “One of the 

most important similarities between cognition and computation… is suggested by the observation 

that the explanation of how computation… proceeds must make reference to what is represented 

by the various intermediate states of the process just as the explanation of cognitive processes must 

make reference to the content of mental states” (p. 57).  To address the problem of trivial 

implementations, I argue that Pylyshyn gives us a theory of interpretation. He is concerned, 

explicitly, with the question “what computation is being performed” (p. 57). Although his 

motivation to develop his view was the problem of trivial implementations, he gives a view in 

terms of interpretation.  

 

A quick detour is in order. This switch happens with many of the semantic views. But it is not by 

accident. Many people who give a semantic account think their view addresses trivial 

implementations because of how they answer the individuation question or because if computation 

is necessarily a semantic process, it rules out any system that cannot represent in the correct way. 

So, a semantic account implies an answer to trivial implementations. First, implying an answer is 

not a theory. What we need is a theory for how to understand when a physical system implements 

a computational structure in a way that prevents trivial implementations. Second, this has 
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consequences for an account of physical computation that not all semanticists would be inclined 

to take on. If you think that what eliminates trivial implementations is the fact that only computing 

systems represent and you think that a semantic interpretation is a matter of perspective, then ipso 

facto, you must also accept that the property of being a computer is a matter of perspective. This 

dissolves the need for a theory of computation in the first place. Perhaps we could make do with 

the appropriate kind of perspectival realism. I don’t intend to argue for this any further, but I hope 

that my point is made that this position has downstream consequences. Moreover, it does not 

resolve the problem of trivial implementations. Returning to Pylyshyn, it still doesn’t solve the 

problem of how a group of trained pigeons can implement a Turing machine. If pigeons are a 

stand-in for computational states and Pigeons represent (they do), then it looks like being a 

representational system does not prevent trivial implementations after all. Something more needs 

to be said.  

 

Returning to Pylyshyn, his semantic account unfolds in the following way. First, he thinks that if 

we want to answer questions about what computation is being performed, we need to refer to the 

meanings of the symbols in both the expression and the printout of the output. This incorporates 

the internal semantics (expression) and the external semantics (the printout). To explain why the 

machine prints the numeral “5” when it’s provided with the expression “(PLUS 2 3), we must refer 

to the meanings of the symbols in both expression and on the printout. To start, Pylyshyn gives us 

a numerical example.  

 

Let us say that the expressions consist of the atomic symbols o and x arranged in strings of 

arbitrary length. In this example the states of the memory registers are designated by such 
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expressions as o, x, ox, xo, xx, oox… and so on; each expression designates some possible 

state of each machine’s memory registers. Let us further suppose that when a certain pattern 

(designated by the symbol “Å”) occurs in a portion of the machine called its “instruction 

register,” the machine’s memory registers change states according to a certain, specifiable 

regularity… (p. 59) 

 

The specifiable regularity can represent different functions, such as addition, given the adoption 

of the appropriate semantic function and specific requirements. The semantic function maps the 

strings of o’s and x’s onto numbers and requires regularities in the computer’s state transitions to 

correspond to the mathematical operations defined over the interpretations of the intended 

symbols. In other words, the state transitions must preserve the intended interpretation function (p. 

60-61).40 This gives us a way to understand the preservation of the semantic content ascribed to 

the computational states. This is an important feature of the theory because, ultimately, Pylyshyn 

is interested in giving an account of cognition.  

 

Pylyshyn’s answer to the individuation question involves the idea that computations must contain 

interpreted symbols—symbols that represent numbers, letters, or words, etc. But he also says these 

interpretations are not “wired into the machine…the designation is provided by a person who takes 

the symbols to be about something—that is, the person gives the symbols a semantic 

interpretation” (p. 62).  Pylyshyn’s stance here is that the interpretation is a matter of perspective. 

 
40 This concept also underpins the Language of Thought. One way to describe what’s happening here is that the 
syntactic manipulations preserve the semantic interpretations. This is a critical aspect of the Language of Thought: 
the syntactic properties are causal, but in such a way that the semantic content is preserved in a rule-governed way. 
This is the formalist’s motto: “If you take care of the syntax, the semantics will take care of itself” – the beauty of a 
physical symbol system (Haugeland 1985, p. 106).  
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And his view is that a theory of interpretation that has the conceptual resources to handle trivial 

interpretations. Although he targets trivial implementations, he does not provide a solution to the 

problem.  

 

Dietrich (1989) also offers a semantic theory in the context of cognitive psychology.41 According 

to Dietrich, computationalism requires that we posit and interpret mental states and structures. He 

calls this the “computational strategy.” He extends this claim to computers by adopting the view 

that computers are systems that manipulate representational (interpreted) symbols. To take on the 

computational strategy is to attribute to a subject or physical system S, the computation of a certain 

function, F. Fixing F for a particular system “is seeing S as doing something regular. Therefore, 

fixing F grossly, but not trivially, answer the question What is S doing?” (p. 126-127).42  Specifying 

the question of what the system is doing is an indication that he is addressing the interpretation 

question. He briefly mentions triviality but does not give an example of what type he responds to. 

Regardless, as soon as he begins to provide a theory of what the system is “doing,” he is well on 

his way to providing a theory of interpretation. Dietrich thinks that semantic attribution connects 

S’s state changes within something we can easily understand. He gives us an example of how to 

apply the computational strategy by describing a four-function calculator: 

 

Consider something very different from us: an ordinary, four-function calculator, a device 

that can add, subtract, multiply, and divide. For our purposes, assume that we are given a 

 
41 Dietrich’s target is Stich’s syntactic theory of mind (1983).  
42 My italics. 
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four-function calculator which uses a brand new architecture, and that our task is to figure 

out what this new architecture is (p. 128-129). 

 

After hypothesizing how it works based on the outputs that it gives, we might ask the following 

questions and come to the following hypotheses: 

 

Why does the input have to have the argument and operations in the order that it does (post-

fix order as opposed to the more natural infix form)? Specifically, we want to explain the 

way our calculator seems to 'remember' and 'forget' numbers, and that when it gives the 

output we want it seems to 'remember' two numbers, operate on them, and 'remember' the 

result, which can then be used as one of the arguments for the very next operation. … Our 

hypothesis then is that our calculator is a stack-based machine… Stacks have two 

associated operations: push and pop. Data items are pushed onto the stack as they are stored 

and popped off from the 'top' of the stack as they are used. We hypothesize that our 

calculator pushes numbers onto its stack as they are input, and pops them when an operation 

is input. If "22+" is the input, the first "2" is pushed onto the stack, then the second "2" is 

pushed. When "+" is received, the two "2'''s are popped off the stack, added together, and 

"4" is pushed back onto the stack (p. 129-130). 

 

Dietrich is interested in the way that we reason about the architecture in the example. First, we 

assume what it does, and this assumption is based on the context that in our culture calculators are 

used to compute instances of functions like addition. Second, we explained how the calculator 

performed addition by analyzing its addition into a series of stack operations. Third, we drew a 
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correspondence between the states of the calculator and the states of the stack, which required an 

interpretation of the states of that calculator as being the states of the stack, and we interpreted the 

changes in the stack as the computations of the function push and pop. For Dietrich, semantic 

attribution comes from the context in which the attribution is made. This relativizes our scientific 

explanation to our goals and views of the world (p. 131). The only requirement is that the attributed 

contents explain observed behavior (p. 132). Dietrich has given us a theory of interpretation that 

we can use to address the problem of trivial interpretations. He doesn’t seem to think that 

representations are essential to computations but that an interpretation of the computational states 

is necessary for a sufficient explanation of the computational system—one we can use and one we 

can understand.  This is evident when he tells us that his project is epistemological; he is concerned 

with how we can know what a computer is doing. So, Dietrich ultimately gives provides the weaker 

answer to the individuation question while giving a theory of interpretation.   

 

Smith (1982a, 1982b) tells us that semantic attribution lies at the core of the notion of computation. 

He says, “What distinguishes an abacus, a calculator, and even a full-scale computer, from other 

rule-governed complex artifacts like steam plants and food processors, is that the best explanation 

of [their] behavior is formulated in the domain of interpretation… computers…. are… just those 

devices whose functional architecture we understand in terms of external semantical attribution.”43 

Smith (2002) summarizes what he calls his “long-term investigation of the foundations of 

computer science” and claims to give a theory of physical computation that is meant to do justice 

to computer science, artificial intelligence, and computational cognitive science (p. 24).  

 
43 This quote was reported by Dietrich, who pulled it from an unpublished manuscript: Smith (1982a). I have also 
come across some information leading me to believe that these claims can also be found in Smith’s dissertation: Smith 
(1982b). 
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Smith still holds tight to his answer to the individuation question we saw developing in the early 

80s. He tells us that he takes “computation to be semantic (not just by assumption, but as an 

unavoidable lesson from empirical investigation)” (p. 34).44 Smith’s view is both strong and 

revisionary. What we have from Smith is an answer to the individuation question that could lead 

to a theory of interpretation. But we never actually get a theory out of Smith. Instead, we end up 

with the conclusion that computers do not form a distinct category. This pessimistic conclusion 

says that we’ll never be able to say anything about what counts as a computer and what doesn’t. 

Within my framework, I interpret this conclusion in terms of theory. I take it that Smith’s 

conclusion is ultimately that we cannot give a proper theory of implementation nor a theory of 

interpretation because even though we know that computation is a semantic process (his position), 

we aren’t going to be able to specify the nature of the various aspects of computing systems such 

that we can lay down a theory that allows us to pick those features out in the world.  

 

Smith gives us an answer to the individuation question but nothing more. This detail gets missed 

because the individuation question is run into the implementation question, which is then run into 

the interpretation question. When these questions aren’t pulled apart, an answer to any of them 

starts to look like a “theory of computation.” So, even though Smith does not give us a theory at 

all, he still gets credited with providing a semantic account of physical computation simply in 

 
44 An interesting part of Smith’s approach is that he thinks that a theory of effective computability is a theory about 
the physical world and that recursion theory is a theory about marks (p. 41). This turns the way we generally understand 
these theories upside down. Generally, effective computability and recursion theory belong to the formal side of 
computer science—the mathematics. But Smith understands them instead as issues regarding the nature of the physical 
world. Especially given this insight, we can see that Smith’s concern with physical computation results from dropping 
the mathematical side of computation into the physical world. So, when he gives us a theory of physical computation, 
he’s actually giving us a theory of mathematical computation (if we don’t accept the flip). Because of this, it’s not 
clear to me that Smith belongs in the grouping of semantic views or even that he belongs in this project. But he’s often 
cited as giving an account of physical computation, and I wonder if it’s because this flip is being ignored. 
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virtue of answering the individuation question by claiming that computation is necessarily a 

semantic process. I’ve included him in this list to demonstrate how not distinguishing the questions 

in the way I do can give the illusion of a theory of physical computation when in actuality, no 

theory has been given—just a claim—an answer to the individuation question.  

 

In this section, I’ve given several accounts from the philosophy of mind. These views (except 

Smith’s pessimistic conclusion) all answer the individuation question by requiring some reference 

to semantic content by adopting either the stronger or weaker version. But a semantic view cannot 

solve the problem of trivial implementations because it does not provide a theory of 

implementation. So, instead, what these authors end up doing is giving a theory of interpretation, 

one that is perhaps cut out to help resolve the problem of trivial interpretations.  

 

3.2 Semantic accounts in the context of a “theory of computation.” 

In this section, I will taxonomize views that fit into the computation literature proper. These views 

directly engage with the individuation question while attempting to resolve triviality problems in 

some way. In this section, I will argue that these views only address one aspect of physical 

computation—namely, interpretation—and thus, they should be classified as theories of 

interpretation that directly address the problem of trivial interpretations (regardless of whether they 

think that their answer to the individuation question implies a solution to trivial implementations). 

I deliberately start this section with Sprevak’s semantic account. His account and presentation of 

the literature are demonstrably the most “sticky.” I hope the work I’ve done so far will illuminate 

how he’s running all three questions together. Consider this our first test for future applications of 

my framework. After Sprevak is concluded, I will move on to other semantic accounts.  
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Sprevak (2010) argues that representational content plays a critical role in determining 

computational identity. He adopts the ‘received view’ about computation: that computations must 

involve representational content.45 He thinks that representational content is a necessary condition 

that does crucial work in determining computational identity and that representation does much of 

the hard work in answering the questions about individuation. He also uses the phrases 

‘computational process,’ ‘physical computation,’ and ‘computational system’ interchangeably and 

as all meaning ‘the implementation of a computation by a physical system.’ It is difficult to discern 

what these terms are tracking in the broader context of the literature, but let’s see if we can figure 

it out. Consider the following passage where I’ve emphasized some terms in bold: 

 

Where no restriction is placed on the type of representational content involved, e.g. no ban 

on distal objects serving as content. Egan and Piccinini accept that computations often do 

involve representational content, but they argue that such features are accidental to a 

system’s computational nature, and have no bearing on its computational identity. My 

claim is that such representational content is a necessary condition that does crucial work 

in determining computational identity. It is worth emphasising that even on this view, 

representation would still only be one condition on computational implementation: there 

are further conditions that a physical computation should satisfy, and additional 

properties that differentiate physical computations. However, representation does much 

of the hard work in answering the questions about individuation that motivate an account 

 
45 Sprevak has recently cast some doubt on this, however. At the workshop on “The Nature of Physical Computation” 
hosted by Oron Shagrir on June 27, 2022, Mark expressed that he thinks that this commitment is far too strong because 
it’s difficult to see how computation “all the way down”—or unconscious computational processes at the 
microphysical level could be representational in this way. 
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of physical computation. Consequently, it is a feature of physical computation that should 

be of special interest (p. 3). 

 

His use of the term ‘identity’ when discussing representational content gives the impression that 

he is using the term to signal the identity of a computational process or state. This can be 

corroborated by referencing the 2008 Piccinini paper he cites. In this paper, Piccinini argues that 

“computational states are individuated at least in part by their semantic properties” (p. 205). If we 

follow Piccinini’s paper, the term ‘individuation’ tracks the idea that we can individuate 

computational states semantically.46 Sprevak argues in this paper that non-semantic views are 

threatened by universal realization. This shifts the discussion from the way that we individuate 

computational states to one about “realizing” computational states and then to the problem of 

trivial implementations.  So, when Sprevak invokes the term “implementation,” he uses it to 

describe a realization function—or a version of the implementation relation related to the problem 

of trivial implementations. So, he thinks that we should individuate computational states 

semantically to avoid trivial implementations. Hopefully, we can begin to see the mismatch 

blooming. 

