S. WINTEIN From Bi-facial Truth to Bi-facial
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Abstract. In their recent paper Bi-facial truth: a case for generalized truth values
Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation
of classical truth values. By taking the Cartesian product of the two disjoint sets of values
thus obtained, they arrive at four generalized truth values and consider two “semi-classical
negations” on them. The resulting semantics is used to define three novel logics which are
closely related to Belnap’s well-known four valued logic. A syntactic characterization of
these logics is left for further work.

In this paper, based on our previous work on a functionally complete extension of
Belnap’s logic, we present a sound and complete tableau calculus for these logics. It
crucially exploits the Cartesian nature of the four values, which is reflected in the fact
that each proof consists of two tableaux. The bi-facial notion of truth of Z&S is thus
augmented with a bi-facial notion of proof. We also provide translations between the
logics for semi-classical negation and classical logic and show that an argument is valid in
a logic for semi-classical negation just in case its translation is valid in classical logic.

Keywords: four-valued logic, bifacial logic, analytic tableaux

1. Introduction

In their recent paper Bi-facial truth: a case for generalized truth values,
Zaitsev and Shramko [7] (henceforth Z&S) distinguish between an ontological
(or referential) and epistemic (or inferential) interpretation of classical truth
values. When the cat is in the garden and Fred thinks it is in the kitchen,
‘the cat is in the kitchen’ is ontologically false but epistemically true. A
little more generally

If we confine ourselves to just two truth values—truth and falsity,
then their referential understanding will be that some sentence is
(objectively) true or false, and their inferential interpretation means
that a sentence is taken as (i.e. considered) true (and thus accepted)
or false (and thus rejected). [Z&S, p. 1302]

A sentence is either ontologically true or false (and not both) but it is im-
portant to stress that the same holds for the epistemic truth values as con-
sidered by Z&S. That is, the epistemic truth values are relative to a rational
agent who ‘never accepts and rejects anything simultaneously, as well as has
something to say on any sentence’.
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2 Stefan Wintein and Reinhard Muskens

Writing {7, F'} for the set of ontological truth values and {1,0} for the
set of epistemic ones, Z&S let Cartesian truth values be elements of the
Cartesian product {7, F'} x {1,0}. Thus, in the situation sketched above,
‘the cat is in the kitchen’ has the Cartesian truth value (F,1). A combination
of the natural order <; on {T, F'} and the order <; on {1,0}, both defined
in the expected way, gives rise to a partial order on {7, F'} x {1,0} by letting

(r,y) < (2',y) <=2 <2/ and y <4 ¢/

The partial order < turns {T,F} x {1,0} into FOUR", the distributive
lattice whose Hasse diagram is depicted below.” (Here and below we follow
Z&S in writing T'1 for (7', 1) etc. in order to improve readability.)

< T1
T0 F1

FO

Figure 1. FOUR"!

The order of FOUR"! gives us a natural definition of entailment for languages
whose sentences take values in {7, F'} x {1,0}: a |= (8 just in case, for every
valuation V' of our language, the values of o and (8 are in the < ordering.
That is:

aEpf<= VYV :V(a) <V(p) (1)

In accordance with (1), Z&S define entailment relations for various proposi-
tional languages. All these languages have connectives for conjunction (A)
and disjunction (V), which semantically behave as, respectively, meet and
join in FOUR"!. Of course, to get an interesting logic one should at least add
a negation operator. Several (well-known) options to do so exist. When a
Boolean negation —, (see Table 1) is added, the entailment relation—induced
via (1)—of the resulting language is that of classical logic. When one adds
the De Morgan negation —g (see Table 1) the entailment relation of the re-
sulting language is that of Belnap’s logic, which is axiomatized by a system

of first degree entailment as formulated by Anderson and Belnap [1].
*Note that FOUR™" is closely related to Belnap’s [3] logical lattice L4.
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Given the bi-facial picture of truth presented by Z&S, it makes sense
to define two less familiar negation operators: referential negation (—;) and
inferential negation (—1). Referential negation acts as an “ontological truth
value swap operator” (leaving the epistemic value unchanged) whereas infer-
ential negation acts as an “epistemic truth value swap operator” (leaving the
ontological value unchanged). As both referential and inferential negation
act on only one half of a Cartesian truth value, they are called semi-classical
negations by Z&S." Table 1 sums up the behaviour of all negations discussed
so far.