 

In this paper, Sprevak gives us an argument for why we should semantically interpret 

computational states and then says that this is a solution to the problem of trivial implementations.  

What makes this project even more difficult is that he opens the paper with three questions and 

 
46 In this paper, Piccinini argues for a view that he calls the “functional view of computational individuation.” 
According to this view, computational states are individuated by their functional properties, and their functional 
properties are specified by a mechanistic explanation in a way that need not refer to any semantic properties. This 
view can be seen as part of Piccinini’s account of physical computation (which he thinks answers the implementation 
question as he defines it), but it’s not the view itself. 
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claims they are “among the key questions that a philosophical theory of physical computation 

should answer” (p. 1). 

 

What makes a physical process a computation? 

What is the difference between a computation and any other process? 

Under what conditions are two computations the same or different? 

 

The fact that Sprevak engages these questions at the start of his paper makes the following debate 

even more confusing. Given this, the Piccinini and Egan papers cited no longer seem to be the 

appropriate targets for his view. Because of this, I find this entire project to be very confusing. 

Using Egan’s view to target trivial implementations seems misplaced. She is targeting 

computational explanation in cognitive science. Moreover, Piccinini is not giving a theory of 

physical computation in the target paper. So why does Sprevak target these papers? What is he 

doing? Why is he doing it this way? Sprevak is by far the worst offender when it comes to running 

questions of implementation, interpretation, and individuation together. But I think this only 

becomes obvious when we disambiguate the formulation of the implementation question and then 

clarify the implementation and interpretation questions as distinct. 

 

Luckily my framework can help. It is clear to me that, charitably interpreted, he is interested in the 

individuation question as I have defined it. He argues that computation essentially involves 

representational content (p. 3). This, combined with some other claims he makes, lets us formulate 

his answer as follows: what distinguishes computing systems from non-computing systems is that 

computing systems essentially manipulate representational content. In addition, Sprevak mentions 
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that he is interested in computational processes and not just computational states. This indicates 

that he is interested in understanding what the computing system is doing—what process it is 

performing. So, he wants an answer to the interpretation question: which computational process is 

the system performing? In addition, when Sprevak says, “the implementation of a computation by 

a physical system,” we can disambiguate how he reads “a computation” and define it in terms of 

a computational process. This means that whatever theory he gives will address interpretation and 

not implementation. So, when he describes the problem of “universal realizations” as “a mapping 

between a mathematical computation and a physical system, and such mappings are cheap” (p. 

10), we know that he takes himself to be arguing against implementation views that are, as we’ve 

seen non-semantic. 

 

Sprevak gives his theory by presenting some paradigmatic cases of computation involving 

representation. One example involves an electronic computer that takes electrical signals as inputs 

and yields electrical signals as outputs. The input and the output represent (typically) 0’s and 1’s. 

The strings of 0’s and 1’s can represent many things: an email message or even a picture displayed 

on the screen.47 Until we interpret the strings of symbols, we cannot say which computational 

process is taking place. The fact that the strings can represent many things is the problem of trivial 

interpretations. Until we interpret the system, it could be doing anything! Here we can see that 

Sprevak is specifying the problem of trivial interpretations—a switch (that I endorse).  

 
47 There is a clue here about why a theory of interpretation does not give a theory of implementation. Implementation 
views are closely related to the individuation question in that they help us to identify which systems implement 
computational structures—this helps us to pick out computing systems from non-computing systems. The examples 
here are of systems that we already know are computers—they are paradigmatic computing systems. But they are used 
as examples for why we need a theory that involves reference to representational content. So, one way to see this is 
that a theory of interpretation comes after a theory of implementation. Once we know that the state transitions or the 
physical processes implement a computational structure, then we can move onto interpreting the system. When we 
only think about systems that we already know implement a computational structure, the implementation question 
slips away into the background. But note that it’s never actually answered.  
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Sprevak characterizes his view in terms of input-output (I/O) equivalence. Recall that he asks, 

"Under what conditions are two computations the same or different?” This is where he directly 

answers this question. This is part of the interpretation question—sometimes we want to know 

whether different systems with different architectures or structures are implementing the same 

computational process.48 He asks us to imagine two I/O equivalent systems that are made out of 

different physical materials (these systems aren’t computational, but it helps generate the intuition 

that Sprevak is pushing on).  

 

One system is made of silicon and takes electrical signals as inputs and outputs, the other 

is made out of tin cans and string and takes marbles as inputs and outputs. Suppose the two 

systems are computationally I/O equivalent. What could their I/O equivalence consist in? 

The respective inputs and outputs of the two systems are different and may be so different 

as to not have any physical or functional properties in common. The only answer seems to 

be that their respective inputs and outputs represent the same thing (p. 22).  

 

The best way to understand Sprevak is to categorize him as giving a theory of interpretation that 

answers the interpretation question. He thinks this helps to identify which computational process 

 
48 This gives us another clue as to why we should distinguish between implementation and individuation. It is possible 
that the same computational process can be realized by a variety of computational architectures. For example, I’m 
using Word on my Mac, but I can also use Word on my PC. Macs and PCs have different operating systems and 
architectures (that’s why you specify which one you are buying the program for!). If this is possible, we can consider 
the computational architectures of Macs distinct from the computational architecture of a PC without having to say 
anything about whether I’m using Word. We want to know whether the physical hardware is implementing which 
structure. Sprevak doesn’t care about the structure; he cares about the process—the program.  
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a system performs because otherwise, it can be seen as performing any computational process. 

This is also a solution to the problem of trivial interpretations.  

 

It is worth visiting Sprevak (2018) as well. In this paper, he says the following: 

 

A theory of implementation aims to describe the conditions under which a physical system 

does and does not implement a computation… a theory of implementation tells us, for a 

physical system X, and abstract computation, Y, the conditions under which ‘X implements 

Y’ is true or false… a theory of implementation says what we mean by our talk of 

computational implementation and explains how it reduces to… conditions regarding 

abstract computations in physical systems… sometimes a theory of implementation is also 

described as a theory of the computational relation. This relation is envisioned as a 

metaphysical bridge between the abstract realm of mathematical entities… and the concrete 

realm of physical systems… (p. 2-3).  

 

Untangling these descriptions, we see both the implementation and interpretation questions being 

posed. He then goes on to say that a theory of implementation should answer two questions: 

 

1. Under which conditions is it true/false that a physical system implements a 

computation? 

2. Under which conditions is it true/false that a physical system implements one 

computation rather than another? 
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I hope that it’s clear at this point that Sprevak understands “a computation” in a very specific way: 

in terms of the identification of a computational process. I take it that when he reads statements 

regarding computational implementation, he always takes on this reading of the phrase. This is the 

only way to make sense of how he can clearly state the implementation question in relational terms 

(a la Chalmers) while also understanding the task of a theory of physical computation as requiring 

an interpretation of the computational process. After we distinguish the individuation question 

from the implementation question and then from the interpretation question, we can make sense 

of Sprevak’s characterization of what a theory of computation is meant to do.49  

 

Rescorla (2014) gives us what he calls a descriptivist theory of what it means for a physical system 

to implement an abstract computational model. This is a follow-up to his previous 2013 paper 

where he argued against what he calls “structuralist” theories or what we’ve discussed as non-

semantic mapping theories of implementation like Chalmers’ view. In these new iterations, 

Rescorla’s target still includes mapping views from Chalmers and Putnam. He also thinks that his 

view can address triviality arguments. Specifically, Rescorla’s paper is titled ‘A theory of 

implementation,’ which I take it means that he intends to answer the implementation question. He 

formulates the question in several ways: 

 

1. What is it for a physical system to realize a computational model? 

2. When does a concrete physical entity—such as a desktop computer, a robot, or a 

brain—implement a given computation? 

 
49 Sprevak’s work gave me the most trouble initially. But in a lot of ways, it demonstrated the importance of clearly 
articulating what a theory of computation should address. If we don’t distinguish the questions properly, descriptions 
of what’s at stake for a theory of computation get run together and many people engaged in the debate end up very 
clearly talking past each other.  

130



 

 

Immediately, we can recognize these questions as ones that address the interpretation question. A 

“given” computation is a specific computation—which computation? He takes a computational 

model to be an abstract description of a system that reliably conforms to a finite set of mechanical 

instructions where the instructions dictate how to transition between the states. So, a physical 

system “implements” the computational model when the system reliably conforms to the 

instructions. Thus,  

 

Physical system P realizes/implements computational model M  

Just in case 

Computational model M describes physical system P (p. 1278) 

 

According to Rescorla, ‘mechanical instructions’ are something like a recipe, music score, or 

blueprint, as well as formal algorithms like the Euclidean algorithm. For Rescorla, the 

computational model is interpreted—it describes what the system is doing, and this is why his 

view can be classified as a semantic account.  

 

To make his view more precise, Rescorla tells us what it means for a computational model M to 

accurately describe some physical system P. M accurately describes P just in case P reliably moves 

through “state space” according to the mechanical instructions encoded by M. A “state space” 

(canonical state space description) is understood as an ordered-quadruple [S, I, W, s0] (stated 

simply): 
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S:  the state space where S is a possible computational sate  

I:  the set of inputs 

W:  the transition function which encapsulates how the current computational state 

determines the next. 

S0:  the privileged initial state of the system 

 

The state space accurately describes physical system P just in case: 

1. For each state in the state space, s is a possible state of P. 

2. For each set of inputs, i is a possible input to P.  

3. P reliably conforms to the transition function W (counterfactually).  

4. Absent malfunction, P always begins computing in state s0.  

 

State space descriptions do not have to be computational in any sense. The idea is that a 

computational model is translated into a canonical state space and then is said to be realized by the 

physical system if it adheres to the rules above. 

 

What Rescorla is doing here is changing the nature of how we understand what it means to be a 

computational model. He is taking computational models to be something like a recipe—

interpreted instructions that describe the transitions of physical states in a system: behavioral 

descriptions! He is trying to formalize the notion of “realizing” a behavioral description, but he 

calls the behavior description a “computational model.” Despite a heavy dose of formalization, 

Rescorla is basically giving us a way to understand when some description of a system in terms of 
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what the system is doing is appropriately ascribed to the system. This is a way of addressing the 

interpretation question: identifying which computation the system performs. 

 

Rescorla says this is the appropriate way to address questions about physical computation because 

scientists use abstract computational models to describe physical systems and that a model, as 

used within current descriptivist practice, places conditions on which physical systems implement 

the model.50 So, Rescorla is using the term “implements” in regard to a specific interpreted model, 

not a computational structure.  Despite using the term “implement,” he offers a theory of 

interpretation. He compares his view to what he calls “structuralism about computational 

implementation”—these are our mapping theories of implementation. This is the major shift 

between his 2012 and 2014 paper. In the newest iteration, he says that descriptivism is compatible 

with structuralism, but ultimately, he thinks that we should still reject mapping accounts.51  He 

thinks we should reject structuralism because, for similar reasons present in 2012, he does not 

think that a mirroring relation is always sufficient for implementation. But, if Rescorla wants to 

reject structuralism, he will still need an actual theory of implementation to replace it. Moreover, 

when Rescorla discusses his view as an implementation view, I’ve argued that he’s mistaken. 

Instead, his view is a theory of interpretation and nothing more. 

 

I’ve characterized Rescorla’s view as a semantic account, but ultimately, he rejects those views, 

too, and refrains from identifying himself as such. But really, what he’s rejecting is their answer 

to the individuation question. He thinks that there are cases where we do not need to appeal to 

 
50 His italics. 
51 As opposed to 2012 where he argues explicitly against structuralist accounts in favor of his descriptivist view 
because sometimes implementation requires instantiating some representational properties. This paper is titled: 
‘Against structuralist theories of computational implementation.’ 
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semantic content when describing what a computational system is doing. Rescorla rejecting both 

non-semantic “structuralist” views and semantic accounts demonstrates further a need to pull these 

questions apart and address them individually. As I mention at the start of this chapter, Rescorla 

does still give us an answer to the individuation question, but he does so by deploying a weaker 

answer than some: he thinks that representations are sometimes necessary for identifying 

computational processes. And he’s giving us a theory of interpretation.   

 

Rescorla also addresses triviality. He thinks that because his view incorporates counterfactual 

conditionals (step 3 above), he avoids trivial implementations. But, as we’ve seen, his view is not 

a theory of implementation. So, even though he thinks that the physical states should be 

counterfactually supporting, it doesn’t mean he solves the problem of trivial implementations. He 

also thinks that his view solves the problem of trivial interpretations. Whether it does or not is up 

to the next counterexample that pops up in the literature, but because this is the target of a theory 

of interpretation, we can grant that his view accomplishes this task.52 

 

The final account in this chapter is Shagrir’s semantic account. Shagrir (2022) has the most well-

developed semantic account on the market.53 He also seems to implicitly adopt my distinction 

between a theory of implementation and a theory of interpretation, although, in some areas, it’s 

not clear. Shagrir’s “master argument”—that semantic properties play an essential role in the 

individuation of physical computing systems such as laptops and brains—can be understood as his 

 
52 Rescorla doesn’t cleanly distinguish between the two types of triviality that I define, but he does mention both types 
indirectly and argues that his view addresses them both.  
53 Shagrir’s view has been in development for over a decade and has recently come together in his 2022 book titled 
‘The Nature of Physical Computation.’ For papers leading up to his seminal project, see Shagrir 2001, 2006, 2012, 
2020, to name several.  
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answer to the individuation question. I derive the individuation question from Shagrir (2022) and 

Piccinini (2015). Shagrir says: 

 

 I offer an extended argument for a variant of the semantic view of computation. This view 

states that semantic properties are involved in the nature of computing systems. Thus, 

laptops, smartphones, and nervous systems compute because they have certain semantic 

properties. Stomachs, hurricanes, and rocks, for instance, which do not have semantic 

properties, do not compute (p. 1).  