(0% & 1 T g

T1 | F1  T0 FO0 FO
T0 | FO T1 F1 7T0
F1, 71 FO T0 F1
Fo| 70 F1 T1 T1

Table 1. Referential, inferential, Boolean and De Morgan negation.

Both referential and inferential negation . ..

...turn out to be of complex character, managing to embody some
compound content by a sole unitary operator. Namely, for a sen-
tence A its inferential negation —1 A can be informally explicated as
“although it is the case that A, an agent denies A”, whereas referen-
tial negation — A stands for a composite construction “although it is
not the case that A, an agent accepts A”. [Z&S, p. 1312]

In accordance with (1), Z&S define entailment relations for propositional lan-
guages L, £1 and Ly 1, whose logical connectives are contained in {A, V, =},
{A\,V,—1} and {A,V,—, 71} respectively. Although Z&S present lists of
theorems and non-theorems for these three logics of semi-classical negation,
they do not present a syntactic characterization of these logics. In this paper
we present, amongst others, a uniform tableau calculus which reflects the
“Cartesian product nature” of the four truth values of Z&S, which is, from

fIn fact, Z&S give a precise and more general definition of the notion of a semi-classical

negation through an algebraic notion of a semi-Boolean complementation, but to restate
that definition is not necessary for our purposes.
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a formal point of view, the essential feature of their semantics. As Z&S put
it

...we have developed a method of generalizing classical truth val-
ues by taking their Cartesian product. In this way we were able to
represent ontological and epistemic aspects of these values within a
united semantic framework. [...] as we believe, the very method of
Cartesian truth values can open interesting prospects in investigat-
ing new logical systems arising from various combinations of logics of
different types. [Z&S, p. 1316]

To explain in which sense our calculus reflects the “Cartesian product na-
ture”, observe that (1) is equivalent to saying that « entails 8 just in case,
when passing from « to [, both ontological and epistemic truth are pre-
served. Writing V;(«) for the ontological component of V(«) € {T,F} x
{1,0} and Vi(«) for its epistemic component, the entailment definition of
(1) is thus equivalent to

aEf<= VW V(o) =T=V(B)=Tand Vi(a) =1=Vi(f) =1 (2)

We will present a signed tableau calculus, whose four signs, T, F, 1, and 0
wear their interpretation on their sleeves. The syntactic correlate of entail-
ment is then defined in analogy with (2). That is:

ak <= both {T:a,F: 3} and {1:«,0: 3} have closed tableaux (3)

Indeed, (3) states that a proof in our calculus consists of two tableaux, one
establishing the transmission of ontological truth, the other transmission of
epistemic truth. The “bi-facial” tableau calculus of this paper is in an im-
portant sense a special case of the “bi-facial” Gentzen calculus—a Gentzen
calculus in which each proof consists of two proof trees—for a functionally
complete version of Belnap’s logic that we presented in Wintein and Muskens
[6]. As we explained there, the “bi-facial” nature of our proof system is a nat-
ural consequence of the view that Belnap’s four values are best understood
as combinations of truth values:

The proof system of the present paper exploits the fact that [Belnap’s
values True only, False only, Neither and Both| are best thought of
as combinations of truth values. We choose our four signs to capture
the “underlying” values of (non-)truth and (non)-falsity and, in doing

so we arrive at a proof system that is tailor made for Belnap’s logic.
[[6], italics added]
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Although there are uniform methods by which signed (analytic) tableau cal-
culi for finite valued logics can be obtained (see e.g. Baaz et al. [2]), the
calculi that are obtained in particular cases are sometimes unnecessarily
complicated and the system for the logics of semi-classical negation that is
obtained by the method of [2] is a case in point. The binary connectives,
for instance, are provided with tableau rules that have up to four clauses
while these clauses themselves may consist of sets of signed statements rather
than of single signed statements. Consider, for example, the tableau rule for
T0 : a A B that is obtained in this manner.