 

This answers the individuation question but with a slight variation. Here he says “compute” rather 

than what counts as a computer. I think this signals that he is interested in what the system 

computes. He makes it clear later when he says that “architectural accounts” give a different 

response: 

 

Architectural accounts, as I call them, share the view that possessing the right kind of 

architectural profile is a necessary condition for computing; therefore, systems that lack 

this select profile do not compute… I argue against the necessity of architectural profiles. 

These profiles play a minimal role, if any, in distinguishing computing from non-

computing physical systems” (p. 2-3).  

 

But notice here that when he presents the individuation question again, he does so in terms of 

“computing from non-computing systems.” I think this is a clue that they are answering different 

questions. The last sentence in the quote is the individuation question, as I have defined it. But 
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recall that theories of implementation don’t answer the individuation question in any direct way. 

Shagrir gives this answer on their behalf! This is important to recognize because it frames the 

debate in terms of the individuation question specifically. This frames the in terms of non-semantic 

versus semantic. “Architectural accounts” are implementation theories, but when the 

implementation question isn’t distinguished from the interpretation question, Shagrir is licensed 

to rename them. But to be clear, people who give a theory of implementation are not framing the 

debate this way. This comes from Shagrir, and it only causes more confusion.  

 

Shagrir gives his answer to the individuation question as a response to trivial implementations: 

some physical systems simultaneously implement different automata at the same time, in the same 

space, and even in the very same physical properties (“simultaneous implementations”) (Shagrir 

2020). Using my framework to restructure this, we can see that Shagrir is concerned with trivial 

implementations and intends to provide a semantic theory that overcomes this problem. But we 

know that theories of interpretation don’t provide a solution to trivial implementations, and 

Shagrir’s view is no different.  

 

But Shagrir does acknowledge that the idea that computation often operates on entities that carry 

representational content is something that can be accepted by both those who propose a non-

semantic account. This is consistent with what I’ve argued so far. In several places, Shagrir states 

that his semantic account is consistent with any non-semantic theory of implementation. He says, 

“First, the semantic view of computation is consistent with a non-semantic view about 

implementation. A non-semantic view about implementation asserts that the relation of 
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implementing an automaton by a physical system does not involve semantic properties” (Shagrir 

2020, p. 4088). The key insight, though, comes from the following passage: 

 

Of course, if you think that computation is (nothing but) the implementation of an 

automaton, then you cannot hold a semantic view about computation and a non-semantic 

view about implementation. But the semantic view of computation is not committed to the 

identification of computation with implementation. A proponent of the semantic view of 

computation is free to hold that the implementing of an automaton (or some formal 

structure more generally) is necessary for computation and yet is non-semantic. She can 

say that counting the implemented automaton as a computational structure—and counting 

the implementing physical system as a computing system—essentially involves semantic 

properties (p. 4088).54 

 

Let’s unpack this. “If you think that computation is nothing but the implementation of an 

automaton” seems to reference what he calls “architectural accounts.” So, if you hold an 

architectural account, “then you cannot hold a semantic view about computation and a non-

semantic view about implementation.” Who holds the architectural account, though? When he 

describes architectural accounts, they seem to be our non-semantic theories of implementation. 

But, as I’ve argued, implementation views do not answer the individuation question. Shagrir asks 

and answers it on their behalf. So, this first part may be true, but it is not true of our implementation 

views. This second half makes more sense. You can accept that implementation is non-semantic 

 
54 My italics. 
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while answering the individuation question semantically! This is one of the main conclusions of 

this project and my framework.  

 

So far, we have seen that Shagrir gives us a very explicit answer to the individuation question. But, 

despite what he says in the above passage, an implementation view is still needed. He gives a 

theory of interpretation while targeting trivial interpretations. Take his master argument: 

 

1. A physical system might simultaneously implement several different automata      

S1, S2, S3,…. 

2. The contents of the system’s states determine (at least partly) which of the 

implemented automata, Si, is relevant for computational individuation. 

Conclusion: The computational individuation of a physical system is essentially 

affected by content (p. 4089). 

 

(1) describes the implementation of a formal structure. Shagrir acknowledges that this is a non-

semantic process. (2) is where the interpretation question starts to take form—we identify which 

computation is implemented in the system by reference to the semantic content of the states of the 

system. This is a claim about computational vehicles—that the identity conditions of the 

computational vehicles essentially involve semantic properties. 

 

Shagrir argues that his view overcomes the problem of simultaneous implementation—the 

problem of the same token physical system implementing different automata at the same time, in 

the same space, and even with the very same physical properties. But he’s understanding the 
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automata as interpreted, not as purely structural. This is shown when he describes some physical 

system implementing both an AND gate and an XOR gate simultaneously. Under a mapping 

relation, the system can be seen as implementing both gates (p. 4091). Shagrir argues that 

simultaneous implementation is a different kind of triviality than the Putnam-Searle kind of 

triviality we say in Chapter Three. He says that the difference is that simultaneous implementation 

is achieved through the very same physical properties of the system (its voltages). In addition, the 

mapping is held fixed while the voltages are coupled in different ways. This makes it so that the 

same voltages implement different automata at different times. Recall that we can derive both 

types of triviality from Putnam and Searle’s arguments: we can see how there is both a 

trivialization of the implementation relation and a trivialization of the interpretation conditions that 

arise from their arguments. When Shagrir holds the mapping fixed but couples the physical states 

in different ways such that the states implement the same automata differently, he’s generating a 

triviality result in terms of interpretation only. In this respect, Shagrir does target the appropriate 

type of triviality.  

 

Shagrir then goes on to give his theory of interpretation. According to him, whether a system 

performs one computation or another depends on the environment in which the system is 

embedded. It is possible that the AND function is implemented in one context while the OR 

function is implemented in another context. What fixes the interpretation is the context in which 

the computation occurs (p. 4095).  

 

Shagrir’s project would benefit from separating the individuation question from the interpretation 

question and decoupling the debate from one about how we should answer it—that is not the locus 
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of the debate because the debate should not be about semantic versus non-semantic accounts. 

Regardless, he offers us a theory of interpretation that addresses trivial interpretations.  

 

4 Conclusion 

In this chapter, I have argued that semantic accounts address the interpretation question, and by 

doing so, they address the problem of trivial interpretations. I began by arguing that we should 

abandon Fodor as a reason for answering the individuation question in terms of representational 

content. I have also shown that there needs to be more clarity when specifying the target of a theory 

of physical computation. We’ve seen that those who generate a semantic view frame the 

implementation question in many unhelpful ways, leading to confusion about what they’re trying 

to do and what we want out of a theory of computation. I’ve given a framework that allows us to 

restructure semantic accounts cleanly as views that provide a theory of interpretation: one aspect 

of physical computation. I have also argued that these views are equipped to address trivial 

interpretations. Hopefully, this has given some insight into how theories of implementation and 

theories of interpretation can be compatible. But, if you can’t see it quite yet, I will propose a way 

in the final chapter.   

 

Next, I will engage with mechanistic accounts of physical computation. These views have always 

been around, but they have taken center stage in recent years.  In the next chapter, I will consider 

how they can be included in my framework, what questions they might be addressing, and which 

aspects of physical computation they may target.  
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7 Mechanistic accounts and a theory of computation 

 

1 Introduction 

In the previous two chapters, I argued that non-semantic theories of computation answer the 

implementation question and are equipped to handle trivial implementations and that semantic 

accounts answer the interpretation question and are equipped to handle trivial interpretations. This 

restructures the literature into two categories: implementation views and interpretation views. I 

also motivated the idea that calling them “non-semantic” and “semantic,” along with not 

distinguishing the questions, gives the false impression that they are alternatives to a theory of 

computation when they actually address different aspects of it. There are other ways that some 

authors have contributed to the impression that they are opposing theories, but I think that 

rebranding views in terms of implementation and interpretation and clearly defining the questions 

they address is enough to make some progress toward consistency in the literature. In this chapter, 

I will present three accounts classified in the literature as “mechanistic.” But, this third category 

has mostly come into prominence as an alternative to both semantic and non-semantic accounts 

due to the work of Gualtiero Piccinini. This third category emerges only if you think semantic and 

non-semantic accounts are alternatives. However, because implementation and interpretation are 

compatible, mechanistic accounts no longer qualify as a bonafide alternative.  This chapter 

explores a place for them in the debate. 

 

The three views I will present in this chapter come from Fresco (2014, 2019), Milkowski (2013), 

and finally Piccinini (2015). I distinguish between “weak” and “strong” mechanistic accounts. 

Weak accounts answer the implementation question and avoid trivial implementations by arguing 
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that the physical system should meet some mechanistic requirement. Thus, weak mechanistic 

accounts should be categorized as implementation views. Milkowski is an example of a view that 

does this. I explore his view to show the differences between mechanistic accounts, but ultimately, 

his view should be adopted as an implementation view. I also explore Fresco’s account to show 

that sometimes a theory of physical computation turns out not to be one at all. I presented a 

semantic account (Smith 2002, 1982a, 1982b) in the last chapter that had this same problem. In 

the same way that some people take themselves to be giving a theory of implementation when they 

are giving a theory of interpretation, some people take themselves to be addressing the nature of 

physical computation when they are actually addressing something else. I think this is a symptom 

of the more significant problem I identify in this project. Without a framework that clearly specifies 

target questions, views that address neither can freely enter the debate. 

 

On the other hand, strong mechanistic accounts are wholly mechanistic in that they do not address 

implementation or interpretation; instead, they form a third category. Piccinini’s view is a strong 

mechanistic account. It turns out that Piccinini’s view is the only account that I think answers the 

individuation question by giving a full-blown theory rather than forking off into a theory of 

implementation or individuation (I explore this option in the next chapter). But ultimately, I will 

argue that it will only be compatible with implementation and interpretation views if we reject 

some of his underpinning assumptions about the debate. In other words, we would need to adopt 

‘The Mechanistic Account’*. Piccinini introduces his view based on the perceived failure of both 

non-semantic and semantic accounts. He thinks that his view can replace both views. But, unless 

his view addresses the implementation and interpretation questions, it cannot replace either.  
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In section two, I will provide some background information on how to understand mechanisms. 

This will help with later sections in the paper. In section three, I will present Milkowski’s weak 

mechanistic account, followed by Fresco’s view. Finally, I will evaluate Piccinini's strong 

mechanistic account in what makes up the bulk of this chapter. I will argue that he builds three 

main conceptual shifts into his view. I will also argue that these shifts are too strong, and 

ultimately, throwing out a framework because there is confusion in the literature is not the best 

way to move forward. Finally, I will present several views that engage with the mechanistic 

account. I will show that two of them do not recognize the conceptual shifts and argue against 

what I call the mechanistic account*. The last view I present argues directly against the mechanistic 

account targeting its concepts.  

 

2 Thinking about mechanisms 

Before we get started on the “mechanistic account,” it will be helpful to review the concept of a 

mechanism in the philosophy of science, particularly by the new mechanists. The new mechanists 

offer qualitative descriptions of mechanisms designed to capture how scientists use the term and 

how the concept is used in experimental and inferential practices. There are different ways to 

characterize mechanisms, but all characterizations contain four basic features: a phenomenon, 

parts, causings, and organization.  

 

The phenomenon is the behavior of a mechanism as a whole. All mechanisms are mechanisms of 

some phenomenon, so in the case of a neuron, the mechanism of the action potential generates 

action potentials. The boundaries of a mechanism are fixed by reference to the phenomenon that 

the mechanism explains. The components in a mechanism are components by virtue of being 
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relevant to the phenomenon (Craver & Tabery, 2019). New mechanists understand mechanisms 

either as producing, underlying, or maintaining the phenomenon. Production is a kind of causal 

sequence that terminates by producing some end product. If a mechanism underlies a phenomenon, 

it is understood as a capacity or behavior of the mechanism as a whole. For a mechanism to 

maintain a phenomenon, we understand the phenomenon as a state of affairs that is held in place 

by the mechanism.  

 

Defining the parts of a mechanism has been notoriously difficult given the part/whole relation and 

difficulty with mereological theories. For example, Piccinini (2020) takes a “composition” 

approach to define the relation between wholes and their parts. For him, parts compose the whole, 

and a whole decomposes into parts where the relation between the two is that higher-level 

properties are realized by lower-level properties, and lower-level properties realize higher-level 

properties (Piccinini, p. 7). There is much more to be said here, but hopefully, we can see the 

overlap with mereological theories.  

 

Mechanists understand causation in different ways. One example is to derive causation from the 

concept of a mechanism so that causal claims are claims about the existence of a mechanism. So, 

what makes a causal claim true is that there is a mechanism at some lower level. An activity-based 

account says that causation should be understood in terms of productive activities. So, according 

to this view, activities are a kind of cause. Views like this don’t say anything about the nature of 

causation. Instead, they rely on science to say what activities are and what features they might 

have.  
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The organization of a mechanism can also be understood in different ways. This is related to issues 

regarding the parts of the mechanism and how they come together. Organization can be 

characterized spatially, temporally, or in terms of patterns. The spatial organization includes 

location, size, shape, position, and orientation, while temporal organization includes the 

component activities' order, rate, and duration. Examples of patterns include patterns of 

organization and repeated patterns. Others define organization in terms of modules, jointness, or 

levels (this is how Piccinini understands organization). When I discuss the mechanistic account, I 

will give Piccinini’s take on a multi-level explanation of the organization of a mechanism.  

 

3 Mechanisms and physical computation 

In this section, I will give two views categorized in the literature as “mechanistic accounts” of 

physical computation. The first is from Milkowski, and I will argue that he gives us a weak 

mechanistic account that ends up being an answer to the implementation question. Because of this, 

we should categorize it as an implementation view. Next, I will present Fresco’s account and argue 

that it does not give a theory of physical computation, even though it’s categorized as such across 

the literature. 