TO:aNp
T1:a,T70:5|7T0:a,T1: 5| T0: ,T0:

This looks awkward and the awkwardness is explained by the fact the uni-
form method of [2] is insensitive to the “Cartesian nature” of the four values.
In our tableau calculus, which fully recognizes and exploits this nature, a
signed tableau rule for a binary connective is either of disjunctive or conjunc-
tive type and always involves exactly two immediate descendants. In this
sense, our system closely resembles Smullyan’s tableau calculus (cf. Smullyan
[5]) for propositional logic.

7.&S provide lists of entailments that, respectively, fail and hold in their
logics for semi-classical negation (cf. Proposition 5.1, 5.2 and 5.3). For in-
stance, with respect to the logic of £y, Z&S remark that —(aVj3) = —waA— S
but that —wa A =8 = —(a V B) is correct. We translate the sentences of
Ly, L1, and L;; into a classical propositional language and we then show
that an entailment is valid in a logic for semi-classical negation if and only
if its translation is valid in classical logic. By doing so, we provide a unified
explanation for the occurrence of each entry on the (non-) entailment lists
of Z&S.

The rest of the paper is organized as follows. In section 2 we first define
our signed tableau calculus for the logics of semi-classical negation and show
that these are sound and complete with respect to the (multiple premise,
multiple conclusion version of the) semantic entailment relation defined by
(1). Then we show that all entailments that are valid in a logic for semi-
classical negation are in fact classically valid entailments in disguise. Section
3 briefly discusses a functionally complete extension of {A,V,—, -1} and
points out that (an extension of) our bi-facial tableau calculus is also sound
and complete with respect to the resulting entailment relation. Section 4
concludes.
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2. Tableaux and Translations for Semi-classical Negations

In this section, we are concerned with the propositional language £;1 and
its sublanguages £; and L1, as defined in Section 1. An atomic valuation v
is any function from propositional letters to {T, F'} x {1,0}. A wvaluation V
of L;1 is the recursive extension of an atomic valuation v to the set of all
the sentences of L; 1, in accordance with the truth tables for £;1’s logical
connectives. Entailment is defined in accordance with (2), although we think
it more natural to work in a setting allowing for finite’ sets of premises and
conclusions. Thus I' = A holds just in case in passing from I' to A, both
ontological and epistemic truth are preserved.

DEFINITION 1. Let I' and A be sets of L£; sentences. Then I' = A iff
I' =2 A and I' |=° A, where

- A<= VV : Vi(a) =T for all o € T implies V;(5) = T for some
B e A;

-TECA <= VYV : Vi(a) =1 for all @ € I implies V;(8) = 1 for some
B e A.

We follow Z&S in using = (¢, =§) for the restriction of = (=2, E°) to sets
of L; sentences and =1 (¢, =¢) for the restriction of |= (=2, =°) to sets of
L1 sentences.

In this definition V' ranges over all £; 1 valuations and V; and V; are defined
as in Section 1.

We will capture = (in terms of = and =°) via the tableau calculus
whose rules are displayed in Table 2.
Names of rules in this calculus will be TA, 0—, etc., with the obvious cor-
respondence between name and rule. The closure conditions of our calculus
are as expected.

DEFINITION 2 (Closure conditions). A branch of a tableau is closed just in
case it contains either {T : a,F : a} or {1 : «,0 : a} for some sentence a.
Otherwise the branch is open. A tableau is closed just in case all its branches
are. Otherwise the tableau is open.

We define syntactic correlates of =°, =, and = as follows.

FWorking with finite sets of sentences is no restriction, as = is compact. Compactness
of | readily follows from the compactness of the entailment relation of a functionally
complete extension of L1 (cf. [6]).
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T:anp F:ang l:aNp 0:anp
T:a,T:8 F:al|F:p l:a,1:8 0:c|0:8
T:avp F:avp l:aVp O:avp
T:a|T:8 F:a,F:p l:a|l:8 0:0,0:0
T: F:—a 1:—a 0: v«
F:a T:« 1:a 0:«
T:ma F:a 1« 0: M«
T:« F:a 0:« 1:«

Table 2. Tableau rules for logics of semi-classical negation.

DEFINITION 3. Let I' and A be finite sets of £; 1 sentences. Then I' = A iff
-2 Aand I' ¢ A, where

-TH A<= {T:a|aeT}U{F: 3|3 € A} has a closed tableau.