 

3.1  The weak mechanistic account 

Milkowski (2012) argues against mapping theories of implementation. These are the theories of 

implementation that I introduced in Chapter Five. Milkowski focuses on the inner complexity of 

the physical system, arguing that more than a mapping is required to satisfy the implementation 

relation. From the start, we can see that he is directly targeting implementation views, and, like 

those views, he places further constraints on the mapping to overcome trivial implementations. He 
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discusses WALL and argues that it lacks the kind of inner complexity that a computer requires and 

that this is why it does not run Wordstar. He thinks a mapping view allows for this kind of 

implementation because it overlooks the need fo inner complexity. His solution is that when 

drawing the relation, one must account for all relations between the subsequent steps of the code 

to ensure that all relations hold between the steps in the code and the states in the physical system 

(p. 222). Because Milkowski argues that we should consider all states of the system (and not just 

some arbitrary mapping), we should only consider causal chains relative to the isolated system. 

From this, he specifies two additional requirements for a theory of implementation: 1) the 

complexity criterion; and 2) the relative isolation criterion.55 These additional features make 

Milkowski’s view “mechanistic,” but as we saw in Chapter Five, other non-mechanistic accounts 

also introduce a causal complexity criterion. So, rather than calling this view a mechanistic 

account, it should be classified as a theory of implementation that addresses trivial 

implementations.  

 

My concern is not that Milkowski’s view is being called “mechanistic” per se. The problem is that 

it is treated as belonging to its own class within the context of a “theory of computation” when 

instead, it should be understood as a sub-class within the available options for a theory of 

implementation. So, Milkowski rightfully belongs with implementation theories, perhaps as a 

causal complexity account. 

 

Milkowski (2013) expands on his view. In this book, he suggests that the best way to give a theory 

of computation is to rely on the causal structures of the world. What brings Milkowski’s view into 

 
55 See also Milkowski (2007). 
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the mechanistic category is that he wants to give a mechanistic explanation of cognition by 

rejecting functionalism. He is a proponent of computationalism but not one that relies “on a 

Cartesian gulf between either software and hardware or mind and brain” (p. ix).56 In this project, 

Milkowski elaborates on the complexity and relative isolation criterion. Most of his argument for 

these two criteria involves giving a negative exposition on how the various non-semantic and 

semantic theories fail for various reasons. But we can gather some of his position about the nature 

of physical computation by looking at what he rejects and accepts from the various views.  

 

When addressing counterfactual accounts, Milkowski argues that counterfactuality is almost 

always a vacuous constraint if we don’t specify a specific kind of structure of both the physical 

and formal systems (p. 34). But ultimately, he rejects mappings because “it escapes me in what 

way [formal modes of implementation] would be an improvement over simple talk of physical 

processes and their causal structure” (p. 35).  This second claim develops this account beyond his 

2012 project, where he accepted a mapping relation. But, as I will argue, dropping the mapping 

will not de-classify his view as a theory of implementation.  

 

Milkowski’s view is non-semantic because he thinks that information processed by a computer 

need not refer to or be about anything in the distal environment to be the inputs or outputs of a 

computation. In this respect, he aligns himself with Fresco (2010) and Piccinini (2006). But he 

continues on that physically realized inputs and output states trivially carry semantic information 

as part of the causal nexus. But all that is required to count as information is that the computational 

 
56 In this book, Milkowski is giving a computational theory of mind specifically. But, in the process he analyzes “what 
it is for a physical process to realize or implement a computation” (p. 25). 
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vehicle has at least one degree of freedom (p. 46). He takes his view to accommodate any kind of 

computation, provided the computation is specified in terms of relations between input and output 

information states. But, at the threat of being too broad, he specifies that a complete specification 

of the mathematical model of computation involved is required for implementation.  

 

Milkowski appeals to functional and structural notions such as “mechanism” and “level of 

organization.” This addition is what makes his view more mechanistic than his 2012 project.  When 

describing a formal computation, he says, “Computations are performed by mechanisms, which is 

to say that computational functions are realized by the organization of the mechanism’s parts” 

(52). Here Milkowski defines computation as something that can be realized by a functional 

mechanism. He says, “Computations occur only in highly organized entities and cannot float freely 

without any realizing machinery” (p. 52). This connects formal computation with the physical 

world. Computations do not exist in some abstract realm. Instead, computation is a physical 

process. He specifies that a mechanistically adequate model of computation is implemented when 

the input and output information streams are causally linked and that this link, along with the 

specific structure of information processing, is completely specified. Because he thinks that 

computation is a physical process, the (formal) computational model must have the appropriate 

kind of structure such that it can be linked with the causal structure of the world.  

 

This characterizes computation as a physical process rather than “bridging” formal computation 

with the physical world. Milkowski argues that the computational descriptions can be understood 

in terms of levels of composition where the mechanisms have three levels of organization: 
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1. Constitutive: The lowest level 

2. Isolated: The level at which the parts of the mechanism are specified along with their 

interactions (activities and operations) 

3. Contextual: The level at which the function the mechanism performs is seen in a 

broader context (the embedding conditions) (p. 55) 

 

The constitutive level is causal—it constitutes the causal structure that matches the computational 

characteristics of the entire mechanism in such a way that it contributes to the functioning of the 

isolated level. Which levels of organization a given description should include requires reference 

to the explanatory goals of a particular research project. Milkowski says the isolated level 

corresponds to the “traditional” focus of philosophical theories of implementation because it is the 

only level at which the abstract specification of computation is to reflect the causal organization.  

 

Instead of adding a constraint on the causal relations in the physical system to strengthen the 

mapping, Milkowski’s mechanistic account requires that the computational description at the 

isolated level not be completely independent of the constitutive level. This is also what escapes 

the problem of trivial implementations because it allows us to distinguish “real” computing system 

from a “mere hodgepodge of physical states… such as tornadoes, piles of sand, or planetary 

systems… that normally do not realize any information-processing capacity” (p. 57). Notice that 

Milkowski brings the relation between the abstract descriptions and the physical system back 

together; he thinks we can’t analyze them independently! So, after all this, we still have a theory 

of implementation. 
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Milkowski is interested in showing how we can find non-trivial cases of physical mechanisms that 

implement computational architectures. For him, a correct computational description will specify 

the parts of the mechanism and its organization where the organization is understood in terms of 

“architecture” (p. 60). Different models of computation will require different mechanisms. So, to 

realize a Turing machine architecture or an FSA, the specification of the organization will be 

different. This also addresses trivial implementations because the abstract organization 

corresponds to the computational architecture in a functional way where the functional role of a 

component is one of its causal roles, such that it contributes to the system behavior of the 

mechanisms.  

 

3.2 Fresco on digital computation 

Fresco's (2014) view specifies digital computation as realized in physical systems to specifically 

understand the relationship between computation and cognition. He thinks that the best way to get 

insight into the computational theory of mind presented in psychology, neuroscience, and 

cognitive science, is to examine possible answers to the problem of what concrete digital 

computation is.57 Fresco gives a view within the context of classical physics, dealing with physical 

features such as force, motion, heat, entropy, and electricity. “Using classical physics, the hardware 

of conventional computing systems can be analyzed, for example, at the macroscopic level at 

which registers change their stored data or at the level at which logic gates operation on various 

input line” (p. 6).  

 

 
57 Although he does think that computationalism does not have to be committed to digital computation specifically. 
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An essential part of Fresco’s view is that he extends digital computation to connectionist networks. 

This is because he relaxes the requirement that digital computation requires a physical symbol 

system. By relaxing this requirement, the scope of digital computation is broadened, and 

connectionist networks are captured. According to Fresco, broad digital computational systems 

like connectionist networks implement a task analysis without decomposing the overall operation 

into subtasks performed by individual components. Instead, they build their networks as 

mechanistic models. Thus, Fresco takes connectionist models to be mechanistic explanations – 

mechanism sketches.58 They are sketches of mechanisms because they explain cognitive 

phenomena without relying on the decomposition into subtasks. Instead, each subtask is 

distributed across the network layers without any straightforward localization. According to 

Fresco, this counts as mechanistic because the instructions for the manipulation of data in the 

system demonstrate an attempt to account for the decomposition of tasks into simpler subtasks.  

 

Fresco’s account is unique because he relies on connectionist models as the implementing 

mechanisms. However, this is no surprise because Fresco wants to give a theory of cognitive 

computation in digital terms! This means that if he wants to think of cognitive architecture as a 

connectionist network, then he has to eliminate the need for symbolic structures as understood in 

the classic digital way. For Fresco’s view to be an account of concrete computation, we also have 

to accept that connectionist models count as implementations in the same sense that computers are 

physical.59 You might think that neural networks are implementations of symbolic systems, but 

 
58 Another way to put this is that Fresco is giving an argument that connectionist networks are implemented digital 
computers. This is contentious though. See Weiskopf (2011) for an argument against connectionism as a physical 
implementation. 
59 His account is best placed within the debate about cognitive architecture, and we can best describe his position in 
the following way: “a connectionist thesis is that cognition is sub-symbolic computation. Accordingly, cognition 
should be explained by connectionist network activity, in a more generic sense than the association between stimuli 
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neural networks are still abstract, mathematical structures. So, even though Fresco discusses 

physical mechanisms and implementations, it does not mean that he’s given a theory of physical 

computation. 

 

4 The strong mechanistic account 

In this section, I will present what I call the “strong” mechanistic account of physical computation. 

Piccinini’s view is generally called “the mechanistic account.” As I progress in this section, I will 

refer to the view this way. I categorize the mechanistic account as “strong” because it does not 

address implementation or interpretation. Instead, it’s wholly mechanistic. This view does not 

answer questions about implementation or interpretation because it dissolves the implementation 

relation and because it does not tell us how to interpret the system. To dissolve the implementation 

relation, the mechanistic account reconceptualizes the nature of what it means to give a theory of 

computation. Explaining how the reconceptualization happens is the purpose of this section. I will 

also argue that we can best understand this view as providing a full-blown theoretical answer to 

the individuation question. This is no surprise, though, because the individuation question enters 

the literature through his work (and was later adopted by Shagrir). Finally, I will argue that the 

mechanistic account is incompatible with theories of implementation and interpretation because 

of the conceptual shifts that underpin it. But it might still be possible to include the view if we 

adopt a version that rejects the conceptual shifts and adopt the mechanistic account*.  

 

Piccinini argues that computing mechanisms manipulate vehicles according to a rule defined over 

the vehicles and, possibly, certain internal states of the mechanism (p. 1). Over the course of the 

 
and response… on this view, it is implicit that connectionist networks broadly are capable of computations that are 
not limited to discrete manipulations of symbolic representations… (p. 211).  
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development of the mechanistic account, Piccinini makes several conceptual and terminological 

shifts that obfuscate the different aspects of computation that non-semantic and semantic accounts 

seek to capture. In the next section, I will address these conceptual shifts in turn.  As I address 

these shifts, I will simultaneously formulate the mechanistic account.  

 

4.1 Functional analysis as a mechanism sketch 

Piccinini’s formulation of the mechanistic account stems partly from the claim that functionalism 

and computational explanation have been conflated in the literature (Piccinini 2004). He blames 

Fodor’s (1968) use of Turing Machines tables as generating the conflation. He argues that this 

conflation has led some philosophers to believe that to do functional analysis is to provide a 

computational explanation. To de-conflate functional analysis and computational explanation, 

Piccinini argues that we should understand functional analysis as an explanation that describes a 

system in terms of complex capacities that are made up of more basic capacities. To do this is to 

give a mechanism sketch of a system where the explanation becomes a full-blown mechanistic 

explanation when relevant additional details are filled in. This is Piccinini’s first shift: 

 

I. To do functional analysis is to provide a mechanism sketch. 

 

Remember that implementation views are an extension of the functionalist paradigm. It was a way 

to connect the abstract descriptions with the physical systems they described. Already we can see 

a push to eliminate the relation between formal descriptions and the physical world. According to 

Piccinini, functional analysis, in terms of a mechanistic explanation, eliminates the problem that 

functional analysis assumes a computational explanation. But why think that we to eliminate 

153



 

functional analysis within the functionalist framework? I think that Piccinini’s argument goes too 

far. The conclusion should be that not all functional analyses require computational explanations, 

not that we should eliminate functional analysis in terms of computational ascriptions altogether. 

This seems strange, given how profitable functionalism has been when it comes to explanations in 

cognitive science.  

 

Piccinini thinks functionalism and computationalism have been conflated historically and into 

contemporary literature. He goes even further when he argues that because of the “conflation,” 

many take functionalism to entail computationalism. However, Piccinini’s argument that they have 

been “conflated” is too strong, and the abundant use of computational descriptions does not mean 

an assumed entailment relation exists. In Chapter Two, I discussed the close connection between 

functionalism and computationalism and showed that they are related but distinct frameworks. 

Functionalism commonly relies on computational explanations, especially in cognitive science, 

because computational descriptions of cognitive processes help us to explain and model cognitive 

processes. Piccinini throws the baby out with the bathwater because he doesn’t like some of the 

consequences of the framework.  

 

Piccinini argues that we can avoid these issues by thinking of functional analysis in terms of giving 

a mechanism sketch and that we can understand computational ascriptions in functionalism as task 

analysis. “Task analysis explains a capacity of a system as the execution of a sequence of 

operations of finitely many steps by that system, which need not be analyzed into components and 

their functions” (Piccinini, 2004, p. 825). According to Piccinini, Fodor “firmly inserted into the 

philosophical literature a thesis that begged the question of whether all psychological capacities 

154



 

could be explained by program execution: the thesis that psychological theories were traditionally 

formulated as lists of instructions for producing behavior (Piccinini, 2004, p. 826).” According to 

Piccinini, this formulation of functional analysis left no room for other formulations that explained 

mental capacities in terms of types of components and their functions to take hold.60 Because early 

on, Fodor (and Putnam) formulated their psychological theories in a way that related minds to 

Turing machines and program execution, it became the mainstream way of approaching an 

explanation of the mind while leaving little room for any other kind of explanation to emerge. So, 

he ultimately wants to shift the explanatory paradigm from functionalism to a mechanistic 

explanation. This is how the implementation relation is dissolved. If we do functional analysis in 

terms of a mechanistic explanation, then we no longer need to relate the formal, computational 

descriptions to the physical world.  

 

But, even if Piccinini wants to eliminate functional analysis as it is done within the functionalism 

framework, it is not going anywhere anytime soon, which means that we will still need a theory of 

implementation to account for the connections between abstract computational descriptions and 

the world—we still need a theory of implementation.  To provide a theory of implementation is to 

extend beyond the functionalist paradigm and ask for a theory of how the physical system 

implements the abstract mathematical formalism. This links the abstract description with the 

physical particulars, a project beyond the scope of functionalism, beyond the scope of task analysis 

by computational explanation, and distinct from mechanistic explanation.  

 

 
60 See Deutsch (1960) for an early mechanistic account. 
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Piccinini’s first shift aims to recharacterize functional analysis as a mechanism sketch. In some 

ways, this is uncontroversial-- functional analysis if approached by providing a mechanistic 

explanation quite often. But functional analysis within the functionalist paradigm that deploys 

computational descriptions to give a deliberately abstract characterization of a physical system is 

not the result of a conceptual mistake. Moreover, it has contributed substantially to the traditional 

formulation of the implementation question.  

 

4.2 Abstraction and medium independence 

Piccinini maintains that a computational explanation should be understood as a mechanism sketch 

and that a full-blown mechanistic explanation should include a description of the relationship 

between medium-independent vehicles and the physical particulars of the system. Medium 

independence is introduced as a replacement for multiple realizability, although, as I will argue, it 

is a very different concept. Because Piccinini’s view does not refer to mathematical formalisms, 

multiple realization is characterized in terms of abstraction. This frames Piccinini’s second shift: 

 

1. A physical system performs a generic computation if it has medium-independent 

vehicles that are processed according to a rule. 

 

The mechanistic view is a theory of what generic computation amounts to.61  He argues that 

concrete computations can be defined without referencing all of the structural properties of the 

physical system. Instead, we only need to identify the computational properties relevant to the 

rules defining the computation. Thus, they are medium-independent because concrete 

 
61 Generic computation is explained in detail below.  
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computations and their vehicles can be defined independently of the physical media that 

instantiates them (Piccinini 2015).  

 

Introducing medium independence as a replacement for multiple realizability is further evidence 

that the implementation relation is dissolved. To show this, more explanation of what medium 

independence, vehicles, a rule, and generic computation amount to is needed. Medium 

independence is developed from Craver’s (2001) account of mechanisms. According to Craver, 

mechanisms are composed of entities and activities. Entities are the things that engage in various 

activities and activities are the producers of change (Machamar et al., 2000). The organization of 

the entities and activities determines the ways in which the mechanism produces a phenomenon. 

Functions are the roles played by entities and activities in mechanisms. Machamar et al. describe 

the procedure that scientists use to provide a mechanistic explanation of a physical process.  

 

1) They begin with an idealized description of the set-up conditions. Scientists idealize the 

set-up conditions by defining them in terms of static time slices. The start conditions 

include relevant entities and their properties, including structural properties, spatial 

relations, orientations, and various relevant enabling conditions. Most of these features are 

parts of the mechanism itself.  

2) They provide the termination conditions. These are idealized states or parameters 

describing a privileged endpoint.  

3) They specify the intermediate activities that take place in the mechanism. This is a 

characterization of the intervening entities and activities that produce the end stage from 

the beginning.  
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This three-step process provides a mechanistic explanation in a nested hierarchy. Within this 

hierarchy, lower-level entities, properties, and activities are components of the mechanisms that 

produce higher-level phenomena.  

 

Scientists do not always provide a complete mechanistic explanation of this kind. They also 

provide mechanism schemata and sketches. A mechanism schemata is an abstracted description of 

a type of mechanism at varying degrees of abstraction depending on how much detail can be 

included. In contrast, a mechanism sketch is an abstraction for which bottom-out entities and 

activities cannot (yet) be supplied or which contains gaps in its stages. These gaps are present 

because there are missing pieces that scientists do not yet know how to fill in. Because there are 

missing pieces in the explanation, sketches are meant to indicate the further work that needs to be 

done in order to understand the mechanism in its entirety. Because they function as placeholders 

in this way, they are often abandoned for schemata once more information is obtained. This 

concept of mechanism sketch as an abstraction is what underpins Piccinini’s concept of medium 

independence. To be clear, mechanism sketches are abstractions: characterizations of physical 

systems with some details omitted. Medium independence relies on this notion of a mechanism 

sketch that draws on scientific practice in biology and neuroscience.  

 

Piccinini argues that there is a similarity between medium independence and multiple realizability 

because, in both cases, structural constraints determine whether the function can be realized in the 

physical system. For the mechanistic view, those constraints amount to possessing certain degrees 

of freedom. But the differences between the concepts are important. Multiple realizability comes 
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from the idea that psychological processes are shared across multiple systems or kinds of systems 

and that those psychological processes produce distinct cognitive behaviors (Polger, Shapiro, 

2016). Functionalism is an approach that was introduced to accommodate the multiple realizability 

of mental kinds. The functional organization is characterized abstractly, sometimes in terms of 

some mathematical formalism (CSA, FSA, Turing Machine, Algorithm, machine table, etc.). But 

functionalism is silent on how to connect the formalism with the physical world that it describes. 

This means that we need a theory of implementation. Of course, we want to understand 

implementation beyond cognitive computational descriptions, but the idea remains the same. But 

a switch to medium independence follows from Piccinini’s rejection of functional analysis within 

the functionalism paradigm because he no longer needs the relation. So, he can rely on the concept 

of abstraction rather than explaining the relation between an abstract structure and the physical 

world. His theory instead, is firmly planted in the physical world.  

 

Piccinini uses the concept of medium independence to develop his concept of a ‘vehicle.’ He uses 

the term ‘vehicle’ to refer to one of two things. It can refer to a variable or a state that can take 

different values and change over time. Or it can refer to a specific value of such a variable. He 

states that sometimes variables can be defined as purely mathematical, as symbolic entities, or as 

physical states that can change over time. But, for the mechanistic view, variables are just a way 

of referring to a physical variable (Piccinini 2015). Mechanistic vehicles have spatiotemporal 

parts. He points to a string of digits to exemplify what spatiotemporal parts are. A string of digits 

is a kind of vehicle made out of digits concatenated together. Digits are a portion of a vehicle that 

can be either binary (take one of two states) or continuous (a variable that changes continuously 

over time and can take on an infinite number of states).  
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Within the mechanistic framework, a rule is a mapping from inputs (and possible internal states) 

to outputs. Piccinini argues that the rule does not need to be represented within the computing 

system or spelled out in terms of any algorithm or by listing the inputs, outputs, or internal states. 

All that is required to give a rule is to specify the relation that ought to be obtained between inputs 

and outputs associated with a set of functionally relevant degrees of freedom. This notion of a rule 

is deliberately and substantially broad. Because Piccinini aims to capture generic computation, his 

notion of a rule is meant to accommodate computing systems that are not rule-based in any 

algorithmic sense. This is no surprise because this way of understanding a rule is developed by 

Horgan and Tienson (1989), who propose a syntactic argument for cognition, supporting the idea 

that computation is possible without rules. 

 

The mechanistic view captures what Piccinini calls ‘generic computation’ in physical systems. 

Generic computation amounts to the processing of medium independent vehicles by a functional 

mechanism according to rules that are sensitive solely to differences between the spatiotemporal 

parts of the vehicles (Piccinini 2015). This description shows us that the implementation relation 

is completely gone. But not because it has been rejected. Instead, it has been completely dissolved.  

 

4.3  Generic computation 

Piccinini argues that we should abandon the idea that computation always involves information 

processing because the concept of ‘information’ has been confused in the literature. Instead, he 

thinks we should take on a theory-neutral understanding of computation that does not rely on 

information processing. Below is the third shift: 
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2. A theory of computation should not frame computation in terms of information 

processing.  

 

Generic computation is meant to apply to all media and capture all relevant uses of computation, 

including classic computation, algorithmic computation, computation of Turing-computable 

functions, digital computation, analog computation, and neural computation.  

 

Piccinini argues that the term ‘computation’ comprises different notions and that the same is true 

of information. Because information plays different roles in different fields, we should clearly 

distinguish between two central notions: Shannon information and natural and non-natural 

semantic information. He characterizes each in the following way. Shannon information originates 

from communication theory. Under this type, any device that produces messages in a stochastic 

manner can count as an information source or destination (Piccinini & Scarantino 2010).  Semantic 

information pertains to what a specific signal broadcast means. Natural semantic information 

follows Dretske (1981). It is characterized in terms of correlations between event types where an 

event A carries natural information about an event token b of type B just in case A reliably 

correlates with B. Non-natural semantic information is characterized by following Grice’s (1957) 

non-natural meaning where a sentence is true even if the reference of the sentence does not obtain. 

For example, ‘those three rings on the bell (of the bus) mean that the bus is full’ is true even if the 

bus is not full.   
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Piccinini argues that each of these ways of understanding ‘information’ makes independent 

contributions to a theory of cognition, and the cost of conflating them results in a “mongrel” 

concept that is too messy to be useful because it obstructs any consensus on whether cognition 

involves computation or information processing. Further, he argues that the conflation of 

computation with information processes contributes to bad arguments because the notion of 

computation being used is never specified. And, because the notions are not specified, we are not 

justified in concluding whether the brain performs computations. As a solution, Piccinini argues 

for ‘generic computation’ because it does not rely on information or any specific type of 

computation.62 

 

A view of this kind eliminates both internal and external semantics. This is much stronger than the 

non-semantic theories of implementation that implicitly accept the internal semantics posited by 

computability theory (or recursion theory). Internal semantics amount to a set of instructions that 

assert what the execution of a process accomplishes within the computer and are determined 

independently of any external features of the system. When a computer executes a function, it 

compares strings of digits within the system to produce the output. This process is self-referential; 

nothing within the system itself references anything external to the system to compute. Piccinini’s 

mechanistic account is a strong non-semantic account because it explicitly denies that even an 

internal semantics is necessary for computation. This is, in part, a reason why the mechanistic 

account can accommodate computation without any information at all. An internal semantics is 

needed to process information computationally; thus, internal semantics can also be eliminated if 

the information is not required.  

 
62 There go two more babies.  
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Putting these ideas together, according to the mechanistic view, there are two reasons why neural 

processes count as computations. “First, the variables that are functionally most relevant to neural 

processing are spike frequency and timing; both appear to be medium-independent (Piccinini, 

2018, p. 3).”  Because nothing specific about the biophysics of the spikes themselves matters for 

the computation, they are medium-independent. “Spikes” are action potentials of neurons. 

Unpacking the concepts of spike frequency and timing will help make clear how to understand 

medium independence in this sense and then contrast it with the abstract entities that traditional 

theories refer to. The cell membrane of a neuron has a resting potential (the voltage of a neuron is 

approx. -70 mV). In addition, the neuron has three basic ions: potassium, calcium, and sodium, 

which exist inside and outside the cell membrane. When the neuron is resting, each of these ions 

has a particular concentration on the inside versus the outside of the membrane. When a neuron 

receives input and the threshold increases, the cell membrane depolarizes, lowering the voltage 

within the membrane. Ion channels open, the concentrations of the ions shift, and an action 

potential occurs. The depolarization spreads down the axon towards the axon terminals, where the 

synapse occurs. The action potential or firing of the neuron is propagated to the next neuron via 

the synapse, giving way to communication between the neurons. This firing is often called a spike. 

The spike frequency has to do with the stimulus the neuron receives. When stimulated with a 

constant stimulus, many neurons respond with a high spike frequency that then decays down to a 

lower steady-state frequency. Spike timing is a biological process that adjusts the strength of 
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connections between neurons in the brain.63 The process adjusts the connection strengths based on 

the relative timing of a particular neuron's output and input action potentials (or spikes).  

 

Spike frequency and timing are medium-independent features of neurons because the frequency 

of the spike to the incoming stimulus has nothing to do with the physical features of the neuron 

itself in a way that appears to be relevant to producing the behavior in the neuron. This is the same 

for spike timing: spike timing does not depend on physical features of the neuron itself. Because 

spike frequency and timing function as medium-independent vehicles that are processed in 

accordance with a consistent input-output function, they are an instance of generic computation.  

 

The above application is meant to tell us why neural processes count as computations; what makes 

them computational. But the story tells us nothing about whether the brain implements a 

computational structure. Moreover, it does not tell us which computation the brain performs. Thus, 

we do not have an answer to the implementation question, nor do we have an answer to the 

individuation questions.  

 

4.4  Marr’s tri-level hypothesis 

Computational ascriptions are made from two directions: top-down or bottom-up. A bottom-up 

approach starts with data from the physical system, and then, from there, an abstract 

characterization of the system's behavior in terms of a computational model is generated. A top-

down approach starts with an abstract model of a process within a physical system. In either case, 

 
63 Spike trains are obtained by detecting intra- or extracellularly the action potentials but preserving only the time 
instant at which they occur. They are obtained with multisite recordings from different septotemporal regions of the 
brain. 
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the abstract computational model might be used to describe what the system is doing in a literal 

sense. But whether we accept that computational ascriptions are true or not will have to do with 

our theory of physical computation. The mechanistic account, though, cannot answer these 

questions for us. But this is not a problem for Piccinini because he thinks we should understand 

Marr’s levels mechanistically. This is the third shift: 

 

3. Marr’s tri-level approach should be understood as providing a mechanistic 

explanation where each ‘level’ is a mechanism sketch.  

 

According to this interpretation of Marr, the levels are different aspects of the same mechanistic 

explanation. This interpretation of the Marrian framework integrates mechanistic functional 

analysis with a multi-level explanation.  

 

Marr provides three levels to analyze an information processing system: computational, 

algorithmic, and implementation.  The computational level states the goal of the computation. The 

algorithmic level gives a representation of the input-output and what algorithm is responsible for 

the transformation. The implementation or hardware level characterizes how the representation 

and algorithm are physically realized (Marr 2010). The computational and algorithmic levels are 

abstract in that they say nothing of the implementing mechanisms. However, Piccinini re-frames 

each level as a mechanism sketch. This is another place where the implementation relation is 

dissolved. Piccinini does this because he thinks “the computational level is a description of the 

mechanisms task, possibly including a task analysis, whereas the algorithmic level is a description 

of the computational vehicles, operations that manipulate the vehicles, and order in which the 
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operations are performed-- it’s a more fine-grained mechanism sketch than the computational 

level” (Piccinini 2015, p. 98).  