-THFH A= {l:a|lacT}U{0:5]| 5 € A} has a closed tableau.

The calculus is sound and complete with respect to the logics of semi-classical
negation.

THEOREM 1. Let I' and A be finite sets of L1 sentences. Then

I.TE°A<=TF A
2TEA=TF A
3 TEA<TF AandI'F* A

PROOF. Similar to the proof of the completeness theorem for an extended
logic in the next section. O

From this characterisation of = we see that in general two tableaux need
to be made in order to check whether a given sequent is valid, one for the
ontological and one for the epistemic part of entailment. Let us illustrate
our calculus with an example. As Z&S remark (cf. Proposition 5.2 (1)) we
do not have —(a V ) = —wa A —f. Our calculus mimics this judgement
syntactically. To see this, consider the relevant ontological and epistemic
tableaux:
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T:—(aVp) 1:—(aVp)
F:—aAN—f 0:—paAN—f3
F:avp l:avp
F:a /\
F:
B 1:« 1:0
F:—\toz FZ_\tﬁ
T:a T,B 02_‘15()( Olﬁtﬁ OZ"tOé 05_‘t,8
v % 0:« 0:8 0:« 0:p
X X

We see that the ontological tableau on the left is closed whereas the epistemic
tableau is not. Thus, our calculus explains the failure of —(a V f) =
-+ A = (3: ontological, but not epistemic truth is preserved in passing from
_\t(Oé V ﬂ) to e’ A _\tﬁ.

So, whereas in classical logic —(«V ) entails —aA—/, its “L; counterpart”
fails and this failure is explained by the fact that epistemic truth is not
preserved. This observation can be generalized. To do so, we let L be a
classical propositional language whose logical connectives are {A,V, -} and
we use =1 to denote classical entailment. For each sentence o of L, its £;
counterpart o' is obtained by replacing each and every occurrence of — in
o by —. Also, given a set I' of L sentences, we let 'V = {o! | o € T'}.
An immediate corollary of the following proposition generalizes the above
observation.

PrOPOSITION 1. T' =V A = T =2 AL

PROOF. (=) Consider the ontological tableau rules for referential negation.
That is, consider the rules T—; and F—;. Define the tableau rules T— and F—
by replacing, in T—; and F—; respectively, - with =. The tableau calculus
TL, which consists of the rules TA, FA, TV, FV, T— and F— together with
the ontological closure conditions is well-known to be a sound and complete
calculus for classical propositional logic (cf. Smullyan [5]). Suppose I' =V A.
Then {T:a|aeT}U{F: 3| B € A} has a closed TL tableau from which
it immediately follows that {T : o |« € T}U{F: 8" | 8 € A} has a closed
tableau in our bi-facial calculus. Hence, I'" =2 A

(<) Similar to the (=) direction. O

COROLLARY 1. Suppose I' =¥ A and T [&; Al. Then TI'* ¢ AL

All the failures of £; entailment that are listed by Z&S in their proposition
5.2 are counterparts of classically valid entailments and hence, by Corollary
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1, they can all be attributed to failures of transmission of epistemic truth. As
inferential negation is dual to referential negation, we also have the following
proposition—whose proof is similar to that of Proposition 1—together with
an immediate corollary. The notation used in Proposition 2 is as expected:
for each L sentence o, ¢! is obtained by replacing each occurrence of = in o
with =1 and I'' = {o! | o € T'}, for each set of L sentences I

PrOPOSITION 2. T' =V A = Tt =6 AL
COROLLARY 2. Suppose I' =V A and T'! J4; Al Then T j£9 AL

Besides listing failures of |=; entailments, Z&S also provide a list (cf. propo-
sition 5.1) of classical entailments whose £; counterparts are |=; valid. Here
is an example: —ya A3 =, = (aV ). There is a single explanation for the
occurrence of each of the 14 valid £; entailments that are listed by Z&S.

As —pa A~ = (o vV B), it holds in particular that —a A =5 ¢
—t(aV B). Thus, {1:—~aA—S, 0: —(aV )} has a closed tableau. But
consider the tableau rules 1—; and 0—, i.e. the epistemic rules for referential
negation. These rules only “remove” —;. So we might just as well remove
—¢ beforehand: as —a A 5 F¢ —(a V 3) and as the 1, and 0—; rule are
trivial, it must also be the case that o A 8 F¢ oV 3, which is also valid in
classical logic.

To explain that this observation holds in full generality, we define for
any L; sentence o its —-free counterpart o® by simply removing from o each
occurrence of —;. Note that any o°® is an L sentence as well as an £; sentence.
For any set of £; sentences I' we let I'* = {0® | 0 € I'}. We then have the
following proposition.

PROPOSITION 3. T' |5 A <= T'* =L A®

PrOOF. (=) I' = A implies (per definition) I' |={ A which implies (by
completeness) I' ¢ A. As the epistemic rules for referential negation are
trivial, this implies I'* ¢ A®. Now, the epistemic tableau rules pertaining to
conjunction and disjunction (together with the epistemic closure conditions)
constitute a sound and complete system for classical propositional logic in
the connectives {A,V}. Hence I'* =1 A®.

(<) Trivial. O

Of course, we also have a dual proposition. The notation in Proposition 4 is
as expected: for any L£; sentence o, ¢° is obtained from o by removing all
occurrences of -1 and, for any set of £, sentences I', I'* = {0° | o € T'}.

PROPOSITION 4. T' =1 A <= T° =L A°
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PRrROOF. Just as the proof of Proposition 3. O

What about the full |= relation on £;;7 For this logic, Z&S also present
a list of valid entailments (cf. Proposition 5.3). Again, let us first consider
a particular entry of their list, say wa &= —1——1a. Now, from —a =
-1« it follows, per definition and completeness, that -y F¢ =1y«
and o F° =1—¢—1a. From —a F¢ =1—y—1a and the triviality of 1-; and
0—y, it follows that o F¢ =11 But, modulo a —1 /- translation, this is just
a classically valid entailment, i.e. « ):L =—¢. Dually, from —a F° =1 -1«
we can infer that —a F° —«, which is, modulo a —;/— translation, the
classically valid entailment —~a =L —a.

So, as before, we see that |= valid entailments can be translated into
classically valid entailments. In order to make this observation precise, we
need some additional notation. As before, ® will denote the sentence that
is obtained by removing all occurrences of —; from ¢ and ¢° will denote the
sentence that is obtained by removing all occurrences of =1 from o. Note
that 0® is a £ sentence and ¢° is a £; sentence, if o is an £;; sentence.
For each o that is either an £; or an £; sentence, the L sentence C(o) will
denote the classical counterpart of o, obtained by replacing each occurrence
of =4 or =1 in o with —. If " is a set of sentences, I'*, I'* and C(I") are defined
as expected. We then have the following proposition.

PROPOSITION 5. I' = A <= C(I'*) =Y C(A®) and C(T°) E C(A®).

ProOOF. The remarks preceding this proposition can be made rigorous along
the lines of the proofs of Proposition 1 and Proposition 3. Details are left
to the reader. O

3. A functionally complete extension

The tableau rules in Table 2 have the particularity that they do not mix
the ontological and the epistemic. A premise signed with T or F will always
lead to conclusions signed with T or F and premises signed 1 or 0 likewise
lead to conclusions signed with 1 or 0. There are, however, operators that
cannot be dealt with in this way, as a short glance at the truth table of the
negation —g in the introduction will confirm. Given the information that
Vi(mqa) = T, for example, no conclusion about the value of V;(«) can be
drawn, although it can be concluded that V;(«) = 0.

In fact, tableau rules for —; are easily given and we have done this in the
first row of Table 4. Here we have written —4 simply as —, as this negation is
the analogue of classical negation in Belnap’s logic, and we will continue to
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@ |T1 T0O F1 FO -

71|71 70 T1 T0 T1 | T1
T0 |71 T0 T1 T0 T0 | F1
F1|F1 FO F1 FO F1170
FO| F1 FO F1 FO FO | FO

Table 3. Truth tables for @ and —.

do so. Note that the rules for this operator allow premises signed with T or
F to lead to conclusions signed with 1 or 0 and vice versa. This means that
tableaux will no longer either have a purely ontological or a purely epistemic
character.