 

He frames Marr this way because he thinks that Marr implicitly recognizes that each level is a 

different aspect of a mechanistic explanation based on “the way that he intermingled 

considerations from different levels in his theory of visual shape detection” (Piccinini, 2018). He 

argues that “this is how traditional computational explanations also work: that they [abstract] away 

from many of the implementing details… and that’s how mechanistic explanation generally works; 

it focuses on the mechanistic level most relevant to explaining the capacity while abstracting away 

from the mechanistic levels below” (p. 98). But notice that there is a difference between abstraction 

in terms of a mechanism sketch and giving an abstract description.  

 

Marr was providing a framework for how to provide explanations of complex information-

processing systems. He never intended for the “levels” to be autonomous. He intermingled 

considerations from different levels in his theory of visual shape detection because, although some 

explanations will only be given at one or two levels, others will be given at all three to provide a 

complete explanation. This does not mean that he intended for the levels to be understood as a 

nested hierarchy in a mechanistic explanation. According to Marr, the relation between the levels 

includes logical and causal relations where structural considerations of the physical system will 

matter for which algorithmic explanation we provide. But these constraints do not amount to a 

mechanistic explanation at varying levels of abstraction. Marr characterizes mechanisms at the 

implementation level explicitly: we may approach the implementation level at different levels of 

abstraction, but we do not, therefore, shift to the higher level in the framework. When 
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characterizing the visual system, Marr argues that “while algorithms and mechanisms are 

empirically more accessible, it is the top level, the level of computational theory, which is critically 

important from an information-processing point of view” (Marr 2010, p. 27).  

 

He goes on to distinguish between what a system does and how it does it and argues that ignoring 

this distinction hampers progress between different fields. When discussing Chomsky’s theory of 

linguistic usage, he says that “finding algorithms by which Chomsky’s theory may be implemented 

is a completely different endeavor from formulating the theory itself… it is a study at a different 

level, and both tasks have to be done” (p. 28). Here Marr is arguing that we need to formulate the 

theory (provide an explanation at the computational level) and then provide a theory, an algorithm, 

for how that task is done (provide an explanation at the algorithmic level) and that both of these 

explanations are distinct from the mechanisms at the implementation level.  

 

4.5  Concluding remarks 

Ultimately, this new framework dissolves the implementation question and does not answer the 

interpretation question. Because of this, it cannot be a replacement for either view.  But I don’t 

think that this consequence is acknowledged in the literature. Piccinini’s mechanistic account is 

always lumped in with Milkowski and Fresco’s mechanistic accounts: 

 

“… the claim that ITTM computes is consistent with most accounts of computation—

including… the mechanistic account (Milkowski 2013, Fresco 2014, Piccinini 2015)” 

(Shagrir 2022, p. 58). 
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“Others require the implementation relation to have some modal force, meaning that it 

supports relevant counterfactuals. Even more, restrictions are placed by the dispositional 

accounts, and the mechanistic account (see Piccinini 2007 and 2015 & Milkowski 2013)” 

(Shagrir 2022, p. 129) 

 

“The mechanistic account (Piccinini 2007, 2015… Milkowski 2013, Fresco 2014…) 

avoids appealing to both syntax and semantics” (Piccinini & Maley, 2021).  

 

The attempt to use the tools provided by New Mechanism to account for computation in 

physical systems has been developed most forcefully by Piccinini (2007, 2015), Milkowski 

(2013), and Fresco (2014)” (Coelho Mollo 2018).  

 

As we have seen, Milkowski’s view and Piccinini’s view are very different. Milkowski does not 

dissolve the implementation relation or eliminate an internal semantics. Fresco, on the other hand, 

does not provide a theory of physical computation in the first place.64 

 

5 Engaging with the mechanistic account 

Piccinini’s mechanistic account is well known and has generated various replies. But, in the 

process, views sometimes characterize the mechanistic account as giving a theory of 

 
64 I think that a lot of what happens in the literature is that people are taken at their word when they state where their 
view belongs. So, when they say that they are giving a mechanistic account, then get slotted into the mechanistic 
account category. If they say they are giving a theory of computation, they get slotted into that category. And so on. 
But when we pull all these views apart and look at their pieces, we can see that it’s not so simple and that just because 
someone says they are doing one thing doesn’t mean they actually are. So much more is going on and so many people 
are just lumping and assuming. This can also make it difficult to engage in the debate in a way that challenges this 
framework and that attempts to clarify questions about physical computation and which theories address what.  

168



 

implementation or “bridging the gap” between formal abstract computational descriptions and 

physical systems. As we know, the mechanistic account does not do this. This is only apparent 

when the conceptual shifts are made explicit. This means that when people engage with the 

mechanistic account, they generally do so without realizing the entire framework has shifted. I 

think a lot of this comes from not understanding the full context of how the concept of medium-

independence functions in the theory. It cannot replace multiple realizability because it is not a 

new term for a familiar concept. It is an imported concept used as a guise for a familiar concept. 

If we take them to be similar concepts, then we end up with the illusion that the mechanistic 

account is relational. But, as I have argued, it is not. So, when people engage the view, most of 

the time, they are engaging a view that I will call “the mechanistic account*.” This view keeps the 

functionalist framework intact. Medium independence is understood in a multiple realization way, 

Marr still has abstract levels, and formal computations are still playing a role.   

 

Adopting the mechanistic account* makes it tractable when comparing it to other theories that 

address physical computation. A consequence is that the mechanistic account, in its original form, 

is impenetrable to the arguments against it. It is not susceptible to the criticisms brought against it 

because the criticisms target a different view. If the goal is to argue against the mechanistic 

account, then you have to target the framework it’s built on. In the next section, I will give 

examples of how people engage with the view. The final example will be one where the author 

targets the mechanistic account directly, working within the conceptual shifts as Piccinini 

formulates them.  

 

5.1 Targeting explanation 
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Haimovici (2013) argues that the mechanistic account faces a dilemma involving a tension 

between mechanistic and functional explanations. She says a good mechanistic explanation must 

describe a system’s actual causal structure, which requires the identification of its actual functional 

and structural properties (p. 153).65 Alternatively, for a computational explanation to be a good 

mechanistic explanation, we need a way to individuate computations based on structural and 

functional properties—meaning that multiple realizability would no longer be possible for 

computational systems (p. 159). The first horn is a problem for mechanistic explanation, while the 

second is a problem for computational explanation.  

 

Haimovici says that “the goal of the mechanistic account is to build a bridge between formal 

abstract descriptions of computation and the functions and activities of concrete physical systems 

in such a way that it provides the means to distinguish whether a given system is computational or 

not empirically” (p. 154).66 Here she argues that the mechanistic account is given mainly in 

functional terms, challenging whether it’s a mechanistic explanation at all. She points out that, 

according to the mechanistic account, to implement a concrete computation, a physical system 

needs to exhibit certain degrees of freedom” (p. 157).67 Possessing degrees of freedom means that 

the system needs to possess a certain number of physical variables that can vary independently 

from one another. She goes on “given the fact that the differences in computational vehicles that 

are functionally relevant to defining computations can be abstractly characterized, without 

 
65 Note that this reason also disqualifies Fresco’s view as being mechanistic. 
66 The mechanistic account does not build a bridge because it does not answer the implementation question. Moreover, 
it is concerned with a non-platonist understanding of physical computation, which does not rely on abstract 
descriptions to identify computational systems.  
67 “Implement” here is being used loosely. It would be more precise to say something like “in order to perform a 
concrete computation…” – using the term “implementation” loosely in this ways gives the illusion that the mechanistic 
account addresses the implementation relation. 
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detailing all the specific physical properties of the vehicles, Piccinini holds that computational 

vehicles are medium-independent” (p. 157).68 she concludes that, according to the mechanistic 

account, computational vehicles are medium-independent and are characterized mainly in terms 

of their functional properties rather than their structural ones. That “computational vehicles are 

abstract and multiply realizable in different physical media, e.g., mechanical, electromechanical, 

electronic, or magnetic” (p. 159). She thinks that this is a functional explanation and not 

mechanistic.69  

 

What Haimovici targets is the use of mechanism sketches to support medium independence. Recall 

that according to the mechanistic account, functional analysis is to provide a mechanism sketch 

and that this mechanism sketch allows Piccinini to incorporate medium independence into his 

view. She thinks this generates a tension between mechanistic explanation and functional analysis 

for individuating computing systems because mechanism sketches are weak in explanatory power 

because they omit details and are thus an insufficient explanation. Put differently; she thinks that 

adopting a mechanism sketch as the appropriate level of explanation goes against the mechanistic 

orthodoxy that “good mechanistic explanatory texts describe all of the relevant components and 

their interactions, and they include none of the irrelevant components and interactions” (Craver 

2007, p. 140).70 

 
68 This trades “abstraction” for “abstract” characterization. Medium independence is born from the process of 
abstraction while multiple realizability is born from the abstract versus physical details distinction.  
69 This takes medium independence and multiple realizability to be the same when they are not. When we distinguish 
abstraction from abstract entities, we can see how the two come apart. Also, consider how Piccinini understands 
functional explanation—he thinks he is doing that (under his reconceptualized framework)—what Haimovici is 
describing here is what Piccinini calls “task analysis.”   
70 But consider how Marr is revised in Piccinini’s account. A mechanism sketch, although medium-independent, is 
still part of the nested hierarchy. It’s mechanisms from top to bottom. It seems that Haimovici has the intuition that 
Piccinini is giving an explanation that ends up falling at the algorithmic level. But this intuition is only generated when 
we understand Marr’s levels as he presented them. If we use Piccinini’s new framework, the algorithmic level is just 
another mechanistic level—it’s just the implementation level all the way up.  
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The second horn is that there is a problem for computational explanation. Haimovici focuses on 

the concept of multiple realization in this section and follows Weiskopf’s (2011) view that 

realization is a relation between properties at different levels of organization (Haimovici, 2013, p. 

169). She adopts this view because it pairs nicely with the mechanistic account for several reasons. 

First, Weiskopf uses a mechanistic criteria to distinguish different realizers of functional kinds by 

appealing to differences in the structural properties of the components, such as their size and 

location. Second, this account focuses on properties or kinds described in the same way that 

Piccinini employs to characterize computational systems, that is, in terms of their functional 

properties, by concentrating on the relation between functionally characterized kinds and the 

different mechanisms that instantiate those kinds. Finally, Weiskopf proposes identifying kinds in 

terms of their roles in explanatory schemas, grounding the notion of realization and the criteria for 

evaluating cases of multiple realizability in scientific practices (p. 169). Adopting this kind of 

realization means that cases of multiple realization need to meet two conditions: systems with 

different structural properties must satisfy the same functional description, and functional 

descriptions must individuate a kind in virtue of being of explanatory use in the pertaining sciences. 

Once the structural details are filled in, the result will be a description of a particular mechanism 

that implements a computational system, not a description of a computational system that is 
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multiply realizable (p. 171).71 72 She thinks that result of this is that it makes multiple realizability 

incompatible with computations.73 

 

5.2 Targeting the mappings 

Coelho Mollo (2018) tries to improve on the mechanistic account. He thinks a tension between the 

“New mechanists” and the mechanistic account of computation needs to be resolved. The New 

mechanists take mechanistic explanation to be the following: 

 

Mechanistic explanation proceeds by individuating the underlying components and 

activities that form the mechanism, as well as their organisation, unveiling how they bring 

about the phenomenon to be explained. This often involves nested mechanisms—

components of mechanisms are themselves mechanisms that can be decomposed into 

components, which might in turn also be decomposable mechanisms, until a level is 

reached in which mechanistic decomposition is no longer possible. This leads to the 

multilevel nature of mechanisms and mechanistic explanation (p. 3480). 

 

He then goes on to give the mechanistic account of computation: 

 

 
71 Again, I caution the reading of “implementation” here. 
72 Haimovici focus is on multiple realization. This follows from the previous claim that what Piccinini is doing is 
actually giving a functional analysis. If we are thinking of functional analysis in the way that we typically do, then it 
makes sense to rely on multiple realization. But, as we know, medium-independence and multiple realization are not 
interchangeable concepts. Thus, her focus should be on medium independence. If it were, it’s not clear that this 
criticism would go through.  
73 Piccinini (2015) replies to Haimovici in the following way. “I reject the view that mechanistic explanation requires 
the specification of structural and functional properties at all levels of organization. Instead, mechanistic explanation 
requires the specification of all relevant structural and functional properties at the relevant level(s) of mechanistic 
organization (Piccinini 2015, 124-125). 
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Computational mechanisms are a type of teleolofunctional mechanism. Teleofunctional 

mechanisms are mechanisms that have teleological functions, that is to say, they have 

purposes or ends. Computational mechanisms, according to Piccinini are a subset of 

teleofunctional mechanisms (p. 3481). …Concrete computation, in its turn, is defined as 

the manipulation of vehicles according to a rule sensitive only to (some of) their physical 

properties. A rule, finally, is a mapping from inputs (and possibly internal states) to 

(internal states and) outputs. Vehicles and their activities are arrived at by means of 

mechanistic decomposition. …One important property of vehicles in concrete computation 

is their being medium-independent. The rules that govern the changes undergone by the 

vehicles are sensitive only to some dimensions of variation of their physical properties, i.e. 

their degrees of freedom. Degrees of freedom abstract away from the physical properties 

themselves—consisting only of their dimensions of variation—and are thus characterized 

in medium-independent fashion (p. 3482). 

 

He, like Haimovici, thinks that the difference between these two presents a dilemma for the 

mechanistic account: 

 

1) Good mechanistic explanation tends toward full structural detail at all levels of the  

mechanism. 

2) Computational explanation is necessarily abstract, insofar as it ignores most 

structural detail, caring only about degrees of freedom (p. 3483).  
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As we know (footnote 20), Piccinini rejects one. Coelho Mollo agrees with Piccinini and also 

rejects one. But he says that doing so comes at a cost: it avoids the dilemma but gives up the 

mechanistic view (p. 3484). 