There are more truth-functional operators based on the combinations

T1,T0, F1, and FO. Here are two of them, @ and —, with associated truth
tables.
Note that ¢ @ ¢ is ontologically true if and only if ¢ is ontologically true,
but epistemically true iff ¢ is. In the literature on bilattices — is sometimes
called conflation. Two other operators that come natural with Belnap’s truth
values are ® and @, which respectively denote meet and join in Belnap’s [3]
approximation lattice A4. The first of these can be defined by letting ¢ ® 1
abbreviate (p A ¥) @ (¢ V ) and the second, dually, by letting ¢ @ 1) be
short for (¢ V) @ (¢ A v). Since Muskens [4] shows that {-, —, A, ®} is
a functionally complete set of connectives for Belnap’s four-valued logic it
follows that {—, —, A, @} likewise is functionally complete. While it may be
hard to provide operators such as @, ®, @, and — with intuitive motivations
if the logic is interpreted as a logic of bifacial truth, this nevertheless provides
some technical motivation to study them.

The language based on {—, —, A, @} will be called £ and we now redefine
the relation = to hold between sets of sentences of this language (where V'
ranges over £ valuations this time and V(y) = (Vi(p), Vi(p)) as before).

DEFINITION 4. Let I" and A be sets of £ sentences. Then I' = A iff T =° A
and I' =¢ A, where

-T2 A<= VYV : Vi(a) =T for all @ € T implies V() = T for some
BeA;

-TECA <= VYV :Vi(a) =1 for all @ € T implies V1(5) = 1 for some
B e A.
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T - F Y 1 - 0 %
0:¢ 1:¢ F:op T:o
T:—p F:—o 1:—¢ 0:—p
1:¢ 0:¢ T:¢ F:o

T:oAY F:opAY 1:pA 0: AP
T:o, T:yp F:o|F:¢p 1:p,1:9 0:0]0:%
T:p@q F:p@qy l:p@qy 0:p@q

T:p F:o 1:9 0:9¢
Table 4. Tableau expansion rules for =, —, A, and Q.
Table 4 gives tableau expansion rules for the connectives =, —, A, and @,

with closure conditions as before—Definition 2 remains in force. The notions
of syntactic derivability are also as before (but with the rules in Table 4
replacing those in Table 2).

DEFINITION 5. Let I' and A be finite sets of £ sentences. Then I' - A iff
I'+° A and I' H¢ A, where

-TH A= {T:a|lacT}U{F: 3| B € A} has a closed tableau.
-TH A= {l:a|lacT}U{0: 5|5 € A} has a closed tableau.

In order to show that the new F indeed characterises the new =, the following
two definitions are useful.

DEFINITION 6. Let © be a set of signed £ sentences and let V be a L
valuation. We say that V satisfies © iff the following statements hold.

-T:pe®=Vi(p) =T
-Frpe0=V(p) =
-l:pe®@=Vi(p)

-0:pe®@ = Vi(p) =
We also say that V' satisfies ¥ if V' satisfies {0}.

F
1
0

DEFINITION 7. Let B be a tableau branch and let ¢ € B be a signed sentence.
We say that 9 is fulfilled in B if ¥ is a signed atomic formula or ¥ instantiates
the top formula of a rule in Table 4 while all the corresponding bottom
formulas in one of the branches of that rule are also in 5. A branch B is
fulfilled (or complete) if all ¥ € B are fulfilled in B.
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So, for example, F : ¢ A 1) is fulfilled in B iff either F: p € Bor F: ¢ € B
and similar for the other 15 combinations of signs and connectives. Clearly,
every finite tableau can be expanded to a finite tableau in which all branches
are fulfilled. This means that if a tableau cannot be expanded to a closed
tableau, it can be expanded to a tableau which has a branch that is open
and fulfilled.

Note also that, for each instantiation of an expansion rule given in Table
4 (and indeed for each rule in Table 2), it holds that a) if a valuation V'
satisfies the top formula, V' satisfies the bottom formula(s) in one of its
branches and b) if a valuation V satisfies all bottom formulas in one branch
of the rule, it satisfies the top formula.

These considerations immediately lead to the completeness theorem.