 

Coelho Mollo argues that a good mechanistic explanation requires including all structural details, 

or it collapses into a functional explanation. He thinks that almost all structural detail is left out of 

the mechanistic account, leaving only constraints on the degrees of freedom of the structural 

components and that the weak structural constraint remaining are on par with the structural 

constraints posed by functional explanation. He says, “the abstraction from details that is an 

essential characteristic of computational explanation is comparable to the abstraction from details 

found in functional explanations”… and that providing any further structural details… “would 

immediately foil any attempt at multiple realizability or medium-independence”… “computational 

explanation and functional explanation look therefore much alike” (p. 3485).74 

 

Coelho Mollo argus that he can solve this problem by viewing the mechanistic account as a 

hypothesis about the nature of physical systems that are able to implement computations in a 

robust, non-trivial way. We would say that the role of mechanisms in the mechanistic view is to 

provide part of the connection between abstract computation and the world that a theory of 

computation must deliver (3487). What Coelho Mollo is advocating for is that we incorporate a 

relational view into the mechanistic account. His improved version is the following view: 

 

 
74 I think that this is a fair criticism, but I think that it targets medium-independence and not functional explanation. 
This relies on a different conception of functional analysis than Piccinini accepts. So, it seems that what Coelho Mollo 
has to say is that Piccinini is doing something like task analysis.  
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The appeal to mechanism in the mechanistic view plays an analogous role to mapping 

relations in the simple mapping account…it provides the bridge between functional 

computational individuation, and implementation in physical systems. But it provides 

further constraints than its competitors: it includes mapping as well as causal 

considerations, into a richer, more constrained, picture. The mechanistic view requires that 

physical computational systems not only have physical states mappable onto abstract 

computational states, as per the simple mapping view, or that they be causal systems, as 

per the causal view. They must be more than that, they must be mechanisms—organised 

systems with relatively clear boundaries, decomposable into physical parts that play a role 

in bringing about the overall behaviour of the system; and they must be teleofunctional 

mechanisms with the teleological function of performing computations (p. 3490). 

 

But notice something important: in order to do this, Coelho Mollo must adopt the mechanistic 

account* because the mechanistic account would never be compatible with a mapping view in this 

way—they rely on two fundamentally different frameworks! Essentially, this takes a Milkowskian 

approach to a mechanistic account of physical computation. It includes a mapping relation and a 

further specification of mechanisms—it incorporates mechanisms into a theory of implementation. 

Thus, this view now counts as a non-semantic theory of implementation, but critically, the 

mechanistic portion of the view is not the mechanistic account, it’s necessarily the mechanistic 

account*. 

 

5.3 Targeting the mechanistic account directly 
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Maley (2022) argues that the mechanistic account does not work as an account of computation. 

But he takes a different approach from the previous two arguments. He targets the view within the 

framework offered and thus targets the view and the elements that make it up. To target the 

mechanistic account, he chains together issues that arise between the various concepts required to 

build the view. He argues that there are problems regarding how the concepts are meant to fit 

together. 

 

First, Maley addresses functions. One subset of mechanisms with functions includes those that 

perform computations. To demonstrate how the mechanistic account works, Maley gives us an 

example of a calculator: 

 

A calculator is a mechanism, and it has teleological functions. One of those teleological 

functions is to perform calculations. Are calculations instances of generic computation? 

Yes, because there are mappings from inputs to outputs via internal states that follow a 

rule, sensitive only to differences between voltage levels in circuit elements. So how does 

it perform these computations? In a typical electronic calculator, this is done8 by appealing 

to the Boolean operations performed on circuits with binary values. At this level, the 

functional mechanism is only sensitive to differences between two voltage levels of the 

circuits, and follows rules that map inputs (and internal states) to outputs (p. 7). 

 

Maley argues that a problem with this account is that it ends up overgeneralizing, and too many 

things end up being counted as computational. To show this, he evaluates the details of the 
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mechanistic account, starting with the concept of ‘rules.’ Maley argues that Piccinini’s construal 

of ‘rule’ is too broad and leads to triviality. To demonstrate, he considers a common lawn sprinkler:  

 

This device follows rules in Piccinini’s sense. In particular, it maps inputs and internal 

states to outputs. The input is liquid at a certain pressure, the internal state is the current 

position of the nozzle, and the output is liquid at a certain pressure and velocity. The output 

of this particular sprinkler is approximately) a periodic step function (in angular degrees) 

for a given input pressure. Thus, the sprinkler unambiguously satisfies the MAC construal 

of a rule (p. 9). 

 

According to the mechanistic account, the sprinkler counts as a computer. But sprinklers aren’t 

computing when they spray water, so this notion of ‘rule’ makes the account too liberal. Moreover, 

Maley argues that how these rules apply to vehicles is also a problem.  

 

According to the mechanistic account, computation involves the processing of vehicles where a 

vehicle is understood as a variable or a value of a variable. Connecting this notion with the idea of 

generic computation, vehicles are the kinds of things that have spatiotemporal parts, implying that 

they are themselves spatiotemporal. Moreover, these vehicles are medium-independent. We know 

whether the vehicles have medium-independence when the rule is sensitive to only some 

spatiotemporal parts but not others. Maley argues this falls apart when applied to natural systems 

like neural firings. Consider Piccinini & Bahar’s (2013) claim about why neuronal systems 

compute: 
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The functionally relevant aspects of spike trains, such as spike rates and spike timing, are 

similar throughout the nervous system regardless of the physical properties of the stimuli 

(i.e., auditory, visual, and somatosensory) and may be implemented either by neural tissue 

or by some other physical medium, such as a silicon-based circuit. Thus, spike trains—

sequences of spikes such as those produced by neurons in real time—appear to be medium-

independent vehicles, thereby qualifying as proper vehicles for generic computation. 

Analogous considerations apply to other vehicles manipulated by neurons, such as voltage 

changes in dendrites, neurotransmitters, and hormones (Piccinini & Bahar, 2013: 462).75 

 

Maley maintains that nothing about medium independence follows from this case. This is because 

medium independence has to do with the rules and their sensitivity to certain differences in the 

properties of the vehicles in question. But there is no difference between neural firings caused by 

visual stimuli and those caused by auditory stimuli (Maley 2022, p. 12). Additionally, medium 

independence doesn’t follow from the fact that spike trains can be implemented in neural tissue or 

some other physical medium. He thinks that this entails multiple realizability rather than medium 

independence; acknowledging the difference between the two. 

 

Maley argues that introducing semantics into the account is a solution to these problems. On this 

view, physical computing mechanisms are those systems with mechanisms that process physical 

representations, where the mechanism is sensitive only to the properties of the representations that 

are responsible for doing the representing (p. 22). Note Maley’s final statement before closing this 

paper: 

 
75 Cited by Maley on p. 11. 
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By coupling this part of the mechanistic account with a version of a semantic account, we 

can develop a new account of physical computation that prioritizes physical 

representations. But that story is a longer one to tell, and must wait for another day (p. 25-

26). 

 

Maley gives us a quick sketch of what he has in mind:  

 

At a very abstract level, compilers simply take a set of strings as input and produce as 

output another set of strings (this is what all software does, considered abstractly enough). 

More concretely, however, compilers take code written in a high-level language and 

produce assembly code: crucially, however, those strings are representations. An input 

string, such as  

 

printf(“Hello, world!\n”) 

 

represents an instruction in C++; the corresponding lines of assembly code produced as 

output represent instructions for the relevant instruction set architecture. If the input and 

output did not represent instructions, then this would simply not be a compiler (p. 21-22).  

 

I’m going to speculate on how this view might be developed. If Maley remains consistent with this 

example, he will give a semantic view in terms of internal representations or internal semantics. 

This means that his semantic-mechanistic account is not a “semantic account” in the way that 
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theories of interpretation are semantic. Thus, it would still be a non-semantic mechanistic account, 

just a weaker version than Piccinini’s. Additionally, it’s worth considering whether Maley will 

adopt all the baggage that comes with the mechanistic account. I have some reason to suspect that 

he won’t do this, so I will assign Maley’s non-semantic mechanistic account the asterisk. In fact, 

for reasons that will unfold in the next chapter, I think this is the best way for Maley to develop 

his view. 

 

6 From mechanisms back to mappings 

At the 2022 Philosophy of Science Association Biennial Meeting, Piccinini and Anderson 

presented what they referred to as a “robust mapping account.”76 In this presentation, they 

presented the following account: 

 

Physical system PS implements computing system CS if and only if: 

1. PS satisfies a physical description (a PDPS) that 

2. Maps (at least) robustly onto the computational definition (CDCS) that defines CS.  

 

They think that this view will rule out pancomputationalism, accommodate conventional and 

unconventional models of computation in both natural systems and artifacts, and can be 

incorporated in accounts of implementation that include additional considerations (e.g. 

mechanistic and semantic accounts). What they then went on to present was a bonafide non-

 
76 This presentation was part of a symposium that included papers from me (presenting the distinction between 
implementation and interpretation and the role of triviality!), Gualtiero Piccinini & Neal Anderson, David Barack, 
Paula Quinon, J. Brendan Ritchie, and Pawel Stacewicz.  
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semantic mapping account.77 This is a tacit admission that the mechanistic account, on its own, 

cannot address questions about implementation, nor can it address questions about interpretation. 

I also imagine that Piccinini means to reference his own account in the parenthetical listed above. 

If this is the case, his view will need some conceptual revisions. This is, of course, a welcome 

change for me.  

 

In the final chapter of this dissertation, I will draw the connections between theories of 

implementation, theories of interpretation, and mechanistic accounts to show how they pair quite 

nicely with each other. This is something that, given the above admission, even those that once 

seemed to be the most hard-pressed to reject a compatibilism between the views might be open to 

adopting.   

 

 

 

 

 

 

 

 

 

 

 
77 I have discussed my dissertation project with Piccinini on several occasions. He has also seen my poster presentation 
that lays out how his view shifts the direction of the literature. I hope that some of my work influenced the emergence 
of this new view. The manuscript is under review, so only time will tell how this unfolds in the paper. 
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8 Aspects of a theory of computation 

 

1 Introduction 

In chapter three, I argued that when we evaluate computational theories, we can distinguish three 

questions: individuation, implementation, and interpretation. I argued that non-semantic accounts 

answer the implementation question while semantic accounts answer the interpretation question. 

The locus of the debate is often framed in terms of non-semantic versus semantic views, but I 

argued that this was a mistake when we make it clear that they are answering different questions. 

Sometimes this debate is framed in terms of this question. I derive the individuation question from 

Piccinini (2015) and Shagrir (2022) because they both frame the debate in terms of the 

individuation question, including, sometimes, applying it retroactively to older views. I argued that 

this way of framing the debate supports the idea that semantic and non-semantic views (and even 

a mechanistic account) are alternatives to a theory of computation and should be rejected. 

However, we can still accept the individuation question as part of a theory of physical computation. 

One can maintain their metaphysical commitments regarding that question while still adopting my 

framework that distinguishes between implementation and interpretation.   

 

In chapter four, I argued that two types of triviality are central problems when it comes to theories 

that address physical computation. I identified these two types as a trivialization of the 

implementation conditions and a trivialization of the interpretation conditions. Both types of 

triviality can emerge independently from distinct arguments or arise from the same argument. I 

have also shown that some writers are concerned with one type while giving reasons to dismiss or 
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accommodate the other. This is a reasonable stance, but it does not eliminate the fact that the two 

types of triviality each warrant an independent response. Toward this end, I have argued that each 

type of triviality should be articulated as a separate problem that requires its own independent 

answer.  

 

In chapter five, I argued that theories often just classified as “non-semantic” theories of 

computation always address the implementation relation. This is not the claim that you must give 

a non-semantic theory to address the implementation relation. Instead, it is observation—it is how 

the literature has unfolded. But you might agree that this trend demonstrates that it’s possible to 

characterize the implementation relation non-semantically without bringing in additional 

explanatory posits, such as a reference to external semantic content. I have also argued that in 

virtue of addressing the implementation relation, these views also respond to the problem of trivial 

implementations. Implementation views come in different forms and place more or fewer 

restrictions on the physical system. Whether any of them is a successful account of implementation 

is up to the reader's preference, but we can all agree that they are addressing the relation between 

a computational architecture and an implementing physical system. I also argued in chapter seven 

that it is possible to give a theory of implementation within the mechanist framework. So long as 

the view maintains the relational nature of the implementation question, it still counts as a theory 

of implementation.  

 

In chapter six, I argued that “semantic accounts” address a second aspect of physical computation, 

namely, interpretation. I noted how the individuation question is most obviously derived from 

semantic accounts because some involved in the debate answer it explicitly. Semantic theorists 
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offer a semantic account because they take on the metaphysical commitment that computation 

necessarily (or essentially) involves the manipulation of representations to some degree. But I 

argued that once they develop their account, they end up providing a theory of interpretation that 

addresses the problem of trivial interpretations and that we should distinguish their answer to the 

individuation question from their theory of interpretation.  

 

In chapter seven, I argued that mechanistic accounts take very different forms. I showed how it’s 

possible to give what I call a “weak” mechanistic account that addresses the implementation 

question where the additional constraints on the physical system are cashed out in terms of 

mechanistic explanation. This type of view qualifies as a non-semantic theory of implementation. 

The main part of chapter six was dedicated to showing how the mechanistic account given by 

Piccinini (2015) reconceptualizes the very nature of what a theory of computation is meant to 

address. I argued that if we accept his view as given, it is incompatible with any implementation 

and interpretation view because the need for such a theory is dissolved within the new framework. 

But, as I will show later in this chapter, it is possible to adopt a mechanistic account and reject the 

conceptual framework that it rests upon. But, when we do this, we accept a view that I call “the 

mechanistic account*.” I have speculated that Maley might consider something like this when he 

proposes the semantic-mechanistic account.78 The good news is that the mechanistic account* is 

compatible with theories of implementation and interpretation. In this chapter, I will propose two 

ways to integrate the mechanistic account* into a theory of physical computation that addresses 

implementation, interpretation, and a specification of the mechanisms.  