THEOREM 2. Let I' and A be finite sets of L sentences. Then

1. TE°A<TF A
2TEA=TFA
3 TEA=THF AadI F A

PROOF. In order to prove the left to right direction of 1., suppose I'" H° A.
Then {T :~v |~y €T'}U{F:d|d € A} has a tableau with a branch B which is
open and fulfilled. For all atomic sentences «, define vy(a) =T if T: v € B,
wl)=FiT:a¢ B va)=1ifl:a€B,and vi(a) =0if 1: a ¢ B.
Let V be the unique valuation such that V(«) = (v¢(«), vi(a)) for all atomic
«. Then, since B is open and by induction on the complexity of formulas,
V satisfies B and hence {T : v |y e T}U{F:4d|d € A}, so that " j£° A.

Conversely, suppose that I' 22 A, i.e. there is a V such that Vi(v) = T,
for all v € T', while V;(d) = F, for all § € A. Then V satisfies {T : v | v €
I'}U{F:0 |6 € A}. Since each rule in the tableau calculus has the property
that if a valuation satisfies its top formula it must satisfy the bottom formulas
in one of its branches, a tableau starting with {T : v |y € T}U{F: 0 | 6 € A}
must have a branch satisfied by V', which must therefore be open, whence
It A.

The proof of 2. is entirely similar and 3. follows from 1. and 2. O

We conclude this section with definitions of the negations given in Z&S’s
paper (except, of course, their -4, which we have taken as a primitive). The
reader can easily verify that the tableau expansion rules for — in Table 5
are derived rules under this definition, as are the rules for —; and —1 in Table
2.
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T:—wa F:—ypa 1:—ypa 0:—a
F:a T:« 0:« l1:«

Table 5. Derived tableau expansion rules for —

DEFINITION 8.

—pp  abbreviates ——;
—tp abbreviates —p Q @
-1 abbreviates ¢ @ —pp.

4. Conclusion

In this paper we have used ideas from [6] in order to provide the logics of
semi-classical negation of [7] with analytic tableau calculi. In these calculi
proofs in general are based on two tableaux. We have also given translations
of the logics of semi-classical negation into classical logic which show that
their entailment relation mirrors that of the latter. The calculus in [6] for
a functional complete extension of Belnap’s logic also provides sound and
complete rules for the Boolean and De Morgan negations discussed by [7].

Acknowledgements. We would like to thank the anonymous referees for
their very useful feedback. Stefan Wintein wants to thank the Nether-
lands Organisation for Scientific Research (NWO) for funding the project
The Structure of Reality and the Reality of Structure (project leader: F.A.
Muller), in which he is employed. Reinhard Muskens gratefully acknowl-
edges NWO’s funding of his project 360-80-050, Towards Logics that Model
Natural Reasoning.

References

[1] A.R. Anderson and N. D. Belnap. Entailment: the Logic of Relevance and Necessity,
Vol I. Princeton University Press, Princeton, 1975.

[2] M. Baaz, C. G. Fermiiller, and G. Salzer. Automated deduction for many-valued
logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
pages 1355-1402. Elsevier Science Publishers, 2000.

[3] N. D. Belnap. A Useful Four-Valued logic. In J.M. Dunn and G. Epstein, editors,
Modern Uses of Multiple-Valued Logic, pages 8-37. Reidel, Dordrecht, 1977.

[4] R. A. Muskens. Meaning and Partiality. CSLI, Stanford, 1995.

[5] R. M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.



From Bi-facial Truth to Bi-facial Proofs 15

[6] S. Wintein and R. A. Muskens. A Calculus for Belnap’s Logic in Which Each Proof
Consists of Two Trees. Logique & Analyse, (220):643-656, 2012.

[7] D. Zaitsev and Y. Shramko. Bi-facial Truth: a Case for Generalized Truth Values.
Studia Logica, 101:1299-1318, 2013.

STEFAN WINTEIN

Faculty of Philosophy

Erasmus University Rotterdam

Burg. Oudlaan 50, room H5-09

3062 PA Rotterdam, The Netherlands
stefanwintein@gmail.com

REINHARD MUSKENS

Tilburg Center for Logic, Ethics, and Philosophy of Science (TiLPS)
Tilburg University

P.O. Box 90153

5000 LE Tilburg, The Netherlands

r.a.muskensQgmail.com