 
78 But rejecting the framework doesn’t mean accepting the traditional one. For example, Maley has argued that Marr’s 
representational (algorithmic) level and implementation level should be collapsed to account for analog computation. 
So, again, I caution that I am merely speculating here about how Corey’s account will turn out.  
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By restructuring the literature and specifying distinct questions that target different aspects of 

physical computation, I don’t mean to claim that I’ve identified everything we need to address 

when it comes to physical computation. I also am not saying that trivial implementations and 

interpretations are the only kinds of triviality problems that arise when addressing physical 

computation. In recent literature, the issue of triviality has become more nuanced and is now 

sometimes framed as a problem of indeterminacy. Indeterminacy problems can take different 

forms, and it might be possible to address them within my framework by identifying whether they 

should be addressed by a theory that targets implementation, interpretation, or mechanisms.79 But 

some forms of indeterminacy might be better handled by additional theoretical posits that draw 

connections between a theory of computation and its applications to the brain along with 

considerations about methodologies in cognitive science. My future work will target computation 

in this domain. 

 

In section two, I will show how my framework has two possible forms. But first, I will argue that 

if we adopt the mechanistic account, we sacrifice implementation and interpretation for a view that 

addresses the individuation question with a full-blown theory. In section three, I will build a theory 

of computation using my framework. People may have different preferences about what theories 

they pair up based on their commitments, but I will show how it can be done using my preferences 

as an example.  

 

2 A framework for a theory of computation 

 
79 For example, see Papayannopoulos, Fresco, and Shagrir (2022). 
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In this section, I will argue that there are three ways that we can conceive of the relationship 

between the individuation question, a theory of implementation, interpretation, and mechanisms. 

I will provide three schemata for formulating a theory of computation. The first is the most extreme 

because it relies solely on the mechanistic account. I will reject this schematic as an appropriate 

formulation on the basis that a theory of computation is insufficient if it does not address 

implementation and interpretation. The following schemata will adopt the mechanistic account* 

into the framework. To review, my framework involves the following definitions: 

 

The Individuation Question: How are computing systems distinguished from 

non-computing systems? 

 

The Implementation Question: What are the conditions under which a physical 

system implements a computational structure? 

Trivial implementation: Too many or all physical systems can be seen as 

implementing some computational structure. 

 

The Interpretation Question: Which computational process(es) does the physical 

system perform? 

Trivial interpretation: A physical system can be interpreted as performing every 

computational process. 

 

2.1 Mechanisms-only 
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If we accept the mechanistic account, then our theory of computation would include a mechanism-

only theory of computation because the framework dissolves the implementation relation and 

eliminates the need to interpret the system: 

 

 

 

 

 

 

 

 Figure 5. Mechanism-Only Schematic 

 

In its original form, we can understand the mechanistic account as answering the individuation 

question by providing a full-blown theory. I reject this way of giving a theory of computation, so 

I will set this aside. We also have reason to believe that Piccinini himself sees this picture as an 

unviable theory of computation given his newest project with Anderson (2023, in progress) that 

brings the implementation relation back into the picture. 

 

2.2 Three questions + three theories: version one 

Another way that we can conceive of the literature is to take the mechanistic account* as 

addressing the individuation question. This gives us a full-blown theoretical answer to the 

individuation question—something that is missing from accounts that fork into a theory of 

implementation or individuation. This takes a metaphysical claim and backs it up with an actual 
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metaphysical theory. This schematic requires answers to the implementation question and the 

interpretation question as well. But this formulation gives up the opportunity to provide 

independent answers to the individuation question. So, for example, if you think that an answer to 

the individuation question necessarily requires some reference to semantic content, then you may 

reject this framework. The following graphic demonstrates version one of the schematic: 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6. Three Questions + Three Theories Schematic 

 

This graphic shows that there are independent answers to each question. There are two options 

available to answer the individuation question: the mechanistic account* and Maley’s semantic 

mechanistic account*. You could adopt one or the other depending on whether you think it’s 

possible to answer the individuation question without at least an internal semantics. Then, an 

answer to the implementation question and an answer to the interpretation question are added. 
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Together, all three forms a theory of computation that addresses different aspects of physical 

computation.  

 

If you are inflexibly committed to the idea that an answer to the individuation question necessarily 

requires reference to (external) semantic content, then you will reject this schematic. But accepting 

this version does not mean that one has to give up their commitment to the idea that computation 

is necessarily a semantic process. Many who give an interpretation view think that semantic 

ascription is a matter of context or user dependence. This means that the representational content 

is not inherent to the physical system. If this is the case, it’s perfectly reasonable to accept 

something like Maley’s mechanistic account* as an answer to the individuation question because 

semantics is taken care of when the theory of interpretation is in place. Put differently; the 

individuation question does not have to do the heavy lifting when it comes to supporting the idea 

that computation involves the manipulation of representations. If we accept that there are three 

questions with three answers, then an external semantics can enter via any theory because what 

matters is that it’s accounted for in a theory of computation. It gets pinned to the individuation 

question mainly because the literature does not distinguish between these theories, so those who 

provide a semantic account associate semantic content with individuation. Under this new 

framework, the interpretation view can be the vehicle instead.  

 

 2.3  Three questions + two theories and an option 

The third schematic leaves the individuation question alone and allows for whatever metaphysical 

claim one wants to give. The mechanistic account* comes in to possibly beef up an implementation 

view. You can read this version in two ways. The first is that the mechanistic account* should be 
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part of a theory of computation; without it, the theory would be incomplete. The other version lets 

one leave the mechanistic account* out of the theory altogether. If you think that implementation 

and interpretation is all there is to a theory of computation, then you can choose to sideline the 

mechanistic account*. One reason to do this is that you might want to adopt Milkowski’s 

mechanistic implementation view. If you slot his view into the implementation spot in the 

schematic, then the mechanistic account* becomes redundant.  The following graphic shows 

version two of the schematic: 

 

 

 

 

 

 

 

 

 

 

  Figure 6. Three Questions + Two Theories and an Option Schematic 

 

The dotted lines represent the option to take or leave either of the mechanistic accounts* depending 

on how you want to piece the theories together. The schematic allows one to answer the 

individuation question however they would like, but it’s not required (hence no ‘+’ sign). A benefit 

of this is that if you reject even the mechanistic account*, you can keep it out completely.   
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Moving forward, I will adopt this version of the framework because I think it’s possible to answer 

the individuation question however you would like (including not at all) and then adopt an 

implementation and interpretation view. I think it’s possible to eliminate the individuation 

question, but I take it that many people will want to retain the right to their answer, so I will leave 

it in. Finally, I think it is important to leave an option to include or reject the mechanistic account*. 

This is because I believe that you can adopt a mechanistic theory of implementation, making the 

additional mechanistic account redundant. You might also want to reject the view for other 

reasons. 

3 Building a theory of computation 

In this section, I will give an example of how we can pair different theories to show how they can 

be brought together to form a more complete theory of physical computation. Because I distinguish 

the individuation question from a theory of implementation and interpretation, you can adopt a 

theory without taking on the associated answer to the individuation question. This also means that 

if you have proposed either an implementation or interpretation view, and you are pairing your 

view with the other, you do not need to change your answer to the individuation question.  

I find mapping views difficult to understand when it comes to biological systems, so my preference 

leads me toward a computational complexity account rather than a mapping account that relies on 

some morphism relation between states or structures. Given this, I’ll take on Scheutz’s 

bisimulation view. He answers the individuation question by saying that for something to qualify 

as a computer, it has to be at least a usable, physical system that allows for data input and a 
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measurable output, which works within reasonable time constraints and is sufficiently reliable. 

This is a loose definition that can be paired with further commitments like ‘executing an 

algorithm.’ I will adopt Scheutz’s claims here as an answer to the individuation question because 

it gives us some advantage in addressing trivial implementations. For example, it immediately 

eliminates systems like walls and pails of water.  

 

Scheutz’s theory of implementation relates formal computational structures to a physical system 

by starting with the physical system and progressing through various levels of abstraction until an 

abstract behavioral explanation can be given. This relates a formal computation to a physical 

system by moving “up” from the physical world rather than moving “down” from abstract 

descriptions. This approach shows how a physical theory can be used to distill a mathematical 

mapping between the inputs and outputs of a physical system by abstracting over the physical 

features. There is still some work to be done if we want to extend this theory to biological 

computing systems like the brain. Still, I think that relaxing the mapping relations between the 

formal description the physical states is important. I also think that focusing on the system's 

behavior—i.e., the inputs and outputs—is an important part of the process.  I take it that some of 

what will come out of cognitive science and neuroscience as we learn more about the physical 

features of the brain, their nature, and how they relate to cognition will help us to complete this 

theory. If we want to develop it into an account that supports computationalism.  

 

This means that I don’t think that a theory of implementation necessarily needs to be able to 

identify all computing systems right now. If you think it should, you might opt for a different view. 

I think that it probably captures the obvious cases—the artifacts. But the difficult cases like 
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biological computation and neural computation will not be as straightforward. What I do think, 

and that is beyond this project's scope, is that any view that requires a mapping from formal states 

to physical states will not work when it comes to the brain. Issues pertaining to neural reuse, which 

cells should bear the mappings, what role physical features play in computational processes, etc., 

all matter for drawing any relation. I am skeptical of the success of mapping views beyond our 

artifacts, so I will likely reject any mapping view when it comes to implementation. But we can 

see immediately that Scheutz’s view works toward addressing trivial implementations. So, even 

though I think there’s more to be done with this view, I think it addresses the problem of trivial 

implementations sufficiently.  

 

I will adopt Shagrir’s theory of interpretation because his view naturally lends itself to a pairing 

with an implementation view. But I reject his answer to the individuation question. I think that 

computation does not require an external semantics, but it does require an internal semantics. For 

Shagrir, whether a system performs one computation or another depends on the environment in 

which the system is embedded. I agree that context matters, but I think some additional 

considerations should be added to Shagrir’s view. For example, Shagrir (2006) considers the 

Zipser-Anderson model, which explains how cells combine information from retinotopic 

coordinates with information about the eye orientation in area 7a of the brain. Zipser-Anderson 

identified the following equation to explain the process of integration: 

 

 

  Figure 8. Zipser – Anderson Equation 
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In the equation, e stands for eye orientation with respect to two angular components, ki and bi that 

represent the cell’s gain and bias parameters, ri is the center of the activity field in retinotopic 

coordinates and s describes the width of the Gaussian (p. 405). Zipser and Anderson relied on data

from anatomical and physiological experiments on macaque monkeys. They used previously 

acquired data from recording neuronal activity extra-cellularly during various visio-spatial tasks 

(Zipser & Anderson 1988). The neuronal recordings from twelve retinal receptive fields were 

arranged according to peak eccentricity and complexity and plotted on a series of topological 

graphs.80 From there, they used a three-layer network trained to map visual targets to head-centered 

coordinates, given any arbitrary pair of eye and retinol positions (p. 681). They concluded that a 

striking similarity between model and experimental data supports the conjecture that the cortex 

and the network generated by back propagation compute similarly (p. 684). Based on the context 

and the expertise of Zipser and Anderson, Shagrir accepts that the brain computes the above 

function when performing integration.  

But there is an additional model offered to explain the very same phenomenon. Mazzoni et al. 

(1991) offer a neural network model, but instead of relying on the backpropagation algorithm, they 

used an AR-P learning algorithm (associative reward-penalty algorithm) to model area 7a. After 

training the network, it learned to perform the transformation task to the level of desired accuracy. 

This model showed that the cells behave in accordance with the equation: 

80 For a more detailed description and visual representation of the graphs see Zipser & Anderson 1988, pgs. 680-681. 

Figure 9. Mazzoni et al. Equation 
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In this equation, the first term in the sum computes the reward portion of the learning rule, and the 

second term is the penalty portion. Mazzoni et al were motivated to develop a model based on the 

AR-P algorithm because it is more biologically plausible than the backpropagation algorithm used 

by Zipser and Anderson. 

What about this additional function? The context difference has to do with the goals that influence 

model development. Zipser and Anderson relied on the backpropagation algorithm to develop their 

model while Mazzoni et al. relied on a more biologically plausible algorithm.81 If biological 

plausibility is a modeling goal, then you might end up with a completely different description of 

the same phenomenon—this means that different interpretations can result from the same context. 

Given this, I think Shagrir’s view needs further specifications to determine the context. I prefer 

biologically plausible models, so I would choose the Mazzoni et al. model.  

I also think that it can be helpful to adopt the mechanistic account* to help strengthen the 

implementation view. I reject that computation is possible without something like an internal 

semantics, so I will adopt Maley’s mechanistic account*. The semantic mechanistic account* can 

help to identify the parts of physical systems that count as computational. I mentioned how it’s not 

clear which structures in the brain we should be mapping to, and it’s not clear which physical parts 

are necessary features for performing computations. I reject a mapping view, but these questions 

81 It has been argued that while back propagation is very successful when it comes to training neural networks, that
it’s not biologically plausible that the brain does something like back propagation (Song et al., 2020).  
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are still important. So, when claiming that particular physical features of the brain realize a 

computational structure, a mechanistic account* can help us identify which mechanisms we are 

referring to. Advancing Scheutz’s view beyond where he left it above. 

 

4 Conclusion 

In this project, I have argued that we should hold three questions distinct when it comes to a theory 

of computation: individuation, implementation, and interpretation. How one answers the 

individuation is distinct from a theory of implementation and a theory of interpretation, although 

it will very likely impact which type of theory you propose when it comes to physical computation. 

I have shown how typically the implementation relation is given by a non-semantic view. I leave 

open whether there could be a semantic view of implementation, but I am skeptical of a project 

that attempts to do this. It seems to me that as soon as an external semantics enters the theory, the 

view ends up addressing interpretation and not implementation. I also leave open whether it’s 

possible to give a non-semantic theory of interpretation, but I will say that it doesn’t seem to make 

any sense that a theory of interpretation would not rely on semantic interpretation in some form. 

So, while it might be possible to give these theories, I imagine the literature has gone the way it 

has because it doesn’t make much sense to do otherwise. This is only apparent when we pull 

implementation and interpretation apart, though. When we don’t do this, it appears that the debate 

is one about semantic versus non-semantic views. But, as I have shown, if the disagreement is 

located anywhere, it’s found in how one answers the individuation question. Further debates may 

also be found between the different implementation views and between the different interpretation 

views, but in the end, a theory that addresses each question is at least needed to address physical 

computation. My framework shows how we can accomplish this task.  
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